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Resumo

O reconhecimento de expressões faciais é uma área particularmente interessante em visão com-
putacional, pois traz inúmeros benefícios para a nossa sociedade. Benefícios esses que podem ser
traduzidos num grande número de aplicações no âmbito da neurociência, psicologia e segurança.
A relevância do tema reflete-se na vasta literatura já produzida que descreve sinais notáveis de
progresso. No entanto, o desenvolvimento e avanço de novas abordagens ainda enfrenta vários
desafios. Esses desafios compreendem variações na posição da cabeça, variações na iluminação,
oclusões e erros de registro. Um dos focos desta área é alcançar resultados semelhantes quando se
passa de um ambiente controlado para um cenário mais próximo da realidade.

Embora o reconhecimento de expressões faciais tenha sido abordado em projetos considerav-
elmente diferentes, é exequível dar enfâse à necessidade de chamar à atenção para o design de uma
interface que simula o envolvimento do paciente nos cuidados de saúde como uma aplicação fu-
tura. Uma tendência crescente tem sido observada, no entanto, ainda há algumas questões abertas
que precisam de obter resposta para causar um impacto significativo no âmbito da saúde.

O objetivo deste trabalho é estudar qual seria uma boa abordagem para o reconhecimento de
expressões faciais. Adicionalmente, estaria enquadrado com uma aplicação futura que permitiria
ser usada no contexto da reabilitação com recurso a jogos sérios. Em outras palavras, seria uma
abordagem baseada em jogos interativos que iria inferir a satisfação dos pacientes durante o jogo.
Na revisão bibliográfica, serão fornecidas bases teóricas para compreender na íntegra este trabalho,
bem como propostas de algoritmos anteriores para reconhecimento de expressões faciais. Além
disso, esta tarefa de reconhecimento como um sistema automático será descrita passo a passo.
A metodologia segue a ordem em que as etapas foram executadas. O passo inicial foi localizar
os rostos nas imagens. Posteriormente, a extração de características recorrendo a dois métodos
reconhecidos: Histograma de Gradientes Orientados e Padrões Binários Locais. Os resultados são
apresentados para duas bases de dados, CK+ e AffectNet.

Finalmente, foi possível obter uma precisão de 96,55% para a base de dados CK+. Para
uma base de dados em que os participantes estão a posar os algoritmos considerados tendem
a ter bom desempenho, enquanto que uma base de dados espontânea (AffectNet) resulta num
desempenho inferior. Contudo, com resultados ainda satisfatórios, uma vez que as imagens estão
a ser classificadas considerando 7 expressões possíveis, mais a expressão neutra e estão a ser
usadas bases de dados com um desequilíbrio no número de imagens por expressão.
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Abstract

Facial expression recognition is a particularly interesting field of computer vision since it brings
innumerable benefits to our society. Benefits that can be translated into a large number of ap-
plications in subjects such as, neuroscience, psychology and security. The relevance of the topic
is reflected in the vast literature already produced describing notable signs of progress. How-
ever, the development and the advancement of new approaches is still facing multiple challenges.
Challenges include head-pose variations, illumination variations, identity bias, occlusions, and
registration errors. One of the focus in this field is to achieve similar results when moving from a
controlled environment to a more naturalistic scenario.

Though facial expression recognition has been addressed in considerable different projects, it
is feasible to emphasize the call for attention to the design of an interface that simulates addressing
patient engagement in healthcare, as a future application. A rising tendency has been noticed,
however, there are still some open questions need to be answered to make a significant impact on
health care.

The goal of this work is to study what would be a good approach to perform facial expression
recognition. Additionally, a framework for future application that would enable dealing with a
rehabilitation context using serious games. In other words, it would be an interactive game based
approach to infer the patients contentment while playing. In the literature review, theoretical basis
needed to fully comprehend this work will be provided as well as the previous algorithm proposals
for facial expression recognition. Furthermore, facial expression recognition as an automatic sys-
tem will be described step by step. The methodology follows the order in which these steps were
performed. The initial step was to locate the faces in the images. Subsequently, the extraction of
features by two acknowledged methods, the Histogram of Oriented Gradients and the Local Bi-
nary Patterns. Latterly, the classification was performed using Random Forest and Support Vector
Machines. The results were presented for two datasets, the CK+ and the AffectNet dataset.

Finally, it was possible to obtain 96.55% as the accuracy value for the CK+ dataset. For a
posed dataset the considered algorithms tend to perform well whereas for an in-the-wild dataset
(AffectNet) the outcome is a lower performance. However, the results are still satisfactory since
the face images are being classified into 7 possible expressions, plus the neutral and it is been used
imbalanced datasets.
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“True worth is as inevitably discovered
by the facial expression, as its opposite
is sure to be clearly represented there.
The human face is nature’s tablet, the

truth is certainly written thereon.”

Johann Kaspar Lavater
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Chapter 1

Introduction

The development in the field of facial expression recognition is already bringing and is expected

to bring even more benefits to our society due to its significant growth in the last years. A consid-

erable amount of applications is present in subjects as neuroscience, psychology and security [14].

Notable progress has been made in the field, however, despite the development and the advance-

ment in new approaches, there are still barriers that are not easily overcome. Moreover, it is not

yet possible to draw irrefutable conclusions in the expression recognition when performed in an

uncontrolled environment.

1.1 Context

In the framework of a future application to create serious games in a rehabilitation context ad-

dressing patient engagement in healthcare, this thesis emerged as the initial study of approaches to

perform FER. The target of this ultimate application would be the interaction between the medical

staff and the patients that had suffered from breast cancer and would be then going through the

rehabilitation process.

Breast cancer has shown to be the most common malignant tumor in women. In Western

Europe, its incidence is approximately 90 new cases per 100,000 inhabitants [15]. Despite these

figures, mortality in most countries is considerably low. This means that the number of survivors

who need to learn how to live with the undesirable side effects of breast cancer treatment is in-

creasing year after year. There are 4 physical restraints that can be a consequence of the treatments

performed to save or extend the lives of those affected. These include impaired mobility, strength,

and stiffness of the upper limb, the onset of pain, among other effects that can be identified.

Regarding physical recovery, as previously mentioned it is recommended that the patient should

attend some rehabilitation sessions. However, during these sessions restrictions on mobility are

often not visible or easily quantifiable. This is because before the person starts showing a decrease

in mobility, such as failing to raise the arm to the head and at a certain point only being able to raise

it up to shoulder height, that person will probably begin to express some difficulty in performing

this movement. In this context, it will be considered the problem of facial expression recognition

1
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that in a future application will be able to quantify the patient’s expression according to a specific

model using computer vision.

1.2 Motivation and Objectives

As it was shown in the example above, in a clinical environment, recognition of facial expressions

performs a significant role since it defines if the patient is comfortable with the movements that

he or she is executing [16]. Accordingly, the great difficulty in this recognition is the fact that it

would be considered an uncontrolled environment. This means the patient being evaluated would

not be necessarily cooperating, also the acquisition system to use would be low-cost, so it would

not be the most appropriate for that purpose. Other problems, now concerning the methods used

should be equally taken into consideration. These methods are not guaranteed to be robust to

certain characteristics of the chosen data, such as possible variations in head position, variations

in illumination or facial occlusions caused by glasses or facial hair.

Data from the rehabilitation sessions was not possible to access and use due to the time con-

straint to obtain authorizations as well as to the raise of ethical concerns. Therefore, what is

intended with this dissertation, is to be able to automatically recognize facial expressions in a

chosen set of visual data. The validation will happen in a future application enabling to draw

conclusions about the patient’s state regarding the complications resulting from the treatment of

breast cancer that the patient tries to revert in the rehabilitation sessions. Thereby, initially an

existent methodology or group of methodologies for the recognition of facial expressions should

be chosen, then they should be studied and, in the future, validated.

1.3 Contributions

The major contributions of this thesis to the scientific community are the following :

• The implementation of a framework for facial expression recognition using conventional

techniques achieving accuracy rates close to some state-of-the-art algorithms.

• A comparative study of algorithms used to perform the recognition task is presented in this

dissertation. The relevance of this study encompasses the fact that it describes the process

of becoming acquainted with different approaches for the task at hand. This might be useful

as a starting point if one has little knowledge on the subject and intends to study and explore

it more deeply.

1.4 Document Structure

Apart from the introduction, this document contains four more chapters. In chapter 2, it is de-

scribed the background information and state of the art on recognition of facial expression classi-

fication and the existing methods. Chapter 3 addresses the methodology including the approaches
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and methods that have been found to be the most feasible and adequate to perform facial expres-

sion recognition. In chapter 4, the results are presented and discussed. Chapter 5 refers to the

conclusions and the potential future work for the dissertation.
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Chapter 2

Literature Review

This chapter will explain the theoretical basis needed to fully comprehend this thesis and study the

current state of Facial Expression Recognition as well as to understand how an automatic facial

expression recognition system works.

2.1 Facial Expressions

By the time Charles Darwin wrote "The Expression of Emotion in Man and Animals", in the 19th

century, the willingness to study and perceive Facial Expressions was notably encouraged [4]. This

increasing interest also mirrors the notoriety that has been given to nonverbal communication [17]

since the subsequent models highlight their employment as a communicative tool.

Facial Expressions are voluntarily or involuntarily employed as a powerful nonverbal clue by

people when interacting with each other [18]. They can provide meaningful information when it

comes to communication, by giving feedback about our level of interest, the level of understanding

of the transmitted message or simply a way of showing our desire to be the next ones to have the

opportunity to talk. Thus, it enables people to communicate more efficiently. Since others can be

acknowledged of an individual’s emotional state, motivations or intention to deliberately engage in

a behaviour. Therefore, the question that arises now is through which mechanisms are the human

vision system endowed with the ability to perceive facial expressions. To do that, the focus should

be the understanding of the three types of facial perception [19]:

• Holistic;

• Componential;

• Configural.

Regarding the holistic perception models, the human face is perceived as a gestalt (a whole), fea-

tures are not seen as isolated components of the face. Componential perception, on the other hand,

considers that in the human vision system there are determined features separately processed. Fi-

nally, in configural processing the spatial relations of two parts of a face (e.g. distance between

5
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mouth and nose) can be variant or invariant depending on the kind of performed movement or the

person’s facial viewpoint [20].

2.2 Facial Expressions: Methods for Assessing

In the present section, two methods for measuring facial expressions are addressed. Additionally,

the advantages and disadvantages of each method.

2.2.1 Electromyography

The first method to be considered is the electromyography (EMG). This technique is for assessing

the electrical activity created by the muscles was applied to identify the activation of some facial

muscles. Over a long period of time owing to some technical issues just two different facial mus-

cles M. zygomaticus major (smiling), M. corrugator supercilii (frowning) could be studied. Only

recently, the performance of this technique has reached satisfactory results due to the augmented

sensitivity [21]. The development of this procedure allowed the identification and record of the

activity of slightly visible face muscles. Along with the muscles mentioned before, M. levator

labii superioris (disgust) is also one of the muscles that provides useful information when trying

to assess facial expression.

Figure 2.1: Facial Muscles. From [1]
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The advantage of the facial electromyography is the fact that it is a precise method, able to

perceive the subtle visible facial muscle activity that could not be detectable to the naked eye [22].

It is even capable of registering the response when the participants were taught to suppress their

facial expressions. Concerning the disadvantages, this is an intrusive method [23] which means

that is highly complex to perform and implies a lot of constraints to the experimental context.

This makes it really difficult to use the EMG method really difficult to use the EMG method on

participants in a real environment [21].

2.2.2 Facial Action Coding System

The second method, Facial Action Coding System (FACS) was first mentioned by Carl-Herman

Hjortsjö, a Swedish anatomist, in the book "Man’s face and mimic language" [24]. Afterwards,

Paul Ekman and Wallace Friesen in 1978 adapted the anatomist previous work and published [25].

Finally, in 2002, a minor revision was carried out with the contribution of Joseph Hager leading to

the following publication [26].

