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Abstract 15 
   16 

 17 

Ore mining is among the most environmentally destructive anthropogenic practices, 18 

particularly in developing countries. Correct assessment of its impacts on soil ecosystems 19 

requires an understanding of the response of soil food webs. Nematodes, often the most 20 

abundant invertebrates in soils, occupy various positions in food webs, and their assemblages 21 

are commonly used to reflect soil health. In October 2014, we collected soil samples from five 22 

sites of a small-scale mining area in Sibutad, southern Philippines, to assess the influence of 23 

mining activities on nematode assemblages. Two sites were considered undisturbed as there 24 

were no visible signs of mining, while the other three sites were disturbed. Nematodes were 25 

extracted live and identified to genus level using morphology-based identification. We 26 

analysed genus composition, genus and trophic diversity, and the life-history based maturity 27 

index. We measured soil environmental variables (pH, organic matter, granulometry and 28 

several heavy metals), and correlated variation in nematode genus composition to variation in 29 

these environmental factors. Small-scale mining activities had variable but generally non-30 

significant impacts on soil properties, altered vegetation and caused increases in concentrations 31 

of Hg and Pb, but not consistently so in all impacted sites. The high patchiness in vegetation 32 

and heavy metal content were reflected in a high within-site variability of nematode 33 

assemblages. Total nematode abundance was significantly lower in two mainly physically 34 

disturbed sites, but not so in the most metal-polluted one, suggesting that abundance is not a 35 

good indicator of pollution status.  Nematode genus composition significantly differed between 36 

disturbed and undisturbed sites. By contrast, only few differences between sites were found for 37 

diversity or maturity indices, demonstrating that genus composition was a better indicator of 38 

mining-related effects than many common indicator indices and highlighting that detailed 39 

assemblage analysis is required for a correct interpretation of moderate pollution effects on soil 40 



 2 

nematodes. Measured environmental variables together explained 60% of the variation in 1 

nematode assemblages in the area; the three ‘single best’ explanatory variables were the 2 

concentrations of Pb, Hg and N, but none of these by itself explained more than 8% of the 3 

variation in nematode data, while their combination explained 24%. Some genera of predacious 4 

and omnivorous nematodes, which are generally expected to be sensitive to both chemical 5 

pollution and physical disturbance (e.g., Ironus and Eudorylaimus), were most abundant in 6 

sites with elevated heavy metal concentrations, which can have repercussions for the 7 

interpretation of nematode-based indices such as the MI. 8 

 9 
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Introduction 1 

 2 

     Ore mining, both large and small-scale, is an important contributor to the economy in many 3 

developing countries. For instance, the Philippines is a major exporter of metallic minerals 4 

such as gold, copper, nickel and chromium (Hooley, 2005). In Sibutad, a municipality in 5 

Mindanao, southern Philippines, gold mining activities have provided livelihood to local 6 

communities since the 1980’s (Cortes-Maramba et al., 2006). Large-scale mining operations 7 

make use of advanced technology in the extraction of mineral deposits, whereas small-scale 8 

mining employs manual and fairly rudimentary techniques, which are often environmentally 9 

risky (Hinton et al., 2003).  10 

     Small-scale mining produces about 80% of the Philippines’ annual gold supply. However, 11 

these substandard routines, aggravated by lack of proper ecological monitoring, can result in 12 

deliberate and accidental disposal of wastes (van Straaten, 2000). Despite its economic 13 

contribution, it remains a highly polarized issue due to incidences of environmental degradation 14 

and health problems among exposed communities (Cortes-Maramba et al., 2006). Mining is 15 

associated with the rise of heavy metals in the environment (Getaneh and Alemayehu, 2006). 16 

Heavy metals are naturally deposited in rocks and can be released into the environment either 17 

by natural weathering or by artificial activities (e.g., digging, ore processing, etc.). They pose 18 

a threat because of their potential to bioaccumulate and interfere with various biological 19 

processes (Heikens et al., 2001). The gold extraction method by mercury (Hg), also known as 20 

amalgamation, is relatively popular among small-scale miners since it is inexpensive. 21 

Compared to other mineral extraction methods, amalgamation is easier to perform but 22 

potentially risky, and may cause environmental pollution due to improper handling and waste 23 

management (Israel and Asirot, 2002; Odumo et al., 2014).  Hg is considered to be one of the 24 

most toxic elements naturally found in the environment even at very low concentrations 25 

(Göthberg and Greger, 2006), and its negative impacts on soil biota (Harris-Hellal et al., 2009) 26 
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and soil processes are well-studied (Müller et al., 2002). In humans, Hg can induce damaging 1 

effects on reproduction, immune system, central nervous system and internal organs (Dietz et 2 

al., 2000).  3 

     Before the 1980’s, our sampling area in Sibutad, was predominantly covered with cogon 4 

grass (Imperata cylindrica), economically unproductive and had only few inhabitants. The 5 

discovery of gold deposits in the 1980’s caused an influx of miners, with an estimated peak of 6 

10,000 in the early 2000’s. Although the number of active miners has been gradually 7 

decreasing since, a few hundreds are still operating around the mountain sides. Hence, 8 

disturbance impact in small-scale mining areas in Sibutad may be caused by past and/or 9 

existing mining activities. In practice, small-scale miners use ball mills to grind rocks into fine 10 

particles, from which the gold is extracted by amalgamation and blowtorching, which results 11 

in the formation of wastes (e.g. Hg and tailings). The lack of proper waste storage can cause 12 

Hg and tailings to end up in the soil or river, and finally into Murcielagos Bay, a semi-enclosed 13 

bay adjacent to the mined sites. At present, there are approximately 500 small-scale miners in 14 

the area of Sibutad who can potentially release 120 to 360 kg of Hg per year (Perez et al., 15 

2007). Previous studies have revealed elevated Hg levels in humans (Cortes-Maramba et al., 16 

2006) as well as in marine organisms from Murcielagos Bay (Lacastesantos, unpublished), 17 

whereas information on Hg effects on terrestrial animals or plants from the area is lacking. Our 18 

initial inspection showed that the river bed of the sampling area was largely composed of thick, 19 

dark-brown clay sediments and the water appeared very turbid. Preliminary river water analysis 20 

revealed a Hg content of ca. 50 µg L-1 (our own unpublished data), which is 5 times higher than 21 

the permissible limit for wastewater discharge by EPA, i.e., 10 μg L-1 (USEPA, 2014), and 25 22 

times higher than the current water quality criterion for the protection of public health by the 23 

