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Abstract

We investigate time discounting under risk. To this end, we modify a popular
multiple price list (MPL) design to elicit time discounting . Structural estimations of
model parameters yield several new insights. For one, we find present bias to persist
under risk, contrary to some previous evidence from the psychology literature. We
further confirm the robustness of inverse-S shaped probability weighting . This is
important inasmuch as random choice predicts the opposite shape in our setup. We
also show that correcting for probability weighting under risk impacts the assessment
of discount rates. Those are systematically underestimated under the commonly
used, more restrictive, expected utility .
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1 Introduction

Risk and time are fundamentally intertwined—the future is inherently risky. Yet time

preferences have mostly been studied while abstracting from risk under presumed cer-

tainty (see Frederick et al., 2002 for a review ). Indeed, it has been suggested that devia-

tions from the standard model of inter-temporal decision making, discounted utility with

an exponentially decreasing discount function (DU ; Samuelson, 1937), may be largely

or entirely due to elicitation methods positing certainty of future outcomes (Keren and

Roelofsma, 1995; Weber and Chapman, 2005; Halevy, 2008; Gerber and Rohde, 2010;

Epper et al., 2011). According to this suggestion, (quasi-) hyperbolic preferences (Phelps

and Pollak, 1968; Laibson, 1997; Rohde, 2010; Pan et al., 2015) are due to the absence

of risk in the present, whereas risk is inherent in any future outcomes. A dislike of risk

would then result in a preference for immediate outcomes over future ones, regardless of

a respondent’s true underlying discount rate.

This paper investigates the properties of time discounting under risk. We do so

using a novel method consisting of a simple variation on the specific type of multiple

price lists (MPLs) popularized in economics by Holt and Laury (2002). 1 We start

by using standard MPLs to elicit risk preferences. That is, we compare two binary

lotteries while changing the probabilities attached to the different outcomes in a choice

list. By eliciting the switching probability between a (relatively) risky and a (relatively)

safe lottery, we identify respondents’ preferences over risk. We can then identify time

preferences simply by differing the payouts of one of the lotteries into the future (the

resolution of uncertainty is always immediate). By always deferring the outcomes of the

safe lottery we create a psychological tradeoff between preference for the present and risk

aversion, since the price to pay for increased safety is a delay in the payout of the outcome.

By administering appropriate delays of both lotteries to different future dates, we can

further measure quasi-hyperbolic and hyperbolic discounting. In addition, we show how

to use MPLs to elicit probability weighting jointly with utility curvature. Previous

studies using this particular choice list design were generally not set up to do this (we

will return to this point in the discussion). This serves as a stability check of the typical

inverse-S shape of probability weighting (see van de Kuilen and Wakker, 2011, for an
1
Many versions of choice lists have been used for many years.The one used here has two non-

degenerate lotteries with two probabilities changing as one moves down the list. Farquhar (1984)

surveys different choice lists designs.
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overview). While different methods have been used to measure probability weighting (see

e.g. Abdellaoui, 2000, and Bleichrodt and Pinto, 2000, for nonparametric measurements),

many studies have employed certainty equivalents (CEs) to parametrically identify utility

and probability weighting functions (Tversky and Kahneman, 1992; Bruhin et al., 2010;

Abdellaoui et al., 2011; l’Haridon and Vieider, 2018). In these tasks, lotteries with a

given probability of winning a prize are compared to a series of sure amounts of money

in a choice list. In the choice list, the CE is derived from the point at which people

switch from the sure amount to the lottery. While being eminently tractable, CEs can

be biased by systematic noise. While this problem has been known for many years, some

recent studies have highlighted the fact that some people may switch systematically in the

middle of a list, or at random (Ert and Erev, 2013; Andersson et al., 2016; Vieider, 2017).

Using CEs, this kind of switching pattern could result in inverse-S shaped probability

weighting even if respondents were in fact expected utility maximizers.However, with the

MPLs used here, this swithcing pattern would result in S-shaped probability weighting,

thus providing a stability test for inverse-S shaped weighting.

Estimating probability weighting in addition to utility curvature further allows us to

examine the effect of the risky-choicemodel adopted on the estimated discount function.

We start from the estimation of the standard model of inter-temporal decision making in

the presence of risk, discounted expected utility (DEU ) . We then relax its assumptions

by allowing for non-constant discounting and non-linear probability weighting, both of

which substantially improve the fit of the model to the data. Accounting for nonlinear

probability weighting is also important for another reason. In the presence of pessimism

in the probability weighting function, utility obtained while assuming EU will be overly

concave (Wakker, 1994). Correcting for probability weighting resolves this problem,

and thus results in reduced concavity of utility (Bleichrodt et al., 2007; Schmidt and

Zank, 2008). The risky-choice model assumed will also influence estimations of time

discounting. This is, indeed, a direct consequence of imposing the utility parameter

estimated under risk for modeling inter-temporal tradeoffs.

We find that probability weighting is indeed inverse-S shaped, thus confirming the

stylized fact of probabilistic insensitivity—the finding that a given change in probability

receives considerably less weight when it takes place in the interior of the probability

interval than when it occurs towards the probability end-points of 0 and 1. This proves

the robustness of this finding of inverse-S probability weighting to the potential con-
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found of random switching. We also reject constant discounting in favor of hyperbolic

discounting. Estimating a DEU model with constant discounting and linear probabili-

ties, we estimate a low yearly discount rate of around 6%. Once we allow for nonlinear

probability weighting, however, the estimated discount rate more than doubles to 14%.