FACS is a system that implies the analysis of changes in the expressions of a person’s face, the

identification of certain facial movements, and the posterior categorization into emotional expres-

sions [22]. Thus, is used to describe facial behaviour [23]. To be performed, the human face is

divided into individual components defined by the muscle movements [23]. These individual com-

ponents are the basic units of measurement in FACS called Action Units (AU). The contraction of

certain facial muscles is what defines an AU, it can be individual (see Figure 2.2) or combined (see

Figure 2.3 ) [27] and produces a unique defined image feature. One example is the contraction of

the M. frontalis (pars medialis). When it occurs, the rising of the inner part of the eyebrows can

be observed, this consists in the AU 1 [28].

Table 2.1: Number of the AU and correspondent description. Adapted from [11].

AU Description AU Description AU Description
1 Inner Brow Raiser 13 Cheek Puller 25 Lips Part
2 Outer Brow Raiser 14 Dimpler 26 Jaw Drop
4 Brow Lowerer 15 Lip Corner Depressor 27 Mouth Stretch
5 Upper Lip Raiser 16 Lower Lip Depressor 28 Lip Suck
6 Cheek Raiser 17 Chin Raiser 29 Jaw Thrust
7 Lid Tightener 18 Lip Puckerer 31 Jaw Clencher
9 Nose Wrinkler 20 Lip Stretcher 34 Cheek Puff
10 Upper Lip Raiser 21 Neck Tightener 38 Nostril Dilator
11 Nasolabial Deepener 23 Lip Tightener 39 Nostril Compressor
12 Lip Corner Puller 24 Lip Pressor 43 Eyes Closed
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Figure 2.2: Upper and Lower AU examples. From [2].

Figure 2.3: Examples of combined AU. Adapted from [3].

Table 2.2: Criteria to define emotions in facial action units. Adapted from [11].

Emotion Facial Action Units
Anger AU combination should include AU23 and AU24
Contempt AU14
Disgust AU9 or AU10
Fear AU combination of 1+2+4
Happiness AU12
Sadness AU combination of 1+4+15 or AU11
Surprise AU combination of 1+2 or AU5

The advantage of FACS when compared to the EMG method is that the first one is non-

intrusive which means it can be easily undertaken in any environment. The performance of FACS

can also vary depending on whether it is executed manually or automatically. Automatic FACS

allow the attainment of more precise results since the subjects can be studied without biases by the

researcher [21]. So, it provides an objective and reliable analysis of expressions [29]. Also, it does

not only measure the emotion-relevant movements but all facial movements [22]. On the other

hand, the disadvantage when executed manually is its subjectivity as well as the time required to

perform this method as it is severely labour-intensive [23].

Of the two methods described above, the observational coding scheme Facial Action Systems

is the most notable and used for facial measurement [30].
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2.3 Automatic Facial Expression Recognition

Automatic Facial Expression Recognition has been an intensely developed field of research due

to the interest that has been given to its large number of applications. As it allows to create adap-

tive human-computer interfaces, which detect and interpret the human expressions and adapt the

interface accordingly [31]. Corneanu et al. [4] provided a summary of some of those applications.

Where reference is made to “Robovie”, a robot designed to communicate with humans [32], as

well as to a pain detection system that monitors the patient’s progress [33, 34]. Further exam-

ples include the improvement of e-learning scenarios by identifying frustration in students, the

improvement of gaming experience, for instance, by adjusting the level of difficulty and, at last,

the detection of drowsy driving [35].

Samal et al., Pantic et al. and Fasel et al. [36, 37, 38] are extensive surveys of the past achieve-

ments that refer to the end of the 20th century, the beginning of the 21st century. In these, the

early works in the field describing the issues that researchers were dealing with at the time can

be found. Overcoming variations in the face appearance, for instance, in pose or size [39]. Since

these early works addressed barely a single part of the question. After all, they were the result of

the first attempts to automatically analyze facial expressions [36, 40]. Afterwards, it is described

the performance of facial expression recognition systems in samples generated exclusively from

controlled scenarios. In such scenarios, the face is in frontal view due to the camera positioning.

Moreover, it is known beforehand that a face is in the image [37].

Zeng et al. [41] and Corneanu et al. [4], on the other hand, gather the literature more recently

produced. Their focus was the methods and specifications required to perform the recognition [42].

In [4], Corneanu et al. proposed a way of categorizing these techniques (see Figure 2.4), splitting

into two major components, namely, parametrization and recognition of facial expression. The

first branch, parametrization is the method that assigns facial expressions to a coding scheme;

FACS, for example. Concerning the automatic facial expression recognition, the general approach

is detailed in four key steps [4]. These will be described in more detail in the next sub-section.

• Face Detection — The purpose of the first step is to find out if the image contains a face

and where.

• Feature Extraction — Then, the extraction of the features on the obtained samples will be

performed, which results in a feature vector.

• Feature Selection — This step consists of selecting the most relevant features from a

dataset, generating a new subset of features.

• Expression Classification — At last, extracted features of the second step are used as an

input into the classifier and finally the classifier generates an output with the recognized

expression.
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Figure 2.4: Categorization of Automatic Facial Expression Recognition Systems. Adapted
from [4].

2.3.1 Face Detection

In this sub-section, the localization of the face in the images will be discussed. There are some

applications that do not depend and do not need to perform this step. This happens because the

face images used are contained in a normalized dataset. In that situation, the face images are

already in a standardized way (e.g., in a criminal dataset). Also, it can be the case that it is

not required to know where the face is, namely, in a deep learning approach. However, when

this does not happen, the researcher has to deal with images that contain more than the face in

question. In this case, there is no other way than performing face localization [43]. Thus, a

procedure has to be undertaken to localize and extract the face region from the background. Face

localization techniques can be branched in two distinct groups of methods [4]: detection and

segmentation. The detection approach is the most frequently used. It can be dealt with as a

classification problem where different defined regions within an image are classified as a face or
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non-face. While segmentation, on the other hand, is the technique in which the aim is to link a label

to each pixel of the image. Thereby, the image is divided into a few segments each one assigned

to a label, in which some share the label, that means these segments have identical characteristics.

This results in a simpler representation of the image which provides clearer analysis.

Besides that, it should also be taken into consideration the fact that for a distinct types of

images, there should be different ways of proceeding. For instance, in the case of RGB1 images,

the Viola-Jones algorithm [8] is the most used and accepted. It is available in the OpenCV2

library. Furthermore, this algorithm main principle is based on a cascade of weak classifiers. It is

considered to be fast since it rapidly eliminates the parts that visibly do not contain face images [8].

However, it has some limitations caused by the different pose variations and when dealing with

large occlusions. In order to overcome these limitations methods with multiple pose detectors or

probabilistic approaches should be considered. Also, more specific methods such as CNN or SVM

should be taken into consideration. For 3D images, the way of proceeding provides the possibility

of obtaining better results and a more detailed feature base. So, the aim is to recognize any face

regardless of the pose orientation of the input image. To do that, curvature features are used to

find high curvature components of the face (e.g., the nose tip).

2.3.2 Dimensionality Reduction

Dimensionality reduction of high dimensional data is an essential step when it is intended to use

this data as the input of a machine learning algorithm. In the present case, the handled data are

images and to avoid a problem referred to as the curse of dimensionality [44] it has to be performed

a transformation into a low dimensional representation of the data. Moreover, a great number of

features can affect negatively the learning algorithms as it increases the risk of overfitting, it is

more computationally costly, decreases its performance, and requires more memory availability.

From [45], dimensionality reduction is branched out into feature extraction and feature se-

lection. Feature extraction is a transformative method in which the data is projected into a low

dimensional feature space. On the other hand, feature selection consists of selecting the most rel-

evant features from the initial dataset, as if it was a filter, creating a new subset of features. These

two branches will be studied below.

2.3.3 Feature Extraction

The next step in this system is feature extraction, it can be described as the procedure that allows

the extraction of relevant data from a face.

Relevant data such as face regions, measures, and angles are intended to be obtained [43]. To

do that, there are two different types of approaches that should be considered: geometric-feature

based methods and appearance-feature based methods. Geometric features give information about

shape and distances of facial components. These features are well-succeeded when the goal is

1System of colors that represents the three primary colors red, green and blue, which combined allow to produce a
wide chromatic spectrum.

2Open Source Computer Vision.
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to describe facial expressions, however, they are not able to detect some attributes that are not

so prominent as the wrinkles, for instance. In this approach, the first thing to do is localize and

collect a considerable number of facial components so a feature vector can be created representing

the face geometry [46]. Geometric-based methods can be more expensive in terms of computing.

Nevertheless, they are more robust to changes in, among others, size and head pose. Appearance

features, on the other side, are steadier and are not influenced by noise, which allows the detection

of a more complex and complete group of facial expressions. Regarding the appearance-based

methods, image filters can be tested in both the whole face or certain regions of a face in order to

obtain a feature vector.

2.3.4 Feature Selection

In the previous sub-section, a representation of the face was obtained in the form of a vector of

features. However, not all those features contribute in the same way to the recognition task. Some

of them have little or no significant contribution. In addition, the reduction of the data results in a

better performance if the right subset is chosen, less computing time, and a clearer comprehension

of the features [47].

Multiple methods for feature selection are accessible in the literature. It should be noted

that methods as the Principal Component Analysis, explained in the sub-section 2.4.4, must not

be confused with feature selection methods. This is because, although it performs dimensional

reduction it does not only select and remove the features from the original set but changes them

generating new features. Feature selection methods are usually grouped into Embedded, Filter and

Wrapper methods [47]. These 3 groups will be described below.

• Wrapper Methods- In this method, the performance of the classifier is taken into account

as the method’s principle. From the original dataset, a subset of features will be selected and

tested. A score will be associated with each subset [48]. In the end, the subset that achieved

the highest score will be chosen. Wrapper methods can be seen as a "brute force" technique

which requires a substantial computational effort [49].

Two of the most commonly explored methods are Forward Selection and Backward Elimi-

nation.

• Filter Methods- Considered as a preprocessing task, this method, through procedures to

rank the features orders them and selects the features positioned at the top of the rank,

discarding the ones in the lower positions [47]. Its implementation is independent and per-

formed before classification. In addition, it is considered to be faster than the previous

method [49].

Examples of ranking procedures from [50, 47] are the following: Chi-Squared, the Correla-

tion and Mutual Information Criteria.
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In the literature, Filter Methods have been presented such as, ReliefF [51], Fisher Score [52]

and the Information Gain based on the Mutual Information Criterion [53].

• Embedded Methods- At last, contrary to the wrapper methods, the embedded focus on the

reduction of the time to compute the classification of each subset. The selection of features,

in this case, is carried out in the process of training. These methods are specifically used for

certain algorithms [49].

The Embedded Methods based on regularization achieve successful results and because of

that a significant attention has been drawn to them [54]. This branch of the Embedded

Methods includes methods as the Lasso [55], and Elastic net regularization [56],

2.3.5 Expression Classification

At last, the final step in which the expression is classified. In this phase, two models that describe

how people perceive and identify which facial expression are they observing will be considered:

• Categorical

• Continuous

The first one consists of a determined set of emotions, grouped in emotion categories. Among

a certain number of possible strategies, usually, for each of these emotion categories, a classifier

is trained. Usually, the six basic emotions, namely anger, disgust, fear, happiness, surprise, and

sadness are the categories chosen. However, there are some cases in which other categories are

included, for instance, expressions of pain, empathy, or others that indicate the existence of men-

tal disorders. The term categorical means that while a person is changing from a surprise to a sad

emotion it can only be identified one of these two emotions [57]. There is no emotion in between.

In contrast, the continuous shows that emotion is not a binary variable but can have different inten-

sities, in other words, emotions can be a combination of basic emotions (e.g., happily surprised).

This is a more exhaustive model, but it has the advantage of being able to define expressions with-

out any supervision applying clustering. Methods for expression recognition can also be divided

into two other group models:

• Static

• Dynamic

The static models evaluate every single frame independently, the techniques that they use for clas-

sification can be NN [58], RF, SVM. In early works, Neural Network was the most used classifier,

however, in the latest approaches the chosen techniques were the SVM and the BNC. The SVM

[18] provides robustness in the process of classification, this can be observed by the high classi-

fication accuracy when compared to the other methods. It performed well even in situations that

was expected not to, due to the presence of noise caused by illumination variations or head pose
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variation [18]. Dynamic models, on the contrary, use features that are separately extracted from

each frame, so the evolution of the expression in the course of time can be modelled. The classifier

used is Hidden Markov Models (HMM) [59], it provides a method for modelling variable-length

expression series. This method was studied before being applied to facial expression classifica-

tion, however, because the results achieved by other methods had higher levels of accuracy it was

seldom used.