Philippine government, i.e., 2 μg L-1 (www.emb.gov.ph). The high Hg content of the water is 24 

most probably caused by the discharges from small-scale mining activities upstream. Mercury 25 
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concentrations higher than the allowable level proposed by UNEP (2013) are generally 1 

expected to be toxic, and in Sibutad where Hg disposal is a problem, Hg levels in soils may 2 

have exceeded the ‘permissible’ limit. Aside from heavy metal pollution, other activities such 3 

as burning of vegetation, digging, construction of physical structures (e.g., tunnels, processing 4 

plants, etc.) may also affect soil structure, organic matter content and soil pH, which can in 5 

turn influence the biological activity of soil biota such as nematodes (Sánchez-Moreno et al., 6 

2006).  7 

     Nematodes are important biological components in the soil ecosystem due to their 8 

functional roles in organic matter decomposition and nutrient cycling (Freckman, 1988; Yeates, 9 

2003); their abundance and community composition are widely used as ecological indicators 10 

in several different environments (Bongers and Ferris, 1999; Neher, 2001; Shao et al., 2008). 11 

Nematode responses to pollution range from sensitive to very tolerant, with substantial 12 

differences between species (Kammenga et al., 1994). Therefore, changes in the nematode 13 

assemblage structure and function can be used to assess pollution effects or disturbances in 14 

soil, and can be measured by diversity and ecological indices, as well as through a detailed 15 

analysis of their taxonomic composition (Fiscus and Neher, 2002).  16 

     The present work was conducted to assess whether nematode assemblage structure reflects 17 

the impacts of small-scale mining in the southern Philippines. Specifically, this research aimed 18 

to a) determine the extent of pollution, particularly that of Hg, and other disturbances (e.g., 19 

burning of vegetation, digging, etc.) caused by small-scale mining activities in soils in a small-20 

scale gold mining area; b) assess whether the nematode assemblage structure differed between 21 

locations with different degrees of mining-related impact; and c) determine whether such 22 

mining impacts are better revealed by particular nematode-based (diversity and maturity) 23 

indices or by nematode genus composition. 24 

 25 
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Materials and Methods 1 

 2 
Study site and sampling 3 

 4 

 5 

Fig. 1. Map of the sampling sites marked by triangles (S1, S2, S3, S4 and S5) in Sibutad, southern Philippines.6 
7 

      8 

     The area of Sibutad is situated in the northwestern part of Mindanao, southern Philippines, 9 

with an average annual temperature of 27.4 0C and precipitation of 2310 mm, the latter 10 

distributed fairly evenly throughout the year. Our sampling area is situated on a slope of 11 

mountain and covers approximately a distance of 1.2 km (between Site 1 and 5) towards 12 

Murcielagos Bay (Fig. 1). Some parts of the area have been subjected to ‘physical’ disturbances 13 

such as land clearing, excavation of mountain slopes, open-cast and underground mining, 14 
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construction of small processing plants and habitation by a few individuals, while other areas 1 

have been chemically contaminated owing to mining and ore processing.  2 

 3 
Table 1. Location and brief description of the sampling sites 4 

      5 

     Soil samples were taken in October, 2014. We divided the study area into five sampling 6 

sites – S1, S2, S3, S4 and S5 (Table 1). Five replicate soil samples, each composed of 3 7 

composite samples, were randomly collected with approximate interdistances of 8-10 m from 8 

each of the sites. S1 and S2, 300 m apart from each other, were characterized by the absence 9 

of inhabitants and mining activities, albeit S1 appeared to have a more diverse vegetation than 10 

S2. Mining-related activities and/or local communities were manifest in S3, S4 and S5, thus 11 

we a priori referred to them as ‘disturbed’ sites as opposed to the ‘undisturbed’ (reference) 12 

sites, S1 and S2. Perennial grass species (e.g., Paspalum conjugatum) generally characterized 13 

the disturbed sites (S3, S4 and S5) due to their relatively fast colonizing ability after disturbance 14 

episodes. S3, the uppermost part (in terms of altitude) of the area, was marked by intense 15 

mining activities with the presence of a community of miners (< 30 ind.), two ball mill plants, 16 

and the site’s close proximity to the excavated areas. S4 had the largest human population (> 17 

40 ind.), who were not engaged in mining operations but hosted one ball mill plant. S5 was 18 

also inhabited (< 5 ind.) and located about 0.25 km from Murcielagos Bay. An active ball mill 19 

plant was found near S5, which was situated at an elevated ground a few meters away (ca. 20 20 

sampling sites coordinates elev. (m) common vegetation  brief description of the sampling sites 

S1 (undisturbed) 8° 37' 28.560” N 

123° 29' 55.248” W 

42 Imperata cylindrica, Chromolaena 

odorata, Manihut esculenta, Cocos 
nucifera, Gmelina arborea, Clitoria 

sp., Cynodon sp. and ground ferns  

no community; no mining activity 

S2 (undisturbed) 8° 37' 25.176” N 

123° 30' 3.384" W 

31 I. cylindrica, M. esculenta, Musa sp., 

C. nucifera and Cynodon sp.   

no community; no mining activity 

S3 (disturbed) 8° 37' 29.676” N    
123° 29' 48.300” W 

50 Paspalum conjugatum, Cynodon sp. 
and Musa sp.   

presence of local community (miners and 
their families); near to the excavated areas 

on the hill slopes; presence of two ball mill  

plants 

S4 (disturbed) 8° 37' 30.864” N 

123° 30' 11.196” W 

10 I. cylindrica, C. nucifera, Musa sp., 

G. arborea, C. odorata, Clitoria sp.    
and P. conjugatum 

presence of a local community (non-

miners); presence of one ball mill plant 

S5 (disturbed) 8° 37' 34.608” N 

123° 30' 12.996" W 

3 P. conjugatum, C. nucifera and 

ground ferns 
presence of a few inhabitants (non-miners); 

presence of one ball mill plant  
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m) from this site. Although we cannot rule out the possibility that the undisturbed sites had 1 

previously been impacted by mining-related disturbances due to lack of information of the past 2 

mining activities, the present Hg and other heavy metal levels were used to assess the impacts 3 

of local mining activities since their operation in the 1980’s. 4 

 5 

Soil properties 6 

 7 

     Five replicate composite samples, each consisting of 500 g (a composite of 3 samples 8 

combined), were collected from the upper 5 cm using a hand shovel. Soil samples were placed 9 

in ziplocked plastic bags and tightly sealed in a box container until laboratory processing. From 10 

each soil sample, 200 g were kept at 4 °C and utilized for the determination of basic soil 11 

characteristics, nutrients and heavy metal analyses. Soil pH was determined potentiometrically 12 

in the soil suspension of a 1:2.5 soil:water mixture (ISRIC, 1995). Total Organic Carbon was 13 

measured by the Walkey-Black method, which involves wet combustion of the organic matter 14 

with a mixture of potassium dichromate and sulfuric acid (Walkey and Black, 1934). Total N 15 

was determined by the Kjeldahl method (Kjeldahl, 1883) and available P was extracted using 16 

acidified ammonium fluoride (Chang and Jackson, 1958). Cu, Zn, Fe, Cd and Pb were extracted 17 

by dilute hydrochloric acid procedures (Nelson et al., 1959) and measured by Atomic 18 

