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Resumo 
 

 

Os materiais adesivos estão a ser considerados, cada vez mais, como um dos melhores 

métodos para unir peças de diferentes características, estando, por isso, a ser muito 

procurados na indústria automóvel e aeroespacial. Assim, é importante acompanhar este 

crescente interesse neste tipo de ligações com estudos que as caraterizem devidamente.  

Os membros do Grupo de Investigação de Adesivos da FEUP preocupam-se em 

contribuir para este novo campo de investigação, estudando as propriedades destes 

materiais e as suas técnicas de adesão. Logo, é importante o grupo possuir o equipamento 

adequado para o poder fazer. Contudo, apesar de usufruir de vários equipamentos de teste, 

ainda necessita de um para realizar testes de impacto a baixa velocidade.  

Como tal, o principal objetivo desta dissertação é continuar o trabalho feito por quatro 

ex-alunos de mestrado da FEUP no desenvolvimento de uma máquina de impacto, 

nomeadamente uma máquina de queda de massas. Esta dissertação inclui o processo de 

implementação de um sub-sistema anti ressalto e de um novo conjunto bigorna-impactor, 

dotado de um acelerómetro e de uma célula de carga piezoelétricos. Para além destas 

novas implementações, houve também a necessidade de ajustes e adições nos circuitos 

elétrico, pneumático e de comando, assim como o desenvolvimento de uma interface para 

operar a máquina. Após a máquina estar toda equipada, foram realizados testes que 

validaram o seu funcionamento. 
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Abstract 
 

Adhesive materials are increasingly being considered as one of the best methods for 

joining parts with different characteristics and, therefore, are highly sought out in the 

automotive and aerospace industries. Thus, it´s important that the growing interest in this 

type of bonding is supported by studies that correctly characterizes them. 

The members of the Adhesives Investigation Group of FEUP are interested in 

contributing to this field of research by studying these materials´ properties and 

techniques. So, it´s important they are provided with the adequate equipment to be able 

to do it. However, despite having several testing machines, they still require one that 

performs impact tests at low velocities. 

As such, the main objective of this dissertation is to continue the work done by four 

previous master´s students of FEUP in the development of an impact machine, namely a 

drop weight machine. This dissertation includes the implementation of an anti-rebound 

sub-system and a new anvil-impactor assembly, equipped with a piezoelectric 

accelerometer and a piezoelectric load cell. In addition to these new implementations, 

there was also the need for some adjustments and new components in the electrical, 

pneumatic and control circuits, as well as the development of an interface to operate the 

machine. After the machine is completely equipped, impact tests were made to validate 

it. 
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Chapter 1 

 

Introduction 
 

 

1.1. Context and Motivation 

 

An adhesive is a natural or synthetic substance capable of bonding two dissimilar 

surfaces, due to some physical or physicochemical phenomena, and can be the result of 

single or multi-component preparations. The use of adhesives has been a recurrent 

practice to mankind, dating back to ancient times, however only just about one century 

ago came to be a more serious contender for structural bonding [1, 2]. 

 Adhesive joints have different properties when compared with other types of 

connections and, because of that, are sometimes preferred instead of screws, rivets or 

welds. Take for instance applications where lightweight is needed, such as in the 

automotive, the aeronautical and the aerospace areas [2]. Since there is an arising interest 

on this type of bonding and because it´s a relatively new field, it´s of great importance 

that further studies are made. 

It was for the purpose of studying adhesives properties and contributing to this field of 

research that the Adhesives Investigation Group of FEUP (ADFEUP) was created. This 

group is responsible for multiple research projects and, therefore, needs the adequate 

equipment to correctly characterize adhesives under specific load conditions. Impact 

loading is one of the tests used to characterize them and is one of the concerns of 

ADFEUP, thus, an impact test machine is needed to provide means to carry out those 

experiments. 

 

 

1.2. Objectives 
 

This dissertation focus is to continue the work of four previous master’s dissertations 

students, Castro [3], Barbosa [4], Ramos [5] and Sousa [6], into further development of a 

drop weight machine for adhesive joints impact testing.  
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The original specifications for the drop weight machine were defined by the first two 

authors, Castro [3] and Barbosa [4], and are as follows: 

 

• Maximum energy on impact of 700 J; 

• Minimum energy on impact of 50 J (at maximum velocity); 

• Maximum velocity of 5 m/s; 

• Anvil positioning resolution of 1mm; 

 

In addition to these specifications, the machine should also have a variety of sub-

systems that help in the execution of the machine´s actions.  

This dissertation will revolve around the construction and improvement of some of 

these sub-systems, like the anti-rebound sub-system (ARS) and the new anvil-impactor 

assembly, which will have a piezoelectric accelerometer and a piezoelectric press force 

sensor implemented. It will also be needed to improve and finalize the pneumatic and 

electrical circuits, as well as to develop the command software and interface that controls 

them.  

 

 

1.3. Methodology 
 

Initially, an evaluation of the drop weight machine´s state of development was made. 

For that purpose, all the previous masters dissertation´s reports were analysed and the 

requirements to start the project identified.  

Although the design for the ARS had already been initiated by Sousa [6], most of the 

parts still needed adjustments as well as the drawings for their manufacture. Also, as it 

was said in the previous section, a new anvil-impactor assembly was to be implemented 

and it was needed to design some parts that would allow the mounting of a load cell and 

an accelerometer. Since the ordering of all material and fabrication of the mechanical 

parts would take a significant amount of time to be completely ready, the first task of this 

project was to finish all the drawings of the mechanical parts and order the materials for 

their manufacture. 

After that starting stage, a careful revision of the pneumatic and electrical circuit was 

done. It was concluded that those circuits would have to be changed to implement the 

new sub-systems and hardware, as well as making some corrections. The missing 

components were identified and ordered.  

Having both pneumatic and electrical circuits assembled, the next step was to program 

the command software, to define how the drop weight machine should operate, and an 

user-friendly interface, for an easy interaction. 

Lastly, some impact tests on adhesive joints were performed to validate the machine 

functioning and to eliminate some malfunctions that could have been found.  
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1.4. Thesis Outline 

 

This thesis is organized into six chapters, each one covering a different topic that is 

considered relevant to better understand the work done. 

In the present chapter, a brief introduction to the project is presented.  

In chapter 2, a literature review about adhesives, impact testing and commercial drop 

weight machines is made. 

Chapter 3 describes the development of the ARS and the anvil-impactor assembly. It 

will include their final design and the simulations made to ensure the functionality of the 

machine under the specified working conditions.  

Chapter 4 focuses on the hardware used for the actuation mechanisms and on the 

command logic that controls them. 

In chapter 5, some results of impact tests, performed in adhesive joints, are shown and 

posteriorly compared with results obtained with a different machine, namely a Rosand 

IFW5, and with numerical data for the same working conditions. 

Finally, in chapter 6 this dissertation will be concluded and present some proposals for 

the future work on ADFEUP´s drop weight machine. 
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Chapter 2 

 

Literature Review 
 

In this chapter, a literature review on adhesives, different types of impact tests on 

adhesive joints and commercial drop weight machines is presented. 

 

2.1. Adhesives 
 

As it was said in section 1.1, adhesives are substances capable of joining two bodies 

with different surface characteristics, called the substrates, and can be the result of a 

single-component or a multi-component preparation. The use of this type of technology 

dates to ancient times, in which most of the adhesives were from natural products such as 

bones, milk, skins, fish or plants. Since 1990, adhesives made from synthetic polymers 

were introduced and 40 years later they became a more serious contender for structural 

bonding because of the progressive development of the polymer’s properties [2].  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.1 - Stress distribution comparison between bonded surfaces using standard fasteners and 

adhesive materials [2]. 
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There are many advantages that can be pointed out when comparing adhesive joints 

with other methods of joining bodies. One of those advantages, and perhaps the most 

important, is that they allow a more uniform stress distribution along the bonded area, 

enabling a higher stiffness.  This is due to adhesives being spread over a large area and 

because they don’t require holes in the surfaces, as what happens with screws and rivets. 

This behaviour is shown in Figure 2.1. Among the other advantages that adhesives offer, 

it is known that they provide better damping across the bond, contribute for weight 

reduction and allow a flexible joint designs [2]. 

Although all these advantages can be enumerated, adhesive joints also have some 

disadvantages, such as low resistance to perpendicular forces to the joint´s plane, low 

stability in extreme temperature or humidity, require surface preparation and long curing 

times [2]. 

 

 

2.2. Impact tests for adhesive joints 
 

When a high load is applied in an, almost, instantaneous period of time on a material, 

it can be considered as an impact load. When this type of loading is used to test adhesives, 

they are subjected to high strain rates and, consequently, properties like stiffness, yield 

stress and elongation are affected [7]. These properties can be studied by means of 

specific tests, that can be seen in Table 2.1. 

 

Table 2.1 - Studied  properties of adhesive joints and associated types of test [7]. 

 

 

  

 

 

 

 

 

 

However, different types of tests are made to assess the impact behaviour of adhesive 

joints. These tests give important information about the adhesive joint tested, like the 

adherent properties, surface preparation or joint geometry [7]. When studying the 

structural integrity of adhesive joints under impact conditions, three questions should be 

kept in mind: 

 

• Is the bonded joint´s strength reduced by high load rates? 

• Can the bonded structure withstand large amounts of energy under impact? 

• Can the impact behaviour of the bonded joint be understood and predicted? 

 

Measured properties Tests 

Tensile stiffness and strength Tensile test 

Shear stiffness and strength 
Thick Adherent Shear Test (TAST), 

Torsion test, Arcan test 

Fracture toughness (Mode I) 

Double Cantilever Beam (DCB) test, 

Single-Edge Notched Beam (SENB) 

test, Compact Tension (CT) test 

Fracture toughness (Mode II) End-Notched Flexure (ENF) test 

Fracture toughness (Mixed 

mode) 
Custom specimen designs 
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To answer these questions, it´s important to have simple, yet accurate, tests that can 

be made in a reliable and repeatable way [8]. There are some tests that can be performed 

on adhesive joints and they are usually divided in terms of velocity, as it is shown in Table 

2.2 [7]. 

Table 2.2 - Different impact tests categorized by velocity [7]. 

Test classification Crosshead speed Suitable test equipment 

Low velocity Up to 5 m/s Pendulum impact tester 

Medium Velocity Between 5 and 10 m/s Drop weight impact tester 

High velocity Between 10 and 100 m/s 
Split Hopkins pressure bar 

(SHPB) tester 

 

In the next sections, a description of the block impact test, SHPB test and drop weight 

impact test is presented. 

 

2.2.1. Block Impact Test  

 

The block impact test is a form of pendulum impact test, similar to the Izod impact test 

and to the Charpy impact test, that are used to measure resilience. This test´s set-up 

consists on an upper block that is adhesively bonded with a larger block, which, in turn, 

is attached to the base of the test equipment. The test is carried out by striking the upper 

block with the hammer (the pendulum) in a parallel direction to the bond surface, as 

Figure 2.2 demonstrates. The energy required to fracture the specimen is then obtained 

by the energy lost by the hammer [2]. 

 

 

 

 

 

 

 

Figure 2.2 - Block impact test apparatus [2]. 

 

Adams and Harris [9] made a finite element analysis (FEA) of the standard specimen 

for this test with the aim of determining the stress concentration in the specimen. First, 

the authors identified three different possible cases of contact between the hammer and 

the specimen, in the moment of impact, which are represented in Figure 2.3. In the cases 

where misalignment occurs (case 2 and 3), some peeling is identified, meaning that the 

results obtained wouldn’t be for a pure shear load. And even when the hammer hits the 
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upper block in a perfectly aligned way (case 1), the results show the stresses along the 

bond are not constant. Due to these analysis´ results Adams and Harris [9] concluded that 

block impact test results could not be taken as absolute information about energy 

absorption of the bond, even though it can still be useful for comparing the behaviour of 

different types of adhesives  [2, 8]. 

 

 

 

 

 

 

Figure 2.3 - Possible impact cases between the hammer and the upper block of the specimen [2]. 

 

2.2.2. SHPB Test 

 

The split Hopkinson pressure bar test is the main test used to study the dynamic 

behaviour of a great variety of different materials at medium to high strain rates (0.5 – 5 

x 103 s-1). Originally, its name came from the apparatus that B. Hopkinson used when 

testing the pressure wave propagation, generated by a projectile, through metals. His 

experiment was to strike one of the ends of a long and thin bar, which was placed 

horizontally, with a projectile, creating a pressure pulse that would propagate to the other 

end. In that second end, there would be a partially attached cylinder that would later be 

projected by the generated pulse against a ballistic pendulum capable of measuring the 

momentum contained [2].  

Later, Kolsky introduced a new variant of the technic used by Hopkinson, that is the 

most commonly used nowadays, in which he added a second bar after the cylinder, 

originating the name “Split Hopkinson Pressure Bar”.  In this case, the projectile, fired 

from a pneumatic gun, strikes the first bar (given the name of incident bar or input bar), 

generating a pressure pulse that will be transmitted to a specimen. At this point, part of 

the impact energy will be reflected and the other part will propagate through the specimen 

and eventually be transmitted to a second bar (called the transmitter bar or output bar) 

[2]. The basic setup for the described experiment can be seen below, as well as a 

Lagrangian diagram that shows the propagation of the pulse throughout time, in Figure 

2.4. 

 

 

 

 

 

 

 

 

Figure 2.4 - Basic setup and Lagrangian diagram for compressive tests on a SHPB machine [8]. 
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By measuring the reflected and the transmitted pulses in their respective bars, with 

help of strain gauges, it is possible to obtain the stress, σ, the strain, ε, and the strain rate, 

ε̇, by using the Expressions (2.1) - (2.3): 

 

 
σ(t) = 𝐸0

𝐴0
𝐴
ε𝑡𝑟𝑎𝑛𝑠(𝑡) 

(2.1) 

   

 
ε(t) = −2

𝑐0
𝐿
∫ε𝑟𝑒𝑓𝑙(𝑡) 𝑑𝑡 

(2.2) 

   

 ε̇(t) = −2
𝑐0
𝐿
ε𝑟𝑒𝑓𝑙(𝑡) 

(2.3) 

 

Where 𝐸0, 𝐴0 and 𝑐0 are the Young´s modulus, the cross section and the pressure wave 

velocity of the bar; 𝐴 and 𝐿 are the cross section and the length of the specimen; ε𝑡𝑟𝑎𝑛𝑠  
and ε𝑟𝑒𝑓𝑙 are the transmitted and reflected strain pulses, respectively, directly measured 

by resistance or piezoresistive strain gauges. These equations consider that the specimen 

achieves an equilibrium state, which requires that the pulse´s length is smaller than the 

specimen´s length. With the calculated results it is possible to reconstruct a dynamic 

strain-stress diagram of the specimen [2, 8]. 

Although the described method is used to test compressive loads, there´s also one to 

test tensile loads, introduced by Chen [10], that just requires a small modification, which 

is to insert a split ring around the specimen, Figure 2.5. This mechanical part is longer 

then the specimen and is responsible to transmit the full strain pulse generated in the first 

bar to the second, without the contribution of the material to be tested. When the 

transmitted pulse reaches the free end of the second bar it will be reflected as a tensile 

pulse. The split ring can only constraint compressive loads and not tensile loads, therefore 

it will allow the material to be tested in tension. In this case, since the second bar is the 

one that transmits the tensile load to the specimen, this will be the input bar, and the first 

bar will be the output bar. The setup for this experiment and for its corresponding 

Lagrangian diagram is shown in the Figure 2.6 [8]. 

 

 

 

 

 

 

 

Figure 2.5 - Solution for the SHPB tensile test, as proposed by Chen [2, 10]. 

 

As it was previously stated, the SHPB impact test can be performed in many materials 

but regarding to adhesives this method is mostly used on adhesive materials themselves 



10 

 

Chapter 2 

or in the form of a butt joint or lap joint [2]. Figure 2.7 shows a representation of the 

mentioned joints. 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.6 - Basic setup and Lagrangian diagram for tensile tests on a SHPB machine [8]. 