It is easier to train and implement a static classifier, as in the case of a dynamic classifier it

is necessary to have more training samples and learning parameters. Furthermore, when there are

differences among expressions they are robustly modelled by dynamic transitions that occur in the

distinct phases of an expression. This is relevant as, while communicating, people only express

subtle and sometimes almost invisible facial expressions. Those facial expressions are hard to

identify in a single image, but likely noticeable when shown in a video sequence.

2.3.6 Challenges

Although there is a lot of interest in this area and much progress was made, there is still plenty

of difficulties to overcome. The complexity of the process and the changeability of the facial ex-

pressions [60] do not help to improve the accuracy when performing facial expression recognition.

The main challenges in this recognition can be found in the table 2.3 [14, 60, 61]:

Table 2.3: Main challenges in automatic expression recognition.

Challenge Description
Head-pose variations Head-pose variations occur when considering uncontrolled con-

ditions since the participants can move, or the angle of the camera
can change. The ideal scenario would be the employment of only
frontal images which it is not likely to happen.

Illumination variations In the situations where the environment is not controlled, and so
pictures can be taken in different lights. Also, even in environ-
ments of constant light, some body movements can cause shad-
ows or differences in the intensity of the illumination.

Registration Errors Registration techniques commonly lead to registration error, so
the researcher should be prepared to deal with that to guarantee
the accuracy of the results.

Occlusions It can occur due to head movements, as in the case of the illumi-
nation variations, but it can also be the presence of glasses, beard
or scarves.

Identity bias To deal with it, it is required to be able to tell identity-related
shape and texture hints for subject-independent recognition.

2.3.7 Algorithms Analysis of Facial Expression Approaches

• Happy et al. [62], 2015 — In this thesis, a framework is described consisting, at first, on

the localization of the face using the Viola-Jones algorithm. Secondly, facial landmark
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detection was performed followed by extraction of the features using the LBP technique.

The posterior application of the PCA allowed the feature vector’s dimensionality reduction.

At last, the SVM was used as the multi-class classifier to translate the feature vectors in

expressions. It presented an accuracy of 94.09% for 329 samples of the CK+ dataset and

92.22% for 183 images in the JAFFE dataset.

• Matsugu et al. [39], 2003 — This work claimed to be the first FER model. In addition, it

claimed to be independent of the participant as well as robustly invariant to its appearance

and positioning. A CNN model was implemented using the disparities of the local features

between a neutral and a face enacting an expression. It followed an approach of one unique

CNN structure achieving an accuracy of 97.6% for 5600 images of ten participants.

• Carcagnì et al. [63], 2015- The paper contributes with a study of the HOG implementation

to perform facial expression recognition since the goal is to give emphasis to its use in this

context. The pipeline includes a first stage which focus is the face detection and registration.

The face detection uses the Viola-Jones algorithm. Then, it develops a HOG representation

of the images comparing it to other frequently used approaches. In a second stage, tests were

carried out in some of the publicly available datasets. The SVM approach was used to clas-

sify the images from datasets, such as CK+ and the RFD. The accuracy values were 98.8%,

98.5%, 98.5%, 98.2% for the CK+ 6 expressions, CK+ 7 expressions, RFD 7 expressions

and RFD 8 expressions, respectively.

• Shan et al. [64], 2009 — This work provides an empirical analysis of the use of the LBP fea-

tures in the problem of FER. The classification was performed by means of the application

of algorithms on datasets, such as the Cohn-kanade, the JAFFE, and the MMI databases.

The algorithms used to classify the expressions were the Template matching, SVM, LDA,

and Linear programming. Furthermore, the performance is inspected on different image

resolutions and in situations close to the real-world setting. Regarding the CK database,

the achieved accuracy was 88.9%, 79.1% and 73.4% for the SVM, Template matching and

LDA, respectively, when considering 7 expressions.

• Jia et al. [65], 2016 — The present work proposes a methodology that uses the PCA as a

feature extractor applied on a RF classifier. The tested dataset was the Japanese Female

Database in which, at first it was performed the preprocessing of the images (i.e. face

detection, crop and resize and noise removal), followed by the classification. This last step

used SVM and RF whose recognition rate was 73.3% and 77.5%, respectively.

2.3.8 Competitions

• Valstar et al. [66], 2011 — This paper presents the first challenge in automatic FER, the

FERA2011. This challenge had 2 variants, one detected Action Units whereas the other fo-

cused on discrete expressions. The challenge selected the GEMEP database [67], however,
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only a part of this dataset was used. A baseline is described using the LBP, PCA, and SVM

for the 2 variants of the challenge.

• Valstar et al. [68], 2015 — The second FER challenge addressed the detection of the AU

occurrence and the estimation of its intensity for previously segmented data as well as a fully

automated version. The BP4DSpontaneous [69] and the SEMAINE dataset [70] composed

the data used in this challenge. To perform the extraction of the appearance features a

local LGBP descriptor[71], and the Cascaded Regression facial point detector[72] for the

geometric features were used. At last, a linear SVM performed the detection of the AU

occurrence, and a linear SVR was used for the intensity.

• Valstar et al. [73], 2017 — Lastly, the third challenge adds to the previous one the difficulty

of dealing with data generated when varying the positioning and the camera angle. The

sub-challenges are, as previously stated, the AU detection and the estimation of its intensity.

In this case, the geometric features were obtained by the Cascaded Continuous Regression

facial point detector[74]. In contrast to the previous challenges, for the FERA2015 the tem-

poral dynamics was modeled by using the learning method Conditional Random Field[75]

(AU occurrence) and Conditional Ordinal Random Field[76] (AU intensity).

2.4 Feature Methods

2.4.1 Histogram of Oriented Gradients (HOG)

The dissemination of this technique goes back to 2005 when Dalal et al. [77] proposed a work in

which they drew attention to human detection in static images at the CVPR3. HOG is a feature

descriptor comparable to scale-invariant feature transform descriptors. Though, the difference lies

in the implementation since the HOG algorithm consists of dividing the image into equally sized

cells and computing a local 1-D histogram of gradient directions for each cell. Combining all these

local histograms results in a histogram that represents the whole image. Yet, before obtaining this

combined histogram and, in order to achieve an invariant system in illumination and shadows, it

is advantageous to contrast-normalize local histograms. Toward this end, an accumulated value

is obtained through the local histograms over larger regions denominated as blocks, applying this

outcome to normalize all the cells in the block [77]. This feature descriptor is a useful tool as it

enables a detailed description of the image, in which the presence of elements or features of it are

identified by sudden changes in the image. Finally, as a shape descriptor it allows representing an

object as a pattern (see Figure 2.5).

2.4.2 Local Binary Patterns (LBP)

LBP is a texture descriptor used for classification and Ojala et al. [78] was one of the first notorious

references to it. The response produced by this algorithm comes in the form of a feature vector. In

3Conference on Computer Vision and Pattern Recognition
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Figure 2.5: HOG of the face. From [5].

practice, to obtain this LBP feature vector a window of determined dimensions is taken, supposed

that a 3x3 pixel block is chosen . Moving this window through the image, the value of the pixel

at the center of the block is used to threshold its surrounding pixels [6]. This means that the pixel

values of each of the 8 neighbours will be compared to the center pixel and so, in the case of

the neighbour pixel having an intensity value greater than the center, it will be replaced by “0” if

not, becomes a “1”. The next step involves reading the modified values in the 3x3 window in the

clockwise direction leading to an 8 digits binary pattern that is converted to decimal afterwards.

After carrying out this process in the whole image a histogram can be generated giving information

about the frequency of the pattern occurrence. At last, the final step implies concatenating the

results to obtain the feature vector [78].

Figure 2.6: Image sequence of the process described above: an input image, LBP image, and the
correspondent histogram. From [6].
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2.4.3 Scale-Invariant Feature Transform (SIFT)

David Lowe presented this method to generate image features in [79, 80]. The scale-invariant

feature transform has been applied to several topics as motion tracking, object and gesture recog-

nition. As the name suggests, this algorithm is used to extract and describe invariant features.

That is to say it extracts and describes features that are invariant to image scale, variations in the

illumination, translation, and rotation of the element in issue. This approach consists of a great

collection of key points descriptors possessing extremely distinctive characteristics. Such charac-

teristics enable this algorithm to find an accurate match in a large set of features [80], which means

the same object has a high chance of being detected in another image.

2.4.4 Principal Component Analysis (PCA)

PCA is a statistical method invented by Karl Pearson in 1901 [81]. The method concerned identi-

fies the maximum variance and after that reduces their dimensionality [82]. In fact, it can reduce a

large dataset into a smaller dataset preserving most of the information existing in the large dataset.

It is used to give emphasis to variation and highlight patterns by converting the initially considered

data into principal components [83]. Since these components are ordered by their ability to ex-

plain the variability of the data, the first principal component is the one that can account for most

of the variability. Thus, the subsequent components can explain the remaining variability, and so

on. Eigenfaces [84] consist in the Principal Component Analysis when performed in a dataset of

face images. The focus in this method are the significant features which are the areas of maximum

change in a face (e.g. the significant variation visible from the eyes to nose). However, those sig-

nificant features are not necessarily translated in a region of the face as the eyes or the nose [85].

The intention here is to capture the relevant variations among faces so it is possible to differentiate

them.

Figure 2.7: Example of the eigenfaces showing that as well as encoding the facial features, it also
encodes the illumination in the face images. From [7].
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2.5 Feature Selection Techniques

2.5.1 Sequential Forward Selection (SFS)

SFS is an algorithm used to perform feature selection. The process of selection is initialized

testing an empty vector of features. Then, one feature is added to the vector at a time and each new

generated vector of features is tested. The fact that a feature allows achieving the best performance

in the classification is what defines if it is kept or discarded of the vector of features. In the end,

the selected set of features is returned.

2.5.2 Sequential Backward Selection (SBS)

Contrary to the previous algorithm, the Sequential Backward Selection starts considering all the

features and excludes one at a time. In this case, it is excluded the features that reflect the least

reduction of the classifier’s performance.

2.5.3 Mutual Information (MI)

The principle of MI consists of calculating the dependency measure between two variables [86].

In machine learning it is used as a feature selection criterion which defines the relevance or redun-

dancy of the features. Therefore, a score is calculated indicating how well descriptive a feature (x)

is of the labels (y). In the end, a predefined number of features (k) corresponding to the highest

scores is chosen. This score is presented as the mutual information, MI(xi,y) below:

MI(xi,y) = ∑
xi∈{0,1}

∑
y∈{0,1}

p(xi,y) log
p(xi,y)

p(xi)p(y)
(2.1)

MI will be equal to 0 in the case of x and y be independents and superior if there is a depen-

dency [47].

2.5.4 Lasso Regularization

Lasso, proposed by Robert Tibshirani in 1996 [55] is an effective technique that performs both

regularization and feature selection [87]. It formulates that the model specifications are restricted,

the sum of its absolute values is upper limited by defined value. To this end, one of the steps

performs a shrinking (regularization). The coefficients of the features are penalized being shrunk

to 0. The selected features are the ones whose coefficient is other than zero. This process aims to

reduce the error in the prediction [87].
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2.6 Machine Learning Algorithms

2.6.1 Viola-Jones

Viola-Jones is an extensively used real-time object detection approach published in 2001 in [8, 88].

It is known for its ability to perform rapid image processing with high detection rates. The target of

this framework, as well as one of its motivations, was the definition of the face detection problem.

The fact that a fast face detector was created made it suitable for a wide range of applications,

such as user interfaces and image datasets [8]. There are three main aspects of this system that

are worth highlighting. Its robustness, which means there is a high True-Positive rate and a low

False-Positive consistently, its capability to process images in real time and, finally, its exclusive

use to detect faces in images and not recognition as it can be mistaken. Furthermore, according

to this work, to build such a face detection system 3 steps need to be accomplished [89]. These

steps are the folowing: obtaining the Integral Image, the implementation of AdaBoost and, at last

classification using an Attentional Aascade.