Absorption Spectrometry, while Hg was measured by Cold Vapor Atomic Absorption 19 

Spectrometry (CVAAS). We used empty sample cups treated in exactly the same way as real 20 

samples as blanks, and NIST (National Institute of Standards and Technology, Gaithersburg) 21 

standard MD 2089 as a reference or ‘external standard’ for method validation and 22 

determination of analytical precision. Detection limits of the heavy metals Cd, Cu, Fe, Pb, Zn 23 

and Hg were 0.002, 0.003, 0.006, 0.01, 0.001 and 0.02 mg kg-1, respectively.  24 

 25 

 26 

 27 
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Nematodes 1 

 2 

     From each homogenized soil sample, 100 g was taken for nematode collection using a 3 

modified tray method (Whitehead and Hemming, 1965). Total nematode abundance was 4 

determined and 100 individuals were randomly picked and identified to the genus level 5 

according to Andrássy (2005) and assigned ‘colonizer-persister’ scores according to Bongers 6 

(1990, 1999). Nematodes were designated into trophic groups, namely bacterivores, 7 

fungivores, omnivores-predators and plant parasites. Assignments to trophic groups used the 8 

genus list provided by Yeates et al. (1993). 9 

     Nematode assemblages were characterized by a) the absolute abundances per 100 g soil; b) 10 

genus richness, expressed as the number of nematode genera (note that we also calculated 11 

rarefied richness as expected numbers of genera, which yields a richness estimate that is 12 

independent of sample size; however, this resulted in nearly identical richness estimates, hence 13 

we prefer to work with the ‘pure’ richness data here); c) the Shannon-Wiener index (H'), which 14 

is a diversity measure encompassing both aspects of richness and evenness [H' = ∑ Pi (lnPi)] 15 

(Shannon and Weaver, 1949); d) Simpson’s index, calculated as [1- D = 1- ∑ Pi2], as a measure 16 

of evenness (Simpson, 1949); in both indices, Pi is the proportion of individuals of the ith taxon; 17 

e) the index of trophic diversity (ITD), a measure of the proportional abundance of each trophic 18 

group in the community, was calculated as ITD = [1 / ∑ Pi2] where Pi is the proportion of the 19 

ith trophic group in the nematode community (Heip et al., 1985); f) the Maturity index (MI), 20 

[MI = ∑vi pi], where vi is the c-p score of a genus as designated by Bongers (1990, 1999) and 21 

pi is the proportional abundance of that genus in the free-living nematode assemblage. The c-p 22 

values reflect the nematode life strategies, and range from 1 (colonizers, tolerant to disturbance) 23 

to 5 (persisters, sensitive to disturbance); and g) MI2-5 is a modification of MI which excludes 24 

nematodes with c-p scores of 1 because they tend to become proportionally more abundant 25 

under organic enrichment, and as such, their inclusion in the MI could potentially bias 26 
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interpretation of the effects of chemical pollution. The MI and MI2-5 reflect the (recent) 1 

disturbance history of a soil. In theory, the higher the maturity index values, the more mature 2 

and stable and the less disturbed the ecosystem. MI, MI2-5, and other indices such as Structure 3 

Index (SI) and  Enrichment Index (EI) were also calculated using the NINJA online programme 4 

(Sieriebriennikov et al., 2014; https://sieriebriennikov.shinyapps.io/ninja/). 5 

 6 

Statistical analyses 7 

 8 

     Differences between sampling sites in any of the above-mentioned univariate descriptors of 9 

nematode assemblages (i.e. abundance, diversity indices, maturity indices) were analyzed 10 

using one-way analysis of variance (ANOVA) using the Statistica software package version 11 

7.0. Data were first checked for normality with a Kolmogorov-Smirnov test and for 12 

homogeneity of variances with Levene’s test. In case of a significant ANOVA result, pairwise 13 

comparisons between sites were performed using Tukey’s HSD test.  14 

      Principal coordinates analysis (PCO) of the environmental variables was carried out to 15 

determine the differences between sampling sites based on the combination of measured 16 

environmental variables. These data included heavy metal concentrations and physico-17 

chemical characteristics of the soil, and were normalized due to the differences in units. Non-18 

metric multi-dimensional scaling (nMDS) was performed to visualize spatial patterns of 19 

nematode assemblages. The multivariate Permutational Analysis of Variance (PERMANOVA; 20 

Anderson, 2004) within PRIMER was then used to detect differences between nematode 21 

assemblages between the different sites, and between our two – admittedly arbitrary – a priori 22 

groupings of these sites: undisturbed (S1 and S2) and disturbed (S3, S4 and S5). Each term in 23 

the analyses was calculated using 999 permutations. Since PERMANOVA is sensitive to 24 

multivariate dispersion, PERMDISP was performed to check if observed differences were due 25 

to location effects or to heterogeneous variation. Prior to the multivariate analysis, nematode 26 



 11 

abundances were square root-transformed to downsize the effect of dominant genera. When 1 

significant differences were detected, pairwise comparison tests within PERMANOVA+ were 2 

conducted to establish differences between sites.  3 

     DistLM (Distance-based linear model) routine using a global BEST selection procedure 4 

with Bayesian Information Correction (BIC) was carried out to identify the environmental 5 

variables that best explained the observed patterns in nematode communities. Distance-based 6 

redundancy analysis (dbRDA), a graphical visualization of the DistLM results, was used to 7 

show patterns in assemblage composition and environmental variables across samples using 8 

