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To this day, proper handling of uncertainties -including unknown variables in
primary stages of a design, an actual climate data, occupants` behavior, and
degradation of material properties over the time- remains as a primary challenge
in an architectural design decision-making process. For many years,
conventional methods based on the architects' intuition have been used as a
standard approach dealing with uncertainties and estimating the resulting errors.
However, with buildings reaching great complexity in both their design and
material selections, conventional approaches come short to account for
ever-existing but unpredictable uncertainties and prove incapable of meeting the
growing demand for precise and reliable predictions. This study aims to develop
a probability-based framework and associated prototypes to employ uncertainty
analysis and sensitivity analysis in architectural design decision-making. The
current research explores an advanced physical model for thermal energy
exchange characteristics of a hypothetical building and uses it as a test case to
demonstrate the proposed probability-based analysis framework. The proposed
framework provides a means to employ uncertainty and sensitivity analysis to
improve reliability and effectiveness in a buildings design decision-making
process.
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INTRODUCTION
The preliminary stage of a building design process
begins with a significant number of unknown vari-
ables. For instance, the exterior and interior condi-
tions and the building design and construction are
not known but estimated (Struck, 2012). Hence,
building performance analysis will not be entirely
reliable and robust at the early phase of a design.
Research shows that the building design process is
not immune to uncertainties even in later stages
of design (Hopfe, 2009). Also, unexpected climate
changes, users’ behavior, and variations in material
properties may deviate from the initial estimations
and significantly impact the architectural, structural,
or facility design. A slight change in the building
properties may affect heating/cooling loads, thus al-
tering the size of ductwork and building structure
weight (MacDonald, 2002).

Building performance simulation (BPS) tools
have been extensively used by the architects and
engineers to simulate building performance. These
tools rely on a wide range of input parameters
that commonly come with outstanding uncertain-
ties (Ding et al., 2015). In particular, energy sim-
ulation tools require inputs including the weather
data, building construction thermodynamic proper-
ties, heating, cooling andair conditioning (HVAC) sys-
tem specifications and space schedules to perform
building performance analysis (Tian, 2013). The ma-
jority of these input parameters are subjected to sig-
nificant alterations during the construction process
or even later as a building is at use.

Uncertainty analysis (UA) is a critical aspect in
all stages of building design, especially engineer-
ing design process. Probabilistic building perfor-
mance analysis versus deterministic models will im-
prove design decision-making process with quan-
tifying uncertainties and determining the range of
probability distribution. The sensitivity analysis (SA)
methods, such as parameter screening and variance-
based methods, will facilitate the UA process by or-
dering input parameters based on their significance
andmake simplifications possible (Hopfe, 2009). The

SA/UAmethods integrated into design decisionmak-
ing process act to support the architects with provid-
ing more reliable information.

The BPS tools, coupled with SA/UA techniques,
deliver a design framework that leads to a more ef-
fective and reliable decision-making process. This
paper introduces a framework to incorporate prob-
abilistic models into the building design decision-
making, demonstrated by a design case for improv-
ing energy efficiency. The ultimate goal of this re-
search is to tackle data uncertainties in architectural
design decision-making with a design framework,
capable of being adopted for the other aspects of
design decision-making including single and multi-
objective design optimization problems.

BACKGROUND
Sensitivity Analysis and Uncertainty Analy-
sis
A building design decision-making is a complicated
process, as the design search space of possible solu-
tions is vast. Several optimization methods are used
to help the decision makers overcome the intricacies
and select the optimum design option. The genetic
algorithm is widely applied in building design tools
to automate the design optimization process (Asl, et
al., 2015; Lim et al., 2018). Such an optimization pro-
cess requires setting the right sensitivity for each de-
sign variable, to reduce the computational process
cost and time. The sensitivity analysis (SA) will con-
tribute to finding themost significant input variables
and limiting the design search space.