 

 

 

 

 

 

Figure 2.7 - a) Butt joint example; b) Single lap joint example. 

 

2.2.3. Drop Weight Test 
 

Another type of impact test and the most important for this dissertation is the drop 

weight test, performed in a drop weight machine (sometimes also referred as drop tower). 

This test is performed by simply releasing a drop mass from a defined height on an 

adhesive material or adhesive joint. The specimen can be tested under compressive or 

tensile loads depending on how it´s fixed on the structure that holds it.  

The specimen will be hit by an impactor that carries a kinetic energy equal to the 

potential energy that the same impactor has before being released. However, it´s not 

always like this, since drop weight machines can have an acceleration unit sub-system 

that increases the impact energy by means of an elastic mechanism. In addition to this 

sub-system, there are also others that can be equipped like an environmental chamber, 

that changes the specimen´s surrounding conditions and, consequently, its properties, or 

an anti-rebound mechanism, that holds the machine´s impactor after the first impact 

(preventing posterior impacts). 

The most used hardware to measure the impact load in these types of tests are 

piezoelectrical sensors, usually an accelerometer or a load cell. This type of sensors 

creates an electric charge (piezoelectricity) that is directly proportional to the mechanical 

load applied to a piezoelectric material, like a crystal quartz, or a ceramic, such as the 

lead zirconate titanate (PZT). They are built in a very robust and compact structure, since 
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they don´t have moving parts, and provide great reliability in their measurements, which 

are good properties for impact applications.  

In order to understand the specification ranges and special features that the current 

commercialized drop weight machines have, a description of some of these machines´ 

series is presented in the next section. 

 

 

2.3. Commercial Drop Weight Machines 

 

There are many models of drop weight machines available in the market and although 

they are not specially designed to test adhesive joints, they can still be used for that 

purpose. The main differences between the machines are their specifications, like the 

maximum drop weight and the maximum drop height (or maximum velocity on impact, 

since all potential energy is going to be converted in kinetic energy), which will, 

consequently, influence their energy range. Most of the companies that sell this type of 

impact equipment provide a complete series of machines with different ranges in their 

specifications, so they can satisfy the needs of various costumers. In this sub-chapter some 

commercial drop weight machines are presented, as well as their specifications and 

functionalities. 

 

 

2.3.1. Zwick Roell – HIT and DWT Series 

 

The HIT and DWT series, commercialized by the company Zwick Roell, provide a 

great variety of drop weight machines that allow different testing conditions on the 

material to be tested.  

The HIT series, shown in Figure 2.8 was especially designed to perform impact tests 

on plastics and some of them can also do compression after impact (CAI) on composite 

materials.  It is composed by machines whose maximum energy on impact ranges from 

100 to 670 J, maximum drop height ranges from 1000 to 1500 mm and maximum 

dropping mass´s weight that ranges from 10.2 to 40 kg. However, if the machine is 

equipped with an acceleration unit its maximum energy on impact greatly increases. Take 

for instance the Amsler HIT 2000F, in which the initial potential energy is 440 J and 

maximum drop weight is 29.4 kg (therefore, its maximum height is 1500 mm, achieving 

a maximum velocity of 5.4 m/s), if an acceleration unit is installed in this machine, it can 

reach an energy of 2000 J at 19.4 m/s. Some of these machines are also prepared to 

prevent multiple impacts using an ARS [11]. 

The DWT series provides machines needed to perform high energy impact tests, 

ranging from 20 kJ to 100 kJ. In this series, the machine that performs the highest energy 

impact tests is the DWT 100-5, which allows a 2040 kg drop weight to be released from 

a height of 5 m. This type of high energy impact test machines is mostly used to study the 

fracture surface of ferritic steels [12]. 
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Figure 2.8 - HIT series commercialized by Zwick Roell [11]. 

 

 

2.3.2. Instron – CEAST 9000 series 

 

Instron is another company that also sells equipment for impact testing. Its CEAST 

9300 series is composed by three machines, the CEAST 9310, the CEAST 9340 and the 

CEAST 9350. The CEAST 9310 is a table-top machine for low energy impact tests (from 

0.15 to 20.4 J), while the others are large floor-mounted machines that allow high energy 

impact tests (up to 757 J on the CEAST 9350). The CEAST 9350 has multiple optional 

accessories like the high energy system, that increases its maximum impact energy up to 

1800 J, the ARS and the environmental chamber, that changes the material´s surrounding 

conditions, like, for example, temperature and humidity. Table 2.3 presents the 

specifications for each CEAST 9000 series´ machines [13]. 

 

Table 2.3 - CEAST 9300 series  ́machines specifications [13]. 

  CEAST 

9310 

CEAST 

9340 

CEAST 

9350 

CEAST 9350 (with 

optional features) 

Energy (J) 
Min. 0.15 0.3 0.59 0.59 

Max. 20.4 405 757 1800 

Drop height (mm) 
Min. 30 30 30 30 

Max. 700 1100 1100 1100 

Drop mass (kg) 
Min. 0.5 1 2 2 

Max. 3 37.5 70 70 

Velocity on impact 

(m/s) 

Min. 0.77 0.77 0.77 0.77 

Max. 3.7 4.65 4.65 24 

ARS 
 

No No No Yes 

Environmental 

chamber 

 
No No No Yes 
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2.3.3. Imatek – IM10 and DWTT series 
 

Imatek is a relatively new company in the market, however it´s specialized in materials 

testing, particularly impact testing.  

The IM10 series is composed of machines that can perform low and medium energy 

tests on materials and specimens of various geometries. Machines of this series can 

achieve a maximum energy on impact that ranges from 294 to 882 J, a drop height that 

ranges from 1000 to 3000 mm and a fixed maximum drop weight of 30 kg. All these 

machines have optional features like ARS, acceleration units and environmental 

chambers. If an acceleration unit is installed, the maximum energy on impact ranges from 

500 to 2000 J and can achieve velocities up to 20 m/s [14].  

Imatek also produces a series of high energy drop weight machines, designed to test 

the fracture characteristics on steel specimens, called DWTT series. On this series the 

maximum energy on impact ranges from 30625 to 101250 J, the maximum drop height 

ranges from 2500 to 4200 mm and the drop mass ranges from 1250 to 2500 kg. Although 

every standard drop weight machine of this series has a fixed drop mass, an optional 

feature that enables the drop weight to be variable is available, making the energy on 

impact range wider [15].  

 

 

2.3.4. ADFEUP´s Drop Weight Machine 
 

Before deciding to develop its own drop weight machine, ADFEUP used a Rosand 

IFW5 (Figure 2.9), which is located in FEUP´s testing laboratory, to carry out its studies. 

However, this drop weight machine proved too limited for the experiments that the group 

wanted to do, since its maximum energy is 300 J and its maximum velocity on impact is 

4 m/s. The desire to design a drop weight machine grew, not only for the necessity of 

means to continue those experiments but also for academic purposes, enabling students 

to consolidate their knowledge during their master’s in mechanical engineering  

Like in every project, the initial point was to design the main structure of the machine 

according to the specifications needed, which were defined by Castro [3], Barbosa [4] 

and the ADFEUP´s members at that time. These specifications were as it follows: 

 

• Maximum energy on impact of 700 J; 

• Minimum energy on impact of 50 J (at maximum velocity); 

• Maximum velocity of 5 m/s; 

• Anvil positioning resolution of 1mm. 

 

After the validation of the designed structure, Ramos [5] mounted the initial structure 

and implemented various important sub-systems. The sub-systems in question are an 

upper motor and transmission mechanism to move the carriage, a velocity acquisition 

sub-system and an anvil-impactor assembly. Ramos [5] also chose some sensors and 

made a pneumatic circuit to control the cylinder in charge of the drop weight release.  
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Figure 2.9 - FEUP´s Rosand IFW5 drop weight machine. 

 

 

Sousa [6] was responsible for the initial electrical circuit assembly, a primordial 

command sequence to control the machine and the design of a PID controller that can 

position the carriage accurately. Sousa [6] also started the design of an ARS that would 

later be modified, validated and implemented by the work of this thesis, described in 

chapter 3. 

Although a functioning machine was received in the beginning of this dissertation, 

there were still many implementations to be added and adjustments to be made in the 

electrical and pneumatic circuits, as well as in the control sequence. The final product of 

the four previous dissertations is presented in Figure 2.10. 
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Figure 2.10 - ADFEUP´s drop weight machine initial state. 
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Developed Sub-Systems 
 

This chapter describes the designing and the validation process for two new 

implementations: the ARS and the anvil-impactor assembly. 

 

3.1. Anti-rebound sub-system (ARS) 
 

As it was previously said, Sousa [6] made an initial design of an ARS, however that 

mechanism had some flaws that had to be corrected. In addition, no mechanical parts´ 

drawings were made and no materials to fabricate the parts were chosen. As such, the 

initial tasks for this dissertation were to carefully analyse and correct his work, to make 

the mechanical parts´ drawings, that can be seen in Appendix A, and to choose all the 

materials for their fabrication. All these tasks were done with the help of SolidWorks 2018 

and the final design of the ARS can be seen in Figure 3.1. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.1 - Final model of the ARS, made in SolidWorks 2018. 
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This ARS is a mechanism that consists in two rotating arms, fixed at each column of 

the machine, that will hold the anvil-impactor assembly after the first impact on the 

specimen, preventing the test results to be influenced by consequent rebounds. This way, 

the tests performed on this drop weight machine can give accurate and useful data about 

the adhesive joint tested. The arms work on the principle of a lever and each one is 

actuated by one pneumatic cylinder fixed on the structure of the machine. When the 

cylinders are extended the ARS is considered in the active position and when they are 

retracted is considered in the inactive position, like shown in Figure 3.2. If, at any time, 

an emergency is declared, the ARS will act. For example, if an emergency button is 

pressed while the anvil is falling, the ARS will hold the anvil preventing it from damaging 

the specimen. To be able to do that, this mechanism also has a pair of shock-absorbers in 

each arm that should be able to dissipate all the energy when the heaviest drop mass is 

released from the highest point of the anvil´s stroke. In case of energy failure the springs 

of the shock absorber will force the rotation of the arms to a safe position. 

 

 

 

 

 

 

 

 

Figure 3.2 - The two positions of the ARS. 

 

3.1.1. Rotating Structure  

 

The rotating structure of the ARS is responsible for stopping the anvil and, because of 

that, is going to be positioned where the most stress concentrates. Therefore, the designed 

structure needs to be strong enough to withstand impact loads of the falling anvil and light 

weighted so it has a reduced inertia and can be quickly positioned. The main parts that 

assemble this structure are presented in Figure 3.3. 

 

 

 

 

 

 

 

 

Figure 3.3 - Rotating structure of the ARS. 
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3.1.1.1. Main Body 
 

The main body´s parts are the ones that contribute the most for the weight of the ARS, 

thus, to meet the light weight requirement, they were fabricated from aluminium alloy 

plates. Those aluminium alloy plates were the AW 7075 - T651 (used for the L shaped 

arms) and the AW 6082 - T651 (used for the covers), which were bought from KMS [16]. 

 

3.1.1.2. Needle Bearings 

 

The rotating structure only contacts with the fixed structure by means of three 

components which are the shock-absorbers, the pneumatic actuators and the bearings. 

Since the shock-absorbers can´t always follow the arm´s rotating movement, they break 

contact with it and, when that occurs, only the bearings and the pneumatic actuator contact 

with the fixed structure. To try to preserve the pneumatic actuator, the chosen bearings 

must withstand the full impact load capacity of the machine, which Ramos [5] calculated 

to be 66.88 kN. This value represents the transmitted force to the levelling foots and 

although this will not be the load applied on the bearings, it was the one used because it´s 

the highest value found in the structure of the machine. So, considering this value, a safety 

coefficient of 3.5 and that the ARS has 4 bearings, each bearing should withstand a load 

around 60 kN. 

In addition to being able to handle the high impact loads mentioned above, the chosen 

bearings should also be compact, due to the geometry of the parts that assemble the ARS. 

The SKF® NKI 35/20 TN needle bearings [17], shown in Figure 3.4, were chosen 

because they combine a high radial static load rating with the possibility to be mounted 

in a compact volume. The characteristics of these needle bearings are shown in Table 3.1 

and their implementation can be seen in the ARS assembly´s drawings in Appendix A. 

 

 

 

 

 

 

 

 

Figure 3.4 - SKF® NKI 35/20 TN needle bearing [17]. 

Table 3.1 - NKI 35/20 TN needle bearing properties [17]. 

m (kg) 

Mass 

Cr (kN)                                

Radial dynamic load 

rating 

C0r (kN)                     

Radial static load 

rating 

Pu (kN)                        

Radial fatigue limit 

load 

0.12 29.7 60 7.5 



20 

 

Chapter 3 

3.1.1.3. Impact and Actuation Axles 
 

The impact axle, as the name suggests, is the component that directly collides with the 

falling anvil, whether during a rebound or a fall from one of the points of its stroke. 

Therefore, in order to choose the material from which this axle is going to be fabricated, 

one has to consider the worst-case scenario, which happens when the anvil falls from the 

highest point with the heaviest drop mass attached and collides with the said axle. Thus, 

it must be considered that the drop mass of the anvil is 56 kg and is going to fall from 

1.27 m. The selected material was the N540 stainless steel from UniversalAfir [18], since 

it´s a material capable of withstand high loads and also because it´s not very influenced 

by corrosion over time. Since the actuator axle doesn’t require such a high-performance 

material, the M310 RD stainless steel from UniversalAfir [18] was chosen.  

To validate the choice made, a simulation, based on a finite element analysis, using 

SolidWorks 2018 had to be made. However, before doing such, the maximum impact 

force, 𝐹𝐴,𝑚𝑎𝑥 , had to be calculated by making a dynamic study of the interaction between 

the ARS and the anvil impactor assembly.  

To initiate this dynamic study, a free body diagram (see Figure 3.5) was defined to 

identify all the forces at stake in this interaction.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

By analysing both bodies separately, starting by the anvil-impactor assembly and 

knowing  

 

 𝑃1⃗⃗  ⃗ = [
0
0

−𝑚1 ∙ 𝑔
] ;   𝑄1⃗⃗ ⃗⃗ 

̇ = [
0
0

−𝑚1 ∙ �̈�(𝑡)
] ;    𝐹𝐴⃗⃗⃗⃗ = [

0
0
2𝐹𝐴

] ; (3.1) 

 

 

 

Figure 3.5 - Free body diagram for the dynamic study of the interaction between anvil and ARS. 
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Where 𝑚1, 𝑔, �̈�(𝑡) and 𝐹𝐴 represent the drop mass, the gravity´s acceleration, the drop 

mass acceleration throughout time and the absolute value of the force transmitted to each 

of the ARS´ arms, respectively. 

Knowing that the sum of the external forces (∑𝐹𝑒𝑥𝑡⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ) equals the sum of the quantities 

of acceleration (∑ �⃗� ̇): 

 

 

We can easily achieve the following expression: 

 

 

Now, analysing the ARS sub-system we obtain the following vectors for the 

displacements of the represented points (A, B, C and G): 

 

 

Where 𝑑, 𝑒, 𝑓 and 𝑖 are the distances between the arm´s axle and the points A, B, C 

and G, respectively, and 𝛳(𝑡) represents the angular position of the arm throughout time, 

being the main degree of freedom in this sub-system. 