Pearson correlation. Similarity percentage (SIMPER) analyses using the untransformed 9 

nematode abundance data were used to identify the genera which contributed to the similarities 10 

or differences between study sites and between the undisturbed and disturbed sites. The genera 11 

were considered ‘important’ if they contributed at least 5% of the average dissimilarity among 12 

the sites (Mirto et al., 2002).  13 

 14 

 15 

 16 

 17 

 18 

 19 

 20 

 21 

 22 

 23 

 24 

 25 
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Results 1 

Soil properties and heavy metal concentrations 2 

Table 2. Mean concentrations of heavy metals, nutrients and soil properties of the five sampling locations. Values 3 
after the mean represent standard deviations (mean ± stdev of five replicates). 4 

        S1 (undisturbed)    S2 (undisturbed)    S3 (disturbed)    S4 (disturbed)   S5 (disturbed) 

Basic soil properties  

  OM (%)         7.4 ± 3.93    6.24 ± 1.18    4.53 ± 1.66    4.93 ± 2.86   4.66 ± 3.54 

  N (mg/kg)       0.32 ± 0.14    0.27 ± 0.08    0.23 ± 0.11    0.26 ± 0.13   0.14 ± 0.04 
  P (mg/kg)       2.14 ± 1.35    4.15 ± 4.38    3.83 ± 4.66    11.6 ± 9.93     1.5 ± 0.91 

  pH       5.23 ± 0.49    5.27 ± 0.8    4.58 ± 0.17    5.61 ± 1.02     4.6 ± 0.3 
  median grain size (µm)       66.3 ± 19.9a    24.5 ± 6.78b       24 ± 11.02b     28.8 ± 6.27b   75.5 ± 66.4a 

  clay content (%)       9.01 ± 2.34a    17.5 ± 2.92b    15.8 ± 3.93bc    14.9 ± 2.92bc   11.2 ± 3.29ac 

Heavy metals (mg/kg) 

  Cd       1.13 ± 0.82     1.06 ± 0.91     0.87 ± 0.74    1.18 ± 0.86   1.16 ± 1.01 
  Cu       84.8 ± 113     35.0 ± 11.5     45.5 ± 31.2    85.9 ± 47.2   59.4 ± 35 

  Fe      2597 ± 703    2346 ± 413    2634 ± 770   2684 ± 861  2098 ± 781 

  Hg       0.49 ± 0.6a     2.00 ± 1.56a     1.34 ± 0.83a    38.4 ± 43.3b   1.51 ± 1.63a 

  Pb       27.6 ± 8.5a     32.3 ± 6.95a     27.5 ± 13.7a     136 ± 78b   48.9 ± 11.6b 

  Zn       47.7 ± 73.4     33.3 ± 16.1     24.6 ± 21    65.4 ± 26.9      30 ± 7.8 

Mean values followed by different letters on the same row indicate significant differences according to a post-hoc 5 
Tukey HSD test (P < 0.05). 6 
 7 
 8 

     Several soil properties such as OM, N, P and pH did not show any significant difference 9 

between sites; however, OM, N and pH (except for S4) tended to be lower in the disturbed 10 

compared to the undisturbed sites. Median grain sizes in S2, S3 and S4 were significantly 11 

smaller (all P < 0.05) compared to S1 and S5 (Table 2). In terms of grain size, in general, 12 

disturbed sites, S3 and S4, had significantly finer grain size and a higher clay content compared 13 

to S1, but not S2. Heavy metal concentrations in the disturbed areas were not significantly 14 

increased except for Hg, which was highest in S4 (P < 0.05), and Pb, which was significantly 15 

higher in S4 and S5 than the rest of the sites. Although S3 and S5 had ball mill plants, the lower 16 

Hg content in these areas compared to S4 suggest that the tailings were most probably disposed 17 

off elsewhere and not on the sampling site.  18 

     In a principal coordinates analysis (PCO) of the soil properties (Fig. 2), PCO1, explaining 19 

29.6% of the observed variation, showed that Site 4 was associated with higher metal 20 

concentrations including Zn (r = 0.7), Pb (r = 0.67), Cd (r = 0.57), Cu (r = 0.56) and Hg (r = 21 

0.50), with higher pH (r = 0.66) and with higher concentrations of N (r = 0.48) and P (r =0.83) 22 

(Supplemental Material - ESM 1). PCO2 accounted for 28.4% of the observed variation and 23 
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positioned 2 replicates of S4 and 1 replicate of S1 apart from other sampling sites; this axis 1 

was positively associated with increasing Hg (r = 0.72), Fe (r = 0.68), Cu (r = 0.54), Pb (r = 2 

0.46) and Zn (r = 0.45), while negatively associated with N (r = -0.67), OM (r = -0.61) and pH 3 

(r = -0.58) (Supplemental Material - ESM 1). Samples for all sites were rather scattered in the 4 

ordination plane in general, except that it was more pronounced for S4 and S1 (Fig. 2). 5 

 6 

 7 

 8 

 9 

 10 

 11 

Nematode abundance, genera, diversity and maturity indices 12 

 13 

 14 

     Total nematode abundance showed significant differences between locations (df = 4; F = 15 

3.65; P < 0.05); highest density (412 ± 160 ind/100 g soil) was found in S1, whereas S3 had 16 

the lowest abundance (204 ± 59 ind/100 g soil) (Fig. 3A). Nematodes belonged to 49 genera, 17 

12 of which were bacterial feeders, 5 fungal feeders, 20 omnivores/predators and 12 plant 18 

feeders (Supplemental Material - ESM 2). Index of trophic diversity did not show any 19 

Fig. 2. Principal coordinates analysis (PCO) of the environmental variables from the 

different sampling sites in the Sibutad small-scale mining area. See table 2 for an 

overview of environmental variables included in the analysis. 
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significant differences (df = 4; F = 2.01; P > 0.05) between sites (data not shown), but genus 1 

richness did (df = 4; F = 3.61; P < 0.05): S1 and S2 had significantly higher number of genera 2 

than S5 (Fig. 3B). Shannon diversity and evenness (Simpson index) did not differ significantly 3 

among sites (df = 4; F = 2.82 and F = 4.87 for Shannon diversity and evenness, respectively; P 4 

= 0.054 and P = 0.091 respectively; Fig 3C). Nevertheless, there was a trend indicating a higher 5 

diversity in undisturbed compared to disturbed sites. Finally, S5 had the highest MI and MI2-5, 6 

while S3 had the lowest (Fig. 3D), but these differences were not statistically significant. 7 

