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ABSTRACT  

Hydrogels represent an attractive material platform for realization of three-dimensional 

(3D) tissue-engineered (TE) constructs, as they have tunable mechanical properties, are 

compatible with different types of cells and resemble elements found in natural 

extracellular matrices. So far, numerous hydrogel-cartilage/bone TE-related studies were 

performed by utilizing a single cell encapsulation approach. Even though multicellular 

spheroid cultures exhibit advantageous properties for cartilage or bone TE, the 

chondrogenic or osteogenic differentiation potential of stem cell microspheroids within 

hydrogels has not been investigated much. The present study explores, for the first time, 

how stiffness of gelatin-based hydrogels (having a storage modulus of 538, 3584 or 7263 

Pa) affects proliferation and differentiation of microspheroids formed from telomerase-

immortalized human adipose-derived stem cells (hASC/hTERT). Confocal microscopy 

indicates that all tested hydrogels supported cell viability during their 3-5 week culture 

period in the control, chondrogenic or osteogenic medium. While in the softer hydrogels 

cells from neighboring microspheroids started outgrowing and interconnecting within a 

few days, their protrusion was slower or limited in stiffer hydrogels or those cultured in 

chondrogenic medium, respectively. High expressions of chondrogenic markers (SOX9, 

ACAN, COL2A1), detected in all tested hydrogels, proved that the chondrogenic 

differentiation of hASC/hTERT microspheroids was very successful, especially in the two 

softer hydrogels, where superior cartilage-specific properties were confirmed by Alcian 

blue staining. These chondrogenically induced samples also expressed COL10A1, a marker 

of chondrocyte hypertrophy. Interestingly, the hydrogel itself (with no differentiation 

medium) showed a slight chondrogenic induction. Regardless of the hydrogel stiffness, in 

the samples stimulated with osteogenic medium, the expression of selected markers 

RUNX2, BGLAP, ALPL and COL1A1 was not conclusive. Nevertheless, the von Kossa staining 

confirmed the presence of calcium deposits in osteogenically stimulated samples in the 

two softer hydrogels, suggesting that these also favor osteogenesis. This observation was 

also confirmed by Alizarin red quantification assay, with which higher amounts of calcium 

were detected in the osteogenically induced hydrogels than in their controls. The 

presented data indicates that the encapsulation of adipose-derived stem cell 
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microspheroids in gelatin-based hydrogels shows promising potential for future 

applications in cartilage or bone TE. 

IMPACT STATEMENT 

Osteo-chondral defects represent one of the leading causes of disability in the world. 

Although numerous tissue-engineering approaches have shown success in cartilage and 

bone tissue regeneration, achieving native-like characteristics of these tissues remains 

challenging. This study demonstrates that in the presence of a corresponding 

differentiation medium, gelatin-based hydrogels support moderate osteogenic and 

excellent chondrogenic differentiation of photo-encapsulated human adipose-derived 

stem cell microspheroids, the extent of which depends on hydrogel stiffness. Since photo-

sensitive hydrogels are a convenient material platform for creating stiffness gradients in 

3D, the presented microspheroid-hydrogel encapsulation strategy holds promise for future 

strategies of cartilage or bone tissue-engineering.  
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INTRODUCTION  

Hydrogels are among the most promising materials for 3D cell culture, as they mimic 

important properties of extracellular matrices (ECM), have similar mechanics to many soft 

tissues and support cell adhesion (1–3). Besides giving structural support, ECM regulates 

cell behavior and importantly affects tissue formation and function (4). In the last two 

decades methacrylamide-modified gelatin (Gel-MOD) has shown great potential for 

various bioengineering and biofabrication approaches due to its cytocompatibility and 

tunability (5–7). In addition to light dose, crosslinking of Gel-MOD can be altered and 

controlled through a variation of the degree of methacrylation or material concentration 

yielding a range of different mechanical properties (8,9). The initial amount of 

photopolymerizable materials is directly correlated to the network density and the 

stiffness of the crosslinked hydrogel. Previous reports show, that varying the stiffness of 

2D or 3D substrates significantly influence stem cell migration, proliferation and 

differentiation (10). So far, the impact of Gel-MOD stiffness towards osteo- or 

chondrogenic propagation was addressed in studies of photo-encapsulation of single cell 

suspensions of bovine and porcine chondrocytes, human or rat mesenchymal stem cells 

(MSC) and a human osteosarcoma cell line MG63. Although researchers reported a 

supporting effect of softer compositions (i.e. ≤ 10% (w/v)) of the crosslinked Gel-MOD on 

osteo- or chondrogenic phenotypes of selected cells, due to different culturing conditions 

used it is impossible to compare the results of these studies. Moreover, the effect of Gel-

MOD stiffness to induce chondrogenic or osteogenic differentiation of photo-encapsulated 

microspheroid tissues (i.e. microspheroids) per se or in conjunction with an adequate 

differentiation medium has not yet been addressed. 