This dramatic change is due to the fact that utility estimated in conjunction with prob-

ability weighting exhibits considerably less curvature than utility estimated under the

expected utility assumption. This shows that correcting discount rates for utility mea-

sures obtained from risky choices under the assumption of expected utility maximization

may lead to the systematic underestimation of discounting. We will further discuss these

insights after presenting the results.

2 Experimental design and model estimation

Subjects. We recruited 100 subjects at the laboratory of the Technical University in

Berlin, Germany. The students were from a variety of study majors, 41% were female,

and the average age was approximately 22 years. The experiment was computerized and

run in 20 small group sessions of five participants each. The average duration of the

experiment was 45 minutes.

General choice setup. The subjects were presented with two dated lotteries for each

MPL, as shown in figure 1. The lotteries were such that xr,t > xs,t+⌧ > ys,t+⌧ > yr,t.

Consequently, the lottery on the left-hand side has a higher spread in outcomes than

the lottery on the right-hand side, making it more risky according to the definition of

riskiness by Rothschild and Stiglitz (1971), so that we subscript its outcomes by r. The

lottery on the right-hand side will be referred to as the safe lottery, with its outcomes

subscripted by s (the terms safe and risky were not used to refer to the lotteries during

the experiment). The subscripts t and t+ ⌧ indicate when the outcomes of the lottery

will be paid. To elicit risk preferences, we set t = ⌧ = 0, so that all payouts take place in

the present. Delays in payouts were introduced by setting ⌧ > 0. Up-front delays were

also introduced by using t > 0 so as to test for hyperbolic behavior.. The elicitation task

consisted in finding the probability with which subject would switch their preference

from the safe lottery to the risky one. The procedures used are described below.

Decision model. We then describe our modeling assumptions. We start with a discounted

4



p
xr,t

1� p
yr,t

⇠

p
xs,t+⌧

1� p
ys,t+⌧

Figure 1: General choice setup

expected utility (DEU ) model, in which a subject chooses the risky lottery if:

pD(t)u(xr) + (1� p)D(t)u(yr) � pD(t+ ⌧)u(xs) + (1� p)D(t+ ⌧)u(ys), (1)

where u indicates utility, and D(t) = e�rt the exponential discount function with con-

stant discount rate r. We also consider two extensions to this model. In one, the linear

treatment of probabilities in equation 1 is replaced by nonlinear probability weighting,

thus substituting w(p) for p. The other allows for more general functional forms for

discounting, D(t), which can capture non-constant discount rates.

Functional forms. For utility, we employ a simple power function, u(x) = x⇢, namely

the constant relative risk aversion (CRRA) specification. This commonly used func-

tion provides a good fit to our data. For probability weighting, we use the 2-parameter

function proposed by Prelec (1998), w(p) = exp(�⌘(�log(p))�). This function fits the

data better than 1-parameter functions such as the one proposed by Tversky and Kah-

neman (1992) (z = 16.4, p < 0.001; Vuong, 1989, test), or the 1-parameter version of the

same function obtained by imposing ⌘ = 1 (�2(1) = 13.23, p < 0.001; likelihood ratio

test). Other 2-parameter functions, such as the one proposed by Goldstein and Einhorn

(1987), provide a similar fit to the data and yield similar results. Each of the two pa-

rameters of the weighting function has a specific interpretation, with � capturing mostly

the curvature of the weighting function. More specifically, the values � < 1 indicate

inverse-S shaped probability weighting, � = 1 perfect probabilistic sensitivity, and � > 1

S-shaped weighting. The parameter ⌘ indicates (mainly) the elevation of the weighting

function, with ⌘ > 1 capturing the typical case of probabilistic pessimism. Finally, the

so-called � � � function is used for capturing quasi-hyperbolic discounting, resulting in

the following functional form for discounting:
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D(t) =

8
><

>:

1, if t = 0

�e�rt otherwise

.

For � = 1, the function above reduces to the exponential discount function of DEU.

Values of � < 1 capture systematically lower valuations of future outcomes in relation

to present outcomes. In addition, we also fit a fully hyperbolic discounting function

proposed by Loewenstein and Prelec (1992) to the data. The function takes the form

D(t) = (1 + ⇣t)
�r
⇣ , where the ⇣ parameter captures the degree of deviation from expo-

nential discounting. The limit of this specification as ⇣ tends to 0 is the exponential

discounting function. Last, we use the constant-sensitivity function proposed by Ebert

and Prelec (2007). It takes the form D(t) = exp(�(at)b), where a measures impatience,

and b measures time-sensitivity. For b = 1 the function is reduced to exponential (con-

stant) discounting, while for b < 1 the function takes a hyperbolic form. Interestingly,

the values of b > 1 can also accommodate patterns of increasing impatience.

Stochastic specification and econometrics. Potential noise in the data is taken into ac-

count by incorporating an error term, ✏i. Writing the valuation of the risky lottery

as Ur and the valuation of the safe lottery as Us, a subject will choose the risky lot-

tery if Ur � Us + ✏i. We assume ✏i to be normally distributed (Hey and Orme, 1994),

✏i ⇠ N(0,�2
i ). We further allow the error term to depend on characteristics of the spe-

cific MPL, indexed by i. In particular, we allow the error term to depend linearly on the

outcome range in the risky prospect, xr � yr, which provides a good fit to our data (see

also Bruhin et al., 2010). The choice probability can then be written as

P (choose risky) = P (✏i < Ur � Us) = �

✓
Ur � Us

�i

◆
, (2)

where P (choose risky) indicates the probability of choosing the risky lottery, and �, the

cumulative normal distribution function. The model can now be estimated by maximum

likelihood. To obtain the overall log-likelihood function, we take the natural logarithm

of the cumulative distribution function in equation 2 and aggregate it over prospects and
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decision makers as follows:

LL(✓✓✓) =
NX

n=1

43X

i=1

ln

✓
�

✓
Ur � Us

�i

◆
+ (1� )[1� �

✓
Ur � Us

�i

◆
]

◆
(3)

where is an indicator variable that is equal to 1 if the risky prospect is chosen, and

to 0 if the safe prospect is chosen, and ✓✓✓ is the parameter vector to be estimated by

maximizing the log-likelihood function. The likelihood model is estimated using the

Broyden-Fletcher-Goldfarb-Shanno optimization algorithm and errors are clustered at

the subject level. Parameters are constrained to be greater than 0 for the individual-

level estimations.

Identification of risk preferences. We identify risk preferences from choices involving

lotteries with payouts in the present (t = ⌧ = 0). Table 1 shows a list of the MPLs used

for the elicitation. MPLs 1 to 5 keep the expected value switching probability (i.e., the

probability at which an expected value maximizer would switch from the safe lottery

to the risky one) fixed at 0.44—the switching probability originally used by Holt and

Laury (2002). These MPLs were constructed to differ in terms of outcomes, allowing us

to scan the outcome range and thus identify utility curvature. On the other hand, we

constructed prospect pairs 6 to 12 so as to scan the interval of expected value (EV )

switching probabilities.2 While other studies have tried to estimate probability weighting

using similar MPLs, the range of EV switching probabilities was too narrow to properly

separate utility curvature from probability weighting. For instance, Andersen et al.

(2014) used four MPLs with a range of 0.30 to 0.45, and found an S-shaped probability

weighting, as did other estimations presented by the same authors (see e.g. Andersen et

al., 2017). Their design does not have the power to clearly identify probability weighting.

Indeed, it is known that probability weighting functions tend to be relatively flat and

close to linearity for the EV switching probability range they used. This problem may be

further confounded by noise in the data. By systematically introducing variation in EV

switching probabilities, we solve this issue and augment the power to properly identify

probability weighting and utility curvature.
2
This is done by systematically adjusting the outcome spread of the two prospects. Let k = xr�xs

ys�yr
.

We can then compute the expected value switching probability of the MPL with p(EV ) = 1
1+k . It is now

straightforward to manipulate k to obtain EV-switching probabilities p(EV ) that scan the probability

interval.
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Table 1: Prospect pairs to identify risk preferences

MPL nr. outcomes in e EV prob.

1 (250, 10) vs. (200, 50) 0.44
2 (300, 20) vs. (200, 100) 0.44
3 (500, 0) vs. (250, 200) 0.44
4 (500, 20) vs. (400, 100) 0.44
5 (500, 220) vs. (400, 300) 0.44
6 (500, 10) vs. (150 , 50) 0.10
7 (500, 220) vs. (300, 250) 0.13
8 (450, 150) vs. (250, 200) 0.20
9 (500, 10) vs. (450, 50) 0.44
10 (350, 50) vs. (250, 200) 0.60
11 (500, 0) vs. (350, 300) 0.67
12 (500, 0) vs. (400, 350) 0.78

Below we present a quick review of the matter of random switching. Assume that

some subjects switch at random points in a list (the tendency to switch towards the

middle of a list results in the same prediction). On average, these subjects will exhibit

a switching probability of 0.5. Now take MPL 6. Since a risk neutral respondent would

switch to the risky lottery at p = 0.1, a risk seeker would switch to that lottery at an even

lower probability. However, given that the choice list ranges over the whole probability

interval, random switching behavior would result in an estimate of risk averse behavior.

Conversely, for MPL 12, a risk averse subject would switch to the risky lottery only once

the probability is above 0.78. For this MPL, random choices would be counted towards

risk seeking. We conclude then that, in the current setup, systematic noise in the form

of random switching would result in an S-shaped probability weighting function . The

exact oppositve occurs for CEs, where random choice is potentially confounded with

inverse-S probability weighting, thus highlighting the importance of systematic noise in

the identification of probability weighting.

Identification of time preferences. Time preferences are identified by delaying the pay-

outs of the lotteries into the future (the uncertainty is always resolved immediately

after the experiment). Table 2 provides an overview of the choice tasks used to iden-

tify time preferences. The EV switching probability is now fixed at a constant of

0.44. Each of the different MPLs is repeated for each of the time delays (t, t + ⌧) =

{(0, 3); (0, 6); (0, 9); (0, 12); (6, 12); (9, 12)} months. By comparing the lottery choice re-

sulting from t = 0, ⌧ > 0 to the equivalent choice for t = 0, ⌧ = 0, we obtain an
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estimate of discounting. By comparing choices in MPLs with constant delays, (0, ⌧)

and (t, t+ ⌧), we can then determine whether the discount rate is constant, or whether

it follows a hyperbolic pattern.

Table 2: Prospect pairs to identify time preferences

MPL nr. outcomes in e EV prob.