 8 
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Nematode assemblage composition 1 

 2 

     PERMANOVA revealed highly significant differences in nematode composition between 3 

locations (df = 4; F = 3.53; pseudo-P = 0.001), with a non-significant PERMDISP (PERMDISP 4 

= 0.66). Pairwise comparisons detected significant differences between all pairs of sites, except 5 

the two undisturbed sites, S1 and S2 (Table 3).  6 

 7 
Table 3. Pairwise comparisons of nematode assemblage composition (PERMANOVA) between different sites. 8 

Sites S1 
(undisturbed) 

S2 
(undisturbed) 

S3 
(disturbed) 

S4 
(disturbed) 

S5 
(disturbed) 

S1 (undisturbed)        -   0.273   0.006*   0.028*   0.012* 

S2 (undisturbed)  0.273            -          0.023*    0.007**   0.011* 

S3 (disturbed)        0.006**     0.023*          -    0.005**     0.005** 
S4 (disturbed)        0.028*      0.007**          0.005**         -     0.007** 

S5 (disturbed)   0.012*     0.011*          0.005**     0.007**           - 

    Asterisks (*) and (**) indicate significant differences at P < 0.05 and P <0.01, respectively. 9 
 10 
 11 
Table 4. Results of the SIMPER (Similarity Percentages) analysis of the nematode data between the undisturbed 12 
(S1 and S2) and disturbed sites (S3, S4 and S5). Multiple genera contributed to the site differences. Listed below 13 
are all the genera contributing up to a cumulative contribution (Cum. cont. %) of ≥ 75% to such differences.  14 
 15 

 16 

 17 

 18 

      19 

 20 

 21 

 22 

 23 

 24 

 25 

 26 

      27 

     SIMPER analysis showed that all site pairs had high levels of dissimilarity in nematode 28 

assemblages (Supplemental Material - ESM 3). The largest dissimilarity was between S3 and 29 

S5 (75.57%), while S1 and S2 were the least dissimilar (63.03%), but only slightly less so than 30 

          Genera                Average abundance Cum. cont. (%) 

Average dissimilarity = 70.03% undisturbed  

(S1, S2) 

disturbed  

(S3, S4, S5) 

 

    Iotonchus 31.91   7.35   5.66 

    Axonchium 29.67   9.29 11.02 

    Rotylenchulus 21.40 12.25 16.36 

    Dorylaimellus   8.36 20.22 21.44 

    Cephalobus 17.55 21.52 26.33 

    Mesodorylaimus 24.77 21.79 31.28 

    Helicotylenchus 24.42   5.46 35.96 

    Eudorylaimus 14.91 22.99 40.42 

    Mesocriconema 11.00 17.27 44.56 

    Aphelenchus 20.76   8.05 48.69 

    Bursilla 11.38 11.64 52.63 

    Heterocephalobus 17.90   8.15 56.28 

    Xiphinema 13.97   6.77 59.53 

    Pratylenchus   4.48 13.45 62.62 

    Metaporcelaimus 16.13   5.19 65.63 

    Oxydirus 10.55   9.68 68.60 

    Ironus   1.62 14.63 71.46 

    Ecumenicus   7.05 11.51 74.14 

    Rotylenchus 11.50   2.23 76.74 



 16 

the other site pairs, even though PERMANOVA did not detect significant differences between 1 

both undisturbed locations. Several genera were identified to be responsible for the 70.03% 2 

dissimilarity between the undisturbed (S1 and S2) and disturbed sites (S3, S4 and S5) (Table 3 

4). Particularly, the ‘important’ genera (i.e. genera contributing roughly 5% to the dissimilarity 4 

between the undisturbed and disturbed sites) included Iotonchus, Mesodorylaimus, Axonchium, 5 

Rotylenchulus and Helicotylenchus, all of which were more abundant in the undisturbed sites, 6 

and Dorylaimellus and Cephalobus which were more abundant in the disturbed sites. Six 7 

genera were exclusively found either in undisturbed or disturbed sites, but only contributed < 8 

1% to the difference between sites: Opisthodorylaimus, Granonchulus and Chronogaster in 9 

undisturbed sites, while Coslenchus, Oriverutus and Mononchulus in disturbed sites. 10 

      dbRDA1 explained 17.7% of the total variation in the nematode data and generally 11 

distinguished S5 from the other four sites (Fig. 4). dbRDA1 was positively associated with the 12 

relative abundances of Helicotylenchus (r = 0.61), Rotylenchulus (r = 0.56), Aphelenchus (r = 13 

0.54), Alaimus (r = 0.49) and Paractinolaimus (r = 0.47), while negatively with Eudorylaimus 14 

(r = - 0.49) and Dorylaimellus (r = - 0.83) (Fig. 4A). dbRDA1 also had a strong negative 15 

correlation with Cd (r = - 0.87) (Fig. 4B). On the other hand, dbRDA2 generally ‘separated’ 16 

S4 and a few replicates of S3 and S5 from the undisturbed sites, S1 and S2, while explaining 17 

14.9% of variation. dbRDA2 was correlated with Pb (r = 0.68) and Hg (r = 0.63), and the 18 

genera positively correlated with it included Acrobeloides (r = 0.60), Cephalobus (r = 0.53), 19 

Pratylenchus (r = 0.49), Bursilla (r = 0.48), and Ironus (r = 0.48). 20 

     A distance-based linear model including all the measured environmental variables 21 

explained 60.4 % of the fitted variation (i.e. 32.6 % of the total variation at the two first dbRDA 22 

axes) in the nematode data, which suggests that non-measured variables (e.g. vegetation, 23 

species interactions) are more important drivers of nematode assemblage structure in our 24 

sampling area. The best DISTLM with no more than three variables, Pb, Hg and N, explained 25 
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24.5 % of the fitted variation of nematodes in the area. These three variables also yielded the 1 

three best DISTLM models with a single variable, and dominated the best model solutions with 2 

two environmental variables (Supplemental Material - SM 4). 3 

 4 

  5 

 6 

 7 

 8 

 9 

 10 

 11 

 12 

 13 

 14 

 15 

 16 

  17 

 18 

 19 

 20 

 

Fig. 4 (A and B). Distance-based Redundancy Analysis (dbRDA) plots based on 

the nematode assemblages and the fitted environmental variables as vectors. 
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Discussion 1 
 2 

     Several studies have been conducted in large-scale mining areas (Pen-Mouratov et al., 2008; 3 