 

Multi-cellular spheroids are well known “building blocks” in the field of tissue engineering 

(TE) (11–23). It is established that microspheroid cultures promote and support 

chondrogenic as well as osteogenic differentiation of MSC (21,24,25). Compared to cells 

seeded on a matrix, spheroids composed of chondrocytes or chondrogenicially 

differentiated MSC or ASC achieved histological, biochemical and biomechanical 

characteristics close to native cartilage (26–29). In addition, condensation of MSC 
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represents one of the earliest phases of the in vivo cartilage development, an important 

aspect in cartilage TE (28). Compared to monolayer cultures, osteogenic differentiation 

proceeds faster in microspheroids as the cell architecture changes, enhancing the 

production of a bone-like ECM (14,16,17,19,23). Although the fusion of multiple spheroids 

enables generation of larger continuous constructs, the need for huge amounts of cells 

represents a limiting factor. In this regard, a combination of scaffold-free and scaffold-

based TE approaches could result in an optimal tissue construct, possibly by employing 

microspheroids, enhancing the seeding efficiency of the hydrogel and consequently 

accelerating tissue formation. 

 

In this study, the impact of varying stiffness properties of Gel-MOD on the osteo- and 

chondrogenic differentiation potential of photo-encapsulated hASC/hTERT microspheroids 

was investigated using confocal microscopy, gene expression analysis, histology and 

calcium quantification. Three different Gel-MOD hydrogels were prepared by adjusting the 

material concentration, followed by photo-encapsulation of the microspheroids and their 

incubation in a selected differentiation medium. The mechanical properties of the 

hydrogels were analyzed using rheology.  

 

MATERIALS AND METHODS 

Unless otherwise stated, reagents were purchased from Sigma-Aldrich, Germany. 

 

Stem cell culture and encapsulation in Gel-MOD  

Immortalized human adipose-derived mesenchymal stem cells (hASC/hTERT) (Evercyte, 

Austria) were expanded using EGM™-2 BulletKit™ medium (Lonza, Switzerland) 

supplemented with 10% (v/v) newborn calf serum (NBCS; Gibco, New Zealand) and 

maintained at standard culturing conditions (37 °C, 5% CO2, humidified atmosphere). 

Medium was refreshed 3-times per week and hASC/hTERT were subcultured after reaching 

80% confluence. To obtain microspheroids, 256,000 cells (passage 7) were seeded on 256-

well agarose MicroTissues® 3D Petri Dishes® (Sigma-Aldrich, MO, USA) according to the 

manufacturer’s protocol in control medium (high glucose Dulbecco´s Modified Eagle 

Medium (HG-DMEM; Gibco, UK) supplemented with 10% (v/v) NBCS and 1% (v/v) Penicillin 
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(10,000 U) – Streptomycin (10 mg/mL) solution (P/S)) and incubated for 48 h at standard 

culturing conditions. Formed microspheroids were re-suspended in either 5%, 7.5% or 10% 

(wt%) methacrylated gelatin (Gel-MOD) solution in control medium containing 0.6 mM 

photoinitiator (lithium (2,4,6-trimethylbenzoyl)-phenylphosphinate (Li-TPO)). Gel-MOD 

(with a degree of substitution of 63%) and Li-TPO solutions were prepared as reported 

(30–32). Subsequently, 30 µL of the Gel-MOD suspension, containing ~81 spheroids, was 

dispensed on methacrylated 35 mm high µ-Dishes or 4-well µ-Slide chambers (Ibidi, 

Germany). The methacrylation was carried out as already described (33). Samples were 

exposed to 25 mW/cm2 UV-A light (LITE-Box G136, 365 nm, NK-OPTIK, Germany) for 10 

min to induce hydrogel crosslinking. Afterwards 0.5 mL of control medium per gel clot was 

added and the dishes were transferred to the incubator.  

 

Chondrogenic and osteogenic differentiation 

After a 24 h incubation of hydrogel clots in control medium, the latter was replaced with 

control, chondrogenic or osteogenic medium. Chondrogenic medium consisted of HG-

DMEM supplemented with 1% (v/v) Insulin-Transferrin-Selenium Supplement (Gibco, UK), 

1% (v/v) of P/S, 1% (v/v) 1 M HEPES buffer (Mediatech, VA, USA), 0.1 mg/mL sodium 

pyruvate, 50 µg/mL L-proline, 50 µg/mL ascorbic acid 2-phosphate, 100 nM 

dexamethasone, 10 ng/mL of human transforming growth factor β3 (Peprotech, NY, USA) 

and human bone morphogenic protein 6 (R&D, MN, USA). Osteogenic medium was 

composed of HG-DMEM supplemented with 10% (v/v) NBCS, 4 mM L-glutamine, 1% (v/v) 

P/S, 10 nM dexamethasone, 150 µM ascorbic acid 2-phosphate, 10 mM β-

glycerophosphate and 10 nM 1,25-Vitamin D3. Hydrogels containing microspheroids were 

incubated for 3 weeks in osteogenic medium and 5 weeks in control or chondrogenic 

medium, with medium refreshment 3-times per week. 

 

Cell viability 

Cell viability was determined using a Live/Dead® assay (Invitrogen, OR, USA). After rinsing 

the hydrogels 3-times with PBS, these were incubated in 0.2 µM Calcein-AM (live stain) 

and 0.6 µM propidium iodide (dead stain) in PBS for 30 min at 37 °C. The viability of cells 

was monitored weekly using a confocal laser scanning microscope LSM 700 (Zeiss, 
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Germany). Viable cells emitted green fluorescence at excitation/emission set at 488/530 

nm, while nuclei of dead cells appeared red at 530/580 nm. 