1 (250t, 10t) vs. (200t + ⌧ , 50t + ⌧) 0.44
2 (300t, 20t) vs. (200t + ⌧ , 100t + ⌧) 0.44
3 (500t, 0t) vs. (250t + ⌧ , 200t + ⌧) 0.44
4 (500t, 20t) vs. (400t + ⌧ , 100t + ⌧) 0.44
5 (500t, 220t) vs. (400t + ⌧ , 300t + ⌧) 0.44

Choice procedures. The experiment consisted of 42 different choice lists. Three of these

lists were randomly selected for each subject and repeated during the experiment, so that

subjects completed a total of 45 choice lists. Some of the lists were presented several

times to determine the consistency of behavior, and to help identify the error term in the

structural estimations.3 The order of questions was randomised at the subject level. The

pay-off amounts remained fixed in each list but the probabilities varied in 5% increments

across each row. In order to focus the subjects’ attention, the choices were presented

one by one. A screenshot of a choice problem is shown in Figure 2. The display shows

a choice between a risky lottery, offering either e400 with a probability of 0.65 or e10,

both with payoffs in the present, against a safe lottery offering the same probability of

e250 or e50 to be paid in 9 months. The probability of winning was adjusted according

to the choice using a bisection mechanism. However, subjects were clearly informed that

the mechanism served only as a decision aid to speed up the process of filling the choice

list. Once all the choices for a given list had been made and the list was fully completed,

subjects were shown the complete choice list and explicitly encouraged to amend their

choice in case they were not happy with it. Importantly, it was made clear to them that

the full list would be used for the final extraction of the payout-relevant choice, with all

choices equally likely to be selected.

Incentives and randomization. Subjects were paid a fixed amount of e15 for their partic-

ipation. In addition, we used a random incentive mechanism whereby each subject had
3
The test-retest reliability of our measures, defined as the correlation between responses in identical

tasks, was between 0.75 and 0.85, and thus falls into the typical range observed in this type of experiment.
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Figure 2: Screenshot from the experiment’s time preference section

a 1 in 10 chance of receiving payment for their choices. This allowed us to use high mon-

etary stakes ranging up to e500. Such high amounts are important for the estimation

of utility functions, since small amounts would be expected to generate little curvature.

They are also important for time discounting, since low stakes have been found to result

in inflated discount rates (the magnitude effect ; Loewenstein and Thaler, 1989). Sub-

jects were informed that if they were selected to play the tasks for real money, one of the

choice lists would be selected at random. Within that choice list, one probability would

then be selected, and the lottery of their choice would be played out for that probability.

Delayed payouts. The participation fee of e15 was paid as soon as the experiment was

completed. All other payouts were made by bank transfer initiated at time t or t + ⌧ .

This meant a fixed upfront delay of 3 days between the date indexed by t and the day

the subject would actually receive the money, for the sake of consistency the same rule

was also applied to later dates.4 This served to address concerns that any present bias

observed may have been driven by the immediacy of the current payoff, or by differences

in transaction costs between immediate and delayed payoffs (Coller and Williams, 1999).

All payments were guaranteed by the WZB Berlin Social Science Center, which was

familiar to participants as it is one of the institutions running the lab. Subjects were

given a certificate signed by the experimenter indicating the amount won and the day

on which the transfer would take place. The certificate also specified the address, email
4
We did not introduce payout delay into our model, so that the � parameter in the quasi-hyperbolic

model would remain identified.
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address, and telephone number of the person at the WZB responsible for the payouts.

Subjects were explicitly encouraged to get in touch in case their bank details changed,

or if they had any questions about the payout procedure.

3 Results

3.1 Non-parametric results

Our analysis begins with some nonparametric results that give an idea of our main

findings. We start by discussing the effect of delaying the safe lotteries into the future.

Figure 4 focuses on one specific series of MPL, (500, 220) vs. (400, 300), and presents

their choice distributions at the 5 different time delays from t = 0 (results for other

MPLs with t > 0 are similar). The proportion of safe choices at different probabilities

is highest in the present . As choices are delayed into the future, subjects choose the

risky, sooner option more frequently, as would be expected. For the longest delay of

⌧ = 12 months, 60% of subjects prefer the risky, sooner lottery even when there is a 0%

probability of obtaining the high outcome. This indicates a preference for e220 now over

e300 in 12 months’ time, thus implying a yearly discount rate of 36% or more under a

linear utility assumption (which we will relax in due time).

Next, we take a look at whether discount rates are constant or whether there is

an indication of (quasi-) hyperbolic behavior in our data. Figure 4 shows comparisons

between choices in pairs of MPLs that can be used to identify this kind of behavior.

Panel 4(a) shows choices for the MPLs with a 3 month delay from the present versus

a 3 month delay from 9 months, while panel 4(b) shows choices for the MPL with a 6

months delay from the present versus the MPL with a 6 months delay from 6 months.

Under constant discount rates, we would expect these two pairs to show identical choice

patterns. Present bias, on the other hand, would make the risky lottery more attractive

when there is no upfront delay (i.e., when t = 0). This is indeed what we observe,

providing a first indication of present bias in our data.

We now move on to describing behavior under risk. We start by examining choice

behavior in the MPLs by scanning the probability interval. Figure 5 plots choices for

lottery pairs 6 to 12 from Table 1. We would expect the proportion of safe choices to

drop off more quickly for MPLs with a lower expected value switching point. This is

indeed almost always the case. We can also use the choices to get an idea of whether
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Figure 3: Choices for MPL (500, 220) vs (400, 300) with different delays from t = 0

(a) Choice patterns for 3 months delays (b) Choice patterns for 6 months delays

Figure 4: Nonparametic test of (quasi-) hyperbolic behavior

risk preferences might change with the level of the EV switching point. For example,

for the prospect pair (500 , 220) vs. (300 , 250), with an EV switching probability

of p = 0.13, the proportion of safe choices drops quickly and, at the EV probability,

about 50% of participants have abandoned the safe option. This is an indication of

risk neutral behavior. At the other extreme of the probability interval, for the prospect

pair (500, 0) vs. (400, 350) with an EV switching probability of p = 0.78, close to

90% of subjects are still choosing the safe prospect at the EV probability—an indication

of considerable risk aversion for large probabilities. At the same time, however, we

also observe considerable heterogeneity in choice behavior between MPLs with relatively
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Figure 5: Choice lists in the present spanning a range of expected value switching points

similar EV switching probabilities. This points to the importance of utility curvature in

addition to probability weighting.