Shao et al., 2008) but researches dealing with the direct impact of small-scale mining activities 4 

on soils and their soil fauna assemblages have hitherto been more scanty (Harris-Hellal et al., 5 

2009; Odumo et al., 2014). This is probably due to the fact that large-scale mining operations 6 

can result in more obvious and drastic ecological disturbances, which may require immediate 7 

intervention. Small-scale mining activities may also cause indirect impacts by changing the 8 

basic soil characteristics, vegetation and distribution of heavy metals, which in turn affect soil 9 

organisms. The proliferation of small-scale mining activities in the Philippines remains a threat 10 

because they are not properly regulated, and the extent and severity of their ecological impacts 11 

are not well studied.  12 

 13 

Basic soil properties and heavy metals 14 

 15 

          The impacts of small-scale mining activities were reflected by the higher levels of heavy 16 

metals (mainly Hg and Pb), but not consistently so: Hg was only strongly elevated at S4, while 17 

Pb at S4 and S5. There were hints of subtle differences in other soil properties (e.g., OM, N, 18 

pH and granulometry) between undisturbed and disturbed sites, but apart from granulometry, 19 

these were never statistically significant. Vegetation thus provided the only obvious differences 20 

between undisturbed (S1 and S2) and disturbed (S3, S4 and S5) sites. These disturbances by 21 

mining activities may be ‘physical’ due to the location being close to the excavated areas, as in 22 

the case of S3, or ‘chemical’ due to the locally higher concentrations of heavy metals, such as 23 

in S4 and S5. 24 

     Mining sites are usually characterized by more acidic soils with low OM concentrations 25 

(Johnson and Hallberg, 2005; Banning et al., 2008; Šalamún et al., 2014) and fine soil particles 26 

due to the ball milling process, characteristics which we observed only partly, i.e. finer 27 
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sediments in some disturbed locations. In addition to edaphic differences, the disturbed sites 1 

can also be distinguished by several fast-growing grass species (i.e. Paspalum conjugatum, 2 

most common in the study area), which can easily establish and dominate during post-mining 3 

succession (Groninger et al., 2007). The disturbed sites, S3 and S4, had significantly finer grain 4 

sizes (mean of 24 µm and 28.8 µm, respectively) with a higher contribution of clay (15.8% and 5 

14.9%, respectively) compared to the rest of the sites (except to S2), which may be caused by 6 

the disposal of fine soil residues from the ball mill plants. Unexpectedly, S2 had a similarly 7 

fine grain size similar as S3, possibly due to past mining-related disturbances, which is further 8 

supported by the relatively high Hg concentrations at this location. This may also explain why 9 

the nematode genus composition at S2 was closer to that of the disturbed mining sites than S1 10 

in a nMDS plot (data not shown).  11 

     Due to a lack of established allowable ranges of heavy metals in the Philippines, we 12 

compared our data to existing literatures from elsewhere. However, caution is needed when 13 

extrapolating since metal effects in soils are influenced by pH, clay and organic matter content 14 

(Rieuwerts et al., 1998). Heavy-metal levels of the present study were lower than the allowable 15 

concentrations imposed by regulatory bodies from developed countries (Teh et al., 2016), 16 

except Hg when compared to UNEP limits. While the world average Hg levels in soil ranges 17 

from 0.01 mg kg-1 to 0.2 mg kg-1 (Adriano, 2001), UNEP (2013) recommends an acceptable 18 

range from 0.07 mg kg-1 to 0.3 mg kg-1. In the present study, all Hg concentrations, except 19 

those of S1, exceeded acceptable levels as defined by UNEP (2013), indicating a mining history 20 

in all sites except S1. 21 

 22 

Nematode abundance, diversity and maturity indices 23 

 24 

     Nematode abundances in Sibutad were in the range of some heavy metal pollution-impacted 25 

sites in, e.g., China and Israel (Shao et al., 2008; Pen-Mouratov et al., 2008), which suggests 26 
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that the whole area was impacted at least to some extent. A general trend of low nematode 1 

abundances in some of the locations (S2 and S3) may be attributed to the finer grain size, 2 

probably caused by disposal of very fine soil residues or tailings, especially in S3, during the 3 

mineral extraction processes. This suggests that S2, although currently undisturbed, has also 4 

been exposed to previous mining activity, which is to some extent reflected in the Hg 5 

concentration (see above). Grain size can affect nematode communities; often, lower densities 6 

are observed in finer textured compared to coarser soils (Anderson et al., 1979; Sánchez-7 

Moreno and Navas, 2007). Clayey soils, which contain a substantial fraction of very fine 8 

particles, are characterized by reduced soil pores and a high water content. Since nematodes 9 

move along soil spaces, clayey soils can impede their movement and the associated high water 10 

content can result in oxygen deprivation (Glazer, 2002). No clear nematode abundance trends 11 

were, however, observed between nematode densities and our a priori classification of the 12 

different sites. S3 and S4, for instance, were both impacted, yet they differed in the type of 13 

disturbance related to exploratory mining activities (‘physical’ vs ‘chemical’ disturbance), 14 

among other things in a quite different vegetation cover (S4 being more diverse than S3). Plants 15 

can affect the soil biota (e.g., nematodes) in several ways – e.g., root exudates and the high 16 

inputs of dead OM can cause high abundances of bacteria which can serve as food to bacterial-17 

feeding nematodes (Bongers and Ferris, 1999; Bais et al., 2006). S3 had the lowest and S4 the 18 

second-highest mean nematode abundances, suggesting that nematode abundance is a useful 19 

indicator of ‘physical’ disturbance in this area (Neher, 2001; Fiscus and Neher, 2002; 20 

Schratzberger and Jennings, 2002), rather than of heavy metal pollution per se (Bongers, 1990; 21 

Korthals et al., 1996).  22 

     Diversity indices have been used by soil ecologists to assess the impacts caused by heavy-23 

metal pollution, although Pen-Mouratov et al. (2010) found that nematode diversity indices 24 

were more affected by soil properties, whereas ‘ecological indices’ such as the maturity index 25 
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were more sensitive to disturbance. In many cases, impacted areas are characterized by low 1 

nematode diversity compared to non-impacted areas due to the elimination of sensitive taxa 2 