It´s possible to define the vectors for the velocities and accelerations that will later be 

needed by deriving some of the previous vectors: 

 ∑𝐹𝑒𝑥𝑡⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  = ∑�⃗� ̇ ⇔ 𝑃1⃗⃗  ⃗ + 𝐹𝐴⃗⃗⃗⃗ = 𝑄1⃗⃗ ⃗⃗ 
̇
 (3.2) 

 𝐹𝐴 =
𝑚1 (𝑔 − �̈�(𝑡))

2
 (3.3) 

 𝑂𝐴⃗⃗ ⃗⃗  ⃗ =  [

0
𝑑 ∙ cos (𝛳(𝑡))

𝑑 ∙ sen (𝛳(𝑡))
] ;  𝑂𝐵⃗⃗ ⃗⃗  ⃗ =  [

0
𝑒 ∙ cos (𝛳(𝑡))

𝑒 ∙ sen (𝛳(𝑡))
] ; (3.4) 

   𝑂𝐶⃗⃗⃗⃗  ⃗ =  

[
 
 
 
 
 

0

−𝑓 ∙ cos (
𝜋

6
− 𝛳(𝑡))

𝑓 ∙ sen (
𝜋

6
− 𝛳(𝑡))

]
 
 
 
 
 

;  𝑂𝐺⃗⃗ ⃗⃗  ⃗ =  

[
 
 
 
 
 

0

−𝑖 ∙ cos (
𝜋

6
− 𝛳(𝑡))

𝑖 ∙ sen (
𝜋

6
− 𝛳(𝑡))

]
 
 
 
 
 

;    (3.5) 

 𝑂𝐴⃗⃗ ⃗⃗  ⃗̇ = ⌊

0
−𝑑 ∙ �̇�(𝑡) ∙ sen (𝛳(𝑡))

𝑑 ∙ �̇�(𝑡) ∙ cos (𝛳(𝑡))
⌋ ;  𝑂𝐺⃗⃗ ⃗⃗  ⃗̇ =  

[
 
 
 
 
 

0

−𝑖 ∙ �̇�(𝑡) ∙ sen (
𝜋

6
− 𝛳(𝑡))

−𝑖 ∙ �̇�(𝑡) ∙ cos (
𝜋

6
− 𝛳(𝑡))

]
 
 
 
 
 

; (3.6) 
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Where �̇�(𝑡) and �̈�(𝑡) are the first and second derivate of 𝛳(𝑡), which also means that 

they represent the angular velocity and the angular acceleration of the ARS arm 

throughout time, respectively. 

The forces applied on the ARS are its own weight (𝑃2⃗⃗⃗⃗ ), the impact force (𝐹𝐴⃗⃗⃗⃗ ), 

cylinder´s force (𝐹𝐶𝑦𝑙.⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ), shock-absorber force (𝐹𝐴𝑏𝑠.⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ) and the dynamic momentum (𝐾𝑂⃗⃗⃗⃗  ⃗):  

 

 

 
𝑄2⃗⃗ ⃗⃗ 
̇ = 𝑚2 ×𝑂𝐺⃗⃗ ⃗⃗  ⃗

̈ =  

 

[
 
 
 
 
 

0

−𝑚2 ∙ 𝑖 ∙ �̈�(𝑡) ∙ sen (
𝜋

6
− 𝛳(𝑡)) + 𝑚2 ∙ 𝑖 ∙ �̇�

2(𝑡) ∙ cos  (
𝜋

6
− 𝛳(𝑡))

−𝑚2 ∙ 𝑖 ∙ �̈�(𝑡) ∙ cos (
𝜋

6
− 𝛳(𝑡)) − 𝑚2 ∙ 𝑖 ∙ �̇�

2(𝑡) ∙ sen (
𝜋

6
− 𝛳(𝑡))

]
 
 
 
 
 

; (3.10) 

 

 

 

Where 𝑚2, 𝐹𝑐𝑦𝑙, 𝐹𝑎𝑏𝑠, 𝐼𝑥𝑥, 𝛼 (𝑡) and 𝛽(𝑡) represent the ARS´s mass, the cylinders 

force, the shock-absorbers force, the moment of inertia in the ARS centre of mass, the 

 𝑂𝐺⃗⃗ ⃗⃗  ⃗̈ =  

[
 
 
 
 
 

0

−𝑖 ∙ �̈�(𝑡) ∙ sen (
𝜋

6
− 𝛳(𝑡)) + 𝑖 ∙ �̇�2(𝑡) ∙ cos  (

𝜋

6
− 𝛳(𝑡))

−𝑖 ∙ �̇�(𝑡) ∙ cos (
𝜋

6
− 𝛳(𝑡)) − 𝑖 ∙ �̇�2(𝑡) ∙ sen  (

𝜋

6
− 𝛳(𝑡))

]
 
 
 
 
 

 ; (3.7) 

 𝑃2⃗⃗⃗⃗ =  [
0
0

−𝑚2 ∙ 𝑔
] ;   𝐹𝐴⃗⃗⃗⃗ = [

0
0
−𝐹𝐴

] ; 𝐹𝐶𝑦𝑙.⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  =  [

0
𝐹𝑐𝑦𝑙 ∙ cos  (𝛽(𝑡))

−𝐹𝑐𝑦𝑙 ∙ 𝑠𝑒𝑛 (𝛽(𝑡))
] ; (3.8) 

 𝐹𝐴𝑏𝑠.⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  =  [

0
𝐹𝑎𝑏𝑠 ∙ cos (𝛼(𝑡))

−𝐹𝑎𝑏𝑠 ∙ sen (𝛼(𝑡))
] ; (3.9) 

 𝐻𝐺⃗⃗⃗⃗  ⃗ =  [
𝐼𝑥𝑥 ∙ �̇�(𝑡)

0
0

] ;  𝐾𝐺⃗⃗⃗⃗  ⃗ = 𝐻𝐺⃗⃗⃗⃗  ⃗
̇
= [

𝐼𝑥𝑥 ∙ �̈�(𝑡)

0
0

] ;  (3.11) 

 𝐾𝑂⃗⃗⃗⃗  ⃗ = 𝐾𝐺⃗⃗⃗⃗  ⃗ + 𝑂𝐺⃗⃗ ⃗⃗  ⃗ × 𝑄2⃗⃗ ⃗⃗ 
̇ = [

𝐼𝑥𝑥 ∙ �̈�(𝑡) + 𝑚2 ∙ 𝑖
2 ∙ �̈�(𝑡)

0
0

] ; (3.12) 
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angle between the shock-absorbers and the ARS´s arm and the angle between the cylinder 

and the ARS´s arm, respectively.  

It is also known that the shock absorber force is proportional to the velocity, so 𝐹𝐴𝑏𝑠.⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗   
can also be defined as: 

 

 

After defining all these vectors and knowing that the sum of the external momentums 

(∑𝑀𝑂
𝑒𝑥𝑡⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗) equals the sum of the dynamic momentums (∑𝐾𝑂⃗⃗⃗⃗  ⃗), it´s possible to use the 

following expression: 

 

 

 
∑𝑀𝑂

𝑒𝑥𝑡⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ = ∑𝐾𝑂⃗⃗⃗⃗  ⃗ ⇔   

 𝑂𝐴⃗⃗ ⃗⃗  ⃗ × 𝐹𝐴𝑏𝑠.⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  + 𝑂𝐵⃗⃗ ⃗⃗  ⃗ × 𝐹𝐶𝑦𝑙.⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  + 𝑂𝐶⃗⃗⃗⃗  ⃗ × 𝐹𝐴⃗⃗⃗⃗ + 𝑂𝐺⃗⃗ ⃗⃗  ⃗ × 𝑃2⃗⃗⃗⃗ = 𝐾𝑂⃗⃗⃗⃗  ⃗ (3.14) 

 

That leads to: 

 

 (𝐼𝑥𝑥 +𝑚2 ∙ 𝑖
2) ∙ �̈�(𝑡) =  

 𝑐 ∙ 𝑑2 ∙ 𝐹𝑎𝑏𝑠 (sen(𝛳(𝑡))
2
∙ cos(𝛼 (𝑡)) −cos(𝛳(𝑡))

2
∙ sen(𝛼 (𝑡))) ∙ �̇�(𝑡)  

 −𝑒 ∙ 𝐹𝑐𝑦𝑙(cos(𝛳(𝑡)) ∙ sen(𝛽(𝑡)) + sen(𝛳(𝑡)) ∙ cos(𝛽(𝑡)))  

 +𝑓 ∙ 𝐹𝐴 ∙ cos (
𝜋

6
− 𝛳(𝑡)) + 𝑖 ∙ 𝑚2 ∙ 𝑔 ∙ cos(

𝜋

6
− 𝛳(𝑡)) (3.15) 

 

In order to simplify this expression, the geometric relations between the different degrees of 

freedom must be defined.  

 

 

 
{
𝑑 ∙ cos(𝛳(𝑡)) = 𝑥1 + 𝑙1(𝑡) ∙ cos(𝛼(𝑡))

𝑑 ∙ 𝑠𝑒𝑛(𝛳(𝑡)) = ℎ1 − 𝑙1(𝑡) ∙ sen(𝛼(𝑡))
⇔  

 

{
  
 

  
 𝛼(𝑡) = 𝑡𝑎𝑛−1 (

𝑑 ∙ 𝑠𝑒𝑛(𝛳(𝑡)) − ℎ1

−(𝑑 ∙ cos(𝛳(𝑡)) − 𝑥1)
)

𝑙1(𝑡) =
𝑑 ∙ cos(𝛳(𝑡)) − 𝑥1

cos (𝑡𝑎𝑛−1 (
𝑑 ∙ 𝑠𝑒𝑛(𝛳(𝑡)) − ℎ1

−(𝑑 ∙ cos(𝛳(𝑡)) − 𝑥1)
))

 (3.16) 

 𝐹𝐴𝑏𝑠.⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  =  [

0
−𝑐 ∙ 𝑑 ∙ cos (𝛼(𝑡)) ∙ sen (𝛳(𝑡)) ∙ �̇�(𝑡)

−𝑐 ∙ 𝑑 ∙ sen (𝛼(𝑡)) ∙ cos (𝛳(𝑡)) ∙ �̇�(𝑡)
] (3.13) 
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Where 𝑥1, 𝑥2, ℎ1, ℎ2, 𝑙1 and 𝑙2 are geometric parameters that can be seen in Figure 

3.5. 

 

 

 

Substituting Expression (3.20) in Expression (3.3) leads to: 

 

Finally, substituting Expression (3.21) in Expression (3.15) it´s possible to obtain the 

following expression: 

 

 �̈�(𝑡) =  

 

𝑐 ∙ 𝑑2 ∙ 𝐹𝑎𝑏𝑠 (sen(𝛳(𝑡))
2
∙ cos(𝛼 (𝑡)) −cos(𝛳(𝑡))

2
∙ sen(𝛼 (𝑡))) ∙ �̇�(𝑡)

𝐼𝑥𝑥 +𝑚2 ∙ 𝑖2 +
𝑓2 ∙ 𝑚1

2 ∙ cos (
𝜋
6 − 𝛳

(𝑡))
  

 +

𝑓 ∙ 𝑚1 ∙ 𝑔
2 ∙ cos (

𝜋
6 − 𝛳

(𝑡)) + 𝑖 ∙ 𝑚2 ∙ 𝑔 ∙ cos (
𝜋
6 − 𝛳

(𝑡))

𝐼𝑥𝑥 +𝑚2 ∙ 𝑖2 +
𝑓2 ∙ 𝑚1

2 ∙ cos (
𝜋
6 − 𝛳

(𝑡))
  

 −
𝑒 ∙ 𝐹𝑐𝑦𝑙(cos(𝛳(𝑡)) ∙ sen(𝛽(𝑡)) + sen(𝛳(𝑡)) ∙ cos(𝛽(𝑡)))

𝐼𝑥𝑥 +𝑚2 ∙ 𝑖2 +
𝑓2 ∙ 𝑚1

2 ∙ cos (
𝜋
6 − 𝛳

(𝑡))
 (3.22) 

 

 

 
{
𝑒 ∙ cos(𝛳(𝑡)) = 𝑥2 + 𝑙2(𝑡) ∙ cos(𝛽(𝑡))

𝑒 ∙ 𝑠𝑒𝑛(𝛳(𝑡)) = ℎ2 − 𝑙2(𝑡) ∙ sen(𝛽(𝑡))
⇔  

 

{
  
 

  
 𝛽(𝑡) = 𝑡𝑎𝑛−1 (

𝑒 ∙ 𝑠𝑒𝑛(𝛳(𝑡)) − ℎ2

−(𝑒 ∙ cos(𝛳(𝑡)) − 𝑥2)
)

𝑙2(𝑡) =
𝑒 ∙ cos(𝛳(𝑡)) − 𝑥2

cos (𝑡𝑎𝑛−1 (
𝑒 ∙ 𝑠𝑒𝑛(𝛳(𝑡)) − ℎ2

−(𝑒 ∙ cos(𝛳(𝑡)) − 𝑥2)
))

 (3.17) 

 𝑧(𝑡) = 𝑓 ∙ 𝛳(𝑡) (3.18) 

 �̇�(𝑡) = 𝑓 ∙ �̇�(𝑡) (3.19) 

 �̈�(𝑡) = 𝑓 ∙ �̈�(𝑡) (3.20) 

 𝐹𝐴 =
𝑚1 (𝑔 − 𝑓 ∙ �̈�(𝑡))

2
 (3.21) 
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Expression (3.22) was, then, implemented in Matlab Simulink to create a dynamic 

model of the interaction between the ARS and the anvil-impactor sub-system, which can 

be viewed in Appendix C at its full extent, as well as the results. Notice that Expressions 

(3.16) and (3.17) weren´t substituted, so that that Expression (3.22) can be better 

precepted, although they were taken into consideration in Matlab Simulink model. 

However, before running the model, it´s still needed to attribute values to the parameters 

at stake. Most of the parameters can be obtained by consulting the SolidWorks 2018´s 

drawings, such as the distances between the arm´s axle and the forces´ actuation points 

or the moment of inertia of the arm. The force applied by the pneumatic cylinder is 

indicated in its data sheet, which is 482.5 N when the air is pressurized at 6 bar. In the 

case of the shock-absorber chosen by Sousa [6], ACE MC3350EUM-0 [19] (see Figure 

3.6), there is no indication about its damping coefficient or its force, however the 

manufacturer informs that the force of this component is constant along the whole stroke, 

as it can be seen in Figure 3.7.  

 

 

 

 

 

 

 

Figure 3.6 - ACE MC3350EUM-0 [19]. 

 

 

 

 

 

 

 

 

Figure 3.7 - Stopping force along industrial shock-absorber´s stroke [20]. 

 

Knowing this, we can achieve the following expression: 

 

Where 𝐸𝐴𝑏𝑠. is the dissipated energy by the shock-absorbers per cycle and 𝑥 is the 

shock-absorbers´ stroke. 

 𝐸𝐴𝑏𝑠. = ∫ 𝐹𝐴𝑏𝑠.(𝑠) ∙ 𝑑𝑠
𝑥

0

⇔𝐸𝐴𝑏𝑠. = 𝐹𝐴𝑏𝑠. ∙ 𝑥⇔
𝐸𝐴𝑏𝑠.
𝑥

= 𝐹𝐴𝑏𝑠. (3.23) 
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As it was previously said, the shock-absorber force is proportional to the velocity: 

 

By combining both expressions, the damping coefficient can now be estimated by: 

 

 

Consulting the shock absorbers data sheet, the values for 𝐸𝐴𝑏𝑠. and 𝑥  are found and 

applied like shown in Expression 3.26: 

 

This coeficient is then used in the first term of the Simulink model of Expression 3.22. 

Now that the values for all parameters are known, they are inserted in the developed 

Matlab Simulink model, like shown in Figure 3.8. By running the model, the results for 

the angular acceleration throughout time, �̈�(𝑡), are obtained. Those results can be 

consulted in Figure 3.9.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 𝐹𝐴𝑏𝑠. = 𝑐 ∙ �̇� (3.24) 

 𝑐 =
𝐸𝐴𝑏𝑠.
𝑥 ∙ �̇�

 (3.25) 

 𝑐 =
2 ∙ 330

0.0486 ∙ �̇�
=

2 ∙ 330

0.0486 ∙ 𝑑 ∙ �̇�
 (3.26) 

Figure 3.8 - Parameters  ́values inserted in the developed Matlab Simulink model, considering the 

maximum drop weight. 
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Now, it is finally possible to calculate 𝐹𝐴,𝑚𝑎𝑥, using Expression (3.3), needed to run 

the simulation on SolidWorks 2018, and confirm if the material for the impact axles was 

correctly chosen.  