Figure 6 shows two plots, which together constitute a test of whether utility follows

constant relative risk aversion (CRRA, i.e. a power function) or constant absolute risk

aversion (CARA; i.e. an exponential function). If utility exhibits CRRA, the choice

patterns for the two MPLs shown in panel 6(a), (500, 20) vs. (400, 100) and (250, 10)

vs. (200, 50), should be identical. This is because the first MPL can be obtained from

the second by doubling all outcomes, so that the relative risk remains constant across

MPLs. A similar test is shown for CARA in Panel 6(b). Here one of the MPLs, (500,

220) vs. (400, 300), is obtained from the other, (300, 20) vs. (200, 100), by adding a

fixed amount of e200 to each outcome. Choice behavior should be the same in the two

MPLs if subjects exhibit CARA utility because of the exponential form of the utility

function. The distributions of choices in the CRRA comparison coincide almost perfectly

(z = 0.293, p = 0.770, Mann-Whitney test on switching probabilities). In the CARA

comparison, on the other hand, the proportion of safe choices is always lower and drops

off more sharply for the second MPL (z = 4.78, p < 0.001).
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(a) CRRA test (b) CARA test

Figure 6: Nonparametric test of CRRA and CARA utility

3.2 Parametric estimations

Table 3 presents the results of our structural estimations. Column 1 presents the DEU

model, assuming linear probabilities and constant discounting. We find a considerable

degree of utility curvature, while the yearly discount rate is estimated to be quite low:

5.9%. The second column reports parameters for what we call the discounted rank-

dependent utility model (DRDU ). This model combines constant discounting with a

model under risk allowing for both utility curvature and the nonlinear weighting of

probabilities. This results from applying a probability weighting function w to the prob-

ability p in equation 1. The functional fit is improved considerably compared to the DEU

model (�2(2) = 4094.83, p < 0.001; likelihood ratio test). The sensitivity parameter �

is clearly smaller than 1, indicating an inverse-S shaped probability weighting function.

This shows that the estimation of functions of this type is robust to using a method

in which systematic noise would tend to reverse inverse-S weighting. We also find a

considerable degree of probabilistic pessimism, captured by ⌘ > 1.

Figure 7 depicts the probability weighting function estimated in the DRDU model

(functions estimated in the two subsequent models with probability weighting are very

similar). The function clearly exhibits an inverse-S shape, confirming previous results

(Tversky and Kahneman, 1992; Wu and Gonzalez, 1996; Abdellaoui, 2000). At the same

time, the inflection point falls relatively low, and the degree of probabilistic pessimism

is relatively high. This may be due to one of two possible factors. One, we used real

incentives of up to e500, which are higher than in most experiments. Given that prob-

ability weighting may not be completely independent of stake sizes (Fehr-Duda et al.,
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Table 3: Parameter estimates of structural models

parameter DEU DRDU QHRDU HRDU

⇢ (utility curvature) 0.273 0.512 0.517 0.514
(0.268, 0.279) (0.499, 0.526) (0.503, 0.531) (0.5, 0.528)

r (discount rate) 0.059 0.141 0.111 0.239
(0.056, 0.061) (0.135, 0.148) (0.103, 0.119) (0.211, 0.268)

� (prob. sensitivity) 0.675 0.672 0.674
(0.655, 0.694) (0.652, 0.691) (0.654, 0.693)

⌘ (prob. pessimism) 1.405 1.42 1.411
(1.364, 1.447) (1.378, 1.462) (1.369, 1.452)

� (<1: present bias) 0.972
(0.967, 0.977)

⇣ (hyperbolicity) 1.788
(1.201, 2.376)

� (noise) 0.002 0.008 0.008 0.008
(0.002, 0.002) (0.007, 0.009) (0.007, 0.009) (0.007, 0.009)

max LL -37348.93 -36130.75 -36073.05 -36066.97
95% confidence intervals in parentheses below the estimates.

2010; Bouchouicha and Vieider, 2017), this may result in a lower probability weighting

function. Two, the particular type of MPL used may produce systematically higher esti-

mates of risk aversion than other measuring techniques. Given the MPLs setup, there is

less space in most lists to detect risk seeking than risk aversion, and this is especially true

for the lists with small EV switching probabilities. While this may bias our estimates

against inverse-S, it is the price to be paid to show that these patterns are strong enough

to overpower any possible confound derived from random switching. The corollary of

the high level of pessimism we find is a utility function that exhibits less curvature in

the DRDU model than the one estimated under DEU. This, in turn, also impacts the

estimate of the discount rate, which at over 14% is now more than twice as high as the

one estimated under DEU.