 

Quantitative real-time polymerase chain reaction (qPCR) 

After 3-weeks of cell differentiation, six gel clots per treatment group were merged and 

total RNA was isolated using RNeasy® Plus Universal Mini Kit (Quiagen, Germany) according 

to manufacturer´s instructions. RNA concentrations were measured using a Synergy H1 

spectrophotometer (BioTek, VT, USA). From each sample 1 µg of RNA was isolated, treated 

with AccuRT Genomic DNA Removal Kit (ABM, BC, Canada) and reverse transcribed into 

cDNA using 5X All-In-One RT MasterMix (ABM). Employing a CFX Connect Real-Time 

System (BioRad, VT, USA), qPCR was performed according to the BioRad 

PrimePCR_Assay_Quick_Guide_D101868_VerB. Primer mixes used in qPCR are listed in 

Table 1. In total 40 cycles of qPCR were performed as follows: activation (30 s at 95 °C), 

denaturation (15 s at 95 °C) and annealing and extension (15 s at 60 °C). Data was 

processed using CFX Manager Version 3.1. (BioRad) and relative gene expression (RQ) was 

calculated with the formula RQ = 2 –ΔΔCq (34). For each tested group four cDNA samples 

were obtained and for each qPCR was performed in duplicate. The calculated ΔCq values 

were normalized to the ΔCq values of 2D controls (cells grown in 2D prior encapsulation). 

For low expressed genes, a cut-off value of Cq ≥ 35 was used.  

 

Histology and calcium quantification analyses 

After a 3- or 5-week differentiation of hASC/hTERT in different Gel-MOD hydrogels, these 

were washed with PBS and fixed overnight in Roti®Histofix 4% (Carl Roth, Germany) at 4 °C. 

Hydrogels were either embedded in paraffin blocks and processed at the HistoPathology, 

Vienna BioCenter Core Facilities GmbH, Austria or used in a calcium quantification assay 

(Supporting information 1).  

 

Mechanical testing of Gel-MOD hydrogels 

Mechanical tests were performed using rheology as previously reported (35). Briefly, UV 

crosslinked Gel-MOD sheets (1 mm thick) were obtained by film casting starting from the 

hydrogel precursor solutions as described above. The precursor solutions were injected 
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between 4 mm thick clear glass slides and crosslinked as in cell encapsulation experiments. 

The hydrogel sheets were incubated in PBS at 37 °C to induce equilibrium swelling. 

Subsequently, hydrogel discs (diameter = 14 mm) were punched from the sheets and 

placed between the plates of a plate-plate rheometer at 37 °C (Anton Paar Physica MCR-

301, Anton Paar, Sint-Martens-Latem, Belgium). A frequency sweep (0.01–10 Hz at 0.1% 

strain) and an amplitude scan (0.01–10% at 1 Hz) were performed keeping a constant 

normal force of 1 N, to ensure proper contact between the sample and the plates. During 

the measurements, samples were immersed in PBS to prevent drying. The average storage 

(G’) and loss (G”) moduli were determined within the linear viscoelastic region of the 

hydrogels. 

 

Network density calculations 

Network density calculations are reported in detail in Supporting Information 2. To obtain 

the swelling ratio, the mass of the hydrogel discs (diameter = 14 mm) was determined at 

equilibrium swelling (mh) (in PBS at 37 °C), after gently removing surface water with tissue 

paper. Next, samples were freeze-dried and their dry mass was determined (md). The 

swelling ratio (q) was calculated as:   
  

  
. 

 

Data analysis 

All results are presented as mean ± SD. In our study, the criterion RQ ≥ ± 2 represented 

significant changes in gene expression (36,37). Additionally, one-way ANOVA with Tukey´s 

post hoc test was used to evaluate statistical differences between samples. Significance 

was assumed for p < 0.05, p < 0.01 and p < 0.001 values, shown in figures as *,** or ***, 

respectively. Data analyses were carried out in GraphPad Prism® 5.0. (San Diego, CA, USA). 

 

RESULTS 

Viability and morphology of encapsulated cells 

Following a 24 h encapsulation of microspheroids, the cells were viable in all tested 

hydrogels and started sprouting in the 5% Gel-MOD (Figure 1a). After one week, cells 

cultured in the control medium started sprouting in 7.5 and 10% gels, while in the 5% 
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hydrogel cells from neighboring microspheroids started interconnecting. In all hydrogels, 

the cells stretched and became spindle-shaped. At week one, cell outgrowth from the 

chondrogenically induced microspheroids was less pronouced than in the control medium 

(Figure 1b). In the 10% hydrogel some microspheroid cores appeared partially necrotic, 

but after 3-5 weeks of chondrogenic differentiation, necrotic cores were no longer visible. 

The spheroid viability remained preserved, cell protrusion was limited and cells became 

rounder. In the 5 and 7.5% gels cell sprouting was stronger, cells acquired a round 

morphology and “voids” around microspheroid core areas were observed. Although after a 

one-week microspheroidal culture in osteogenic medium cell sprouting reached a similar 

extent as in the control medium, later on cell protrusion was (except for the 5% hydrogel) 

weaker in stiffer hydrogels (Figure 1c). Moreover, the cell shape was similar to the control. 

Regardless of the culture medium used, cells remained viable throughout the experiment. 