(Yeates et al., 1995; Sánchez-Moreno and Navas, 2007; Park et al., 2011) and the increased 3 

dominance of tolerant taxa (Lambshead, 1986). This was partly confirmed in the present study 4 

where S1 had the highest genus richness, while S5 had the lowest, despite the fact that S4 was 5 

the most contaminated site. This is probably due to the higher plant diversity in S4 compared 6 

to S5 (Šalamún et al., 2017). Other diversity indices such as Shannon-Wiener and Simpson, 7 

however, did not show any significant differences between locations, although they tended to 8 

decrease from undisturbed to disturbed sites: S2 ≥ S1 ≥ S3 ≥ S4 ≥ S5, and this trend was only 9 

borderline non-significant (P = 0.054) for Shannon-Wiener (H') diversity.  10 

     In a similar study on metal-pollution impact by Chen et al. (2009), H' index values in less 11 

disturbed areas (from 2.24 to 2.69) were fairly comparable to the results from the Sibutad 12 

undisturbed sites (2.68 and 2.72), while H' in our disturbed sites (2.3 being the lowest) 13 

overlapped with those of the ‘undisturbed’ areas from that study. This suggests that diversity 14 

indices should not merely be compared with those of other studies on the basis of their absolute 15 

values, but interpreted in a context-dependent manner (e.g., vegetation, soil type, pollution 16 

levels, history…). Aside from soil pH, other factors such as root architecture, root exudates, 17 

and soil type also need to be taken into account since they can influence the bioavailability of 18 

heavy metals in soil (Rieuwerts et al., 1998; Mench and Martin, 1999). 19 

     Maturity indices of nematodes have also been used extensively to assess the status of soil 20 

health. In principle, higher MI values (MI and MI2-5) suggest a more stable and less disturbed 21 

environment (Bongers and Ferris, 1999; Neher, 2001). For instance, a negative impact of heavy 22 

metal (such as Cu, Ni) concentrations exceeding 100 mg kg-1 on the MI was observed in 23 

terrestrial systems (Korthals et al., 1996). However, this cannot be easily translated to our 24 

results, where the lowest and highest MI values (MI and MI2-5) were both found in a disturbed 25 
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site, S3 and S5, respectively, and both with a rather high variability between replicates. 1 

Counterintuitively, S5 combined the highest MI values with the lowest Shannon diversity, 2 

which was attributed to the high proportional abundance of cp3-5, with a pronounced 3 

contribution of Eudorylaimus (> 10%). A high MI value in S5 is counter to the overall 4 

expectation that disturbance wipes out sensitive taxa and enhances the dominance of tolerant 5 

and/or successful colonizer taxa (Yeates et al., 1995; Bongers and Ferris, 1999; Sánchez-6 

Moreno and Navas, 2007). The implicit assumption of the MI and related indices that large-7 

bodied predacious or omnivorous nematodes (with cp scores of 4-5, sometimes 3) are more 8 

sensitive and are therefore more easily lost from a system after a strong disturbance (Korthals 9 

et al., 1996; Nagy et al., 2004) does not always hold. For instance, in our study, nematodes 10 

with cp3-5 scores did not always display such sensitivity under moderate pollutant 11 

concentrations, in agreement with other recent studies (Heininger et al., 2007; Šalamún et al., 12 

2011; Gutiérrez et al., 2016). In fact, 40% of the nematode genera, and between 25 and 40% 13 

of the abundances in our study were predators/omnivores with a cp score of 4 or 5, and this did 14 

not systematically differ between disturbed and undisturbed sites (Supplemental Material - SM 15 

2). It does explain why MI values were generally high in all our study sites. 16 

    Diversity, maturity and other related indices (e.g., SI and EI) were not markedly different 17 

between sampling sites due to the high variability between replicate samples. For instance, 18 

mean differences of maturity index up to ca 0.7 – the variability found here between replicate 19 

samples at a single location – are usually considered high; such high within-site variability may 20 

be linked to the patchiness of both vegetation and heavy metal content (pers. observation), 21 

where vegetation type affects MI directly through inputs of OM, or indirectly through effects 22 

on soil type, bacterial abundance, metal bioavailability, etc. (Yeates, 1999). Hg was very 23 

patchily distributed on a small scale (a range of 0.4 to 38.4 ppm), resulting in much more 24 

localized pollution impacts than we had anticipated. Alternatively, the high dispersion in index 25 
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values and assemblage composition in our study could be taken as evidence of the importance 1 

of physical disturbance as a driver of nematode assemblage structure and diversity (Fonseca 2 

and Gallucci, 2016). 3 

 4 

Nematode genera associated with heavy-metal pollution 5 

 6 

     Previous studies showed that nematode community composition can be sensitive to soil 7 

management practices or disturbances (Fiscus and Neher, 2002; Sánchez-Moreno et al., 2006). 8 

While the nematode-based indices did not reflect the mining-related disturbances, significant 9 

differences in nematode genus composition between undisturbed (S1 and S2) and disturbed 10 

sites (S3, S4 and S5), and between all pairs of sites except S1 and S2, were strong indications 11 

of the impact of ongoing or recent small-scale mining activities which altered the physico-12 

chemical attributes of the soil, and in turn, differentially impacted nematode genera (Fiscus and 13 

Neher, 2002). 14 

     Important genera characteristic of the undisturbed sites included the free-living nematodes 15 

Iotonchus and Mesodorylaimus, and the plant-feeding nematodes Axonchium, Rotylenchulus 16 

and Helicotylenchus, while Cephalobus (free-living) and Dorylaimellus (plant-feeding) were 17 

characteristic of the disturbed sites (Table 4). Our results thus confirm those of Šalamún et al. 18 

(2012) concerning the near-absence of Iotonchus and the high sensitivity of Mesodorylaimus, 19 

a cp4 nematode, to chemical disturbance (Bongers, 1990; Chen et al., 2009). Thus, the two 20 

free-living genera may be considered indicator taxa in relation to mining-related disturbance, 21 

because based on a community analysis, they contributed most to the dissimilarity between 22 

disturbed and undisturbed soils. Good indicators should reflect the structure and/or function of 23 

ecological communities and respond to changes in soil condition (Neher, 2001). Often, the 24 

focus is on abundant taxa when trying to identify indicators of disturbance (Bongers and Ferris, 25 

1999; Fiscus and Neher, 2002). However, our results demonstrate that a detailed community 26 
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analysis may also reveal good indicators among the many taxa with low abundances. Other 1 

genera such as Opisthodorylaimus (cp5), Granonchulus (cp4) and Chronogaster (cp3) were 2 

also found to be sensitive to environmental disturbance in view of their complete absence from 3 

our disturbed sites. By contrast, the prominence of bacterial-feeding Cephalobus (cp2) in 4 

disturbed areas agrees well with assumptions of the MI and related indices about the pollution 5 

and disturbance-tolerance of bacterivores with cp2 (Bongers and Ferris, 1999; Bert et al., 6 