The model in column 3 relaxes the assumption of constant discounting, and instead

allows discounting to be quasi-hyperbolic. We denote it by QHRDU, for Quasi Hyper-

bolic Rank Dependent Utility. This further improves model fit (�2(1) = 135.9, p < 0.000;

likelihood ratio test). The � parameter is smaller than 1, indicating present bias. Finally,

column 4 presents an RDU model combined with a fully flexible hyperbolic discount func-

tion, called HRDU for Hyperbolic RDU. The HRDU model has a higher likelihood than

QRDU, but the difference is not significant. (z = �0.341, p = 0.367; Vuong test).
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Figure 7: Probability weighting function estimated in RDRU model

3.3 Individual estimates

The results discussed up to this point were derived from aggregate estimates of the choice

data. However, as it is well known, there is considerable heterogeneity in individual

preferences. Table 4 presents summary statistics of these estimates for QHRDU and

HRDU, the two models that provide the best fit at the aggregate level. We also include

a module using the Ebert and Prelec (2007) constant sensitivity function to caputure

discounting (we correspondingly label the results CSRDU). In addition to the decreasing

impatience captured by the hyperbolic models, this model allows to account for increasing

impatience, a preference profile that has been observed in other studies (Abdellaoui et

al., 2010; Attema et al., 2010). The models converged for all subjects when flexible

start values were used for the maximum-likelihood search. In addition to descriptive

statistics of the distribution of estimates, the Table reports the number of statistically

significant parameter estimates. The significance for each parameter is measured against

a DEU benchmark with no discounting, i.e. against 1 for utility curvature, probabilistic

sensitivity, probabilistic pessimism, the present-bias parameter in the QHRDU model,

and the time-sensitivity parameter in the CSRDU model; and against 0 for the discount

rate, noise, and the hyperbolicity parameter.

There are some interesting features to note. Approximately 65% of the subjects
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Table 4: Individual-level estimates of the QHRDU, HRDU and CSRDU models

QHRDU model
Parameter 1stQ Median 3rdQ Mean Nr. significant

⇢ (utility curvature) 0.27 0.44 0.46 0.44 87
� (prob. sensitivity) 0.52 0.79 0.90 0.79 64
⌘ (prob. pessimism)) 1.00 1.37 1.96 1.37 70
r (discount rate) 0.02 0.08 0.19 0.08 67
� (<1: present bias) 0.97 0.99 0.98 0.99 42

HRDU model
Parameter 1stQ Median 3rdQ Mean Nr. significant

⇢ (utility curvature) 0.25 0.43 0.46 0.43 89
r (discount rate) 0.04 0.15 0.84 0.15 72
� (prob. sensitivity) 0.52 0.79 0.90 0.79 65
⌘ (prob. pessimism) 1.00 1.36 1.96 1.36 72
⇣ (hyperbolicity) 0.00 0.45 15.67 0.45 18

CSRDU model
Parameter 1stQ Median 3rdQ Mean Nr. significant

⇢ (utility curvature) 0.26 0.47 0.47 0.47 80
� (prob. sensitivity) 0.58 0.74 0.89 0.74 65
⌘ (prob. pessimism) 1.00 1.31 1.88 1.31 71
a (impatience) 0.00 0.10 0.21 0.10 48
b (time-sensitivity) 0.62 0.86 1.41 0.86 43

exhibit probabilistic insensitivity across specifications. At the same time, close to 70%

of the subjects exhibit a pessimism parameter different from 1. Overall, for 15% of

the subjects, both sensitivity and pessimism were not significantly different from 1. This

provides us with a rough estimate of the number of subjects for whom we cannot reject the

discounted expected utility decision model. The number of subjects following expected

utility in our setup is in fact similar to the proportion of EU followers estimated by

Bruhin et al. (2010) in their finite mixture model. In terms of time preferences, we find

that we can reject the null of non-hyperbolic preferences for approximately 40% of the

subjects according to the quasi-hyperbolic model and 20% of the subjects under the fully

hyperbolic model. According to a Vuong test evaluated at the 5% significance level, the
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quasi-hyperbolic model is a better fit than the hyperbolic model for 14 of the subjects.

The fully hyperbolic model is a better fit for 9 subjects and the fit of the two models

cannot be statistically distinguished for 77 subjects. Interestingly, we also estimate a

time-sensitivity parameter that is significantly greater than 1 for 11 subjects. This is an

indication of increasing impatience , with a proportion that is in line with findings in

some of the studies cited above.

4 Discussion

It has been assumed for a long time that linear utility and the absence of risk are necessary

for obtaining tractable estimates of time discounting. The supposed absence of risk

could lead to distortions in the estimated functions, given that the future is inherently

risky (Keren and Roelofsma, 1995; Weber and Chapman, 2005; Halevy, 2008; Gerber

and Rohde, 2010; Epper et al., 2011). In turn, ignoring utility curvature could lead

to the over-estimation of discounting if the curvature is truly significant. A procedure

first proposed by Chapman (1996) was borrowed by Andersen et al. (2008) to correct

discounting using utility curvature estimated under risk assuming expected utility . Our

results clearly show that this procedure could lead to an over-correction, which would

artificially lower estimated discount rates and thus do more harm than good.

The correction we used is based on a model that applies probability weighting to our

risky data, thus providing a far better fit. However, this does not imply that our model

is de facto “the right one”. For instance, some recent evidence indicates that utility

under risk and utility over time may systematically differ, both when risk preferences

are estimated under expected utility (Andreoni and Sprenger, 2012), and when they are

estimated with probability weighting (Abdellaoui et al., 2013) as we do in the present

paper. If inter-temporal utility were to exhibit less concavity than utility under risk—as

in the works cited above—then even our correction allowing for probability weighting

may still be excessive, thus resulting in a lower bound for estimated discount rates. The

present experiment was not set up to test this issue directly, which, in itself, deserves

further study.