 

 

 
𝐹𝐴,𝑚𝑎𝑥 =

𝑚1  × (𝑔 − 𝑓 ∙ �̈�𝑚𝑎𝑥(𝑡))

2
=  

 
56 × (9.81 − 0.285 × (−600))

2
= 5062.68 𝑁 (3.27) 

 

Inserting this value in SolidWorks 2018´s simulation parameters, it´s possible to obtain 

the results for the factor of safety, shown in Figure 3.10. The minimum value found for 

the factor of safety was 6.46, granting that the material will keep its integrity with the 

impacts.  

 

 

 

 

 

 

 

 

 

 

Figure 3.9 - Angular acceleration obtained in the developed Matlab Simulink model, considering 

the maximum drop weight. 

Figure 3.10 - Factor of safety obtained when a 5063 𝑁 is applied to the ARS  ́rotating structure, 

recurring to SolidWorks 2018. 
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3.1.1.4. Actuation Axle Connector 
 

In order to move the ARS, the pneumatic cylinder must act on the actuator axle, 

however the rod eyes that Festo provides do not meet the diameter needed for this axle. 

To solve this problem, an intermediary part had to be designed by Sousa [6], but it had to 

be modified because this designed part would interfere with the rod eye, meaning that 

there wasn’t enough space for both. The final design of this part is shown in the Figure 

3.11. 

 

 

 

 

 

 

 

It consists in an aluminium alloy part, fabricated from an aluminium alloy plate, AW 

6082 - T651, obtained from KMS [16]. It is comprised by two holes, the smallest one is 

for the axle of the rod eye, which has a 10 mm diameter, and the largest one is for the 

actuation axle. To guarantee that this part wouldn’t rotate and that it would transmit the 

force to the actuation axle, this component has a slot to allocate a parallel key. 

 

 

3.1.1.5. Shock-Absorbers Pads 
 

The contact points between the ARS´s arms and the shock-absorbers are where most 

of the stress will build up and it´s important that the damping force always acts 

perpendicularly to the arms. To be able to do this, special pads (Figure 3.12) were 

designed and fabricated from AW 6082 - T651, bought from KMS [16].  

 

 

 

 

  

 

 

 

 

Since the cylinders can extend faster than the shock-absorbers, the alignment pads 

could rotate and be misplaced, making the damping force impossible to act 

Figure 3.11 - New design of the actuation  axle connector, made in SolidWorks 2018. 

Figure 3.12 - Designed shock absorber pad, made in SolidWorks 2018. 
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perpendicularly. To avoid this from happening, polyurethane parts with a specific 

geometry were made to be placed under the pads, in order to force them to be aligned 

with the shock-absorbers when the mentioned components break contact. As the shock-

absorbers act on the pads, the polyurethane parts are easily compressed and, therefore, 

don’t interfere with the functioning of the machine. 

 

 

3.1.2. Fixed Structure 
 

The fixed structure, represented in Figure 3.13, is the link between the ARS and the 

main structure of the drop weight machine. It is composed by three aluminium alloy 

plates, two of them to mount the mechanical stoppers, that prevent the rotation of the arm 

to a certain angle, and the shock-absorbers and the other is to mount the pneumatic 

actuator.  

All these plates are fixed on the structure of the drop weight machine using screws and 

T-nuts. Although this type of mechanical connection can hold the plates against the 

profiles, they shouldn’t be subjected to vertical forces because they are likely to slip. This 

problem was solved by designing three steel blocks that will discharge the vertical forces 

to the main structure of the machine. Additionally, two of these blocks will position the 

axles to mount the needle bearings. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

Figure 3.13 - Final design of the ARS  ́fixed structure, made in SolidWorks 2018. 
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To connect all the parts that assemble the ARS, the materials presented in Table 3.2 

are used. 

 

Table 3.2 - Fasteners used to assemble the ARS. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

After the mechanical drawings and materials of the parts that comprise the ARS were 

defined, it was possible to manufacture them and to mount this mechanism. However, it´s 

not completely assembled, since it still lacks the shock-absorbers in its construction, 

which haven´t yet been delivered. For this reason, this sub-system´s functioning is yet to 

be tested. The currently implemented ARS´s arrangement can be seen in Figure 3.14.  

 

 

 

 

 

 

 

 

 

 

Element Norm Qt. 

Keys 
C ISO/R773 6x6x25 4 

A ISO/R773 6x6x32 2 

Screws 

ISO 4017 - M8X30 -12.9 24 

ISO 4762 - M6x30 - 12.9 6 

ISO 4762 - M8x25 - 12.9 16 

ISO 4017 - M6x20 - 12.9 12 

ISO 4762 - M8x50 - 12.9 4 

ISO 4017 - M8x25 - 12.9 28 

ISO 4017 - M6x16 - 12.9 4 

 DIN 471 - 20x1.2 16 

Circlips DIN 471 - 35x1.5 4 

 DIN 471 - 10x1 4 

Galvanized T-

nuts 
Bosch´s norm 44 

Figure 3.14 - Currently implemented ARS´s arrangement. 
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3.2. Anvil-impactor sub-system 
 

The anvil-impactor sub-system assembles all the components that contribute for the 

drop mass. Initially, the designed assembly was only comprised by an impactor, in form 

of a puncture, and the anvil, as shown in Figure 3.15. However, there was the need to 

implement a new impactor to adapt to a new and more rigid specimen fixing structure 

(see Figure 3.16), designed by one of the ADFEUP´s members, and a pair of piezoelectric 

sensors, that will  measure the evolution of acceleration and force throughout time.  

Normally, drop weight machines have one sensor to either measure the force or to 

measure the acceleration, since one can be deducted from the other. However, most of 

those machines don´t use pre-calibrated sensors, meaning that they have to be recalibrated 

before each usage, like what happens with Rosand IFW5 machine. Since that process is 

made by the operator, who can´t guarantee the same reference for each calibration, the 

associated error of the measurement increases, which will influence the results obtained. 

To avoid that source of error in the impact test´s results, this drop weight machine will 

use pre-calibrated sensors. However, if only one of these sensors is used, in long term, it 

can lose its reference and provide wrong data without the user´s knowledge. So, to ensure 

that the collected data is reliable, this drop weight machine uses a pre-calibrated 

piezoelectric accelerometer and a pre-calibrated piezoelectric load cell. This way, the 

obtained results on both sensors can be compared and, if their information matches, it can 

be assumed that the measurements are reliable.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.15 - Initial anvil-impactor assembly. 

 

In order to completely characterize an adhesive joint under impact conditions, one 

should measure the force and the displacement. The force can be obtained directly by the 

load cell or by multiplying the drop mass by the accelerometer´s measured impact 

acceleration. The displacement could be obtained by double integrating the measured 

acceleration, using either sensor. However, since we are dealing with AC coupled sensors, 

which have an intrinsic decaying function when integrating data in real time, there is an 

associated error leading to wrong calculated displacements [21].  
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 There are other ways to measure the displacement, like using a high-speed camera, 

however, for this kind of solution, the target should be very illuminated, which is hard to 

implement due to the specimen fixing structure.  

For these reasons, the displacement will be obtained after the test is done, integrating 

the resulting acceleration data, gathered by both sensors. This is a temporary solution, 

since, in the future, a new tool, equipped with sensors that can directly measure the 

displacement (LVDT or linear potentiometer), will be attached to the new specimen fixing 

structure. 

After considering the mounting of the sensors, a solution for the new anvil-impactor 

assembly was designed in  SolidWorks 2018, Figure 3.17. The mechanical parts´ drawings 

for this assembly are presented in Appendix B. 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

To validate the new anvil-impactor assembly proposed, it´s important to have some 

considerations in mind. The most important one is to know what´s the measuring range 

needed for each sensor. The other aspects to consider are explained in section 4.2. 

When considering which accelerometer is to be chosen, one should think that 

accelerations that result from an impact can be somewhat unpredictable. Furthermore, it 

may be needed to test materials other than adhesive joints, which have different rigidities, 

resulting in different impact behaviours. So, in order to not limit this drop weight machine 

in terms of what materials can be tested, the selected accelerometer must be able to 

withstand and measure high impact accelerations.   

Load cell 

 

Load cell Accelerometer 

 

Accelerometer 

New impactor 

 

New impactor 

Figure 3.16 - New specimen fixing structure. Figure 3.17 - New anvil-impactor assembly 

design, made in SolidWorks 2018. 
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Now, in what the load cell concerns, there are two possible ways that this sensor is 

going to be loaded: The anvil-impactor assembly hits the specimen, subjecting the load 

cell to compressive forces, or is grabbed by the ARS, subjecting the load cell to tensile 

forces. After gathering information about the highest recorded impact load on adhesive 

joints tested by ADFEUP´s members, it was concluded that this value was close to 35 kN, 

as Figure 3.18 demonstrates. So, the load cell should be able to measure compressive 

forces higher than the mentioned value. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.18 - Graph of the displacements-load of carbon fibre reinforced polymer (CFRP) 
substrates tested under impact at different temperatures: room temperature (RT), low temperature 

(LT)  and high temperature (HT) [22]. 

 

To know the tensile forces that the load cell should withstand, the linear acceleration, 

�̈�, of the anvil-impactor assembly when it collides with the ARS´s axle must be known. 

Using the maximum angular acceleration, �̈�𝑚𝑎𝑥., previously calculated in the dynamic 

study and Expression (3.20), �̈�𝑚𝑎𝑥. comes: 

The forces that contribute to the tensile load that the press force sensor will be 

subjected are the quantity of acceleration forces and the weight forces of the impactor and 

one steel plate, so it´s calculated by: 

However, the maximum value of the angular acceleration, �̈�𝑚𝑎𝑥., was obtained when 

a drop mass of 56 kg is released from the highest point of the stroke and it´s also important 

 �̈�𝑚𝑎𝑥. = 0.285 × (−600) = −171 𝑚/𝑠2 (3.28) 

 𝐹𝑇𝑒𝑛𝑠. = �̇�𝐼𝑚𝑝. + 𝑃𝐼𝑚𝑝. + �̇�𝑃𝑙𝑎𝑡𝑒 + 𝑃𝑃𝑙𝑎𝑡𝑒   

 = 𝑚𝐼𝑚𝑝, × (�̈�𝐼𝑚𝑝. + 𝑔)+𝑚𝑃𝑙𝑎𝑡𝑒 × (�̈�𝐼𝑚𝑝. + 𝑔)  

 = 5.495 × (−171 − 9.81) + 0.039 × (−171 − 9.81) ≈ − 1000 𝑁 (3.29) 
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to run the simulation when the minimum drop mass is released, 8.5 kg, since the energy 

at stake is lower, taking less time for the shock-absorbers to dissipate it and creating a 

higher linear acceleration, �̈�. To do that, the drop mass parameter in the Matlab Simulink 

model was changed and the dynamic simulation was run again, obtaining the following 

results (Figure 3.19): 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

So, the new resultant maximum linear acceleration, �̈�𝑚𝑎𝑥., will come: 

 

 

And will lead to a tensile force of: 

 

 𝐹𝑇𝑒𝑛𝑠. = �̇�𝐼𝑚𝑝. + 𝑃𝐼𝑚𝑝. + �̇�𝑃𝑙𝑎𝑡𝑒 + 𝑃𝑃𝑙𝑎𝑡𝑒   

 = 𝑚𝐼𝑚𝑝, × (�̈�𝐼𝑚𝑝. + 𝑔)+𝑚𝑃𝑙𝑎𝑡𝑒 × (�̈�𝐼𝑚𝑝. + 𝑔)  

 = 5.495 × (−1055 − 9.81) + 0.039 × (−1055 − 9.81) ≈ −5893 𝑁 (3.31) 

 

So, when selecting the load cell, the maximum admissible tensile force should be 

higher than the calculated value.  

Since the load cell was specifically dimensioned to test adhesive joints, when testing 

other types of materials, the operator should consider dismounting it from the assembly 

and only rely upon the values measured by the accelerometer, which is over dimensioned 

and, therefore, can withstand higher impact loads without the risk of damaging it. 

To assemble the anvil-impactor sub-system, the fasteners described in Table 3.3 are 

used.  

 �̈�𝑚𝑎𝑥. = 0.285 × (−3700) = −1055 𝑚/𝑠2 (3.30) 

Figure 3.19 - Results for the angular acceleration obtained in the developed Matlab Simulink 

model, considering the minimum drop weight. 
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Table 3.3 - Fasteners used to assemble the new anvil-impactor assembly. 

 

 

 

 

 

 

 

 

The final arrangement of the anvil-impactor assembly is shown in Figure 3.20. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Element Norm Qt. 

Screws 

ISO 4762 - M4x12 -12.9 8 

ISO 4762 - M6x25 - 12.9 4 

ISO 4762 - M6x85 - 12.9 4 

Nuts 
ISO 4032 - M8 - 12.9 1 

ISO 4035 - M8 - 12.9 1 

Figure 3.20 - Final arrangement of the anvil-impactor assembly. 
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Chapter 4 
 

Actuation and Control Logic 
 

This chapter is divided in three sections: section 4.1 addresses the hardware used  in 

the pneumatic circuit, section 4.2 describes and explains the currently implemented 

electrical circuit´s components and section 4.3 focuses on the control logic and interface 

to operate the machine. 

 

4.1. Pneumatic circuit 
 

In order to take advantage of FEUP´s compressed air network, some sub-systems of 

the drop weight machine are actuated by converting the pressurized air into forces that 

will perform a desired action, like the release of the anvil-impactor assembly and the 

positioning of the ARS.  

The implemented pneumatic circuit, represented in Figure 4.1, is composed by an air 

treatment unit (comprised by components 1, 2, 3 and 4) that feeds the cylinder that 

releases the anvil (6) and two cylinders that actuate the arms of the ARS (8 and 9). To 

control the air flow that enters the cylinder that releases the anvil, a 3/2 directional valve 

(5) is used, while for the other two cylinders a 5/2 directional valve (7) is used. Each 

component of this pneumatic circuit is going to be described in the following sections. 

 
 
 
 
 
 
 
 
 

Figure 4.1 - Diagram of the implemented pneumatic circuit. 

(1) 

 

(3) 

 

(2) 

 

(4) 

 

(5) 

 

(6) 

 

(7) 

 

(8) 

 

(9) 
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At the starting point of this dissertation, only the pneumatic cylinder to release the 

anvil and its actuating valve were already acquired.  

 

 

4.1.1. Cylinders 
 

Both cylinders used in the drop weight machine had already been chosen. Ramos [5] 

had chosen a SMC C85N25-25S [23], responsible for the anvil release, and Sousa [6] had 

chosen two FESTO DSNU-32-100-PPV-A [24] that actuate the two arms of the ARS. 

The SMC C85N25-25S [23] is a single acting linear round cylinder with a 25 mm 

diameter and 25 mm stroke. To choose this cylinder, Ramos [5] had to consider that it 

had to support a maximum weight of 56 kg and, in order to be a safe mechanism, was 

intentionally over dimensioned. At the end of the cylinder a special clamp, designed by 

Castro [3], is used. This clamp allows the carriage to easily attach to the anvil´s pivot by 

fitting spheres in the pivot´s gap, like shown in Figure 4.2 - stage 1, 2 and 3. When being 

released, the pneumatic actuator´s linear movement pushes a sleeve (represented in green) 

that will then free the spheres that were previously holding the drop mass, Figure 4.2 - 

stage 4. 

 

 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 4.2 - Stages of the clamp of the carriage´s cylinder functioning [5]. 