The SA methods applied in building perfor-
mance analysis can be categorized into two groups
of local and global (Delgarm, et al., 2018; Tian, 2013).
Tian (2013) conducts a reviewof SAmethods inbuild-
ing energy analysis and suggests a workflow for per-
forming SA in building energy analyses. The first step
in this process is a determination for the probabil-
ity distribution of input variables. Next is to create
a model for energy usage based on input variables.
After collecting simulation results, an SA will be con-
ducted, and the results will be presented.
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Uncertainty analysis (UA) iswidely used inother fields
of study, such as structural reliability, risk analysis,
forecasting, and calibration (Aghababaei & Mahsuli,
2018; Saltelli et al., 2004). Learning from these fields,
the domain of architectural design decision-making
will benefit from SA techniques along with UAmeth-
ods for increasing reliability and robustness of the
model, reducing complexity and improving building
performance.

METHODOLOGY
Sensitivity and Uncertainty Analysis in De-
sign Decision-Making
Several deterministic and non-deterministic
decision- making approaches such as Simple Multi-
attribute Rating Technique (SMART), Analytical Hier-
archy Process (AHP) and Analytical Network Process
(ANP) are discussed by Hopfe (2009). The AHP proto-
col is a classical method widely used in decision-
making. The present research extends the AHP
decision-making protocol by using variance-based
SA and UA methods. The integration of AHP with
SA/UA techniques will support the design decision
makers with quantifying the effects of input changes
on the output variation. As a result, design decision
makers will be able to select the final design alterna-
tive, based on themore precise information. Figure 1
illustrates the framework proposed in this paper for
supporting design decision making. This framework
suggests integrating engineering SA and UA into an
architectural design decision-making process.

Figure 1
Proposed
framework to
employ uncertainty
and sensitivity
analysis in
architectural design
decision making.

Architectural design decision-making begins with
identifying design problems and objectives. It sets

boundaries for the designer’s potential problem-
solving methods. The next two steps in the de-
sign decision-making process, are investigating and
comparing possible design strategies. The architects
can select the ultimate design solution utilizing com-
putational methods to get valuable insight into the
building performance. Using the computer power
allows the architects to explore a broader range of
solutions more efficiently. SA and UA methods im-
plemented in architectural models will highlight the
most effective design parameters and support an in-
formed design decision-making process.

Sensitivity and Uncertainty Analysis in En-
ergy Efficient Building Design
Buildings use a significant amount of energy for cool-
ing and heating, along with providing domestic hot
water and artificial lighting (Asadi et al., 2012). The
physical changes to a building such as improving the
thermal performance of the building envelope and
the use of advanced technologies can affect build-
ings’ heat gain and heat loss (Ahn et al., 2015). Other
changes including the air infiltration rate and mod-
ifications made to the building occupancy, lighting
or equipment schedules that are defined as design
and scenario modifications, can affect the building
energy consumption (Hopfe, 2009).

Thephysical, designand scenario-relatedparam-
eters can be categorized based on the level of build-
ing design development (LOD). The LOD 100 is about
generic decisions, e.g., the orientation and layout of
the building. The LOD 200 includes the decisions
about sizes and quantities. More detailed design pa-
rameters such as the material properties are deter-
mined in LOD 300, and so on.

Design variables in every level of project devel-
opment have a high impact on the building perfor-
mance. According to Delgarm, et al. (2018) and Lim,
et al. (2015), the building orientation (LOD 100) af-
fects the amount of solar heat gain and building en-
ergy use intensity (EUI). Also, variations in thermo-
dynamic properties of envelope materials (LOD 300)
show a considerable influence on the thermal energy
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exchange of buildings (Lim et al., 2018). This paper
focuses on LOD 300, to reduce a building envelope
heat exchange as a case study. Figure 2 depicts the
application of the proposed SA and UA framework
for energy efficient building design, an example of
implementing the proposed framework for design
decision making. In this study reducing heat trans-
fer through the envelope is the primary design strat-
egy to achieve higher energy efficiency. The decision
makers finally do design decision-making based on
the information obtained through this process.

Figure 2
Application of
proposed SA and
UA framework for
energy efficient
building design.

ANALYSIS
As the prior model details, the proposed framework
employs sensitivity and uncertainty analysis to as-
sist architects in a building design decision making
process. To demonstrate the application of the pro-
posed framework, a case is performed to evaluate
the importanceofbuildingmaterial propertieson the
heating/cooling energy consumption over a period
of one year. To this end, a building heat exchange
model is developed and acts to predict heating/cool-
ing energy load based on building design and mate-
rial selections. The following is the description of a
building heat exchange model as well as sensitivity
and uncertainty analysis.