Figure 2.8: On the left, feature examples are shown. On the right it is presented the AdaBoost two
first selected features. Adapted from [8].

2.6.1.1 Integral Image

An Integral Image is an image representation that was first presented by the name Summed-Area

Table, which is used as a fast way of computing Haar-like features at various scales [8]. In practice,

it efficiently calculates the sum of intensities over manifold overlapping rectangle regions of an

image [9]. See Figure 2.9.

2.6.1.2 AdaBoost

AdaBoost is a learning algorithm which acts in both the selection of a limited number of signif-

icant features as well as in the training of classifiers [90]. In this regard, it occurs a boost in the

performance due to the combination of weighted “weak” classifiers that yields to this “strong”

boosted classifier [88].
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Figure 2.9: On the left and center it is demonstrated how to calculate the integral image. On the
right, it is shown D which can be calculated through the integral image. From [9].

2.6.1.3 The Attentional Cascade

This architecture generates a cascade of classifiers with improved performance in the detection

of the face [8] and drastically reduced computation time [89]. The focus is that simple boosted

classifiers maintain most of the positive sub-windows while discarding the negative ones. It is

considered to be a highly efficient system since a negative response will mean the sub-window

immediate rejection, and thus it is predictable that the rejection of most of the sub-windows will

occur in the initial stages which decreases the computational cost.

Figure 2.10: The Attentional Cascade.

2.6.2 Support Vector Machines (SVM)

SVM [91] is a machine learning technique widely used in classification problems. An SVM model

aims to find the most precise borderline which maximizes the gap between sets of distinct elements

(see Figure 2.11). Therefore, it is considered as a maximum margin classifier since it can decrease

the error to its minimum and, at the same time, increase the gap between different sets to its

maximum [89]. At last, it gained a valuable reputation by achieving better results than other

machine learning approaches. A good example is the SVM performance in face detection [92, 93].

2.6.3 Decision Trees (DT)

A DT, as the name suggests is a tree with the ability to make decisions. It is one of the preferred

approaches to represent a classifier since it provides a clear way to visualize and interpret the

classification problem [94]. What differentiates a DT from our notion of what is a normal tree

is the fact that this tree grows downwards. In this way, it starts being built from the roots and
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Figure 2.11: On the left it is shown the original feature space whereas on the right, it is the non-
linear separation of those features.

goes down to the leaves [95]. It is essentially a binary tree, in which the leaves correspond to

the different target class labels. A test node, on the other hand, represents a feature and it is

where the decision occurs. The outcome that results from the decision defines which one of the

branches to follow, and so on until a leaf is reached, which means the class has been predicted (see

Figure 2.12).

Figure 2.12: Example of Decision Tree, which aim is to sort the variables a, b, and c. Adapted
from [10]

2.6.4 Random Forest (RF)

RF [96] is an acknowledged statistical method in a wide variety of subjects [97]. The classifier

consists of using multiple Decision Trees 4 combined, whose training process applies the bagging

method proposed by Leo Breiman in [98]. As previously mentioned, when a DT is fully-grown a

4Quinlan et al. in [95]
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prediction is reached. However, in the case of RF, it is the combination of all the interim predic-

tions that yield to a final prediction, achieving notorious improvements in the accuracy values [99].

This way of proceeding corresponds to the aforementioned bagging method. In addition, the fact

that it is used sub-set of randomly selected features from the training set as the input for each tree

leads to favourable error rates comparable to the AdaBoost algorithm [97] 5.

Figure 2.13: Example of a simple RF.

5Freund et al. in [90]
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2.7 Facial Expression Databases

When benchmarking techniques, it is highly important to use the most appropriate dataset. There-

fore, it is extremely important to take into consideration the final goal of the task. In this work,

since it is aimed to recognize facial expressions it is likely to use databases, such as the following:

• Japanese Female Facial Expressions (JAFFE) — This database consists in the record of

10 Japanese female models enacting 7 expressions making a total of 213 images (Lyons et

al. [100], 1998).

• Cohn-Kanade AU-Coded Expression Database (CK) — The CMU-Pittsburgh AU-Coded

Face Expression Image Database contains 2105 image sequences, in which were included

182 participants from diverse ethnic group obtaining a description in facial expression labels

(e.g. happiness) and FACS basic units (AU) (Kanade et al. [101], 2000)

• MMI Facial Expression Database (MMI) — This database consists of 1500 samples divided

in static and image sequences. The faces are positioned in a frontal angle enacting different

expressions measured in AUs from the Facial Action Coding System (FACS) (Pantic et

al. [102], 2005)

• Taiwanese Facial Expression Image Database (TFEID) — TFEID contains 7200 images

from 40 particIpants, half are women. Eight expressions are represented, with some pose

variations (Chen et al. [103], 2007)

• Extended Cohn–Kanade (CK+) — The CK+ represents an increase of 22% in the number of

sequences and 27% in the case of the participants when compared to the first release of the

CK. Also, in this extended version, it was added spontaneous sequences and their respective

description in FACS and expression labels (Lucey et al. [11], 2010).

• Multimedia Understanding Group (MUG) — Mug is organized in two groups, the first one

contains data from 86 models performing the six main expressions (anger, disgust, fear,

happiness, sadness, surprise) defined in FACS, whereas the second one contains induced

expressions performed in lab environment by the same group of participants (Aifanti et

al. [104], 2010).

• Facial Expressions In The Wild Project (AFEW/SFEW) — Acted Facial Expressions in the

Wild (AFEW) is a dynamic temporal database in which the samples were collected from

movies. The selection of 700 frames from the AFEW database originated a static subset

labelled for 6 expressions called Static Facial Expressions in the Wild (SFEW) (Dhall et

al. [105], 2012).

• Facial Expression Recognition 2013 (FER2013) — FER2013 was first made public for the

Kaggle competition. The dataset contains 35887 grayscale face images labelled for 7 ex-

pressions (Goodfellow et al. [106], 2013)
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• AffectNet — This database contains roughly 1,000,000 face images in the wild setting ob-

tained from the Internet, half of these were manually annotated for 7 emotions and the

intensity of valence and arousal. The remaining were automatically annotated training the

ResNext Neural Network on the manually annotated set. (Mollahosseini et al. [13], 2017)

The properties of a database can be organized in three main categories, this organization is

based on the content, in the capture modality and in the participants [4]. Content includes infor-

mation as the type of labels, which expressions are present, whether the samples were taken with

an intention or not (posed or spontaneous), and, at last, if it contains images (static) or video se-

quences (dynamic). On the other hand, the capture modality describes if the data was captured in

laboratory conditions or not, changes in perspective, illumination and finally occlusions. Lastly, it

is the compilation of the data in statistical terms, such as age, gender and ethnic group [4].

Table 2.4: RGB Dataset.

Dataset Description Intention Gray/Color
CK The first dataset to be made public. This first

version is considerably small.
Posed pri-
mary facial
expressions

Mostly gray

CK+ Extended version of CK with an increased
number of samples both posed and sponta-
neous.

Spontaneous
images
added plus
the previous
posed ones

Mostly gray

MMI Marked an improvement by adding profile
views of primary expressions and almost all
existing AUs of the FACS.

Spontaneous
and Posed

Color

JAFFE A dataset of static images captured in a lab
environment. It contains 213 samples with 7
expressions acted by 10 Japanese women

Posed Gray

AFEW It is a dynamic dataset, carefully describing
the age, gender, and pose of the images, one
of the 6 primary expressions

Posed Color

Table 2.5: 3D Dataset.

Dataset Description Intention Gray/Color
BU-3DFE [107] 6 expressions out of 100 distinct subjects,

taken under 4 different intensity levels.
Posed Color

Bosphorus [108] Low ethnic diversity, however, it contains
many expressions, head poses, and occlu-
sions.

Posed Color tex-
ture images

BU-4DFE
(video) [109]

High-resolution 3D dynamic facial expres-
sion dataset.

Posed Color tex-
ture video
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Table 2.6: Thermal Dataset.

Dataset Description Intention Gray/Color
IRIS [110] Images from 30 subjects. It includes a set of

images labelled with 3 posed primary emo-
tions capture on different illuminations.

Posed Gray

NIST [111] Consists of 1573 images, of which 78 are
from women and the rest from men.

Posed Gray

NVIE [112] The 215 subjects enact six expressions. In the
posed setting it is included also some occlu-
sions and illumination from different angles.

Spontaneous
and Posed

Gray

KTFE [113] As the NVIE, this database contains the 6 ex-
pressions. Includes samples from 26 subjects
from Vietnam, Japan, and Thailand

Spontaneous
and Posed

-

2.8 Final Considerations

In this chapter, the topic of study Facial Expressions was introduced, as well as the structure of an

Automatic Facial Expression Recognition System, depicting each one of the steps and how they

were performed in other similar works. Moreover, the most appropriate datasets to deal with the

problem of expression recognition are presented.

Gathering all this information was a fundamental milestone to be able to decide which of those

methods and algorithms would be implemented hereafter. Also, it was taken into consideration

the computational cost of some techniques and the public availability of the datasets. With this in

mind, the chosen techniques were the following:

• Viola-Jones approach to perform face detection as it is still widely used in current works

due to its effectiveness in the localization of the faces;

• HOG, LBP and PCA to obtain the facial features, the first because of its ability to detect

abrupt changes, the second for being a robust texture descriptor that can deal with illumi-

nation variations, and the last one which is able to create a representation that explains the

variance of the images and discard the redundant features making it faster to run;

• MI to select the features due to its ability to deal with inconsistent relations between the

features and the target variables, also it is not computationally intensive;

• SVM and RF to perform classification, as the first is one of the most used algorithms able

to achieve high accuracy values, and the second one, a classifier known for its great per-

formance due to the combination of predictions that allows achieving a more reliable final

prediction.



Chapter 3

Methodology

In the present chapter, the methodology of this work is described. More specifically, the ap-

proaches and methods used to perform feature extraction and classification so, in the end, it is

possible to classify face images according to the expression shown in the categorical domain. The

decisions made at each step are also duly explained. This approach was organized as shown in the

following Figure 3.1:

Figure 3.1: Automatic Facial Expression Recognition System.

27
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3.1 Face Localization and Crop

The aim of this stage is to detect and crop the faces present in the images. Nevertheless, there

was a slight difference in the pre-processing of these two datasets. The CK+ had no annotations

for the location of the face in the image, which meant that a face detection technique would have

to be applied. Toward this end, the OpenCV library seemed to be a reasonable option, since it

is acknowledged by their Object Detection approach with a few of pre-trained classifiers for the

face and, moreover, some more specific regions of the face as the eyes or the mouth (smile).

This detector uses a Haar Feature-based Cascade Classifier originally proposed by Paul Viola and

Michael Jones [8] (see Section 2.6.1) which continues to be one of the most frequently used [114]

methods. On the contrary, the AffectNet Database provided already the location of the faces in the

images (see Figure 4.3). In this case, a bounding box for each face has been previously found by

using the OpenCV face detector. The provided coordinates represent that bounding box expanded

in fifteen percent.

Hereupon, regardless the way the location of the faces in the images was obtained, we ended

up with 4 values (x,y,w,h) which are the required information to crop the images, and so our

final image would only have the desired region of interest, the face. Finally, and because the

preprocessing step is to produce an image that can be used with a certain efficiency and straight

by the feature extractor, the images from both datasets were converted to grayscale and resized to

a fixed size, in this case, 256x256 pixels [13].

Figure 3.2: Representation of the performed steps to obtain a face image on the CK+ dataset.
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3.2 Facial Features

Objects are effortlessly recognized by the human eye due to the ability of our brain to associate

them with some specific characteristics. The mastery of this skill is the result of its development

since the day we were born by observing the world around us. The aim of Computer Vision is,

precisely, to imitate the human eye. For this purpose, information from an image is acquired using

feature extraction techniques. In chapter 2, a few of these techniques were reviewed and some of

them implemented so it would be possible to draw conclusions on how well they would be able

to describe the image faces. In this experiment, the chosen feature extraction techniques consider

the image as a whole [115]: HOG, LBP, and PCA.

3.2.1 HOG

Different facial expressions trigger different changes in the face, as can be observed in Figure 4.1.