Finally, we showed that inverse-S shaped probability weighting is stable when applied

to the type of MPLs we used. This is important, inasmuch as systematic noise in the

form of random switching (or switching towards the middle of a list) could potentially
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distort the estimates of probability weighting. In this specific design, however, the bias

would work against inverse-S shaped probability weighting. The fact that we replicated

the typical inverse-S shape thus shows the stability of this empirical pattern. Some stud-

ies have reported different shapes of probability weighting, including the reverse pattern

of S-shaped probability weighting. For instance, Harrison et al. (2010) reported S-shaped

probability weighting from four developing countries. Andersen et al. (2014) and Ander-

sen et al. (2017) reported S-shaped probability weighting estimated based on the same

type of choice lists used in this paper. The findings in these two papers are most likely

due to a poor discriminatory power between utility curvature and probability weighting,

given the narrow range of expected value switching probabilities in the stimuli, and the

potential presence of noise. The findings in the first study are probably driven by the

restrictive assumption of a 1-parameter probability weighting function.5 Together, these

studies underline the importance of explicitly designing experimental stimuli in a way

that allows the different dimensions to be identified. Estimating complex models on

data that are not especially designed for that purpose is bound to generate biased infer-

ences if the resulting estimations are accepted without question. l’Haridon and Vieider

(2018) showed that probabilistic sensitivity is one of the few universal behavioral pat-

terns in student populations from 30 countries. Vieider et al. (2016) generalized this

finding to a representative sample of a rural population from Ethiopia. We thus con-

clude that—notwithstanding some claims to the contrary—inverse-S shaped probability

weighting is alive and in good shape.

5 Conclusion

This paper presented results from a comprehensive multiple price list experiment to elicit

risk and time preferences in an integrated framework. Using a variation on a popular

multiple price list design, we estimated time preferences together with risk preferences.

Introducing risk may be more realistic than the artificial certainty assumed by the ma-

jority of elicitation designs of inter-temporal choice to date. In addition, we designed the

choice lists with the explicit goal to allow us to separate utility curvature from probabil-
5
The shape of the function estimated by Harrison et al. (2010) depends crucially on the functional

form assumption, with different functional assumptions resulting either in an S-shape, and inverse S-

shape, or consistent pessimism. The S-shape emerges only under a 1-parameter form proposed by

Tversky and Kahneman (1992), which supports the point we are making.
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ity weighting. To do so, we introduced orthogonality between stakes and probabilities,

and scanned the entire probability interval.

For time preferences, we found clear evidence for present bias and hyperbolic be-

havior. This evidence is contrary to some preceding studies that found that present

bias disappears once risk is added (Keren and Roelofsma, 1995; Weber and Chapman,

2005). We found the estimated yearly discount rate to be as low as 6% when adopt-

ing discounted expected utility. Adopting a rank-dependent formulation correcting for

probability weighting , however, more than doubled the estimated discount rate to 14%.

As far as risk preferences are concerned, we found a clear inverse-S shaped pattern,

notwithstanding the bias against inverse-S that we built into our lists.
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A ONLINE APPENDIX: Full-lenght instructions (English)

Below we include the instructions in English, which have been translated from the original
German. The instructions in German available upon request.
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Instructions

Thank you for participating in this decision making experiment! You will receive a fixed payment of 15

Euros for your participation in this experiment—the 15 Euros are yours to keep, regardless of the 

experiment's outcomes. In addition, you will be compensated for whatever you earn during the course 

of the experiment, according to the procedures described in these instructions.

You may consult these instructions at any time during the experiment. In the event that you have any 

questions or doubts after these instructions are read to you (or at any point during the experiment), 

please raise your hand and an experimenter will come and assist you in person. We are interested only 

in your preferences: there are no right or wrong answers!

You will be asked to make a number of different choices. Please consider each decision carefully. Take 

a careful look at the outcomes and the probabilities associated with them before making a decision. 

Remember that your final payoffs from this experiment will depend on the decisions you take (and of 

course, on chance). There is no need to rush: the experiment has been designed to be easily completed 

in less than an hour, and the experiment will end only once everyone participating in the session has 

fulfilled all the tasks.

Please remain seated when you are finished with the tasks. At the end of the experiment, you will be 

asked to fill out a questionnaire. The answer to the questionnaire as well as all your answers to the tasks

will remain confidential, and cannot be traced back to you personally. Once everybody has finished 

filling in the questionnaire, an experimenter will call on you to proceed with the payout. 

You will then be paid your participation fee, plus any additional amount you may have won, in private. 

At this point the experiment is over and you may leave.

We request that you remain silent during the experiment, or you will be immediately excluded!

Good luck!

1
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Decision Task

In this experiment, you will be asked to indicate your preference between lotteries involving both risk 

and time delays. A typical choice is depicted below:

The lottery at the top provides a 40% probability of obtaining 250 €, and a complementary probability 

of 60% of obtaining 50 €. The option at the bottom provides a probability of 40% of obtaining 400 € 

and a complementary probability of 60% of obtaining 10 €. Note that the probabilities associated with 

the higher and lower amounts in the two options are identical. This is a feature common to all the 

decision tasks in the experiment.

In the example above, all payoffs are obtained now, as indicated by the time arrow between the two 

lotteries. In the other decision tasks, however, either one or both lotteries may offer a payout that is 

acquired at some point later in the future. An example of this is depicted here below: 

2
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In this example, both the outcomes in the two lotteries and the probabilities with which they will be 

obtained are the same as in the first example above. However, the timing of the payment now differs 

across options. If you are selected to play this lottery for real, the outcomes of the lottery at the top will 

be paid in 9 months. The outcomes of the lottery at the bottom, on the other hand, will be paid now, as 

indicated by the large time arrow between the two lotteries.