Building thermal energy exchangemodel
The present section follows an approach used by
Bengea et al. (2011) and Neill et al. (2010) to obtain
a model for building heat exchange in a state-space
form. Thismodel is selected, as it is simple and better

for implementing SA and UA techniques, compared
to EnergyPlus and other existing energy simulation
tools. A building, regardless of its number of rooms
or floors, divides into three typesof elements: interior
spaces, exterior spaces, and thermal barriers. Exte-
rior spaces consist of any area where its temperature
is directly set with external sources. The tempera-
ture of all exterior spaces, “outside temperature” is as-
sumed identical and equal to weather temperature.
During the analysis, outside temperature is treated
as a disturbance signal in the system. Thermal barri-
ers include walls, windows, floor, and ceiling; now all
referred to as envelope for convenience. Any space
separated from exterior spaces with thermal barriers
is interior space. The model assumes the air inside a
room is perfectlymixed and uses a single-value time-
dependent variable to represent room air tempera-
ture. Figure 3 depicts a schematic view of a thermal
network in a single room with the definition of vari-
ables. QC and QD represents the HVAC heat load
and disturbance heat load into a room, respectively.

The room temperature TR is determined by the
rate of heat convection between the air and sur-
rounding walls’ surfaces, a controllable HVAC heat
load to a room, and any disturbance heat load gen-
erated by people occupants and electrical devices. A
model for heat convection resistance is shownbelow:

RH =
1

Aw · hw
(1)

where Aw is wall area, and hw is a heat convection
coefficient. Hence, for a room surrounded by nwalls
(including floor and ceiling), the equation governing
room temperature is,

CR
∂TR

∂t
= QD +QC +

n∑
i=1

TSi − TR

RH

(2)

where,CR is a heat capacity of the air inside a room,
a function of air volume, density, and specific heat ca-
pacity.

A wall surface temperature TS is determined by
the heat convection to the air and also the heat con-
duction across its thickness. A heat conduction resis-
tance is,
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Figure 3
Thermal energy
exchange network
model for one room
in a building.

Rκ =
tw

Awκw
(3)

where tw is a wall thickness, and κw is a heat con-
duction coefficient.

In practice, equations for dynamical states {T},
including all rooms temperature and walls’ surface
temperature, are derived andmanipulated into ama-
trix form. Hence, the state-space model for building
thermal energy exchange network is,{

∂T

∂t

}
= [A]{T}+ [B]{UD}+ [C]{UC} (4)

where matrices [A], [B], and [C] are functions of
building physical dimensions and material proper-
ties, assumed to be independent of temperature.
{UD} includes disturbance heat generated in the
building and outside temperature signals. {UC} is
the controllable heat delivered to the building based
on closed loop multiple-input and multiple-output
proportional-integral-derivative (PID) controller . The
inputs are the room temperature, and the controller
decides on a load of energy supplied to each room.
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Validation of the Building Thermal Energy
ExchangeModel
Predictions for heatingandcoolingenergy consump-
tion are compared against those delivered from a
popular building performance simulation (BPS) soft-
ware tool, i.e., OpenStudio, to verify the accuracy
of the current building thermal energy exchange
model. Heating/cooling load predictions are ob-
tained for a five-room one-floor building with 40 m.
in length, 20m. inwidth, 3m. in height, andwith 4.57
m. in theperimeter zonedepth. Each room is defined
as one thermal zone. See Figure 4 for a schematic
view of the building. The building is assumed to be
located in College Station city, Texas, USA and 2015
is selected for the year of simulations. The typical
weather files obtained from the EnergyPlus website
is used in this simulation.

This model assumes that the building is on the
ground and thermal energy exchange happens be-
tween thebuilding and the ground aswell as the out-
side air. The interior heat gain sources such aspeople,
lighting, and equipment are eliminated from the sim-
ulation, and thermal energy exchange through the
envelope is the only focus of simulation. A single-
duct VAV systemwith reheat is assumed as the HVAC
system used for this building.