The distinct characteristics among different facial expressions are easily identified, for instance,

surprise is represented by arching the eyebrows, and keeping the eyes and mouth wide open. On

the contrary, to lower the eyebrows and press the lips together defines another facial expression,

anger. These are the features that are intended to be extracted. The Hog algorithm, previously

presented, was used due to its capability to detect abrupt changes in the face images. In practice,

it can detect the transition from the skin to other elements as the lips, eyebrows or nose. It is con-

sidered a shape descriptor as it distributes the intensity gradients in the direction of the element’s

edges.

The procedure starts by converting the cropped face image to grayscale, this is a necessary

step because it prevents the occurrence of errors provoked by the channels. Finally, the feature

vector is generated in the form of a histogram that represents the image. See Figure 3.3.

3.2.2 LBP

In some instances, the image after being converted to grayscale shows almost no noticeable dis-

tinction in the different levels of gray, this can be caused by illumination variations. The LBP is

a robust texture descriptor able to deal with situations like this. Another important particularity is

its computational simplicity due to the low complexity steps that need to be performed, explained

in the literature review (See 3.4).

The first step involves converting the image to grayscale, followed by the repetition of some

basic steps in the whole image obtaining a decimal number to each position of the window and,

subsequently, generating a histogram with the frequency of the number. In the end, the results are

concatenated and the feature vector obtained.

3.2.3 PCA

PCA’s importance is reflected in its ability to discard the redundant components and preserve only

a few components that can describe most of the variation of the original dataset (See Figure 2.7).
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Figure 3.3: Example of the HOG implementation on the CK+ and AffectNet dataset, on the upper
and lower images respectively. Starting from the left it shows the original image, followed by the
HOG image and the respective histogram.

In practice, this performs dimensionality reduction which enables the speed up of the facial ex-

pression recognition system.

In this algorithm, the sufficient number of components to explain 95% of the variance of the

training set are preserved. So, it starts with the extraction of the first eigenfaces from the training

set and, at last, it projects both the training and test set on the eigenfaces orthonormal basis.

Figure 3.5 shows the ’mean’ face computed by the PCA explaining 95% of the variance applied

to the training set from the CK+ and on the training set from the AffectNet. As it can be observed

there is a discernible difference of sharpness in the images. In the image on the right, it is less

evident that it corresponds to a facial structure. This can be justified by the fact that the AffectNet

images are highly variant in characteristics such as the occlusions, the subject’s age, the lighting

conditions, and the head pose.

Figure 3.7 and 3.6 illustrate the 30 first principal components, organized by their significance

from the upper left corner to the lower right corner. Hence, the first ones, on the top left corner

appears to handle the lighting conditions, whereas the rest focuses on certain specific features of

the human face, such as the mouth, eyes, eyebrows and, nose.



3.2 Facial Features 31

Figure 3.4: Example of the LBP implementation on the CK+ and AffectNet dataset, on the upper
and lower images respectively. Starting from the left it shows the original image, followed by the
LBP image and the respective histogram.

Figure 3.5: ’Mean’ face computed by the PCA.
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Figure 3.6: Representation of the first principal components on the CK+ dataset.

Figure 3.7: Representation of the first principal components on the AffectNet dataset.

3.3 Feature Selection

In the previous section, a vector of features was obtained. However, it is possible that not all the

features are needed to create a meaningful representation of face. That is what a feature selection

algorithm tries to find out, whether a smaller set of features would be able to achieve the same

or even superior accuracy comparing to the complete set of features. Such reduction would have

multiple advantages, as it would allow a better understanding of the features keeping only the

features that are relevant, minimizing the vector of features making the algorithms to run faster

and, at last, to avoid overfitting [87]. In Chapter 2, some feature selection algorithms were studied.

3.3.1 MI Based Approach

As studied in 2.5.3 the MI criterion [116] consists of obtaining a score which is determined by what

is shared or not between features. The MI’s principle was used as a straight measure to choose a

subset of features that enable the system to perform the most accurate separation of the aimed la-

bels. Other conventional feature selection techniques, for instance techniques based in correlation



3.4 Classification 33

when compared to the MI are not able to calculate the score for associations between random fea-

tures [117]. This approach might be advantageous when dealing with situations to which a linear

relations technique fails to deal with. In addition, it is not a computationally complex technique.

3.4 Classification

From the two datasets a set of seven emotions (anger, contempt, disgust, fear, happy, sad, surprise)

and, additionally, the neutral one were considered.

In this section, the methods used to classify the datasets for the above facial expressions will

be discussed. For this purpose, the goal was to find an accurate, robust, and feasible classifier. Of

the two types of machine learning techniques, supervised learning is the one used to train a model

on a known training set (considering both, the input and the output response data). Thereby, and

after having built the classification model it can be finally used to predict a new test set. This

experiment tested two distinct supervised learning algorithms, so the behaviour of the different

features could be analyzed: SVM and RF.

3.4.1 SVM

The SVM, previously studied in section 2.6.2, is one of the most used algorithms as it has the

ability to perform classification with high accuracy, outperforming other classification algorithms.

The feature vectors obtained through the HOG, LBP or PCA algorithm performed on the

training set, along with the respective labels, were used to feed the classifier. Then, a model is built

and the features were distributed depending on their associated label. By doing this, the features

that belong to different classes are separated from one another and positioned in the correspondent

group.

Some tests were carried out varying some parameters so it would be possible to analyze the

behaviour of the classifier, which parameters would have more influence and how it would affect

the system accuracy.

3.4.2 RF

The second method tested was the Random Forest, explained in section 2.6.4. The great perfor-

mance of the RF is due to the combination of a considerable number of interim predictions that

lead to a more reliable prediction in the end. Also, its randomness when selecting the features

from the training set that are feeding each tree allows the method to estimate the importance of

each feature in relation to the others.

As the SVM, the input for this classifier is also the output of the previously mentioned feature

extraction methods. An RF model with certain parameters is built and the model and those feature

vectors together with the labels are given to fit the model. At last, it makes the predictions to the

test set and provides a final prediction value.
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A vast set of parameters were tested in order to find the best parameter choice that would

achieve the highest accuracy, as well as to study the influence of each one the parameters.

3.5 Final Considerations

In this chapter, the proposed methodology for this project was described. By starting with the

choice of the datasets to the last step, the algorithms chosen for the classification. In order to

obtain a more reliable analysis more than one technique was tested at each step. The following

chapter presents the results of the implementation of these methods as well as its interpretation in

order to understand how feasible they are to perform the proposed task.
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Results and Discussion

This chapter covers the discussion and analysis of the results for all the methods implemented in

each step of the Methodology (Chapter 3). As it was mentioned before, each phase involved the

test of different approaches. The final goal was to understand how reliable an Automatic Facial

Expression Recognition system can be in different situations. For this purpose, whenever the

results were not satisfactory some modifications were made and even other techniques considered.

This entire process will be discussed as well as the respectively obtained outcomes.

4.1 Dataset

The initial step to perform any recognition task is to choose the adequate data. As in this case, the

focus was the benchmarking of different techniques to recognize facial expressions, a reliable and

well-known dataset was required. In this way, the CK+ was chosen. The fact that this dataset was

generated in a controlled environment and it is been used countless times since its release makes

it a valuable addition. A second dataset was also considered the AffectNet Database. The choice

for this dataset was due to the fact that this is a recent dataset, in-the-wild and with a large number

of samples. These characteristics reflect the current needs in the field.

4.1.1 The Extended Cohn – Kanade (CK+)

The CK+ is a publicly available dataset, and as it was stated before is an extension of the CK

database which the main purpose was to promote the development of automatic systems to de-

tect the individual’s facial expressions. This new version has augmented in 22 percent the posed

samples and added the spontaneous ones (see Figure 4.1). The subjects that were taking part in

the experiment were 210 adults which facial movements were recorded using the following equip-

ment: two hardware synchronized Panasonic AG-7500 cameras [11]. The age of the individuals

ranged from 18 to 50 years of age, given that sixty-nine percent were female, eighty-one percent

were Euro-American, thirteen percent Afro-American, and six percent from other groups. During

the experiment, the subjects were instructed to execute 23 facial displays which comprehended

35
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both single and combined action units. In the observation room where the experiment was tak-

ing place, image sequences were obtained by the two cameras there positioned, one of them was

directly in front and the other was 30 degrees to the right of the subject [101]. In the end, the re-

sult was both an 8-bit grayscale and a 24-bit color values pixel arrays with dimension 640x490 or

640x480. The number of frames in the image sequences can vary between 10 and 30 and it always

starts and finishes with a neutral expression. However, the arranged sequence in the dataset only

includes the frames from the neutral to the peak of the expression (See Figure 4.2). This last one

characterizes the emotion label that is assigned to the alluding sequence. The group of the possible

labelled emotions can be seen in Figure 4.1 below: anger (e), contempt (f), disgust (a), fear (d),

happiness (b), neutral (h), sadness (g) and surprise (c).

Figure 4.1: Examples of the CK+ dataset. In the upper part, there are some images originally from
the CK dataset and those below are the data included in the new version. Adapted from [11].

Figure 4.2: Images sequence obtained from a subject when the labelled emotion is “Surprise”.
From [12].

4.1.2 AffectNet

AffectNet, which name arose from the merge of the words Affect and InterNet, is the largest

existing dataset only released in the second semester of 2017. This dataset contains approximately
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Table 4.1: Frequency of each expression represented in the peak frames on the CK+ database.

Expression Number
Angry (An) 45
Contempt (Co) 18
Disgust (Di) 59
Fear (Fe) 25
Happy (Ha) 69
Sadness (Sa) 28
Surprise (Su) 83

one million face images. Images that were gathered from the Internet through 3 search engines

(Bing, Google, and Yahoo) when queried with 1250 keywords associated with emotion vocabulary

in 6 distinct languages (English, Spanish, Portuguese, German, Arabic, and Farsi). Afterwards, a

bounding box for each face was found by using the OpenCV face recognition approach mentioned

above. Then, this bounding box was expanded in fifteen percent. Besides that, via regression

local binary features (a face alignment technique) [118] sixty-six facial landmarks points were

detected. The resolution of the face images is, on average, 425x425. In order to take some facial

characteristics, the Microsoft cognitive face API [119] was used and according to the outcome:

Forty-nine percent of the samples were identified as men and the average age is 33.01 years old,

with a standard deviation of 16.96 years. The Microsoft cognitive face API also allowed the

detection of the occurrence of some occlusions. For instance, eye (0.49 percent), forehead (4.5

percent) and mouth (1.08 percent) occlusions were found in the face images. Additionally, several

faces have eye (51.7 percent) and lip (41.4 percent) make-up, and others were wearing glasses

(9.63 percent). The dataset is branched in two different sets, such as:

• Manually Annotated;

• Automatically Annotated.

The present need of having an extensive dataset in the wild which would contain a huge num-

ber of the individual’s variation provided the justification for its creation. Apart from that, there

is also the fact that this dataset embraces more than one model of affect [120]. In this case two

different emotion models [121]: the categorical, which represents the discrete facial expressions,

for instance, here are considered seven distinct facial expressions; and the dimensional which is

the intensity of valence and arousal (see [122]). The manually annotated set, as the name implies is

an annotated set by expertise human labelers. It has around 420000 images which are labelled by

the annotators for the two models of affect aforementioned. The remaining images belong to the

automatically annotated set (more than 550000), which was obtained through the training of the

ResNext Neural Network on the manually annotated training set, achieving an average accuracy

of sixty-five percent.
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4.1.2.1 Annotation Procedure

To perform the annotation of the face images some options were considered as the Amazon Me-

chanical Truck (MTurk), a crowd-sourcing service. Although it is a cheap and straightforward

approach to label large datasets, it is not fully reliable in terms of the quality of labelling. Since it

ranges significantly depending on the annotators. Also, the fact that it is required to annotate this

dataset in the dimensional model makes this task impossible for any annotator with no knowledge

in this model of affect. Thus, after taking in consideration these limitations the crowd-sourcing

service was discarded, and the solution found was hiring twelve annotators at the University of

Denver. These expertise annotators were given 450000 samples to perform the labelling of the

face in the images, each image annotated by one annotator. To annotate the two models of affect

(categorical and dimensional) a software application was designed (See Figure 4.3).