 

Impact of different Gel-MOD stiffness properties on gene expression  

The impact of a 3-week long differentiation of hASC/hTERT microspheroids encapsulated 

in selected hydrogels was verified by qPCR (Figure 2). Compared to undifferentiated 2D 

controls, gene expressions (RQ values) of SOX9, ACAN, COL2A1 and COL10A1 were already 

more than 2-times higher in almost all 3D controls. Moreover, when the samples were 

cultured in chondrogenic medium, the gene expressions increased tremendously - more 

than 70-times for SOX9, 430-times for ACAN, 88,500-times for COL2A1 and 63-times for 

COL10A1. Among all hydrogels the highest expressions of SOX9, ACAN and COL2A1 were 

observed within the 7.5% gel. The expression of COL1A1 was slightly increased in 5 and 

7.5% Gel-MOD control and chondrogenically differentiated samples and was 10-times 

higher in both conditions in 10% gel. Nevertheless, except for the 10% Gel-MOD control, 

the differentiation index (i.e. COL2A1/COL1A1 ratio) was positive in 5 and 7.5% Gel-MOD 

controls and exceptionally high in all chondrogenically differentiated samples. 

Chondrogenically differentiated samples also expressed moderate to high levels of 

COL10A, which correlated to hydrogel stiffness.  
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Compared to the 2D control, expressions of RUNX2, BGLAP and ALPL obtained from 

osteogenically differentiated microspheroids were slightly to moderately increased in all 

three hydrogels. However, compared to their corresponding 3D controls, the expression of 

RUNX2 was similar in 5 and 7.5% hydrogels and 2-times lower in the 10% control. Similar 

expression profiles among 3D controls and corresponsive osteogenically differentiated 

samples were also observed for BGLAP and ALPL, with the exception of the 10% gel, where 

ALPL was almost 2-times higher in the 3D control than in the osteogenically differentiated 

group. However, due to a very high SD of the latter, this result is inconclusive. A similar 

expression trend was observed for COL1A1, but with a 10-fold difference. Nonetheless, 

compared to 2D or 3D corresponding controls, the expression of COL1A1 was 

downregulated in 5 and 7.5% hydrogels. 

 

Chondrogenic differentiation of encapsulated microspheroids 

After culturing the encapsulated hASC/hTERT microspheroids in chondrogenic medium for 

3 or 5 weeks, formation of glycosaminoglycans (GAGs) was histologically confirmed in all 

hydrogels (Figure 3 and Figure S1). The intensities of the Alcian blue dye (bound to GAGs) 

and the morphological appearances of the formed cartilaginous-like tissues were stronger 

in samples cultured for 5 vs 3 weeks, showing a superior tissue-specific organization in 5 

and 7.5% hydrogels. Interestingly, a weak positive staining was also observed in 7.5 and 

10% Gel-MOD control (undifferentiated) samples (Figure 3). 

 

Calcium deposition 

The von Kossa staining of microspheroids encapsulated in 5-10% hydrogels, cultured for 3-

5 weeks in control or chondrogenic medium, revealed no mineral deposits. Identical 

results were obtained after a 3-week incubation of cell-free hydrogels in all three culture 

media (Figure S1). However, when the encapsulated microspheroids were cultured in 

osteogenic medium for 3 weeks, almost uniformly distributed mineral deposits were 

observed in 5 and 7.5% gel/tissue cross-sections (Figure 4). Moreover, a stronger 

mineralization was detected in close proximity to the encapsulated microspheroids. In 

contrast, the mineral content of 10% gels was much weaker. Regardless of the hydrogel 

stiffness, microspheroids cultured for 3 weeks in osteogenic medium produced 2-3x more 
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calcium than controls (results not shown). Samples cultured in chondrogenic or control 

medium contained similar calcium quantities, while no calcium was detected in the cell-

free hydrogels. 

 

Mechanical properties and network density calculations 

The storage modulus G’, which can be considered a measure of hydrogel stiffness, at 5, 7.5 

and 10% Gel-MOD concentrations corresponded to 538 ± 91, 3584 ± 146 and 7263 ± 287 

Pa, respectively (Figure 5). The Gel-MOD content prior to crosslinking drastically 

influenced the final mechanical properties of the hydrogels. The same was observed in the 

network density calculations, where lower initial concentrations lead to looser networks 

and vice versa (Table 2). 

 

DISCUSSION  

In this study, the impact of Gel-MOD stiffness on chondrogenic and osteogenic 

differentiation of photo-encapsulated hASC/hTERT microspheroids was investigated, which 

to our knowledge has not yet been studied. hASC/hTERT have been employed as their 

differentiation potential has been confirmed to be stable through numerous population 

doublings (38). Cells were encapsulated in 5, 7.5 and 10% Gel-MOD (degree of substitution 

63%) as this concentration range proved to support long-term proliferation of numerous 

human and animal cells (8,11,39–46) and was successfully used for bioprinting applications 

(43,47). The measured mechanical properties of the gels confirmed that increasing 

concentrations of Gel-MOD drastically enhanced the hydrogel stiffness (i.e. G’ from 538 ± 

91 up to 7263 ± 287 Pa). While G’ of native cartilage is 400–800 kPa, osteogenesis 

predominantly occurs in matrices with an elastic modulus of 11–30 kPA (48–52), which 

equals to G’ = 3.7–10.7 kPA (Supplemental information 2c). As expected, the mechanical 

properties of the tested hydrogels were much lower than in cartilage, but the stiffness of 

7.5 and 10% hydrogels was in range of osteogenesis promotion. Higher Gel-MOD 

concentrations resulted in a denser network formation, which was calculated using the 

rubber elasticity theory (Table 2). This is a consequence of longer kinetic oligo-/poly- 

methacrylate chain formation in between the gelatin chains at higher gelatin 
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concentrations, leading to networks with less defects (35). Regardless of the hydrogel 

stiffness or medium used, no shrinkage or degradation of Gel-MOD samples was observed 

during their 3-5 week culture. Gel clots were anchored to the bottom of culture dishes, 

which prevented floating in the medium and changes in their shape. Previously, the 5 and 

10% (w/v) Gel-MOD hydrogels, after incubation with 100 mmol collagenase solution (i.e. 