Figure 5 shows predictions for themonthly heat-
ing (a) and cooling (b) energy consumption from
the current model against OpenStudio simulations
for the year 2015. Both heating and cooling energy
loads show a good agreement with OpenStudio sim-
ulations. OpenStudio predicts some cooling load,
even for the coldest months of the year (December-
February). This cooling load is used for the air condi-
tion purposes. However, the energy used for air con-
ditioning is not the focus of this study and is not in-
cluded in themodel. This noteexplains theminordis-
crepancies between the current model predictions
and OpenStudio simulations in the cooling load. The
total heating and cooling energy consumption deliv-
eredby the currentmodel for the entire 2015 year dif-
fers less than 5% from OpenStudio simulations.

Figure 5
Comparison of the
predicted monthly
heating and cooling
energy
consumption
against OpenStudio
simulations for a
five-room building.
(2015 year)

Sensitivity and Uncertainty Analysis Tech-
niques
During the analysis, the building material thermo-
dynamic properties are considered as the input vari-
ables xi and heating/cooling energy consumptions
as the cost function Y , hereby written as,

Y = f(x1, x2, . . . , xm) (5)

where m shows the total number of input parame-
ters. The input probability distribution of building
materials is set as normal or Gaussian since the vari-
ations take place due to unpredictable changes dur-
ing construction, climate change, age, and mainte-
nance. Input parameters, if not assumed fixed, are
defined with a mean value and a range of deviation
from the mean value. The SA investigates the con-
tribution of each input variable to the uncertainty in
model output. To this end, the SA perturbs input
parameters concerning the mean values and moni-
tors the variations in the cost function. Perturbations
of an effective input variable are followed by a sig-
nificant change in the cost function while parame-
terswith insignificant role result inmarginal changes.
For nonlinear functions with a large number of in-
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Figure 4
Schematic view of
five-room one-floor
building with 40 m
in length and 20 m
width.

put variables, SA is a relatively complicated proce-
dure and involves extensive computational volume.
In case of stochastic input variables, variance-based
methods have beenmore effective and reliable com-
pared to other various sensitivity analysis methods.
The present study refers to a variance-basedmethod
detailed by Jansen et al. (1994) and Jansen (1999).

Later, an uncertainty analysis predicts a mean
value and a range of deviation for the cost functions
using the mean values (μ) and deviations (σ) defined
for the input variables. The UA also determines a
probability distribution over the predicted range for
the cost function.

RESULTS
The variables studied in this research are heat con-
vection coefficient (h), heat conduction (λ), specific
heat capacity (cp) and density (ρ), of 22 building ele-
ments. These elements, including interior walls, and
envelope are all made of the concrete material, with
varying thickness for different elements. The proper-
ties of concrete in the interior walls are different from

the building envelope.
The mean values (μ) and deviations (σ) for the

input variables, shown in Table 1 are extracted from
previous research done by Hopfe (2009) and Mac-
Donald (2002). The Jensen method was applied to
1000 different simulations and obtained the results
shown in Figure 6. The total number of uncertain
parameters studied here is 88, and they are all ther-
modynamic properties of the building envelope and
interior walls. The uncertainties of the heat con-
vection coefficient and the heat conduction of the
floors contribute the most to the variation of build-
ing EUI. The changes of the heat convection coeffi-
cient and the heat conduction of the ceilings are the
next, followed by the exterior walls. The contribution
of other input variables is insignificant. For instance,
the density and the specific heat capacity of the inte-
rior walls have almost no effect on the building EUI.
These two parameters may be critical in occupants’
thermal comfort analysis since theyaffect the time re-
sponse of the structure. However, they do not have a
notable effect on the building EUI.
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Table 1
Building material
properties: heat
convection
coefficient (h), heat
conduction (λ),
specific heat
capacity (cp). and
density (ρ).
Figure 6
The result of the
sensitivity analysis
for building EUI.

Figure 7
Frequency
distribution and
normality plot of
the building EUI
(considering the
heat convection
and the heat
conduction)

Figure 6 (a) illustrates the contribution of four main
variables to the output variations. A higher value in
this chart shows a more significant parameter. The
convection coefficient with about 0.52 has the most
contribution to the amount of building EUI. The heat

conduction is the next with a value of about 0.47.
The specific heat capacity and density with a value of
about 0.01, have the least contribution to the amount
of building EUI.