Figure 4.3: Software application used by the annotators to label into the categorical and dimen-
sional models of affect. An image has only one face annotated (for instance, the one in the green
box). From [13].

4.1.2.2 Annotation in the Categorical Model

Each sample was identified as one out of 11 emotion and non-emotion categorical labels. These

eleven labels are Neutral, Happiness, Sadness, Surprise, Fear, Disgust, Anger, Contempt, None,

Uncertain and Non-Face. Next, some of the categories will be explained as they are not so com-

mon. Specifically, the None label, which means “None of the eight emotions” [?] represents all

the images that the annotator could not assign to any of the 8 expressions. If it existed they could,

in some cases, belong to categories as shy, impressed or focused. On the other hand, the Non-Face
refers to images in which: the face detection algorithm does not draw the bounding box where the

face is located; the face is not a human face (e.g. can be a painting or an animation); in the face
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there is a watermark; and, at last, the shape of the face is distorted. The choice of the label would

fall in the Uncertain category for the situations in which the annotators were not sure about the

facial expressions. For the faces categorized as a Non-face or Uncertain, it would not be feasible

to continue with the annotation procedure so for these situations no value for the valence and the

arousal would be attached to the respective sample.

Table 4.2: Frequency of each annotated image in each category.

Expression Number
Neutral 80276
Happy 146198
Sad 29487
Surprise 16288
Fear 8191
Disgust 5264
Anger 28130
Contempt 5135
None 35322
Uncertain 13163
Non-Face 88895

4.1.2.3 Annotation in the Dimensional Model

Although this model for affect was not used in this work a brief explanation will be given. The

circumplex model first introduced in [122] claims that emotional information can be characterized

in a two-dimensional circular space: Arousal and Valence. As we can see in Figure 4.4 the vertical

axis indicates the arousal and the horizontal one the valence. The arousal can be translated as

how exciting or calming, whereas the valence represents how positive or negative is the expressed

emotion. To execute this task the annotators were instructed to be able to decide where in the

circumplex they would locate the images. For that, the annotators were provided with a tutorial

which allowed them to have a reference and to be trained. That tutorial included an example

of a circumplex from [123], in which were placed about thirty-four emotion labels for instance,

worried, courageous or polite. While the process was occurring, the annotators were subjected

to close monitoring which allowed them to be clarified in any situation of doubt. A specific

region for each discrete expression (from the categorical model) was defined in advance in the

software application (see Figure 4.3). Values of arousal or valence outside the circumplex were

not admissible, so whenever the annotators tried to choose one of those values a warning message

was issued, and the annotation of the respective image had to be revised. The purpose was to be

as accurate as possible, thus practices as the one mentioned above prevented the occurrence of

mistakes in this model.
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Figure 4.4: Images distributed in the Valence and Arousal dimensions of the circumplex model.
From [13].

4.1.2.4 Inter-annotator agreement

The measure of the inter-annotator agreement defines how frequently the same annotation for a

specific category is made by multiple annotators. This means the labelers are systematic in their

annotation decision [124]. But, what is known already beforehand is that we should be aware that

there is a variation in the performance of the labelers and that is what has the interest in being

explored. The study of the annotation agreement among several annotators is a frequent practice

because, by doing this, annotations can be authenticated and boosted, as well as the ambiguities

identified. Hence, the main purpose can be achieved, and it can be made a meaningful use out of

the annotations. For this dataset, 36000 samples were provided to only two annotators, those sam-

ples were labelled and the annotation agreement between them measured afterwards. To produce a

reliable measurement during the whole process the annotators did not have any information about

the other’s choice for the annotation or even the query by which the image was found. As a result,

there was an agreement in 60.7 percent of the samples (see Figure 4.5 for more details).

4.1.3 AffectNet Adapted

As it was mentioned before, the AffectNet has around 420000 samples for the manually annotated

set, of which almost 300000 belonging to the expressions considered in this work. This proved to

be a limitation as it was computationally heavy for the available resources. So, since the multiple

attempts did not result in the desired outcome, this dataset, taken as a whole, was considered
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Figure 4.5: Percentages of the agreement between the two annotators for the different expressions.
From [13].

impractical. However, there was still a great interest in the fact that this dataset would bring the

spontaneity of expressions close to a real-world setting as well as containing more than one face

in one image.

For this reason, only a part of this dataset was used, containing a number of samples similar

to the CK+ dataset to ensure its feasibility. Nevertheless, the creation of this subset followed the

characteristics of the AffectNet. Being, the percentage of men in the images (49%), the percent-

age of samples for each expression (see Table 4.3), the percentage of forehead, mouth, and eye

occlusions(see Table 4.4) and the percentage of other elements(see Table 4.5). These numbers

were originally obtained for the AffectNet dataset by the Microsoft cognitive face API. In the end,

a subset of 719 samples was created.

Table 4.3: Number of images and the correspondent percentage of each Expression on the Manu-
ally Annotated set.

Expression Manually Annotated Images Percentage (%)
Neutral 75374 25.83
Happy 134915 46.25
Sad 25959 8.90
Surprise 14590 5.00
Fear 6878 2.36
Disgust 4303 1.48
Anger 25382 8.70
Contempt 4250 1.48
Total 291651 100

Table 4.4: Percentage of the occlusions present in the AffectNet dataset.

Occlusion (%)
Forehead 4.50
Mouth 1.08
Eye 0.49
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Table 4.5: Percentage of other elements present in the images of AffectNet dataset.

Others (%)
Glasses 9.63
Eye make-up 51.07
Lips make-up 41.4

4.1.4 Splitting Method: Train and Test Set

For the experiments, the datasets had to be split into two, the training and test set. In order to test

how different splits would affect the final result, 5 splits were considered. The referred splits took

the following proportions: 50:50, 60:40, 70:30, 80:20, 90:10. This procedure took into account

the number of samples of each expression for the split. For instance, if there would be 40 samples

for the happy expression and the aim was to perform a 50 : 50 split, the training set would get 20

samples for that same expression and the test set the remaining 20. The procedure was the same

for both the CK+ and AffectNet datasets.

4.2 Face Detector Validation

As proposed in the section 3.1, for the CK+ dataset, face detection was performed using Haar

Cascades. However, a validation test was needed to justify the use of this detector. Since the

AffecNet dataset provided the location of the faces in the images, a proper way of doing the

validation would be comparing the annotated coordinates with the coordinates that would result

from the implementation of the OpenCV1. approach on that same dataset.

To measure the accuracy of the face detector the evaluation metric considered was the IoU2.

The application of this metric only depends on having a ground truth and a predicted bounding

box. The ground truth corresponded to the location of faces provided with the AffectNet dataset,

whereas the predicted bounding boxes were the output of the classifier. The following expression

illustrates how IoU is calculated (see Figure 4.6):

IoU =
Intersectionarea

Unionarea

In order to consider that a face was detected in the image, an overlap of at least 0.50 concern-

ing IoU was necessary as this is the standard value commonly used [126]. Otherwise, it would

be considered a failed detection. Additionally, if the output of the classifier corresponding to an

1In [13], it is only mentioned that "The OpenCV face recognition was used to detect faces in the images"
2IoU was used in Computer Vision for the first time in the work [125], in which it was interpreted what could be

learned by the IoU loss limited to bounding boxes.
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Figure 4.6: On the right, an example of the overlapping area between two objects. On the left, an
example of the area of union of those objects.

empty vector of the predicting bounding box coordinates that would also be treated as a failed

detection.

Figure 4.7: Some samples with both the representation of the ground truth and the predicted
bounding boxes.

As can be seen in Figure 4.7 above when a face was detected the predicted bounding box

coordinates were very close to those of the ground truth bounding box. The method was even able

to detect faces in situations where there was more than one person in the same image or where

there were multiple occlusions.

In contrast, Figure 4.8 addresses the cases in which the detection failed. By observing these

images a few characteristics that might be the reason for the failure in the detection can be easily
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Figure 4.8: Some samples in which a face could not be detected in the image.

noticed. From left to right, what stands out most:

• 1st column, images containing the subject’s side view of the face;

• 2nd column, there’s also a variation in the head pose, plus an eye occlusion;

• 3rd and 4th columns, the images correspond to an enlarged and cropped face, not containing

a whole face;

• 5th column, the rotation of the face in the upper image as well as the poor lighting in the

lower one.

4.2.1 Face Detector Validation Approach Results

Primarily, the aim was to obtain vector coordinates that would define the predicted bounding box

to further comparison. However, a few times this did not happen and an empty vector was returned.

This has restricted the images that could potentially contain a face in 87.92%.

After this, the IoU metric could finally be calculated in 87.92% of the initially considered

images. The Table 4.6 shows the mean value of the IoU, which was calculated to each image that

had both the predicted bounding box and the ground truth coordinates. From those, 97.77% of the

predictions corresponded to a value of the IoU superior to 0.50. This value drops to 86.89% when

all the images are considered, including the ones discarded when no vector was returned.

These values mentioned above can be translated in the percentage of detected faces as the

condition of having an IoU value greater than 0.50 is guaranteed. This means that from the set

of images in which OpenCV performed a detection, 97.7% of the cases corresponded to face

detection, whereas, when considering the whole initial set of images, 86.89% was the percentage

of face detection.
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Therefore, the results obtained when implementing the Haar Feature-based Cascade Classifier

from the OpenCV library suggested that this approach would not be the most appropriate to be im-

plemented on the AffectNet dataset. However, it does not discard the use on the CK+ dataset since

this dataset does not contain images with settings as the shown in Figure 4.8. On the contrary, the

CK+ (see Figure 4.1 and 4.2) contains face images mostly in a frontal view taken in a controlled

environment where there was almost no variation in the lighting conditions. Furthermore, it was

known a priori that each image contained only one face to be detected.

Table 4.6: Results of the IoU evaluation metric.

IoU %
Mean value 85.53

> 0.50 (when considering the set of images in which the
OpenCV approach performed a detection)

97.77

> 0.50 (when considering the whole initial set of images) 86.77
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4.3 Classifier Results

Having extracted the features from the two datasets and used them as an input to the classifiers,

the result of the prediction in the test set was obtained. The current section presents those results.

4.3.1 SVM Classifier Results

At this point, the SVM for classification from the machine learning package scikit-learn [127] was

used. Its implementation was built upon the libsvm from [128]. This is not an easily scalable

approach due to the fact that its fit time complexity is more than the square number of images.

Thus, it becomes difficult to use it in a large dataset with over ten thousand images. In order

to understand the influence of each parameter as well as to be able to achieve better results, the

parameters of the classifier were varied in a range of values. Additionally, to manage multi-class

classification an one-vs-one approach is implemented.

Parameters:

• C - is the control parameter that allows to effectively balance the misclassifications and the

margin’s width. If C corresponds to a large value, it will be avoided misclassifying the

samples which will lead to a smaller margin. On the contrary, if assumes a small value the

samples will be effortlessly misclassified and the margin will be enlarged. The tested C

values ranged from 1 (the default value) to 100000 with increments of the exponent with

base e: 1.00e+00, 1.00e+01, 1.00e+02, 5.00e+02, 1.00e+03, 5.00e+03, 1.00e+04,

5.00e+04, 1.00e+05.

• kernel - it defines which type of kernel is applied. The tested kernels were linear, polyno-

mial (poly) and radial basis function (rbf). The default kernel is the rbf.

• gamma - the parameter used by all the kernels except for the linear one. As this value

increases it also increases the effort to precisely fit the training set. The default value for

gamma is the inverse of the number of features. The gamma value ranged from the default

value defined by ’auto’ to 1: ’auto’,1.00e−04, 5.00e−04, 1.00e−03, 5.00e−03, 1.00e−
02, 1.00e−01, 1.00.

• degree - this parameter is only considered when the kernel is the polynomial, its value

corresponds to the degree of the polynomial used. The default degree is equal to 3. For this

parameter were considered the following values: 1,2,3.
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Table 4.7: Results for the 50:50 split using the SVM classifier.

Split (train:test) 50:50
Accuracy

(%)
Parameters

C kernel gamma degree

HOG CK+ 87.30 500 rbf ’auto’ -
AffectNet 67.13 500 poly 0.0005 2

LBP CK+ 79.68 100 rbf 0.1 -
AffectNet 63.51 100 linear - -

PCA CK+ 77.14 100 rbf 0.0001 -
AffectNet 54.60 10 rbf 0.001 -

Table 4.8: Results for the 60:40 split using the SVM classifier.