100 collagenase digestion units/mL), proved fully degradable within 77.7 and 210 min, 

respectively (9,53). However, this concentration is incomparably high to the nanomolar 

concentrations of degrading enzymes found in tissues (54). Therefore, we assume that our 

experimental conditions did not have a major impact on Gel-MOD degradation. 

 

Although the photo-encapsulation process could have damaged the cells, cell viability 

determined with Live/Dead staining was preserved in almost all hydrogels. Previous 

reports confirm that after photo-encapsulation of human MSC, adipocytes or foreskin 

fibroblasts encapsulated within Gel-MOD+Li-TPO or PEG-diacrylate+Li-TPO, cell viability 

was above 90% (55–57). In addition, a 23% increase in proliferation of rabbit MSC was 

reported following their photo-encapsulation in GelMOD+Li-TPO and their 2-week 

chondrogenic induction (58). However, in our study a partial necrosis of microspheroid 

cores was observed in the 10% hydrogel, cultured for one week in the chondrogenic 

medium. As the microspheroid diameter was ~200 µm, which was confirmed to support 

diffusion of oxygen and nutrients, the size of microspehorids was not the cause of 

apoptosis (25,59). Compared to the control or osteogenic medium, chondrogenic medium 

did not contain serum components (NBCS), as these caused chondrocyte de-differentiation 

in vitro (60). The absence of NBCS in the medium could be one reason for lower cell 

viability and recovery in the 10% Gel-MOD hydrogel. Namely, NBCS is a widely used 

growth supplement in cell culture and plays a crucial role in attenuating cytotoxic 

consequences induced by necrotic and apoptotic signals in neuronal cells (61,62). As the 

experiment progressed, the necrotic core gradually disappeared, and cells acquired a 

rounder morphology, typical of human chondrocytes, which proliferate slowly (63). 

Interestingly, after 3 and 5 weeks of chondrogenic differentiation “voids” in the cores of 

the microspheroids were noticed. As this feature was not observed in either control or 

osteogenically differentiated samples, we conclude that it is a consequence of cell-induced 
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ECM deposition during their 3-5-week chondrogenic differentiation. This conclusion is 

supported by histological results, showing that cells were surrounded with GAGs, major 

components of the ECM. After hASC/hTERT microspheroidal encapsulation in 5-10% gels 

and their culture in control medium, extensive cell sprouting was observed at week one, 

which resulted in a complete merging of microspheroids in the 5% hydrogel. This is not 

surprising, as other cell types are known to spread easily in gelatin-based hydrogels 

(8,13,15). Extensive cell sprouting was observed in the 5% gels cultured in osteogenic 

medium, this occurred to a lesser extent in stiffer hydrogels, suggesting that the 

differentiation of cells was favored over their proliferation. A similar observation was 

reported recently for rat MSC, which lost their ability to proliferate in Gel-MOD after 14 

days of osteogenic induction (11).  

 

The extent of a 3-week chondro- and osteogenic differentiation of encapsulated 

hASC/hTERT was evaluated through expressions of genes known to play important roles in 

chondrogenesis (SOX9, ACAN, COL2A1) and osteogenesis (RUNX2, BGLAP, ALPL and 

COL1A1) of stem cells (64,65). Also, the expression of a chondrocyte hypertrophic marker 

COL10A1 was verified on control and chondrogenically differentiated samples (66). 

Regardless of the hydrogel stiffness, the encapsulated microspheroids cultured in 

chondrogenic medium expressed extraordinarily high levels of SOX9, ACAN and COL2A1, 

which was also confirmed with the calculated differentiation index. These results show 

that chondrogenically induced hASC/hTERT microspheroids encapsulated in Gel-MOD 

hydrogels accomplished a high level of chondrogenic differentiation. However, a high 

expression of COL10A1 in the samples would suggest that the differentiated cells became 

hypertrophic. However, as the osteogeneic marker genes were not simultaneously 

elevated and the expressions of SOX9 and COL2A1 (which are not found in hyperthropic 

chondrocytes), were extremely high, we assume that this was not the case (67). 

Furthermore, the calcium quantity in these samples was not elevated. Besides, the 

expression of COL10A1 was also reported to be present during chondrogenic 

differentiation of human MSC and ASC (21,68–71). Histological analysis of hydrogel-tissue 

cross-sections of chondrogenically differentiated samples showed a strong GAG presence 

(i.e. positive Alcian blue staining). The color intensity was stronger after 5 weeks of cell 
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differentiation, when structural features of the in vitro engineered hydrogel-tissue 

construct resembled the morphological characteristics of the in vivo hyaline cartilaginous 

tissue (72). The extent of chondrogenic differentiation appeared superior in the two softer 

hydrogels. This could be due to the easier migration of hASC/hTERT within the gel 

network, which also sustained osteogenic differentiation to a higher degree. A previous 

publication confirmed that softer agarose gels (modified with RGD motifs) exhibited higher 

DNA and GAG content as well as larger clusters of encapsulated porcine chondrocytes (73). 