The analysis in Figure 6 (b,c) shows that among
all building elements in this paper, the floors are the
most significant regarding thermal energy exchange.
About 71% of the building EUI variation is caused
by the uncertainties in heat conduction of the floors,
and 48% of the EUI uncertainties happens due to
changes in the convection coefficient of the floors.

The uncertainties of the heat convection coeffi-
cient and the heat conduction coefficient of the ceil-
ings are the second most important variables with
16% and 43%of contribution to the building EUI. The
percentage of effectiveness of the heat convection
coefficient and the heat conduction coefficient of ex-
teriorwalls are 13%and 9%, respectively. The interior
walls have less than 1% contribution in both the heat
conduction and the heat convection.

The uncertainty analysis in this research shows
the effects of variations of material properties on the
building EUI uncertainties with 1000 iterations done.
Figure 7 illustrates the UA result in this study. The
analysis describes theprobabilistic distributionof the
building EUI, using the mean values and deviations
defined for the input variables.

The analysis in Figure 7 shows that the proba-
bility of 1900 kWh/m2 of EUI for this model is the
highest-probable result. As the normality plot in Fig-
ure 7 shows, the distribution of the output is Nor-
mal and falls in the range of 1860 kWh/m2 and 1930
kWh/m2. It shouldbenoted that theonly parameters
considered in the UA, are the heat convection coeffi-
cient and the heat conduction coefficient, due to the
findings from the SA process. Finding the most ef-
fective design parameters by SA and discarding the
other parameters from the simulation makes the UA
process more accessible and less time intensive.

DISCUSSION AND CONCLUSION
The lessons learned fromgeneral engineering SAand
UA, such as the simple case study described above,
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can be applied in architectural design decision-
making. The proposed framework is implemented in
our Excel interface with a user-friendly environment.
Meanwhile, the SA and UA are programmed in For-
tran, to be integrated into Excel background. The ar-
chitects will find it easy tomove along the tabs in the
Excel interface to submit the building properties re-
quired for the analysis. By running the analysis, this
frameworkprovides the sensitivity analysis andprob-
ability distribution of results associated with differ-
ent design scenarios. Theprogramproduces all these
scenarios randomly and based on the user’s initial in-
put.

The proposed framework is demonstrated in a
case of building EUI analysis. The result of this case is
discussed in previous sections. Extending this frame-
work to various aspects of architectural design will
lead to a lower level of complexity in design decision-
making and higher efficiency and reliability. The SA
and UA methods integrated with architectural de-
sign will simplify complex design problems and al-
low the architects to makemore robust and practical
design decisions. This SA/UA framework will enable
the architects to understand the significance of each
input parameter and the range of the output varia-
tions. This framework is capable of supporting the ar-
chitects in making informed decisions for single and
multi-objective design optimization problems.

Further research will be conducted in solving
multi-objective design optimization problems. As
an example, this SA/UA framework can be imple-
mented inmulti-objective design optimization prob-
lems such as aviation facility planning. It will sup-
port the architects to design more efficient ticketing
halls based on the probability distribution of differ-
ent passenger flow situations. The uncertainty of the
number of passengers in the ticketing halls in differ-
ent times will be analyzed to allow the architects to
test different design scenarios. Multiple objectives
such as minimizing travel distance, maximizing us-
able area, minimizing construction and operational
cost among others can be taken into consideration.
For multi-objective design problems, like this case, a

weighting system could be applied to determine the
level of importance for each objective. The architect
should be able to assign the level of significance for
each objective based on the project’s requirements.

This framework can also be applied in adaptive
façade design process. The uncertainties of exter-
nal environment such as weather data or internal en-
vironment such as occupants’ behavior, make the
adaptive façadedesign challenging. Further research
in adopting this framework to identify the most sig-
nificant input variables in adaptive façade design is
valuable.

Development of Building InformationModelling
(BIM) tools allows modeling complicated building
models, transferring data from design tools to anal-
ysis tools and searching a considerable design space
to find the best possible design options. The SA
and UA related data may also be modeled inside
the Building Information Models (BIMs) as parame-
ters with appropriate probability distributions to fa-
cilitate more reliable simulation and optimization to
accommodate the future changes during the design-
construction-operation processes.
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