Split (train:test) 60:40
Accuracy

(%)
Parameters

C kernel gamma degree

HOG CK+ 90.48 500 rbf ’auto’ -
AffectNet 69.26 100 rbf 0.0005 -

LBP CK+ 83.33 1000 rbf 0.01 -
AffectNet 65.37 100 rbf 0.1 -

PCA CK+ 79.37 1 poly ’auto’ 1
AffectNet 55.48 10 rbf 0.005 -

Table 4.9: Results for the 70:30 split using the SVM classifier.

Split (train:test) 70:30
Accuracy

(%)
Parameters

C kernel gamma degree

HOG CK+ 91.40 500 rbf ’auto’ -
AffectNet 71.83 100 rbf 0.001 -

LBP CK+ 83.33 500 rbf 0.005 -
AffectNet 67.61 500 rbf 0.005 -

PCA CK+ 79.57 1 poly 0.01 1
AffectNet 58.22 10 rbf 0.005 -

Table 4.10: Results for the 80:20 split using the SVM classifier.

Split (train:test) 80:20
Accuracy

(%)
Parameters

C kernel gamma degree

HOG CK+ 94.31 500 rbf ’auto’ -
AffectNet 72.86 1 poly 0.1 2

LBP CK+ 91.06 500 rbf 0.005 -
AffectNet 67.14 100 rbf 0.01 -

PCA CK+ 86.18 10 poly 0.001 1
AffectNet 60.00 100 rbf 0.001 -
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Table 4.11: Results for the 90:10 split using the SVM classifier.

Split (train:test) 90:10
Accuracy

(%)
Parameters

C kernel gamma degree

HOG CK+ 96.55 500 poly 0.001 3
AffectNet 70.00 1 linear - -

LBP CK+ 96.55 500 rbf 0.005 -
AffectNet 67.14 100 rbf 0.01 -

PCA CK+ 93.10 10 rbf 0.0005 -
AffectNet 57.14 10 rbf 0.005 -

Tables 4.7 to 4.11 present the obtained results for each of the considered splits. Each table

depicts the outcome for the different facial features (HOG, LBP, PCA) tested on the CK+ and the

AffectNet dataset. In addition, it details the parameters to which these results were obtained. Note

that the accuracy values presented correspond only to the highest accuracy achieved from the im-

plementation of the methods. However, is it important to have in mind that to obtain these values

the parameters were varied; only choosing, in the end, the best result. The system’s behaviour for

the different values of the parameters will be analyzed below (see Appendix A for more detailed

results).

Regarding the CK+ dataset, the 90:10 split generated the highest accuracy values for all the 3

algorithms (HOG, LBP, PCA). However, depending on one of those specific algorithms the pa-

rameters in use were different. On the contrary, for the AffectNet dataset the 70:30 split obtained

the best result for the LBP features and the 80:20 split for the HOG and PCA.

• For both datasets, the linear kernel produced a constant result regardless the C value for the

HOG and the PCA algorithm, 89.66% and 79.31% for the CK+; 71.43% and 57.86% for

the AffectNet dataset. The LBP, on the other hand, despite following the constant tendency

was disrupted for C equal to 10 corresponding to the peak of accuracy of 93.10%.

• For the rbf, the behaviour was similar for both datasets. For different values of C, the

variation of the accuracy occurred in a similar way which suggested that this parameter

had little impact on the system. In contrast, the variation of the value of gamma defined

the improvement or worsening of the results. C equal to 1 was proven not to be enough

to predict the images, as it presented a low accuracy specially when combined with small

values of gamma. This kernel generated the highest values of accuracy when using the LBP

and PCA features as the input of the SVM classifier on both datasets, for relatively small

values of C and gamma.

• The third kernel tested was the polynomial which implies the variation of 3 parameters. The

two already mentioned (C and gamma) and a third one exclusive for this kernel, the degree.
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The results, for the CK+ and AffectNet dataset indicate that the greater the value of the

degree, the greater the dependence on the other parameters to reach good accuracy values.

This means that for a value of the degree equal to 1, varying the remaining parameters does

not affect the outcome as much as for superior values of the degree. Except for the PCA

which produces the greatest decline in the accuracy for degree values superior to 1 to which

the classifier is not able to correctly predict the images.

4.3.2 RF Classifier Resuls

The RF classifier was implemented using the previously mentioned machine learning package

scikit-learn. This classifier fits multiple decision trees into multiple subsets of the input set and

increases the number of correctly predicted images as well as is able to better regulate overfitting

by using averaging [129].

Parameters:

• n_estimators - The number of estimators represents the number of trees considered in the

forest. The default value is 10. For the tests, this parameter ranged from 1 to 10000: 1, 100,

1000, 10000.

• max_features - This parameter defines the size of the subsets of features randomly gener-

ated that are to be taken into account when it is aimed to split a node. The default value for

classification is the square root of the number of features defined by ’auto’. This parameter

takes the value 1, ’auto’ and ’None’ which is the maximum number of features considered

(21632 for the hog, 12544 for the LBP, 129 and 196 for the PCA on the CK+ and AffectNet

respectively).

• max_depth - Corresponds to the maximum depth of each tree in the forest. The default

value is ’None’ which means that while not all the leaves are pure or possess a number of

samples inferior to the value of the parameter min_samples_split, the tree continues grow-

ing.

• min_samples_split - In order to know when to split a node, this parameter is used. Thus,

when the minimum number of samples is reached the internal node split occurs. The default

value is 2.

• min_samples_leaf - The min_samples_leaf follows the same concept as the previous pa-

rameter. In this case, it is defined the minimum samples needed at a leaf node. The default

value is 1.
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In a first stage, all the parameters introduced above were considered for a range of values.

The outcome from these tests suggested that varying parameters, such as min_samples_split and

min_samples_leaf for values away from the default value, which is 2 and 1 respectively, would

result in a poor performance. Accordingly, keeping those parameters equal to the default values

together with max_depth defined as ’None’ (i.e., so the trees were fully grown) proved to be a

good approach. Since the default values for these parameters were the ones able to produce higher

values of accuracy. To obtain the following results the previous considerations were taken into

account; therefore, only the remaining parameters, n_estimators, and max_features were adjusted.

Table 4.12: Results for the 50:50 split using the RF classifier.

Split (train:test) 50:50
Accuracy

(%)
Parameters

n_estimators max_features

HOG CK+ 80.63 100 ’auto’
AffectNet 59.05 1000 ’None’

LBP CK+ 74.60 1000 ’None’
AffectNet 57.38 1000 ’None’

PCA CK+ 66.03 1000 ’None’
AffectNet 50.42 10000 ’None’

Table 4.13: Results for the 60:40 split using the RF classifier.

Split (train:test) 60:40
Accuracy

(%)
Parameters

n_estimators max_features

HOG CK+ 80.95 1000 ’auto’
AffectNet 62.54 100 ’auto’

LBP CK+ 75.79 10000 ’None’
AffectNet 60.78 1000 ’None’

PCA CK+ 65.87 10000 ’None’
AffectNet 50.53 1000 ’None’

Table 4.14: Results for the 70:30 split using the RF classifier.

Split (train:test) 70:30
Accuracy

( %)
Parameters

n_estimators max_features

HOG CK+ 82.26 100 ’auto’
AffectNet 64.79 1000 ’None’

LBP CK+ 75.27 1000 ’None’
AffectNet 62.44 1000 ’None’

PCA CK+ 67.74 1000 ’None’
AffectNet 50.23 1000 ’None’
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Table 4.15: Results for the 80:20 split using the RF classifier.

Split (train:test) 80:20
Accuracy

(%)
Parameters

n_estimators max_features

HOG CK+ 84.55 10000 ’auto’
AffectNet 61.43 100 ’None’

LBP CK+ 78.86 10000 ’None’
AffectNet 62.86 10000 ’None’

PCA CK+ 66.67 100 ’None’
AffectNet 52.14 100 ’None’

Table 4.16: Results for the 90:10 split using the RF classifier.

Split (train:test) 90:10
Accuracy

(%)
Parameters

n_estimators max_features

HOG CK+ 87.93 100 ’auto’
AffectNet 61.43 100 ’auto’

LBP CK+ 79.31 100 ’None’
AffectNet 57.14 1000 ’auto’

PCA CK+ 75.86 100 ’None’
AffectNet 57.14 1000 ’None’

Tables 4.12 to 4.16 show the result for each of the considered splits. The outcome is presented

by each table for the considered facial features (HOG, LBP, PCA) tested on the CK+ and the

AffectNet dataset. Furthermore, it specifies the parameters to which these results were obtained.

Once more, the underlined values are the best results achieved for the considered methods on a

specific dataset. The analysis of the variation of the RF classifier parameters made it possible to

find these values of accuracy which will be presented below.

On the CK+ dataset the peak of accuracy was reached for the 90:10 split of the training and

test set regardless of the input features. Conversely, for the AffectNet dataset the HOG features

obtained its highest accuracy value for the 70:30 split, the LBP for the 80:20 split and the PCA for

the 90:10.

The outcome of the tests using the RF classifier indicated that the accuracy values increase as

the number of features considered also increases for both the CK+ and the AffectNet dataset. For

the HOG, the peak of accuracy for the CK+ occurred for the default value of the max_features

(
√

max_ f eatures) and a relatively small number of estimators, whereas, for the AffectNet dataset

the best result was for the maximum number of features and a larger value for the n_estimators.

The LBP features as an input presented a good performance for values of the max_features greater

than or equal to the default value (
√

max_ f eatures =
√

12544 ≈ 112) and greater values of the

n_estimators on the CK+ dataset. In contrast, the AffectNet requires the complete set of features to
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achieve its best result. As well as to the HOG, when considering the PCA features the parameters

variation produced approximately the same behaviour regardless of the number of estimators.

Additionally, the peak of accuracy occurred for the the maximum number of features for both

datasets.

4.3.3 Feature Selection Based on MI Results

To implement this approach the previously mentioned machine learning package scikit-learn was

used. The purpose is the estimation of the mutual information for a discrete variable. The obtained

MI’s score represents a positive value, it only takes the value zero when the considered variables

are independent. This algorithm is based on [130, 131].

In the previous sections some results were obtained considering the complete set of features.

What was not very clear was whether all the features were needed or not to achieve those values

of accuracy. Trying to provide an answer this feature selection approach was implemented for the

underlined values in Tables 4.7 to 4.11 and Tables 4.12 to 4.16, using the SVM and RF classifier,

respectively.

The outcome was, for the highest accuracy achieved on this study (the HOG features generated

from the CK+ dataset tested on the SVM) the same accuracy value, 96.55% with only 11000

features, a reduction of almost 50% in the number of the features (21632 to 11000). For the LBP

on the same dataset and classifier, it were necessary only 4000 features from the 12544 complete

set to achieve 96.55% of accuracy. The AffectNet had the same behaviour in this test being able

to reduce the number of features needed to keep the same value of accuracy.

The RF classifier provided an even higher performance since it was able to maintain the accu-

racy values as well as to reduce the number of required features. In this case, the optimal number

of features for the HOG considering the CK+ was 5000 achieving the same accuracy of 87.93%.