Maintenance of better chondrogenic phenotype characteristics was also reported for 

softer PEG hydrogels (74,75).Compared to cells grown in 2D, cells encapsulated in Gel-

MOD cultured in control medium showed a moderate expression of SOX9 and slightly 

elevated ACAN and COL2A1, especially in 5 and 7.5% hydrogels. This implies that softer 

Gel-MOD hydrogels are themselves capable of a slight induction of chondrogenesis. A 

positive Alcian blue staining was detected in histological sections of control samples of 7.5 

and 10% hydrogels, also supporting this assumption.  

 

The analysis of selected osteogenic genes, which have been reported to be expressed in 

human MSC after a 3-week or longer osteogenic differentiation, revealed that compared 

to cells grown in 2D, all Gel-MOD hydrogels containing hASC/hTERT microspheroids 

cultured in either control or osteogenic medium, expressed moderately higher amounts of 

RUNX2, BGLAP and ALPL (76–78). However, when these expressions were compared 

among Gel-MOD control and osteogenic samples, they appeared similar. The same was 

also observed for RUNX2 and BGLAP in samples cultured in chondrogenic medium. 

Similarly to our case, slightly higher expressions of RUNX2 and ALPL in chondrogenically 

differentiated human MSC were noticed after their encapsulation in alginate gels (68). 

These previous findings and our results indicate that the chondrogenic medium causes a 

partial upregulation of some osteogenic genes. By comparing the expression profiles of 

RUNX2, BGLAP, ALPL and COL1A1 it would appear that encapsulated hASC/hTERT cultured 

in control or osteogenic medium achieved a higher extent of osteogenic differentiation in 

the 10% Gel-MOD hydrogel. Although the von Kossa staining did not confirm the presence 

of mineralization in any Gel-MOD control, a strong mineral content was observed 

throughout the analyzed cross-section of the osteogenically differentiated 5 and 7.5% gels. 



Page 16 of 40 
 
 
 

16 

Ti
ss

u
e 

En
gi

n
ee

ri
n

g 

Im
p

ac
t 

o
f 

h
yd

ro
ge

l s
ti

ff
n

es
s 

o
n

 d
if

fe
re

n
ti

at
io

n
 o

f 
h

u
m

an
 a

d
ip

o
se

-d
er

iv
ed

 s
te

m
 c

el
l m

ic
ro

sp
h

er
o

id
s 

(D
O

I:
 1

0
.1

0
8

9
/t

en
.T

EA
.2

0
1

8
.0

2
3

7
) 

Th
is

 p
ap

er
 h

as
 b

e
e

n
 p

ee
r-

re
vi

e
w

ed
 a

n
d

 a
cc

ep
te

d
 f

o
r 

p
u

b
lic

at
io

n
, b

u
t 

h
as

 y
et

 t
o

 u
n

d
er

go
 c

o
p

ye
d

it
in

g 
an

d
 p

ro
o

f 
co

rr
e

ct
io

n
. T

h
e 

fi
n

al
 p

u
b

lis
h

ed
 v

er
si

o
n

 m
ay

 d
if

fe
r 

fr
o

m
 t

h
is

 p
ro

o
f.

 

Especially on sites where microspheroids were present. This was expected, as intense 

localized mineral deposition is a known feature of osteogenically differentiated stem cells 

within microtissues (29). Additionally, Alizarin red quantification results confirmed that 

compared to control Gel-MOD samples, the samples cultured in osteogenic medium 

contained 2- or 3-times more calcium when encapsulated in the 10% hydrogel or the two 

softer ones, respectively. This would suggest that softer Gel-MOD hydrogels also better 

support osteogenic differentiation. Compared to a 10% (w/v) Gel-MOD hydrogel, a 

favorable osteogenic differentiation of a single cell encapsulation of rat MSC was recently 

reported for a 5% hydrogel (39). Significant differences in calcium content were observed 

between the two hydrogel stiffnesses at day 28. Besides, a significantly higher DNA 

content was detected in 5% hydrogels, which could be due to a stronger cell attachment as 

the higher porosity and pore size allowed a higher diffusion of calcium and phosphate ions, 

leading to a more homogenous calcium deposition throughout the hydrogel. 

 

A stronger chondrogenic versus osteogenic differentiation in the presence of the 

corresponding differentiation medium could be due to chondrogenically-favorable 

condensation state of cells in microspheroids or due to cell characteristics themselves. 

Namely, it was shown that distinct stem cell subpopulations isolated from human adipose 

tissue exhibited different chondrogenic and osteogenic differentiation potential (79,80). In 

our experiments, hASC/hTERT were obtained from one donor whose genetic background 

could exhibit a better chondrogenic than osteogenic potential.  

 

In this study, the impact of different Gel-MOD stiffnesses (i.e. 5, 7.5 and 10 wt%) on 

chondrogenic and osteogenic differentiation potential of encapsulated hASC/hTERT 

microspheroids, cultured for 3-5 weeks in a corresponding differentiation medium, was 

evaluated. While all tested hydrogels sustained long-term cell proliferation and survival, 

both differentiation pathways proved to be well supported by the two softer hydrogels, 

which better promoted cell migration. The hydrogel-microspheroid strategy proved 

exceptionally successful in promoting chondrogenesis, which was confirmed at the gene 

and protein levels. Moreover, Gel-MOD itself showed some potential to direct 

encapsulated hASC/hTERT microspheroids towards the chondrogenic lineage. The effects 
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of Gel-MOD on the differentiation of stem cell microspheroids should be explored further, 

as this hydrogel shows promising potential for future cartilage or bone TE applications. 
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Table 1: List of genes used in qPCR experiments. 