 

The FESTO DSNU-32-100-PPV-A [24] (see Figure 4.3) is a double acting linear 

round cylinder with a 32 mm diameter and 100 mm stroke. Its functioning was carefully 

dimensioned so that it could hold and lift half of the weight of the drop mass, since there 

is one of this type of cylinders in each arm of the ARS. This type of cylinder also has 

adjustable pneumatic damping and a magnet, so it is possible to implement a proximity 
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sensor. To go along with these two cylinders the accessories demonstrated in Table 4.1 

were chosen.  

 

 

 

 

Figure 4.3 - FESTO DSNU-32-100-PPV-A [24]. 

 

Table 4.1 - Selected FESTO DSNU-32-100-PPV-A´s accessories [24]. 

 

Since both of FESTO DSNU-32-100-PPV-A [24] cylinders are actuated in parallel 

and there´s only two possible positions for the cylinders (extended or retracted), only one 

proximity sensor is needed to inform their position at any given moment. 

 

4.1.2. Directional valves 
 

To control the compressed air that feeds the SMC C85N25-25S [23], a PARKER 

B3R5BXXXXH [25] (Figure 4.4 - a) valve was used. It is a 3/2-way electrically activated 

valve with spring return, like shown in Figure 4.4 - b. However, this valve didn´t have a 

solenoid equipped, so Sousa [6] had to choose one. The selected solenoid was the 

PARKER P2E-KV32C1 [26]. 

 

 

 

 

 

Figure 4.4 - a) PARKER B3R5BXXXXH; b) PARKER B3R5BXXXXH symbol [25]. 

Accessories Designation Description Qt. 

Clevis foot 

mounting 
LBN-32 Part to fix the cylinder 2 

Rod eye SGS-M10x1.25 Part for the rod end 2 

Proximity sensor 
SME-8M-DS-24V-K-0,3-

M8D 

Magnetic sensor of 

type Reed 
1 

Proximity sensor 

support 
SMBR-8-32 

Clamp to hold sensor 

near the cylinder 
1 

Cable extension NEBU-M8G3-K-2.5-LE3 
Cable extension for 

sensor of 2,5 m 
1 

a) b) 
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As it was previously said, this directional valve and the cylinder that it feeds were 

already implemented when this dissertation started, but its implementation was not 

correct and caused some malfunctions on the drop weight machine. The problem was that 

when deactivating the computer software´s variable responsible for the actuation of the 

solenoid, a voltage peak was created. This voltage peak was responsible for an 

instantaneous actuation of all the components connected to the signal conditioning board, 

forcing, for example, the emergency situation to be declared, as if an emergency button 

was pressed. This would always stop the correct functioning of the machine in the test 

sequence. This problem was solved by simply implementing a freewheeling diode in 

parallel with the solenoid. 

For the actuation of both cylinders of the type FESTO DSNU-32-100-PPV-A [24] a 

fast-acting 5/2-way valve was needed. But, in order to select this valve, it was first 

required to know the air flow that each cylinder needs to fully extend. This was made by 

first obtaining the volume of air that each cylinder needs: 

 

 𝑉𝐶𝑦𝑙. = 𝛥𝑥 × 𝜋 × 𝑟
2 = 100 × 𝜋 × 162 = 80425 𝑚𝑚3 (4.1) 

 

Where 𝛥𝑥 is the cylinder´s stroke and 𝑟 is the cylinders radius.  

Now, with the time that the cylinders have to fully extend (𝛥𝑡), which was calculated 

by Sousa [6], it´s possible to obtain the air flow that the valve needs to provide: 

 

 �̇�𝐶𝑦𝑙. =
2 × 𝑉𝐶𝑦𝑙.
𝛥𝑡

=
2 × 80425

0.11
×
60

106
=  87.74 𝑑𝑚3/𝑚𝑖𝑛 (4.2) 

 

With the obtained result, it´s now possible to select the required valve. The chosen 

valve was a FESTO MHE2-MS1H-5/2-M7-K [27] (Figure 4.5 - a), that provides a 100 

L/min air flow. The chosen valve´s implementation was made considering that if, for any 

reason, the electrical circuit fails, the ARS will always act, because the spring forces that 

specific position. This valve has an integrated solenoid and has protection against 

transients that result in a voltage peak, which means that doesn’t needs the diode, like in 

the previous valve. The associated symbol of the valve is shown in Figure 4.5 - b. 

 

  

 

 

 

 

 

Figure 4.5 - a) FESTO MHE2-MS1H-5/2-M7-K; b) FESTO MHE2-MS1H-5/2-M7-K symbol 

[27]. 

a) b) 
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4.1.3. Air treatment unit 
 

The chosen feeding unit was a FESTO MSB4-AGA:C4:H3:N3-WP [28], Figure 4.6. 

This component is comprised by an on/off manual valve with silencer, a 5 µm filter with 

manual condensate drain and a pressure regulator that ranges from 0.5 bar to 12 bar with 

a pressure gauge incorporated.  

 

 

 

 

 

 

 

 

 

Figure 4.6 - FESTO MSB4-AGA:C4:H3:N3-WP [28]. 

 

4.1.4. Pneumatic accessories 
 

In order to completely assemble all the mentioned pneumatic parts some connection 

accessories had to be chosen. Table 4.2 summarizes those chosen accessories. 

 

Table 4.2 - Pneumatic circuit accessories. 

Accessories Designation Description Qt. 

T connections for  

Φ6-Φ6 
QSMT-6 

Easy connection (T shape) with 3 ports to 

connect the 6 mm tubing 
3 

L connections for 

G1/8- Φ6 
QSML-G 1/8-6 

Easy connection (L shape) between a 

G1/8 port and the 6 mm tubing 
5 

L connections for 

G1/8- Φ8 
QSML-G 1/8-8 

Easy connection (L shape) between a 

G1/8 port and the 8 mm tubing 
1 

L connections for 

M7- Φ6 
QSML-M7-6 

Easy connection (L shape) between a M7 

port and the 8 mm tubing 
3 

Tube of  Φ6 mm PUN-6X1-BL 50 m of tube of  Φ6 mm - 

Silencer M7 UC-M7 Silencer with a M7 screw 2 
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4.2. Electronics 
 

In order to be able to control the drop weight machine, an electric circuit is needed. 

This circuit should provide the means to power the various components that are part of it 

and also serve as interface between the computer and the various sensors and actuators. 

It is, therefore, important that this circuit is carefully assembled so that, when creating the 

control logic, the system works as expected, preventing the damaging of its components. 

As it was previous stated in section 2.3.4, an initial electrical circuit had already been 

implemented by Sousa [6], who also provided the circuit´s schematic and some 

documentation about the implemented components. With the help of this information, a 

thorough revision was made to verify if everything was connected as it was supposed to 

and what changes had to be done. The current implemented circuit´s schematic is 

presented in Appendix D and can be useful to consult it for a better understanding of the 

upcoming sections, where a description of the implemented hardware is performed. 

 

 

4.2.1. Lifting sub-system 
 

The lifting sub-system, Figure 4.7, is the mechanism that moves the carriage up or 

down by wrapping a cable around a motorized worm. The worm has a particular geometry 

that enables the cable to always be wrapped with the same diameter, so that the relation 

between the carriage´s velocity and the motor´s velocity is kept constant. Additionally, 

this sub-system also has a mechanical part that ensures that the cable is always centered 

with the hole where it passes through, by forcing the worm to move along the axis. This 

solution was proposed by Castro [3] and then assembled by Ramos [5]. 

 

 

 

 

 

 

 

 

 

 

 

The implemented motor is a Transtecno ECM-100/040 [29], Figure 4.8. It is a worm 

gear DC motor capable of producing 140 W and a maximum velocity of 100 min-1. To 

control it the Electromen EM-115 [30] driver was chosen, demonstrated in Figure 4.9. 

This PWM driver converts the feeding signal into an adequate voltage signal that powers 

the motor, enabling it to rotate at a proportional speed. The feeding signal can be provided 

Figure 4.7 - Lifting sub-system. 
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in various ways, but the chosen method was to directly connect to an external 0-10 V 

reference given by an analog output of the data acquisition (DAQ) board. To select the 

rotation´s direction, two digital inputs, also given by the DAQ board, are used. 

 

 

 

 

 

 

 

 

Figure 4.8 - Transtecno ECM-100/040 [29].                Figure 4.9 - Electromen EM-115 [30].  

 

4.2.2. Velocity acquisition sub-system 
 

Theoretically, the velocity on impact can be obtained by knowing the drop height, 

Expression 4.3, however it´s just an estimate that ignores some effects like the air 

resistance or the friction on the guiding columns. This can lead to results that don´t 

correspond to the reality of the test made, thus a velocity-acquisition sub-system is 

implemented in the drop weight machine, Figure 4.10. 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 

 

 𝑉𝑖𝑚𝑝. = √2 ∙ 𝑔 ∙ ℎ (4.3) 

Figure 4.10 - Velocity acquisition sub-system. 
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This sub-system assembly was created and implemented by Ramos [5] and works by 

detecting the two combs of a small part that is attached to the anvil. When each of the 

combs passes through the optical detector, a variable on Simulink (t1 for the first comb 

and t2 for the second comb) is associated with the time instant that detection occurs. With 

those two time instants it´s possible to calculate the time between each detection, which 

associated with the distance between the two combs gives the impact velocity of  the 

falling anvil.  

Since the specimens to be tested in this machine are going to have different lengths, 

it´s also important that the optical detector can be moved according to the different impact 

points. For this reason, a small DC motor, connected to a screw-drive, moves the platform 

where the optical detector is fixed. The selected motor for this function is a Como Drills 

918D100112 [31]. 

To be able to reverse the direction of the motor´s rotation, a board with an L298N 

integrated circuit [32] was chosen, which has two built-in H-bridges, although only one 

is used.  This type of circuit is widely used in making small DC motor controllers and this 

specific one also contains protection circuits and voltage regulators. Originally, this board 

comes prepared to be implemented with 12 V motors, however if a jumper pin is removed 

the board will accept 24 V motors, like the one being used. 

Table 4.3 shows how the connections in the L298N board are made, considering that 

only one motor is connected. 

 

Table 4.3 - L298N board connections to the electrical circuit lines. 

 
 

4.2.3. Sensors 
 

Currently, there are seven different types of sensing elements applied in the drop 

weight machine:  

• One optical detector; 

• Two microswitches; 

• One inductive detector; 

• One photoelectric detector; 

Pin Line Description 

GND GND24 Board´s ground 

5 V 5 VDC_PS3 5 V supply 

12 V 24 VDC_PS1 24 V supply 

ENA Port B0 Enables the motor 

IN1 Port B7 Direction selector 

IN2 Port B6 Direction selector 

OUT1 - Motor powerline 

OUT2 - Motor powerline 
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• One proximity detector; 

• One piezoelectric accelerometer; 

• One piezoelectric press force sensor. 

 

Each one has a different working principle and a specific function in the machine, 

issues to be discussed in the following sections. 

 

4.2.3.1. Optical detector 
 

The optical detector is the sensing element responsible for the detection of the combs 

of the mechanical part that is fixed on the anvil, as briefly mentioned in the previous 

section. This detector is an OMRON EE-SX670-WR [33], shown in Figure 4.11. It´s a 

slot-type microsensor that works by the same principle as a light barrier, which means 

that a light beam is being transmitted by an emitter to a receiver and whenever that light 

beam is interrupted, a positive signal is sent by the sensor. This particular sensor has an 

NPN configuration, which means that it works in inverted logic and, in order to 

implement it, it needs to be associated with a relay (K12) that inverts it back.  

 

 

 

 

 

Figure 4.11 -  OMRON EE-SX670-WR [33]. 

To correctly connect this sensor, one has to consider that it has 4 leads, that can be 

identified by its colour: a brown one to feed 24 VDC, a blue one to connect the 0 VDC, 

a black one which works as the collector and a pink one used to select Dark On mode or 

Light On mode. So, the brown lead was connected to the relay´s coil´s positive lead and 

to the 24 VDC line, the black one to the relay´s coil´s negative lead, the blue one to the 0 

VDC line and the pink one is connected to the blue lead, which selects the Dark ON mode. 

Figure 4.12 shows the mentioned connections. The relay´s normally open contact is then 

connected to the PCIN6 line, sending the input signal to the Software. The functioning of 

the Dark On mode can be better understood by consulting Figure 4.13. 

 

 

 

 

 

 

Figure 4.12 - OMRON EE-SX670-WR´s lead connections [33]. 
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Figure 4.13 - OMRON EE-SX670-WR´s Dark-ON mode [33]. 

 

4.2.3.2. Microswitches  
 

As mentioned in section 4.2.2, there is a moving platform on the velocity acquisition 

sub-system that positions the optical detector depending on the length of the specimen to 

be tested. Thus, it is important to limit the stroke of this moving platform by using two 

microswitches. 

The selected model is the Cherry D459-V3RD [34] (see Figure 4.14) that has a 3-way 

switch, which means that it has one normally open contact and one normally closed 

contact for the same input. Therefore, when the switch is pressed both contacts change 

their state and each one can perform an action. Recurring to this information, the normally 

closed contacts are used to send an input signal to the computer (PCIN2 for the upper 

microswitch and PCIN3 for the lower microswitch) and the normally open contacts are 

used to send a signal to relays´ coils (K5 for the upper microswitch and K6 for the lower 

microswitch) that will then cut the power from the ports IN1 and IN2 of the  L298N board 

[32] and consequently stop the motor´s rotation in that direction. 

 

 

 

 

 

 

Figure 4.14 - Cherry D459-V3RD [34]. 

 

4.2.3.3. Inductive detector 
 

As a way of preventing the lifting sub-system´s motor to lift the carriage beyond the 

possible height, a sensor that limits its stroke is attached to the carriage. The chosen sensor 

is an RS Pro 701-8253 [35], shown in Figure 4.15, which consists in an inductive detector 

that senses a small metallic part fixed on the drop weight machine´s structure at a defined 

height. When the sensor performs a detection, sends a signal to the software using PCIN5 
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line, which forces the software to enter the emergency state, and also triggers a normally 

closed relay (K8)  that breaks the powering of the lifting sub-system´s motor. 

 

 

 

 

 

 

 

Figure 4.15 - RS Pro 701-8253 [35]. 

 

Notice that, if this sensor breaks the contact for the motor movement when it detects 

the metallic part, this would mean that the carriage would be stuck in that position, 

because it stops right in front of that metallic part. However, a parallel normally open 

contact, triggered by a signal sent via software (PCOUT5) to the associated relay (K9), is 

used to move the motor freely. 

This sensor has 3 leads, distinguished by colour: The brown and blue leads are 

connected to the 24 VDC and 0 VDC terminals of the power supply (PS1), respectively, 

and the black lead is connected to PCIN5 line and to the relay´s coil (K8). 

 

 

4.2.3.4. Photoelectric detector 
 

In order to make the desired command logic, that is discussed in section 4.3, the anvil 

has to go thru a stage where it will be attached to the carriage. Thus, there must be a 

method of making the software know that the anvil is, in fact, attached. It was with this 

intention that a photoelectric detector of the type OMRON E3FA-DN23 [36] (see Figure 

4.16) was used. It´s a defuse reflective sensor, meaning that it emits a light and triggers a 

signal when an object is in front of its beam and reflects it back. Knowing this, the said 

sensor is fixed on the carriage, pointing directly to where the anvil´s pivot is going to 

attach. Thus, when the carriage is being lifted and the anvil keeps reflecting the sensor´s 

light beam back, it is concluded that the anvil is attached to the carriage. 

 

 

 
 
 

Figure 4.16 - OMRON E3FA-DN23 [36]. 
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Just like what happens with the optical detector, subject of section 4.2.3.1, the selected 

photoelectric sensor has an NPN configuration and, therefore, will work in an inverted 

logic, so it will also require an associated relay (K11). The line that the relay´s contact 

feeds is the PCIN4. Since its number of leads and respective functions are also the same 

as the optical detector, demonstrated in Figure 4.17, both sensor´s lead connections are 

identical. This means that this sensor is also working in Dark On mode (see Figure 4.18). 