2009). Other genera such as Coslenchus (cp2), Oriverutus (cp5) and Mononchulus (cp4) were 7 

limited to disturbed areas, which is counterintuitive for the latter two genera since both are 8 

expected to be sensitive to disturbance (Ferris et al., 2001). Many plant-feeding nematodes, on 9 

the other hand, were reported to be tolerant to heavy-metal pollutants (Pen-Mouratov et al., 10 

2008; Šalamún et al., 2012; Gutiérrez et al., 2016), hence the high relative abundances of 11 

Dorylaimellus in the disturbed sites suggest that their distribution was more influenced by their 12 

host plants, rather than by metal effects. 13 

     Aside from the dissimilarity in nematode assemblages between the disturbed and 14 

undisturbed sites, significant differences in nematode assemblages also occurred between 15 

nearly all pairs of sites, except S1 and S2. Nitrogen and the heavy metals Pb and Hg were 16 

identified as drivers of nematode assemblage structure in the mining sites. Nitrogen plays an 17 

important role as a main source for primary production and can increase soil microbial biomass 18 

(Alon and Steinberger, 1999). Although N content in soils did not significantly differ between 19 

sites, a trend of lower N in the disturbed sites compared to S1 and S2 was observed. By contrast, 20 

concentrations of Pb were higher in S4 and S5, while Hg was highest in S4. The majority of 21 

the metal pollutants, with the exception of Hg, were below the concentrations known to impact 22 

soil nematodes in many field studies (Sánchez-Moreno et al., 2006; Sánchez-Moreno and 23 

Navas, 2007; Shao et al., 2008; Chen et al., 2009; Gutiérrez et al., 2016). Our results suggest 24 

that not only single heavy metals (e.g., Pb and Hg) may affect nematode assemblage structure 25 
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in our study area, but also their combination can as a result of additive effects. Such additive 1 

effects, like in Cu-Zn combination, have been shown to reduce the abundance of nematode taxa 2 

and trophic groups (Korthals et al., 2000), while the combination of Cu, Zn and Pb showed 3 

negative effects on nematode community structure, e.g., MI and H' (Sánchez-Moreno and 4 

Navas, 2007). At the individual level, additive and interfering effects of heavy metal mixtures, 5 

such as (Hg + Cd) and (Hg + Fe), were observed on stress pathways (heat shock, oxidation 6 

stress and metallothionein) of the nematode Caenorhabditis elegans (Anbalagan et al., 2012). 7 

Our results indicate that the free-living Acrobeloides, Cephalobus, Bursilla, Ironus and the 8 

plant-feeding Pratylenchus were more abundant under moderately elevated concentrations of 9 

Pb and high concentrations of Hg. The tolerance of Acrobeloides (cp2), Cephalobus (cp2) and 10 

Bursilla (cp1) to metal stressors agrees with the general MI theory (Bongers, 1990; Georgieva 11 

et al., 2002), while the presence of Pratylenchus (pp3) agrees with the idea that plant-feeding 12 

nematodes can be tolerant to heavy metal contamination (Pen-Mouratov et al., 2008; Šalamún 13 

et al., 2012; Rodríguez Martín et al., 2014). However, the positive associations of presumedly 14 

‘sensitive’ genera Ironus (cp4, a predator) to Pb and Hg, and Eudorylaimus (cp4, an omnivore) 15 

to Cd, respectively, were unexpected (Fig. 4). Although nematode populations, including those 16 

of species with high cp-scores and of entomopathogenic nematodes, have been shown to adapt 17 

to historical pollution after long periods of mining (< 2500 years) (Campos-Herrera et al., 2016; 18 

Gutiérrez et al., 2016), it seems unlikely that such adaptation would already be prominent at 19 

locations with only a very recent mining history (> 35 years in our study area). Therefore, the 20 

positive effect of high Hg (127-fold higher than the permissible level set by UNEP (2013)) 21 

combined with relatively low but elevated Pb concentrations on sensitive taxa, especially in 22 

S4, may be due to a combination of other factors: the more neutral soil pH at this site and the 23 

presence of a more diverse vegetation cover may both reduce metal bioavailability and thus 24 

buffer, directly and indirectly, the potential impact of contamination on soil communities 25 
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(Šalamún et al., 2017). In a mesocosm study, Šalamún et al. (2015) demonstrated a positive 1 

influence of Cd and Cu, both at 40 mg kg-1, on sensitive nematodes (cp5) and on several 2 

nematode indices (Structure Index, MI2-5 and Shannon diversity), but values of these indices 3 

declined at still higher metal concentrations. Such positive relationships of nematodes with 4 

high cp values (sensitive taxa) to relatively low levels of metal pollution have also been 5 

reported in other field studies (Heininger et al., 2007; Šalamún et al., 2011), and this may have 6 

repercussions for the interpretation of Maturity and related indices.  7 

 8 

Conclusions 9 

 10 
     The small-scale mining activities in Sibutad have caused physical (e.g., finer soil texture, 11 

altered vegetation) and chemical (strongly increased Hg levels in S4 but overall low 12 

concentrations of other heavy metals) disturbances. While often-used indices based on 13 

nematode assemblage structure (e.g., maturity index, Shannon-Wiener diversity) did not reflect 14 

clear patterns between locations with different degrees of mining-related impact, nematode 15 

assemblage composition (at genus level) did. This suggests that detailed assemblage analysis, 16 

while time-consuming, is required to interpret moderate pollution or disturbance effects on soil 17 

nematodes. Moreover, our results demonstrate that a detailed community analysis may reveal 18 

good indicators of disturbance among the nematode taxa with low abundances. Given the 19 

‘below-effect’ concentrations of most individual metals with the exception of Hg, and the fact 20 

that combinations of different metals (and N) provided the best explanation for variation in 21 

nematode assemblage composition, the present study suggests synergistic effects of some 22 

heavy metals on nematode assemblages. Counter to expectation, supposedly sensitive 23 

nematode genera, i.e. mainly predacious/omnivorous nematodes with low colonizer abilities, 24 

were more abundant at moderate than at low heavy metal concentrations. Such positive 25 

responses have repercussions on the interpretation of indices such as the maturity index. 26 
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