Gene Symbol Gene Name Producer, Assay ID  

ALPL alkaline phosphatase BioRad, qHsaCID0010031 

ACAN aggrecan BioRad, qHsaCID0008122 

BGLAP osteocalcin BioRad, qHsaCED0038437 

COL1A1 collagen type I, alpha 1 BioRad, qHsaCED0043248 

COL2A1 collagen type II, alpha 1 BioRad, qHsa 

CED0001057 

COL10A1 collagen type X, alpha 1 BioRad, qHsa CID0007356 

HPRT1 hypoxanthine-guanine 

phosphoribosyltransferase 

Quiagen, QT00059066 

RUNX2 runt-related transcriptor factor 2 BioRad, qHsaCID0006726 

SOX9 SRY (sex determining region Y) – box 9 BioRad, qHsaCED0044083 
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Table 2: Overview of measured mass swelling ratio, storage modulus (G') via rheology and 

properties calculated using the rubber elasticity theory. 

Concentration 

(wt %) 

mass swelling 

ratio (q) 

G' at 37°C 

(Pa) Q 

Mc 

(g/mol) ξ (Å) 

ρ (X 10-4 

mol/cm³) 

5 6.37 ± 0.25 

537.87 ± 

91.00 

9.6

7 

17900.8

6 

500.

25 0.76 

7.5 5.20 ± 0.05 

3583.96 ± 

146.06 

8.0

8 

11882.3

1 

383.

86 1.14 

10 4.71 ± 0.03 

7262.86 ± 

287.04 

7.4

0 

9817.13

4 

338.

87 1.39 

The volumetric swelling ratio (Q), average molecular weight between crosslinks (Mc), 

average distance between crosslinks, i.e. mesh size (ξ) and network density of the 

crosslinks (ρ) were calculated as described in the Supporting information 2. 
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Figure 1: Live/dead staining of encapsulated hASC/hTERT in 5, 7.5 and 10% Gel-MOD 

hydrogels, cultured in a) control, b) chondrogenic or c) osteogenic medium for a period of 

3 to 5 weeks. The viability of cells was also verified one day after their encapsulation, 

before starting differentiation. Viable cells emitted green fluorescence, while the nuclei of 

dead cells appeared red. White arrows indicate “voids” that appeared in the 

microspheroids. Scale bars = 500 µm. 

  

https://www.liebertpub.com/action/showImage?doi=10.1089/ten.TEA.2018.0237&iName=master.img-066.jpg&w=183&h=425
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Figure 2: Gene expression analysis of encapsulated hASC/hTERT in 5, 7.5 and 10% Gel-

MOD hydrogels after a 3-week differentiation in control (Ctrl), chondrogenic (Ch) or 

osteogenic medium (Ost). Mean of relative expression (RQ) ± SD is presented, number of 

biological repetitions = 4. Value 1 represents basal gene expression (2D Ctrl) and RQ values 

≥ 2 represent significant changes in gene expression. In addition, one-way ANOVA with 

Tukey´s post hoc test was used to compare RQ values (n = 4); significance was assumed for 

p < 0.05, p < 0.01 and p < 0.001 values, shown in figures as *,** or ***, respectively. 

Bottom right corner: Differentiation index (COL2A1/COL1A1 ratio) calculated for control 

(Ctrl) and chondrogenically (Ch) differentiated samples. Note differences in scales. 
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Figure 3: Glycosaminoglycan formation detected with Alcian blue staining after 

hASC/hTERT microspheroid encapsulation in 5, 7.5 or 10% Gel-MOD hydrogels and a 3- or 

5-week differentiation in control or chondrogenic medium. Scale bars = 100 µm. 

  

https://www.liebertpub.com/action/showImage?doi=10.1089/ten.TEA.2018.0237&iName=master.img-072.jpg&w=367&h=217
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Figure 4: Visualization of calcium mineralization (black deposits) using von Kossa staining 

after hASC/hTERT microspheroid encapsulation in 5, 7.5 or 10% Gel-MOD hydrogels and a 

3-week differentiation in osteogenic medium. Green arrows indicate stronger 

mineralization in close proximity to the encapsulated microspheroids. Scale bars = 100 µm. 
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Figure 5: Rheological analysis of the hydrogel films. Frequency sweep (n = 3) performed on 

the hydrogel films with different Gel-MOD concentrations in equilibrium swollen state (left 

panel). Average storage modulus G' (Pa) extrapolated from the linear viscoelastic region 

including standard deviation (n = 3) (right panel). One-way ANOVA with Tukey´s post hoc 

test was used to determine statistical differences among the measured values (n = 3); 

significance was assumed for p < 0.05, p < 0.01 and p < 0.001 values, shown in figures as 

*,** or ***, respectively. 
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Impact of hydrogel stiffness on differentiation of human adipose-derived stem cell 

microspheroids 

Supporting Information 1: Histological and calcium quantification analyses 

a) Histology 

Following standard protocols, 2 µm thick sections were deparaffinized and incubated in: a) 

Alcian blue solution (pH = 2.5; Merck KGaA, Germany) for 30 min and counterstained with 

Nuclear fast red (Merck KGaA) for 3 min, or b) 1% (w/v) silver nitrate solution (Sigma-

Aldrich), placed under UV light for 20 min, washed several times with deionized water 

(dH2O), incubated with 5% (w/v) sodium thiosulfate solution (Sigma-Aldrich) and 

counterstained with Nuclear fast red, each for 5 min. Sections were afterwards dehydrated 

through graded alcohol and cleared in xylene before mounting (Figure S1). Images were 

acquired with the LSM 700 microscope and processed using ZEN 2 core v2.4 software 

(Zeiss). 

b) Calcium quantification assay 

After the Gel-MOD clots were fixed overnight in Roti® Histofix 4% and washed several 

times with PBS (1X), they were incubated in 40 mM Alizarin Red S solution for 15 min. 