 

 
 
 
 
 
 

Figure 4.17 - OMRON E3FA-DN23´s lead connections [36]. 

 

 

 

 

 

 

Figure 4.18 - OMRON E3FA-DN23´s Dark-ON mode [36]. 

 

4.2.3.5.  Proximity sensor 
 

The drop weight machine´s software should always be aware in which position the 

ARS is, at any given moment. For that reason, when buying the pneumatic cylinders from 

Festo, the recommended proximity sensor, a FESTO SME-8M-DS-24V-K-0,3-M8D [37] 

(see Figure 4.19), was also obtained. This is a sensor that works by the magnetic Reed 

principle and has a normally open contact. So, when this sensor detects the presence of 

the magnetic field created by the cylinder´s magnet, its contact changes state (closes), 

letting current pass through and feeding the PCIN7 line, which will then change the state 

of the associated variable in the software. 

 

 

 

 

 

Figure 4.19 - FESTO SME-8M-DS-24V-K-0,3-M8D [37]. 
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To implement it, the brown and blue leads must be connected to the 24 VDC and 0 

VDC, respectively, and the black lead connected to the PCIN7 line. 

 

 

4.2.3.6. Accelerometer 

 

The accelerometer is the sensor responsible for measuring the accelerative forces of 

the anvil-impactor assembly during the fall. The highest expected values for the linear 

acceleration will happen at the moment of impact. Like it was stated in section 3.2, 

accelerations on impact are unpredictable, not only because of the system dynamics but 

also because of the great variety of materials that can be tested in this drop weight 

machine. So, as a way of trying not to limit the drop weight machine in terms of what 

materials can be tested, an accelerometer with a vast measuring range must be selected. 

Another aspect to consider, when selecting the accelerometer, is its frequency range, 

which depends on the type of application, like Figure 4.20 shows. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.20 - Different types of accelerometer per application [21]. 
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Based on the information given in Figure 4.20, it´s possible to conclude that the drop 

weight impact test application is categorized as a high impact shock. However, 

considering the unpredictable behaviour of impact loads, one has to guarantee that the 

sensor has a frequency range higher than the 250 Hz shown. Therefore, it was concluded 

that the needed accelerometer for ADFEUP´s drop weight machine should be one 

considered to be for extreme shock applications. 

To meet the mentioned requirements, the  KISTLER 8704B5000 [38] accelerometer 

(see Figure 4.21) was selected. This sensor has a measuring range that goes from -5000g 

up to 5000g (the widest range of its series) and a frequency range from 1 to 10000 Hz. 

This is an Integrated Eletronic PiezoElectric (IEPE) sensor, meaning that it contains a 

crystal (Quartz) structure that, when stressed by accelerative forces, creates a proportional 

charge output signal. Despite this sensor´s signal having high voltages, it produces almost 

no current, meaning that the sensor is a high impedance source of electricity, which makes 

it susceptible to signal degradation. Also, high impedance signals are very vulnerable to 

all kinds of noise, which is bad for precise measurements. In order to convert the high 

impedance to a low impedance and to power the accelerometer, a charge amplifier must 

be selected.  

 

 

 

 
 
 
 
 

Figure 4.21 - KISTLER 8704B5000 [38]. 

 

A LabAmp of the type KISTLER 5165A [39] (Figure 4.22) was the chosen charge 

amplifier to connect to the accelerometer. It has four input channels and four output 

channels, although the latter aren´t used. This hardware provides two rj45 ports which 

allow stablishing an ethernet network between other LabAmps, if needed, and a computer. 

 

 

 
 
 
 
 

Figure 4.22 - LabAmp of the type KISTLER 5165A [39]. 

 

Additionally, along with the LabAmp, Kistler also provides a computer software that 

shows the measured data in real time. In this software one can define how the acquisition 
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of that data is performed, like the sampling rate, the number of samples or duration of the 

acquisition. Knowing that the sampling frequency should be, at least, 10 times greater 

than the accelerometer´s frequency, its value can be calculated by Expression 4.5: 

 

 𝑓𝑠𝑎𝑚𝑝𝑙𝑖𝑛𝑔 > 10 × 𝑓𝑎𝑐𝑐𝑒𝑙𝑒𝑟𝑜𝑚𝑒𝑡𝑒𝑟 = 10 × 10000 = 100000 𝐻𝑧 (4.5) 

 

The chosen sampling rate was 200000 Hz, because it was the maximum sampling rate 

that wouldn´t cause trouble to the computer post-process analysis.  

This software also provides the possibility to create virtual channels that can calculate 

other measurands in real time, like the displacement. However, this functionality isn´t 

very useful because, as it was said in section 3.2, the displacement would be obtained 

affected by an error. Figure 4.23 shows the accelerometer configuration in the provided 

software. 

 

 

 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

 

4.2.3.7. Press force sensor 

 

The load cell is the element responsible for measuring the impact loads applied on the 

specimens. Like it was stated in section 3.2, the way that this sensor is implemented in 

the anvil-impactor assembly makes it susceptible to both compressive forces (known to 

be lower than 35 kN) and tensile forces (calculated to be around 5.9 kN), so the sensor to 

be selected must withstand these loads. Additionally, the selected sensor should have a 

frequency range similar to the accelerometer (1 to 10000 Hz) in order to obtain matching 

measurement results.  

Figure 4.23 - Accelerometer configuration in the provided Kistler´s software. 
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Considering the mentioned requirements, the KISTLER 9333A [40] press force sensor 

was selected, shown in Figure 4.24. Just like the accelerometer, this sensor is also based 

on the piezoelectric measuring principle, meaning that it creates a charge output signal 

that is proportional to the load applied to its crystal quartz. It is specially designed to 

measure compressive forces, up to 50 kN, which meets the requirements of at least being 

able to measure 35 kN. However, the maximum tensile force allowed is 5 kN, lower than 

the 5.9 kN calculated in section 3.2. To avoid these tensile loads on the press force sensor, 

the operator can adjust the test parameters (increasing the drop weight and decreasing the 

impact velocity), in order to obtain the same impact energy that would be obtained when 

releasing a drop mass of 8.5 kg of the highest point. 

 

 

 

 

 

 

Figure 4.24 - KISTLER 9333A [40]. 

One of the most important things to have in mind, to guarantee that the press force 

sensor is taking good measurements, is its mounting. The mounting of the press force 

sensor must guarantee that all the load is transferred to its flanges, so, considering the 

anvil-impactor assembly proposed in section 3.2, it is concluded to be the correct 

implementation.  

To help this sensor operate, another input channel of the LabAmp is used. This will 

allow both sensors to start the data acquisition at the same time, resulting in data that can 

be directly compared. For this type of sensor, the configuration is slightly different, as 

shown in Figure 4.25. 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 Figure 4.25 - Press force sensor configuration in the provided Kistler´s software. 
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4.2.4. Boards 
 

The control of the drop weight machine is made possible via a MATLAB® add-in 

running on a computer, which is Simulink®. Therefore, to make the set of sensors and 

actuators be able to communicate with the computer, a DAQ board was installed on the 

latter. However, all sensors and actuators work with 24 VDC, while the computer digital 

logic works with 5 VDC, making it impossible for the computer to receive inputs or 

provide outputs as it is. To make this communication compatible, a printed circuit board 

(PCB) was designed, made and implemented by Sousa [6]. This means that this PCB is 

able to convert the detectors´ 24 VDC signals into 5 VDC signals to feed to the 

computer´s DAQ board and to convert 5 VDC signals coming from the computer´s DAQ 

board into 24 VDC signals to feed the motors and solenoids. Additionally, a second board 

had to be chosen so that the computer could decode the data collected from the encoder 

of the lifting sub-system´s motor and send it to the software.  

 

 

4.2.4.1. DAQ board 
 

The selected DAQ board is a Measurement Computing´s PCIM-DDA06/16 [41] 

(represented in Figure 4.26), which has 6 analog output channels and 24 bits of digital 

input/output. The 24 bits of digital input/output are divided into 3 channels (A, B and C), 

each one with 8 bits (1 byte). Each channel can be defined as a set of inputs or outputs, 

but individual bits can´t. A was defined as an input channel, while B and C were chosen 

to be output channels. While channel A and B were fully used, channel C is only used to 

send a reset signal to the encoder of the lifting sub-system´s motor (explained in next sub-

section) and to change the lifting sub-system´s motor rotating direction. Table 4.4 shows 

the association between the bits in each channel and the line they feed. 

 

 

 

 

 

 

 

 

 

 

Figure 4.26 - Measurement Computing´s PCIM-DDA06/16 [41]. 
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Table 4.4 - Bit channels and the respective electrical circuit line association. 

 

 

4.2.4.2. Encoder board 
 

As a way of knowing the position of the sub-system´s motor and, consequently, 

knowing the position of the carriage, this motor is equipped with an incremental optical 

encoder, namely an Intecno ME22-300-6.000-2-LS1 [42]. This is a high-resolution 

optical encoder that has two square wave output channels (A and B) plus an index channel 

(I) and can count 300 pulses per revolution. Whenever the encoder turns a certain angle 

(360/300=1.2º), channel A gives a pulse and channel B gives the same pulse, but phase-

Channel Bit Line Description 

A (Input 

channel) 

A1 PCIN7 Proximity sensor 

A2 PCIN6 Optical detector 

A3 PCIN5 Inductive detector 

A4 PCIN4 Photoelectric detector 

A5 PCIN3 
Velocity acquisition sub-

system´s lower microswitch 

A6 PCIN2 
Velocity acquisition sub-

system´s  upper microswitch 

A7 PCIN1 Emergency buttons 

B (Output 

channel) 

B0 ENA L298N Board Enable 

B1 PCOUT5 Inductive detector override 

B2 PCOUT4 
Velocity acquisition sub-

system´s motor powering 

B3 PCOUT3 Virtual emergency button 

B4 PCOUT2 ARS control 

B5 PCOUT1 Anvil release signal 

B6 IN2 
Select ascending direction for 

velocity acquisition´s motor 

B7 IN1 
Select descending direction 

for velocity acquisition´s motor 

C (Output 

channel) 

C0 INDEX 
Reset encoder of the lifting 

sub-system´s motor 

C1 PCOUT6 
Select ascending direction to 

move the carriage 

C2 PCOUT7 
Select descending direction to 

move the carriage 
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shifted by 90º, in order to know the direction of the motor´s rotation. Every time the 

encoder performs a complete revolution, channel I gives a pulse, although this channel is 

not used for this purpose, as it will be posteriorly explained. Figure 4.27 illustrates the 

encoder´s signals throughout time. 

 

 

 

 

 

 

 

 

 

 

To convert the pulses generated by the encoder into useful information that can be 

interpreted by the software, a Measurement Computing´s PCI-QUAD04 [43] (Figure 

4.28) is used. This is a quadrature encoder board that has the particularity of reading both 

channels´ (A and B) rising and falling edges. This functionality increases the resolution 

by a factor of four (4*300=1200), since the board reads four pulses per encoder count. 

Thus, whenever the motor´s shaft turns 0.3º (resulting from 360/1200) the encoder board 

increases its counting by one. 

 

 

 

 

 

 

 

 

 

Figure 4.28 - Measurement Computing´s PCI-QUAD04 [43]. 

 

One thing the encoder lacks is a way of resetting its counting at will, which is needed 

just before the carriage starts to position itself to release the anvil-impactor assembly. 

However, the encoder allows resetting the counting when channel I is activated. 

Recurring to this functionality and using an output signal from de DAQ board (C0), 

instead of the actual channel I, the desired functionality is achieved. 

Figure 4.27 - Intecno ME22-300-6.000-2-LS1´s signals throughout time. 
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4.2.4.3. PCB 
 

As discussed in section 4.2.4, a PCB was designed and implemented as a way to 

convert 24 VDC signals into 5 VDC signals, and vice-versa. The approach taken to make 

this component work as pretended was to use optocouplers. The concept of the 

optocouplers functioning is very similar to the relays´ one: when a current passes through 

one of the lines of the optocoupler, a led (a coil, in relay analogy) is activated, which will 

close the other line´s circuit because a phototransistor (a contact, in relay analogy) is 

receiving the led´s light beam. Since both lines are completely isolated, there is no risk in 

feeding the computer a 24 VDC signal, which could damage its internal circuit. Due to 

the number of inputs and outputs needed, four PS2502-4 were implemented in the PCB, 

because each one of this type of component provides four individual integrated 

optocouplers, allowing for multiple connections at once. Two PS2502-4 were used for 

the inputs and the other two for the outputs. A PS2502-4´s circuitry can be seen in Figure 

4.29. 

 

 

 

 

 

 

 

Since the communication is made both ways (sensors to computer and computer to 

actuators), two distinct types of circuits had to made, one for the input conversion and 

one for output conversion, as shown in Figure 4.31 and Figure 4.30, respectively. 

 

 

 

 

 

 

 

 

 

 

 

The values for the implemented resistors, as calculated by Sousa [6], are 𝑅1 =
1200 𝛺, 𝑅2 = 390 𝛺 and 𝑅3 = 390 𝛺. The final PCB design, in gerber format, can be 

seen in Figure 4.32. 

Figure 4.29 - PS2502-4. 

Figure 4.31 - Computer input 

conversion for a single line. 
Figure 4.30 - Computer output 

conversion for a single line. 
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Figure 4.32 - Designed printed circuit board, in gerber format [6]. 

 

4.2.5. Power circuit´s hardware 

 

The electric power source for the drop weight machine is directly obtained from the 

mains, which means that it comes in the form of 230 VAC. Since all of the electrical 

hardware described in previous sections is powered by 5 or 24 VDC, power supplies were 

used. Considering that, there are no analog signals with the exception of the driver 

reference, which is given by the DAQ board, there´s no need to worry about signal´s 

noise. For this reason and because they are cheaper, three switch power supplies were 

chosen by Sousa [6]. 

The lifting sub-system´s motor has its own power supply, because it has a crucial role 

in the drop weight machine and also because it needs a lot of power. At max power, the 

current intensity it will require is 6 A, as calculated by Sousa [6], using Expression 4.6.  

 

 

Since 6 A power supplies weren´t found, a 10 A power supply was chosen, namely a  

RS Pro 240W DRP240 Series [44], demonstrated in Figure 4.33 - a. In the electrical 

circuit´s diagrams, this power supply is referenced as PS2. 

To power the various sensors and relays present in the drop weight machine´s circuitry 

a RS Pro 96W MDR-100 Series [45] was chosen (see Figure 4.33 - b). This power supply 

provides 24 VDC and has a current of 4 A. The value of the needed current was obtained 

by adding the required current for every component that is fed 24 VDC and adding an 

extra for safety and future implementations. In the electrical circuit´s diagrams, this power 

supply is referenced as PS1. 

The last power supply is used to power the signal condition board (or PCB) and the 

L298N board with 5 VDC. The selected power supply was a RS Pro 10W MDR-10 Series 

[46], shown in Figure 4.33 - c. It has 2 A of current, which is much higher than what these 

 𝑃 = 𝑉 ∙ 𝐼⇔ 𝐼 =
𝑃

𝑉
=
140

24
≈ 6 𝐴 (4.6) 
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components really need. In the electrical circuit´s schematics, this power supply is 

referenced as PS3. 

 

 

 

 

 

 

 

 

Figure 4.33 - a) RS Pro 240W DRP240 Series [44]; b) RS Pro 96W MDR-100 Series [45]; 

c) RS Pro 10W MDR-10 Series [46]. 