For the LBP on the same dataset the updated number of features was 1500 with an accuracy of

79.31%. For the AffectNet, the same number of features generated a slightly inferior value of

accuracy.
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4.3.4 Discussion

4.3.4.1 CK+

A comparison was made between the results obtained by the implemented tests and the approaches

mentioned in the literature. This comparison has proved not to be as straightforward as expected

since there is a shortage of information on the data involved and the evaluation process for the

different literature proposals. Therefore, the obtained results were compared with other works

that used approximately the same approach for the CK+ dataset. From the implemented tests the

SVM classifier outperforms, by a wide margin, the RF classifier for the accuracy of the prediction

of the images. The highest achieved values of accuracy were 96.55% and 87.93% for the SVM

and RF classifier, respectively, when tested on the CK+ dataset. The previously mentioned results

were obtained when considering the largest training set, whereas the smallest training set resulted

in an accuracy of 87.30% for the SVM and 80.63% for the RF classifier. The gap between the

values of accuracy for the two classifiers can be explained due to the greater influence that a small

and imbalanced training set has on the RF classifier which reveals itself less able to handle this

scenario in comparison to the SVM. Nugrahaeni et al. in [132] conducted a research in which

the performance of these two classifiers was compared. It was observed the behaviour of the

classifiers to different sizes of the training set and consistent with the present work the accuracy

was increasing to larger training sets. In the paper, the increase in the accuracy for the largest

training set was of 10% and 23.7% for the SVM and RF, respectively. Conversely, in their research,

the RF (98.55%) surpassed the SVM (90%) for the largest training sets which were not observed

in this study. However, a reason for that might be the fact that, for the SVM it was considered, in

this work, beyond the linear kernel the rbf and the polynomial kernel functions which lead to better

outcomes. Also, the data used in this study was significantly imbalanced which was a disadvantage

for the RF classifier. As an input for the classifiers were used the HOG, LBP and PCA algorithms.

The results for each implemented test can be observed in Table 4.17. Happy et al. in [62] reported a

similar methodology using LBP features and the SVM for the classification, achieving an accuracy

of 94.09% on the CK+ dataset. Another approach, in this case for dynamic texture recognition

presented by Zhao et al. in [133] obtained an accuracy of 96.2% on that same dataset. In this

paper, an LBP version was implemented combining both the appearance and motion. Regarding

the HOG features, Carcagnì et al. in [63] conducted a study on the implementation of this feature

extractor achieving an accuracy of 98.5% when considering the CK+ dataset. More recently,

Chen et al. in [134] proposed a hierarchical random forest model to perform facial expression

recognition that resulted in an accuracy of 94.3%. El Meguid in [135] proposed a framework to

perform classification of facial expressions in a non-controlled scenario under the observation of

cameras using RF, it achieved an accuracy of 90.26%.

Regarding the last performed test, through the implementation of a feature selection approach

it was found that a significantly smaller number of features can be used and the same value of

accuracy maintained. Li et al. in [136] aims to explore a MI technique which obtained an accuracy

of 96.7% with only 2/3 of features, even superior to their obtained value for the complete set of
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features. Lajevardi et al. in [117] presented a study comparing different approaches to perform

feature selection for an optimal number of features of 4096 and increasing its overall accuracy in

approximately 5%.

Table 4.17: Summary of the best achieved results on the CK+ dataset.

RF SVM
HOG 87.93 96.55
LBP 79.31 96.55
PCA 75.86 93.10

The obtained results in this study represent a good performance of the implemented algo-

rithms. In some cases, these results were outperformed by the literature. However, bearing in

mind that this is an extensively studied topic much has been done to improve the accuracy rate.

For instance, the development of improved versions of the considered algorithms is been used to

obtain considerably better results. Furthermore, in this study, it was considered imbalanced data.

All the facial expressions available on the CK+ dataset: anger (45), disgust (59), fear (25), happi-

ness (69), sadness (28), surprise (83), and contempt (18), plus the neutral (309). For the studied

literature in most of the cases the data was more balanced, and at least, one less facial expression

was considered, this means one less class, which is likely to be translated in an increase of the

accuracy rate.

4.3.4.2 AffectNet

The need to reach out to other scenarios where people were not performing the facial expressions

justified the choice of the AffectNet. The goal was to add an approximation of what would have

been the scenario to test these algorithms in the clinical environment application. Testing on this

dataset has shown some weaknesses at first because it was not feasible to test the complete dataset,

and second, as the methods implemented proved not to be robust enough to achieve accuracy

values close to the ones achieved on the CK+ dataset. The best results for this dataset can be

found below. They follow the same tendency as the CK+ dataset. The SVM surpasses the RF

for all the considered features. Also, the HOG features as an input obtain the highest accuracy

followed by the LBP and at last, the PCA whose performance is the poorest.

Conversely, in [137], a recent paper from Zeng et al., it is addressed the issue of the in-the-wild

datasets, and the example of the AffectNet is given as the annotations bias on this dataset trigger

inconsistent predictions. This means that for different labelled expressions it can be found similar

face images and that is likely to cause the classifier to wrongly predict the expression. In [137],

both the AffectNet and the CK+ were used to perform FER. Having in mind that this result can not

be used to prove the consistency of the obtained results in this study for the adapted AffectNet it is

still interesting to compare the obtained accuracy for both datasets when testing the same method

(an end-to-end trainable network LTNet). Thus, for both the AffectNet (the complete dataset) and

the CK+ dataset the achieved accuracy was 57.31% and 86.64%, respectively. This highlights
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how challenging it is to perform facial expression classification on the AffectNet, an in-the-wild

dataset, which is confirmed by the fact that even for the annotators this was not a straightforward

task as the agreement rate between them was not more than 60.7%.

Table 4.18: Summary of the best achieved results on the AffectNet dataset.

RF SVM
HOG 64.79 72.86
LBP 62.86 67.61
PCA 57.14 60.00



56 Results and Discussion



Chapter 5

Conclusions and Future Work

5.1 Conclusions

Facial Expression Recognition can be seen as a trivial task, however, even humans or experience

annotators have difficulties to assertively identify the expression. The present work focused on the

automatic identification of expressions, by its face images.

The initial step consisted of studying the literature in order to be able to choose the most

adequate methods to perform FER. Once the methods were chosen it was the moment to search

for appropriate and relevant datasets which included both the images of the subjects performing

different expressions and the correspondent annotated labels for the expressions in the categorical

domain. This was the starting point to explore some Computer Vision techniques. One of the

datasets did not provide annotations for the face localization in the image, in this case, a face

detection algorithm had to be applied. Then, it were implemented methods to extract the features

that were able to represent the images in the most accurate way. From those methods, the first two

produced a representation for each image whereas the third one considered the whole training set

to build a model of representation.

Having a good representation for the images as well as the labels, the necessary requirements to

apply the classifiers were fulfilled. Those image faces could be classified in 7 different expressions,

such as happiness, sadness, surprise, fear, disgust, anger, contempt and additionally, the neutral.

Multiple experiments were carried out, testing the previously extracted features so it would be

inspected to which features the best accuracy was achieved.

The best performance was generated by the SVM classifier when applied to the HOG features

with 96.55% of accuracy for the CK+. The exact same approach achieved an accuracy of only

72.86% on the AffectNet dataset. At last, it was also found that for approximately less than 50%

of the total of features these accuracy values could be kept.

The number of expressions considered together with the imbalanced sets did not allow the sys-

tem to perform better. So, it would be expectable to achieve a higher value for the accuracy if fewer

expressions, as well as a more balanced set, would be taken into account for the classification.

57
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In short, the study allowed to draw some conclusions about the behaviour of a recognition

system. Although these approaches achieve good performance on the CK+ dataset, they proved

not to be the most adequate to deal with a dataset as the AffectNet. For that purpose, less conven-

tional approaches would have to be considered, for instance, deep Convolutional Neural Networks,

regarded as a valuable technique that allows learning straight from the images as well as take ad-

vantage of a large number of samples contained on the original AffectNet.

5.2 Future Work

Regarding the framework of this dissertation, the following steps are easy to identify. The creation

of a new dataset would be the first. This new dataset would contain pictures of patients already in a

clinical setting which would allow having as a starting point the subjects in the aimed environment.

Having the most appropriate dataset would help to ensure that the approach was reliably enough

and performed well in such a setting. This was not feasible to accomplish since this is a time-

bounded project and the fact that it would be needed to record sessions with real patients raises

major and complex ethical issues. The process to obtain the required authorizations would be

extensive and it was not guaranteed that would result in a positive response. Also, apart from

obtaining the samples, it would be also required to annotate them. For that, experienced annotators

willing to perform this task would have to be found.

Secondly, as it was mentioned before, primarily deep CNNs would have to be implemented.

In addition, the latest approaches and methods would have to start being explored. Again, the

time constraint, as well as the computational availability, have not made it possible to study and

introduce less conventional approaches.

At last, the final goal would be the application in the field and, in the case of wanting to pro-

vide the professionals with immediate feedback from the patient expressions a real-time approach

would be desired. The previous steps would presumably promote this step as this would be a

natural step forward.



Appendix A

Detailed Results

In this chapter, it is shown the graphs that led to the presented and discussed results in the the

chapter 4.

A.1 Results in the form of graphs obtained from the use of the SVM
and RF Classifiers.

Figure A.1: Graph representing the HOG features from the CK+ dataset classified using the SVM
classifier with a rbf kernel.
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Figure A.2: Graph representing the HOG features from the CK+ dataset classified using the SVM
classifier with a polynomial kernel (degree equal to 1).

Figure A.3: Graph representing the HOG features from the CK+ dataset classified using the SVM
classifier with a polynomial kernel (degree equal to 2).
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Figure A.4: Graph representing the HOG features from the CK+ dataset classified using the SVM
classifier with a polynomial kernel (degree equal to 3).

Figure A.5: Graph representing the HOG features from the AffectNet dataset classified using the
SVM classifier with a rbf kernel.
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Figure A.6: Graph representing the HOG features from the AffectNet dataset classified using the
SVM classifier with a polynomial kernel (degree equal to 1).

Figure A.7: Graph representing the HOG features from the AffectNet dataset classified using the
SVM classifier with a polynomial kernel (degree equal to 2).
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Figure A.8: Graph representing the HOG features from the AffectNet dataset classified using the
SVM classifier with a polynomial kernel (degree equal to 3).

Figure A.9: Graph representing the LBP features from the CK+ dataset classified using the SVM
classifier with a rbf kernel.
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Figure A.10: Graph representing the LBP features from the CK+ dataset classified using the SVM
classifier with a polynomial kernel (degree equal to 1).

Figure A.11: Graph representing the LBP features from the CK+ dataset classified using the SVM
classifier with a polynomial kernel (degree equal to 2).
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Figure A.12: Graph representing the LBP features from the CK+ dataset classified using the SVM
classifier with a polynomial kernel (degree equal to 3).

Figure A.13: Graph representing the LBP features from the AffectNet dataset classified using the
SVM classifier with a rbf kernel.



66 Detailed Results

Figure A.14: Graph representing the LBP features from the AffectNet dataset classified using the
SVM classifier with a polynomial kernel (degree equal to 1).

Figure A.15: Graph representing the LBP features from the AffectNet dataset classified using the
SVM classifier with a polynomial kernel (degree equal to 2).
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Figure A.16: Graph representing the LBP features from the AffectNet dataset classified using the
SVM classifier with a polynomial kernel (degree equal to 3).

Figure A.17: Graph representing the PCA obtained from the CK+ dataset classified using the SVM
classifier with a rbf kernel.
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Figure A.18: Graph representing the PCA obtained from the CK+ dataset classified using the SVM
classifier with a polynomial kernel (degree equal to 1).

Figure A.19: Graph representing the PCA obtained from the CK+ dataset classified using the SVM
classifier with a polynomial kernel (degree equal to 2).
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Figure A.20: Graph representing the PCA obtained from the CK+ dataset classified using the SVM
classifier with a polynomial kernel (degree equal to 3).

Figure A.21: Graph representing the PCA obtained from the AffectNet dataset classified using the
SVM classifier with a rbf kernel.
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Figure A.22: Graph representing the PCA obtained from the AffectNet dataset classified using the
SVM classifier with a polynomial kernel (degree equal to 1).

Figure A.23: Graph representing the PCA obtained from the AffectNet dataset classified using the
SVM classifier with a polynomial kernel (degree equal to 2).
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Figure A.24: Graph representing the PCA obtained from the AffectNet classified using the SVM
classifier with a polynomial kernel (degree equal to 3).

Figure A.25: Graph representing the HOG features from the CK+ dataset classified using the RF
classifier.
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Figure A.26: Graph representing the HOG features from the AffectNet dataset classified using the
RF classifier.

Figure A.27: Graph representing the LBP features from the CK+ dataset classified using the RF
classifier.
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Figure A.28: Graph representing the LBP features from the AffectNet dataset classified using the
RF classifier.

Figure A.29: Graph representing the PCA obtained from the CK+ dataset classified using the RF
classifier.
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Figure A.30: Graph representing the PCA obtained from the AffectNet dataset classified using the
RF classifier.
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