After several additional washes with dH2O, each hydrogel clot was transferred into a 1.5 

mL tube, covered with 0.5 mL of 20% methanol/10% acetic solution in dH2O and disrupted 

using a micropestle (Sigma-Aldrich). Samples were centrifuged 4 min at 4000g and 100 µL 

of each supernatant was transferred in triplicate to a 96-well plate. Absorbance was 

measured at 450 nm on a Synergy H1 spectrophotometer and calcium content was 

determined comparatively to the Alizarin Red standards. 

Supporting Information 2: Network density assessment 

a) Gel-MOD molecular weight determination using Gel permeation chromatography 

The molecular weight (MW) of Gel-MOD (with a 63% degree of substitution) was 

determined on a set-up composed of a Waters 610 fluid unit, a Waters 600 control unit 

and a Waters 410 RI detector (Zellik, Belgium). The measurements were performed at 1 
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ml/min in a 0.1 M phosphate buffered solution at pH 7.4, using 3 pullulan standards 

(Shodex, Munich, Germany) (i.e. MW = 9890 Da, 21400 Da, 276500 Da) to obtain a 

calibration curve. Gel-MOD was injected in the phosphate buffer, starting from the initial 

solution of 1mg/ml (Figure S2a).  

b) Network density calculations using the rubber elasticity theory 

An estimation of the actual network density (ρ), the mesh size (ξ) and the average 

molecular weight between crosslinks (Mc) can be calculated using the rubber elasticity 

theory from the mass swelling ratio, the rheological results and the original molecular 

weight (1,2). However, to calculate these variables, the volumetric swelling ratio (Q) has to 

be first calculated from the mass swelling ratio (q). This can be done using Equation (1), 

where V2,s is the polymer volume fraction in the swollen state, Vp and Vg are the polymer 

and hydrogel volume at equilibrium swelling, respectively and                   are the 

densities of water and gelatin, respectively (i.e. 1g/cm³ and 1.36 g/cm³(3)) (1,2,4). 

     
  
  

  
 

 
  

(
 

        
)

(
 

    
)   (

 
        

)
                                                    

To calculate the average distance between crosslinks from the Volumetric swelling ratio 

(Q), Equation (2) can be applied under the condition that all network chains within the 

characterized hydrogels follow the Gaussian statistics model as evidenced by a linear 

correlation between log G and log Q for all samples (Figure S2b) (5,6).  

    (
   

Mc
)   (  

 Mc

  
)   (

 

 
 

 ⁄
)                                                      

In Equation 2, G represents the shear modulus (atm), c is the concentration of gelatin in 

the solution, R is the universal gas constant (L*atm*K-1*mol-1), T is temperature (K), Mc  is 

the average molecular weight between crosslinks (Da), Mn is the numerical molecular 

weight of Gel-MOD before crosslinking. The shear modulus can be derived from the mean 

peak value of the storage modulus since the contribution as the loss modulus G” to the 
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shear modulus can be considered negligible in comparison to the storage modulus for all 

analysed samples (2,7,8). 

Using the obtained average molecular weight between crosslinks, an estimation of the 

average mesh size (ξ) in equilibrium swollen state can be calculated using Equation (3) (9): 

    (
   Mc

  
)

(  ⁄ )

    (  ⁄ )                                               

Here Cn represents the Flory characteristic ratio, corresponding to 8.26 for gelatin (9), Mr 

is the average molecular weight of one repeating unit, or one amino acid (on average 

around 94.7 g/mol (9,10)) and   corresponds to the length of a bond along the polymer 

backbone. In this case one repeating unit corresponds to 1 C-C (carbonyl bond) (i.e. 1.53 Å) 

and the mean between a C-N (i.e. 1.47 Å) and a C(carbonyl)-N bond (i.e. 1.32 Å) or 2.925 Å 

(9,11). Furthermore, the equation is based on the Flory-Rehner theory for simple vinyl 

polymers, which is not the case for peptides. Therefore a factor 2 has to be replaced by a 

factor 3 since the repetitive unit contains 2 bonds in contrast to 1 bond in vinyl polymers 

(9). Therefore, the equation can be re-written as in Equation (4): 

    (
   Mc

  
)

(  ⁄ )

    (  ⁄ )                                               

Finally, the crosslink density (  ) represents the number of crosslinks as a function of the 

volume, which can be calculated from Mc  and  , where   corresponds to the specific 

volume of gelatin (i.e. 0.735 cm³/g) Equation (5) (2). 

    
 

 Mc  
                                                                             

c) Calculation of the storage modulus from the elastic modulus 

Considering materials as ideal rubbers, which is the case of hydrated hydrogels, it is 

possible to estimate the storage modulus from an elastic modulus value using Equation (6) 

(12): 
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In this Equation G’ represents the shear storage modulus (Pa), E’ represents the elastic 

modulus (Pa) and μ the Poisson number, which in the case of ideal rubbers equals to 0.5.  
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