 

As what happens with most machines, circuit protection had to be implemented. The 

implemented components responsible for this protection are: 

• General manual power switch; 

• Residual-current circuit breaker for the 230 VAC part of the electrical circuit, 

SIEMENS 5SM3312-0 [47], represented in Figure 4.34 - a; 

• Circuit breaker for the 230 VAC part of the electrical circuit, Schneider 

Electric´s Tesys GB2DB21 [48], represented in Figure 4.34 - b; 

• Circuit breaker for the 24 VDC PS1´s power lines of the electric circuit, 

Schneider Electric´s Tesys GB2CB09 [49], represented in Figure 4.34 - c; 

• Circuit breaker for the 24 VDC PS2´s power line of the electric circuit, ABB 

SH201T-C10 [50], represented in Figure 4.34 - d;  

• Fuse for the 5 VDC PS3´s power line of the electrical circuit. 

 

 

 

 

 

 

 

 

 

 

Figure 4.34 - a) SIEMENS 5SM3312-0 [47]; b) Schneider Electric´s Tesys GB2DB21 [48]; 

c) Schneider Electric´s Tesys GB2CB09 [49]; d)  ABB SH201T-C10 [50]; 

 

a) 

 

a) 

b) 

 

b) 

c) 

 

c) 

a) 

 

a) 

b) 

 

b) 

c) 

 

c) 

d) 

 

d) 
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4.2.6. Emergency circuit´s hardware 
 

When designing any machine, it´s important to consider that things can go 

unexpectedly wrong and that there should be a way of preventing this type of situations 

to cause some major damage. For this reason, all machines have an emergency state, that, 

when active, immediately interrupts the machine´s actions in that moment and intervenes 

in a way of trying to protect its components and operators.   

Currently, there are three ways that make this drop weight machine enter an emergency 

situation: To press one of the two physical buttons (one fixed at the machine structure and 

other near the computer), to press the virtual button in the interface or when the carriage 

passes thru its stroke´s limit. In the future, there could be more ways of doing so, like, for 

example, if some safety barriers are installed and they are opened at the moment of a test. 

The implemented physical emergency buttons are the Schneider Electronics´s 

XALK178E [51] (see Figure 4.35). Each button has two associated contacts, one 

normally closed and one normally open. The normally closed contacts are connected in 

series with solenoid of the valve that controls the pneumatic cylinder that releases the 

anvil, while the normally open contacts are connected to two relays´ coils (K3 and K10). 

These relays will have normally closed contacts in series with several components´ power 

lines that need their power shut down when emergency situations happen, except for the 

ARS, which has normally open contacts in series. 

 

 

 

 

 

 

 

 

Figure 4.35 - Schneider Electronics´s XALK178E emergency button [51]. 

 

In the virtual emergency button case, when pressed, it will send an output signal via 

PCOUT3 line that, after passing through the PCB, will feed a relay´s coil (K4). Like what 

happens with the physical buttons´ relays, also this relay will have normally closed 

contacts in series with components that should shut down in emergencies, while having a 

normally open contact in series with the ARS. 

To summarize, when an emergency situation is declared, the cylinder that releases the 

anvil as well as both installed motors are deactivated, stopping any possible action that 

the machine is performing. However, the ARS will be activated, preventing the damaging 

of the specimen, even if the emergency situation occurred when the anvil is falling.  

The software is always listening to all components that can trigger the emergency 

situation and no matter what state the machine is at the moment, it can always switch to 



60 

 

Chapter 4 

that state. In order to exit the emergency state, the software waits for an user input that 

informs that the emergency situation is solved.  

 

 

4.3. Command Sequence and Interface 
 

As stated in previous sections, the command sequence is controlled by a program 

running in a MATLAB® add-in, Simulink®. Simulink® offers a great variety of 

functionalities that allow the communication between the computer and the drop weight 

machine, like Simulink Real-Time™ toolbox (used to connect the software to the DAQ 

board and the encoder board) and Simulink Stateflow® (used to program states and 

transitions of the machine´s behaviour). Ramos [5] and Sousa [6] had already started to 

create a command sequence, however, since there were some new implementations in the 

machine, it had to modified. Additionally, it was necessary to create an interface so that 

any operator could easily work with the drop weight machine. The interface was created 

using another MATLAB® add-in, GUIDE®, that stands for graphical user interface 

developing environment. 

In a way, Simulink Stateflow® works similarly to Grafcet, since block states are used 

to perform a set of actions and to go from block to block the conditions of a transition 

must be validated, as Figure 4.36 exemplifies. Figure 4.36 also shows other common 

transitions, like the “start” transition (represented by an arrow with a circle at the other 

end) and the “end” transition (represented by a white arrow). Simulink Stateflow® can 

be accessed through the use of a Chart in Simulink®. Chart is a type of block that receives 

the inputs from Simulink® and, after running the state machine, provides the outputs to 

Simulink® in real time. Charts also have local variables that help in the logic sequence 

between states. A list of all variables can be consulted in Appendix E.  

 

 

 

 

 

 

 

 

 

In state blocks, actions can be performed when entering, during or when exiting the 

block, which can be useful for a better performance of the developed program. In addition, 

state blocks can contain other state blocks within themselves, in order to stablish a 

hierarchy of importance. This means that sub-routines can be created inside a higher-level 

hierarchic routine. Transitions between higher-level state blocks always take precedence 

over the lower-level ones.  

Figure 4.36 - How transitions are processed in Simulink Stateflow®. 



61 

 

 

 

Actuation and Control Logic 

In the next sections, each level of the implemented command sequence, as well as the 

associated interface, will be described and explained, so that the functioning of the drop 

weight machine is completely understood. 

 

 

4.3.1. Highest-level routine 

 

The highest-level of the Simulink® Stateflow diagram only has two states, as depicted 

in Figure 4.37: the MAIN state and the SOS state. The MAIN state is where the normal 

functioning of the machine takes place, while the SOS state runs when an emergency 

situation is declared. The reason why this is done is because, as it was previously said, 

higher-level transitions take precedence over lower-level transitions, meaning that, even 

if the machine is performing some action or transition within the MAIN state, it´s always 

ready to enter in the SOS state and interrupt what is doing at any given moment. 

 

 

 

 

 

 

 

 

 

4.3.2. MAIN sub-routine 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.37 - Highest-level routine. 

Figure 4.38 - Initial interface window. 
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When starting the program, by pressing the “Start” button of the interface (represented 

in Figure 4.38), the machine automatically enters the MAIN state (Figure 4.39). Within 

the MAIN state, there are three important sub-routines which are the INIT sub-routine, 

the TEST sub-routine and the MANUAL sub-routine. The INIT sub-routine takes care of 

the initialization of the machine, while the others are two possible modes to control the 

machine. Additionally, there is an IDLE state that resets some variables of the program 

and also is a middle state that waits for the operator to select in between the TEST mode 

and the MANUAL mode.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

To select the mode in which the machine operates, the operator has to press the button 

that corresponds to that mode in the interface window shown in Figure 4.40. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.39 - MAIN sub-routine. 

Figure 4.40 - Select operating mode interface window. 
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4.3.3. INIT sub-routine 

 
The INIT sub-routine is a very simple one, being composed by three blocks, as shown 

in Figure 4.41, two of which are sub-routines: the FIND_VELAQ, responsible for 

positioning the moving platform of the velocity acquisition sub-system to its lowest point, 

and the CHECK_ANVIL, that verifies if the anvil is attached to the carriage. 

Additionally, in the INIT sub-routine, the initial value of most of the variables is assigned. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4.3.4. FIND_VELAQ sub-routine 

 

This sub-routine is essentially used to position the moving platform of the velocity 

acquisition sub-system to its lowest point, as it was already stated. The logic behind this 

sub-routine is very simple: if the lower microswitch is not being pressed (given by the 

condition not(FDC_Inf)) the velocity acquisition sub-system´s motor forces the moving 

platform to go downwards until the mentioned microswitch is pressed. An overview of 

this sub-routine can be seen in Figure 4.42. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.41 - INIT sub-routine. 

Figure 4.42 - FIND_VELAQ sub-routine. 
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4.3.5. CHECK_ANVIL sub-routine 

 

The CHECK_ANVIL sub-routine, shown in Figure 4.43, is used to verify if the anvil 

is attached to the carriage. This sub-routine starts to check whether the photoelectric 

detector´s light beam is being interrupted or not. If the light beam is not being interrupted 

the program assumes that the anvil is not attached. If, on the other hand, the light beam is 

being interrupted, the carriage will be lifted to a defined height. If the light beam stays 

interrupted during that lift, the program assumes that the anvil is attached, if not, it is 

assumed that the anvil is disattached from the carriage. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4.3.6. TEST sub-routine 

 

The TEST sub-routine, like the name implies, is where tests with specific parameters 

are performed. Therefore, before the TEST sub-routine itself starts, it´s important to 

define the pretended values for the parameters of the test, which can be done by filling 

the fields in the interface window shown in Figure 4.44. Since the weights that attach to 

the anvil were already fabricated, the values for drop mass are discretized (lower value is 

8.5 kg and higher value is 56 kg), thus, the operator must always give that information. 

This means that the operator just needs to define the value of one more parameter, since 

all others can be calculated from the two given ones. So, there are three ways to define 

the parameters: 

 

• Type 1 - Drop mass and velocity on impact (ranging from 0.5 to 5 m/s); 

• Type 2 - Drop mass and impact energy (ranging from 1 to 700 J); 

• Type 3 - Drop mass and drop height (ranging from 0.012 to 1.274 m); 

 

Figure 4.43 - CHECK_ANVIL sub-routine. 
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After the definition of the pretended parameters, an interface window asking for the 

confirmation of those values will pop-up, like Figure 4.45 shows.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.44 - Set parameters interface window. 

Figure 4.45 - Confirmation of the chosen parameters interface window. 
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If the presented values are not the desired ones, the operator has the possibility to go 

back to the previous interface window and reinsert the parameters´ values, by pressing 

the “Change” button. If, on the other hand, the parameters´ values are confirmed, a new 

interface window will open (see Figure 4.46). This new window will inform the operator 

which set of weights should be attached to the anvil. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

After attaching the indicated set of weigths and letting the program know that this 

action was done by clicking on the “Confirm” button, the TEST sub-routine´s sequence 

can finally be started. Notice that, when this state is active it´s because the machine has 

already been through the INIT sub-routine at least once, meaning that the software is 

aware if the anvil is attached or not, even if previous tests or a release of the anvil through 

the manual mode were performed. This is guaranteed because the program constantly 

tracks the state of the anvil attachment to the carriage using the boolean variable 

“AnvilAttached”. So, if the machine knows that the anvil is not attached, it will start the 

TEST sub-routine by running the GRAB_ANVIL sub-routine. Contrarily, if the machine 

knows that the anvil is attached to the carriage, the sequence will continue without passing 

through the GRAB_ANVIL sub-routine.  

The next stage of this sub-routine is to define the impact point, which is done in two 

separate steps. The first step is to manually position the anvil-impactor assembly in 

contact with the specimen and then press the “Manual Done” button of the interface 

window (see Figure 4.47). Once the “Manual Done” button is pressed, the second step is 

initiated. In this step, the moving platform of the velocity acquisition sub-system will 

automatically try to find the second comb of the mechanical part fixed to the anvil. This 

is essentially done by going through the velocity acquisition sub-system´s whole 

stroke.up and down, until the optical detector´s light beam is interrupted. If the light beam 

isn’t interrupted, it means that the mechanical part is outside the velocity acquisition 

Figure 4.46 - Set weights interface window. 
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system´s stroke, meaning that the specimen´s dimensions are not adequate, so it must be 

redesigned and adjusted to that stroke. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

If the impact point was successfully found, it will be required that the “Manual Done” 

button is pressed a second time, so that a new interface window appears. This new 

window, that can be seen in Figure 4.48, will wait until the operator tells the carriage to 

lift the drop mass by pressing the “Begin Lift” button. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.47 - Manual control (TEST sub-routine) interface window. 

Figure 4.48 - Lift anvil-impactor assembly interface window. 
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Once the “Begin Lift” button is pressed, the carriage will lift the anvil-impactor 

assembly to the indicated, or calculated, height, given by the specified test parameters. 

After the carriage has arrived at the requested height, the TEST sub-routine will wait for 

the operator´s command of releasing the anvil. The releasing order is done by pressing 

the “Release” button in interface window shown in Figure 4.49. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

After the anvil completes its fall and the ARS acts, a new interface window will show 

up, Figure 4.50, where the operator can obtain the velocity on impact.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.49 - Release anvil interface window. 

Figure 4.50 - Results interface window. 
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This velocity on impact is calculated by the Expression 4.7: 

 

 

Where 𝑉𝑒𝑙𝑎𝑞 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 is the distance between combs of the mechanical part fixed on 

the anvil (which has a constant value of 0.014 m), 𝑡0 is the time instant when the first 

comb is detected and 𝑡1 is the time instant when the second comb is detected. 

To better understand the described TEST sub-routine´s sequence, the respective 

Stateflow´s diagram is presented in Figure 4.51. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 𝑉𝑒𝑙𝑟𝑒𝑎𝑙 =
𝑉𝑒𝑙𝑎𝑞 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒

𝑡1 − 𝑡0
 (4.7) 

Figure 4.51 - TEST sub-routine. 
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4.3.7. GRAB_ANVIL sub-routine 

 

The GRAB_ANVIL sub-routine (see Figure 4.52) allows the operator to manually 

move the carriage, so that it can attach to the anvil. To do so, the operator just has to softly 

descend the carriage towards the anvil´s  pivot, since the weight of the carriage is enough 

to force the fitting inside the clamp. This sub-routine is also controlled in the interface 

window presented in Figure 4.47. 

After pressing the “Manual Done” button, the program will check whether the anvil is 

attached or not by running the already explained CHECK_ANVIL sub-routine. If the 

anvil was not correctly fixed to the carriage, the program will return to the previous phase 

of this sub-routine, so that the attachment can be retried.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4.3.8. MANUAL sub-routine 

 

When the “Begin Manual” button is pressed (present in the interface window shown 

in Figure 4.40), the manual control interface window (Figure 4.53) is made visible and 

the MANUAL sub-routine is initiated, allowing the control of each part of the machine 

independently from the others and from a logic sequence. This way, the operator can: 

Figure 4.52 - GRAB_ANVIL sub-routine. 
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move the carriage up or down, move the velocity acquisition sub-system´s moving 

platform up or down, activate or deactivate the ARS and release the anvil. Therefore, the 

operator can control, with absolute freedom, all the sub-systems of the machine, allowing 

for a quick series of tests without having to fill the parameters´ values. This functionality 

can be useful for when the operator doesn’t know the parameters´ values in which the 

tests should be done, giving him an idea to start with. The associated Stateflow´s diagram 

is shown in Figure 4.54. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.53 - Manual interface window. 

Figure 4.54 - MANUAL sub-routine. 
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4.3.9. SOS sub-routine 

 

If, at any moment, a physical emergency button or a virtual emergency button (of any 

interface window) is pressed or the carriage passes through the upper limit of its stroke 

the SOS sub-routine is initiated. When this sub-routine is activated, all the current actions 

of the drop weight machine are interrupted, because its S0 state deactivates all output 

variables, except the variable that controls the ARS, which is activated (see Figure 4.55). 

 

 

 

 

 

 

 

 

 

 

 

 

After the S0 state, the machine enters the MANUAL_EMERGENCY sub-routine, that 

is equal to the MANUAL sub-routine, allowing the operator to move each sub-system 

independently, using the buttons in the emergency interface window presented in Figure 

4.56. This enables the operator to solve the issue that triggered the emergency situation. 

When the problem is solved, the “Emergency Done” button should be pressed, and the 

program will return to the MAIN sub-routine (see Figure 4.39). 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.55 - SOS sub-routine. 

Figure 4.56 - Emergency interface window. 
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In a way of summarizing the drop weight machine´s functioning, Figure 4.57 shows a 

flow chart with a simplified command sequence. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.57 - Command sequence´s flowchart. 
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Adhesive Joints Tests 
 

In this chapter the validation of the drop weight machine is done by performing some 

impact tests on two different types of specimens. First, the operating conditions are 

defined, then, the results obtained in the Rosand IFW5 and in the ADFEUP´s drop weight 

machine are presented and compared. Additionally, these results are also compared with 

numerical data results obtained from simulations made on Abaqus. In these simulations, 

the same impact load is applied to a modelled adhesive joint, equal to the ones used on 

both machines. 