These two examples illustrate all the features involved in the decision tasks: two different outcomes for

each of two lotteries; a probability of winning the higher amount which is the same across both 

lotteries; and the time at which the indicated amounts are to be paid out, which may or may not differ 

between the two lotteries (but which remains identical for the same lottery).

The choice lists

The choices are grouped in lists. Within a list, the outcomes and payment periods for both lotteries are 

fixed, while the probabilities range from a 0% chance to obtain the higher outcome in the lottery to a 

100% of obtaining the higher outcome in the lottery, with a step of 5%. More precisely, in each choice 

list you will have to make a decision for each on of the following probabilities 0%, 5%, 10%, 15%, 

20%, 30%, 35%, 40%, 45%, 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 95%, 100%.

Take another look at the first example above (all outcomes are obtained now). You can see all the 

choices involving probabilities ranging from 0% to 100%. For a 0% chance of winning the higher 

3
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outcome, you will want to choose the lottery at the top, which in this case offers 50 € for certain (as 

opposed to the 10 € for the lottery at the bottom). For a 100% chance of winning the higher outcome, 

you will want to choose the lottery at the bottom, which now offers 400 € for sure instead of the 250 € 

for the top lottery. Taken together, this means that you will want to switch from the top lottery to the 

bottom lottery at some point as the probabilities increase. Where you switch depends entirely on your 

preferences—there are no right or wrong answers.

In order to help you save time in completing the choice list, the software will initially present you with 

some isolated choices from the list and then fill in the list according to your preferences. Looking again

at the example, a preference for the bottom lottery over the top lottery for a probability of 65% of 

winning the higher amount implies that you would also prefer the top option for larger probabilities. In 

that case, the software would select the top lottery for a probability of 65%, and would also complete 

the choices by selecting the top lottery for probabilities 70%, 75%, 80%, 85%, 90%, 95%, 100%.

It is important to understand that this is merely an algorithm devised to speed up the choice process. 

Once the complete list has been filled in by the algorithm, you will be asked to double-check your 

choices by going over the list yourself including all different probability levels, as shown below. At this

point, you should verify whether the choice indicated does indeed correspond to your preferences for 

each probability. If this is not the case, you can still change any choices that do not correspond to your 

preferences by moving the ruler to the right of the screen. Once you are satisfied with your choices, you

can confirm this and move on to the next task. Please note that you will not be able to modify a choice 

once you have confirmed the final choice list! 

 

 

Payment mechanism

You will receive a flat payment of 15 € for your participation in the experiment. This payment is 

independent of your choices, and will be given to you as soon as you complete the experiment and 

respond to all choices. In addition, you may play out one of your choices in a given task for real. It is 

thus important that you pay close attention to all the aspects of all the decision tasks, as these may 

determine the level and timing of your additional compensation.

At the end of the session, once everyone has completed the experiment, each participant will draw a 

chip from a bag containing a total of 10 chips, one red and nine black ones. Those who draw the red 

chip will get the chance to play out one of their choice for real money. At this point, all the participants 

who drew a black chip will be paid their 15 € and will be allowed to leave, while the other participants 

will stay to play out their choice.

To do this, first one of the experiment's 45 choice lists will be drawn at random by picking a numbered 

ball from a bag. For the selected list, one of the 21 choices (probabilities) will then be randomly 

selected. For the selected choice, the option chosen by the subject during the experiment will then be 

played for real, again by drawing a numbered ball from a bag. You may check the contents of the bags 

at any time during the procedure if you wish. The decision will be played out immediately after the 
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experiment, regardless of the payout date of the selected lottery. 

                     

Note that only one choice will be played for real and that the selected lottery will be played only once. 

Since each of the choices has the same probability of being selected to be played for real, you should 

respond to every single choice as if it were the one you will ultimately play. In other words, there is no 

way in which you can increase your winnings or spread your risk by answering strategically. The 

optimal strategy is to fill out every single choice as if it were the one that will be selected for real play.

Procedures for delayed payout

Everyone will obtain the participation payment of 15 € immediately after the experiment is over. In the 

event that you make any additional gains, you will receive the corresponding amount via bank transfer. 

The bank transfer will be initiated on the very day indicated on the decision screen. This means that the

amount will be on your bank account 3 days after the payment is initiated. This means that any 

outcomes that obtain now will in fact be on your account in 3 days. A payout that obtains in 6 months 

will be on your account 6months + 3 days from today.

To make the bank transfer possible, we will ask for your bank information if you are selected to play 

one of your choices for real. This information will be relayed to the administration of the 

Wissenschaftszentrum Berlin für Sozialforschung (WZB), so that the transfer can be effectuated on the 
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date indicated. This information will in no way be linked to your decisions in the experiment, but only 

to the final amount you won. Also, it will be destroyed once the transaction has taken place.

The bank transfer will be carried out by the WZB through Commerzbank. Once the outcome has been 

determined, you will also be given an official certificate, stating that you are entitled to a given payout 

on a given date. This certificate constitutes a guarantee from the WZB that you will obtain the payout 

on the indicated date. The certificate also contains the contact details of the person at the WZB  

responsible for the transfers, whom you can contact in the event that you have any questions about the 

procedures, or if your banking details should change before the payment date.

Final remarks

Please take the time to read through the instructions again on your own. If you have any questions or 

doubts, raise your hand and an experimenter will come and help you out. Once you have understood 

how the choices work, you will have the opportunity to familiarize yourself with the software with a 

few practice questions. Only then will the actual experiment begin.

6
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