At the time these tests were made, only a LabAmp with one input channel was 

available, instead of the pretended 4 channels LabAmp, due to a delivery mistake. For 

this reason and because there was a lack of specimens of each type, the tests made can´t 

contemplate the results of both implemented piezoelectric sensors. It was decided that the 

tests would only be performed to validate the press force sensor, since it would be a direct 

comparison with Rosand IFW5 machine, which also uses a load cell. 

 

 

5.1. Test parameters  

 

Since Rosand IFW5´s results were already acquired for previous research projects of 

ADFEUP´s members, the test parameters for the different specimens were already 

defined. In the next sections, a description of the different tested specimens, as well as 

the test parameters, is presented. 

 

 
5.1.1. Specimen of type 1 
 

The first specimen to be tested is a single lap joint adhesively bonded with XNR6852 

E−3 and in which both substrates are from carbon fibre reinforced epoxy.  
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The XNR6852 E−3 is an epoxy-based adhesive that combines high strength, ductility 

and impact resistance, which are important properties in the automotive industry. The 

carbon fibre reinforced epoxy is a material with anisotropic properties, meaning that it 

has good properties along the fibre direction (like strength and stiffness), but not when 

considering shear and transverse properties. For this reason, this type of materials is not 

frequently used in structural bonding. However, combining it with the mentioned 

adhesive, can achieve a joint capable of withstanding high impact loads in the fibre 

direction. An example of the described joint is presented in Figure 5.1. 

 

 

 

 

Figure 5.1 - Single lap joint of type 1. 

 

The test parameters used to test this joint were:  

• Drop weight: 26.5 kg; 

• Velocity on impact: 3.48 m/s; 

• Temperature: 24 ºC. 

 

5.1.2. Specimen of type 2 
 

This specimen is very similar to the previous one, since it uses the same materials for 

the substrates and the same adhesive. The main difference between the two specimens is 

the bonded area, which in this specimen is half the area of the first. For this single lap 

joint, the test parameters used were slightly different in terms of velocity: 

• Drop weight: 26.5 kg; 

• Velocity on impact: 3 m/s; 

• Temperature: 24 ºC. 

 

 
5.2. Results and discussion 
 

The results of the tests are depicted in Figure 5.2 and Figure 5.3. We verify that, for 

each type of specimen, the registered maximum forces are similar on both drop weight 

machines. In the case of the specimen of type 1, when comparing with the simulation 

results on Abaqus, a difference of 4.4 kN for the Rosand´s and 3.4 kN for ADFEUP´s 

machine is noticed. This leads to a deviation of 10 % of the expected value, but 

considering that this is the result of experiments that are affected by various factors, it is 

not a significant difference. In the case of the specimen of type 2, the results show that 

the maximum force obtained in the ADFEUP´s drop weight machine are very similar to 

what the simulation´s results predict. Rosand´s results show the same maximum force 

deviation as seen for the previous specimen and, although they are not significant 
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differences, they can be explained by the type of load cell used. The KISTLER 9333A 

[40] load cell applied to the ADFEUP´s machine is pre-loaded and pre-calibrated, which 

makes it relatively insensitive to the fastening torque. In contrast, the load cell installed 

in the Rosand machine does not have these characteristics and it´s assembled by a pass-

through single bolt. This type of assembly means that the load cell is quite sensitive to 

the pre-load of the mounting screw and requires regular calibration after reassembly, 

which is a likely factor to explain these differences. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.2 - Impact force versus time for the specimen of type 1 obtained in the ADFEUP´s drop 

weight machine (orange), Rosand´s machine (gray) and numerical data from Abaqus (blue). 

Figure 5.3 - Impact force versus time for the specimen of type 2 obtained in the ADFEUP´s drop 

weight machine (orange), Rosand´s machine (gray) and numerical data from Abaqus (blue). 
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Now, considering the duration of the impact, we observe significant differences 

between the results on the two machines and on both types of specimens. In the case of 

the specimen of type 1, the impact duration is 0.73 ms for the Rosand´s and 0.58 ms for 

the ADFEUP´s machine. In the case of the specimen of type 2, the impact duration is 

0.755 ms for the Rosand´s and 0.55 ms for the ADFEUP´s machine. These differences 

can be explained by the way the specimens are fixed on the structure designed for that 

purpose in each machine. While in ADFEUP´s drop weight machine the specimen fixing 

structure has been purposely designed to be very rigid, presenting minimal deformation 

during the whole impact test, in the Rosand´s machine the specimen fixing structure (see 

Figure 5.4) is not aligned with the load path and can bend more easily, introducing 

deformations that can influence the final result. This specimen fixing structure is also 

relatively crude, using only two small screws to create clamping pressure in a small 

portion of the specimen, increasing the likelihood of specimen slippage during the test. 

These considerations are supported by the fact that Rosand machine´s impact force curve 

shows many irregularities in its shape, which, associated with the vibration of that 

structure, contributes to a longer impact. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.4 - Rosand machine´s specimen fixing structure. 

 

Abaqus simulates the behaviour of materials based on their elastic and cohesive 

properties and, therefore, can accurately predict the elastic behaviour and the failure load 

of the adhesive joint. However, due to the complex phenomena associated with the 

fracture process of the joint, it can´t accurately predict the final stages of the impact test. 

Therefore, the impact force curve obtained via simulation can only be used to a certain 

extent. However, it´s possible to see that the duration on the simulation´s curve tends 
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closer to the duration obtained on ADFEUP´s drop weight machine. There are also some 

high frequency oscillations that can be noticed in the simulation´s curve, but they are 

absent from the experimental data. This can be associated to the particularities of the 

numerical model, as the damping properties of the materials are not captured by the 

model, but exist in the experimental tests. The result is a smoother experimental curve, 

but that still fits the overall trend indicated by the numerical data. 

The ADFEUP´s drop weight machine´s repeatability is illustrated in Figure 5.5. 

Although some variability on the force pulses is observed, this is a common trait in 

adhesive joint´s experimental data.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.5 - Three different experimental tests for specimens of type 1. 

 

Althought the results shown seem to validate the ADFEUP´s drop weight machine for 

adhesive joints testing, additional tests are still required in order to obtain more solid 

conclusions. 
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Conclusions and Future Developments 
 

 

This chapter concludes this dissertation´s report, making considerations about the 

achieved objectives and presenting some proposals for future developments on this drop 

weight machine. 

 

6.1. Conclusions 

 

As stated in section 1.2, the main objectives for this dissertation´s work were to 

implement the ARS and the new anvil-impactor assembly, to improve the electrical and 

pneumatic circuits, to develop the command sequence and to create a graphical interface 

for ADFEUP´s drop weight machine. After achieving these objectives, some tests were 

performed in order to validate the work done. The final result of this dissertation´s work 

on the drop weight machine can be seen in Figure 6.1. 

The ARS has been successfully fabricated and implemented. However, due to a 

delayed delivery of the shock-absorbers, the mechanism has not yet been tested. 

The new anvil-impactor assembly was designed, fabricated and implemented, 

including a piezoelectric accelerometer and a piezoelectric press force sensor in its 

mounting. To validate its construction, a dynamic study of the interaction between the 

anvil-impactor assembly and the ARS was done. The results of that study show that the 

assembly was well designed, although, when performing drop tests with a drop mass of 

8.5 kg from the highest point, a high tensile force can be noticed (5.9 kN). This force can 

damage the press force sensor, which can only withstand tensile forces below 5 kN. 

However, since it´s possible to obtain the same amount of impact energy using different 

test parameters, this situation can be avoided. Despite that, the piezoelectric sensors were 

implemented and it was proven that, at least, the press force sensor can correctly obtain 

data. Once the LabAmp with 4 input channels is provided and more specimens are 

available, the accelerometer can be tested.  
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Both electrical and pneumatic circuits have been improved, including various 

additional components that were previously missing. It was concluded that both circuits 

are working as expected. Additionally, in the eventuality that these circuits ever need to 

be changed or reviewed, schematics have been made to ensure that the process is as 

simple as possible.   

Similarly, the command sequence has also been improved, having many changes from 

the one proposed by Sousa [6]. The final result is a completely functional program that 

allows two different control modes for normal operation, as well as an emergency mode 

to minimize the risk of unexpected situations. 

To easily control the implemented command sequence, a graphical interface was 

created and thoroughly tested, so that its correct functioning was assured. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.1 - Final state of the ADFEUP´s drop weight machine. 
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Conclusions and Future Developments 

Finally, some impact tests were performed in the ADFEUP´s drop weight machine. 

The results were posteriorly compared with the ones obtained in another machine and 

with numerical data collected from a simulation made on Abaqus, in order to validate 

ADFEUP´s drop weight machine functioning and, consequently, the work done in this 

dissertation.  

To complement the information given in this dissertation´s report, an article entitled 

“Drop Weight Machine for Adhesive Joints Testing” was written and submitted to the 

“Journal of Testing and Evaluation”. 

Despite these objectives were successful and a functioning drop weight machine was 

obtained, there is still some room for more development. Some proposals for future 

developments are presented in the next section. 

 

6.2. Future developments 
 

The conception of ADFEUP´s drop weight machine is a large project that involved 

many contributors, being the focus of five different dissertations (including this one). 

Although the machine is ready to test all kinds of materials and obtain the relevant data, 

there are still aspects that can be improved and additional sub-systems that can be 

implemented so that the machine can reach its final state. 

Firstly, it´s of great importance that the correct functioning of the accelerometer and 

the ARS is verified, in order to see if any significant changes to the machine´s design are 

required.  This can be done once the 4 input channels LabAmp and the shock-absorbers 

are provided. 

It´s also important that a physical barrier is implemented, so that the safety of the 

operators is guaranteed. This is needed not only to separate the user from the falling anvil, 

but also to prevent projectiles to be thrown around. To be able to it, an inductive sensor 

that detects whether the barrier is open or not should be implemented and then coded in 

the Simulink Stateflow®. 

Currently, the displacement during the impact is being obtained by double integrating 

the acceleration´s data measured by both piezoelectric sensors. Thus, a way that doesn´t 

require post-process calculations to get the displacement is needed. The proposed solution 

is to design a new tool, coupled with a sensor that measures the linear displacement 

(LVDT or a linear potentiometer), to adapt to the specimen fixing structure. 

In what investigation in the adhesives´ field concerns, an environmental chamber must 

be designed, so that adhesive joints´ properties can be tested in different surrounding 

conditions. To do that, one should consider the available space in the specimen fixing 

structure, as well as the sensors that will measure the conditions inside the chamber. 

Additionally,  it will also be required to create a temperature and humidity controller in  

MATLAB Simulink. 

Still regarding to adhesive´s investigation, the specimen fixing structure should have 

accessories that allow adhesive joints to be tested with different types of loads, since the 

only type possible at the moment is tensile load.  

Finally, since the data acquisition start is controlled by the provided Kistler software, 

it´s important that this function can be integrated in the current graphical interface, so that 

the operation of the machine is made easier. 
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Mechanical Drawings  
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Appendix B 

 

Mechanical Drawings  

Anvil-Impactor Assembly 
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Appendix C 

 

Matlab Simulink  

Dynamic Behaviour Model 
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Angular position throughout time, ϴ(t), when drop mass is 56 kg 
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Angular position throughout time, ϴ(t), when drop mass is 8.5 kg 
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Appendix D 

 

Electrical circuit 
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Appendix E  

 

Software Variables 
 



Variable´s Name 
Initial 

Value 
Type Function 

EncoderPos - Input 
Informs encoder current position 

(in counts) 

manualVel - Input Sets carriage velocity 

CalcHeight - Input Calculated/inserted drop height 

AtPos - Input Informs if carriage is at position 

Emergency - Input Declares an emergency  

emergencyDone - Input 
Declares emergency situation 

handled 

motorUp_Em - Input 
Orders to move carriage upwards 

(when in emergency mode) 

motorDown_Em - Input 

Orders to moves carriage 

downwards (when in emergency 

mode) 

manualRelease_Em - Input 
Orders to release anvil (when in 

emergency mode) 

manualVELAQ_Down_Em - Input 

Orders to move velocity 

acquisition´s moving platform 

down (when in emergency mode) 

manualVELAQ_Up_Em - Input 

Orders to move velocity 

acquisition´s moving platform up 

(when in emergency mode) 

Rcs_activation_Em - Input 

Orders the anti-rebound sub-

system activation (when in 

emergency mode) 

Rcs_deactivation_Em -  

Orders the anti-rebound sub-

system deactivation (when in 

emergency mode) 

beginManual - Input Starts manual mode 

manualDone - Input Ends manual mode 

manualRelease - Input 
Orders to release anvil (when in 

manual mode) 

beginTest - Input Starts test mode 

cancelTest - Input Cancels test mode 

Test_done - Input Informs the test is finished 

testLift - Input 
Orders to lift carriage to the 

CalcHeight 

testRelease - Input 
Orders to release anvil (when in 

test mode) 

motorDown - Input 

Orders to move carriage 

downwards (whether in test or 

manual mode) 

motorUp - Input 

Orders to move carriage 

upwards (whether in test or manual 

mode) 



ManualVELAQ_Up - Input 

Orders to move velocity 

acquisition´s moving platform up 

(when in manual mode) 

ManualVELAQ_Down - Input 

Orders to move velocity 

acquisition´s moving platform 

down (when in manual mode) 

Rcs_activation_man - Input 

Orders the anti-rebound sub-

system activation (when in manual 

mode) 

Rcs_deactivation_man - Input 

Orders the anti-rebound sub-

system deactivating (when in 

manual mode) 

sensorInd - Input 
Signals that carriage is in its 

upper limit 

sensorAnvil - Input 
Signals that anvil is right under 

the carriage 

sensorZero - Input 
Signals that the optical 

detector´s beam is being interrupted 

currTime - Input Informs the current time 

cylinder_sensor - Input 
Informs position of the anti-

rebound sub-system´s cylinders 

FDC_Inf - Input 

Informs that velocity acquisition 

sub-system´s moving platform is at 

its lowest point 

FDC_Sup - Input 

Informs that velocity acquisition 

sub-system´s moving platform is at 

its highest point 

VELAQ_DOWN 0 Output 

Order´s the velocity acquisition 

sub-system´s moving platform to 

descend 

VELAQ_UP 0 Output 

Order´s the velocity acquisition 

sub-system´s moving platform to 

ascend 

VELAQ_Enable 1 Output Enables the L298N board 

VELAQ_Power 1 Output 

Enables the powering of the 

velocity acquisition sub-system´s 

motor 

PosControl 0 Output 
Starts the position control of the 

carriage 

Ref 0 Output 
Sets the height for the position 

of the anvil 

motorVel 0 Output 
Defines velocity of the lifting 

sub-system´s motor 



 

AnvilRelease 0 Output Orders to release the anvil  

Forward 0 Output 
Orders carriage to move 

upwards 

Reverse 0 Output 
Orders carriage to move 

downwards 

InductiveOverride 0 Output 
Overrides the inductive detector 

signal 

realVel -1 Output Informs real impact velocity 

Valve2 0 Output 
Activates solenoid that controls 

anti-rebound sub-system´s valve 

emergency_output 0 Output 
Signals that emergency situation 

was declared to the interface 

a 0 Output 

Informs the interface that  the 

point of impact was defined and the 

anvil is ready to be lifted 

vel_ready  0 Output 
Informs the interface that 

realVel can be collected  

AnvilAttached 0 Local 
Informs if anvil is attached to 

the carriage or not 

t0 0 Local 
Instant that the first comb passes 

through the optical detector 

t1 0 Local 
Instant that the second comb 

passes through the optical detector 

AnvilHeight 0.18 Const. 
Lifting height when testing if 

anvil is attached 

VELAQ_Dist 0.014 Const. Distance between the combs 


