

IC PROTECTION AGAINST JTAG/IJTAG-BASED ATTACKS

XUANLE REN
TESE DE DOUTORAMENTO APRESENTADA
À FACULDADE DE ENGENHARIA DA UNIVERSIDADE DO PORTO EM
ENGENHARIA ELECTROTÉCNICA E DE COMPUTADORES

D 2018

IC PROTECTION AGAINST JTAG/IJTAG-BASED ATTACKS

TESE SUBMETIDA PARA OBTENÇÃO DO

GRAU DE DOUTOR

EM

ENGENHARIA ELECTROTÉCNICA E DE COMPUTADORES

Xuanle Ren

ORIENTADORES: PROFESSOR SHAWN BLANTON, PROFESSOR VÍTOR GRADE TAVARES

FACULDADE DE ENGENHARIA DA UNIVERSIDADE DO PORTO

PORTO, PORTUGAL

DEZEMBRO 2018

Copyright c© 2018

Xuanle Ren

All rights reserved

Resumo

A segurança em circuitos integrados (CIs) está, presentemente, a tornar-se num desafio bem

estabelecido. Vários tipos de ataques a CIs têm vindo a ser reportados, incluindo casos de engen-

haria reversa, carregamento de dados no CI e controlo/modificação da operação do CI. A norma

IEEE 1149.1, vulgarmente conhecida por Joint Test Action Group (JTAG), providencia o acesso

de teste a um CI. A JTAG é principalmente utilizada em CIs para teste e depuração, mas também é

utilizada em campo (no utilizador), o que permite o acesso pós-fabricação a sub-sistemas internos

do CI. Desde a sua introdução, e em consequência da necessidade de endereçar uma série de de-

safios específicos que o teste e depuração de CIs coloca, que a norma IEEE 1149.1 tem vindo a ser

continuamente expandida a uma variedade de outras normas. Por exemplo, a norma IEEE 1687

facilita, de forma eficiente, o acesso a instrumentos embutidos pela disponibilização de redes de

examinação (scan networks) reconfiguráveis. No entanto, uma vez que a JTAG é deixada intacta e

operacional após o fabrico do CI, inevitavelmente disponibiliza uma “porta indireta” que pode ser

explorada fora do seu uso pretendido. Naturalmente, e pelas razões expostas, a JTAG tem vindo

a ser adotada de forma universal, pelo que a utilização desta como porta de acesso indiscreto tem

ganhado uma atenção crescente.

Há várias abordagens propostas anteriormente para impedir o acesso ilegítimo ao JTAG, dentre

elas, a fusão da porta JTAG e o acesso encriptado são exemplos frequentes. No entanto, a fusão

das portas da JTAG desativa permanentemente a depuração após o fabrico, enquanto a encriptação

do acesso tipicamente está sujeita à interceção das chaves ou requer a ligação a uma rede de da-

dos. Neste trabalho é desenvolvido um método inovador, baseado em machine learning (ML),

para a monitorização e deteção de acesso ilegítimo à JTAG. O detetor desenvolvido pode ainda

ser implementado em CI, de tal forma que estes ataques possam ser detetados e impedidos rap-

idamente. Comparando com métodos anteriores, a deteção de ataques com base em métodos de

ML não só preservam a funcionalidade de depuração/programação em campo, como também min-

imizam o risco de interceção das chaves de acesso. Para mais, o método proposto, sendo ortogonal
iii

aos anteriores, pode ser combinado com eles (por exemplo, com encriptação) para uma proteção

complementar da JTAG.

A construção de um modelo de ML capaz de distinguir acessos legítimos ou ilegítimos à JTAG

requer: 1) uma coleção de características (features) relevantes, 2) uma grande quantidade de dados

com qualidade e 3) um algoritmo de ML eficaz. A operação JTAG de vários sistemas é estudada,

incluindo os processadores OpenSPARC T1, T2 e o Leon, de forma a que as características mais

relevantes sejam encontradas. De seguida, são recolhidos os dados correspondentes às caracterís-

ticas relevantes e resultantes do estudo da operação legítima da JTAG, bem como dos respetivos

ataques aplicáveis. Para a deteção de ataques, são desenvolvidos e avaliados detetores baeados em

janelas deslizantes e modelos de sequência. Para o primeiro, a operação da JTAG é segmentada

em subsequências de tamanho fixo que são posteriormente classificadas por um modelo de ML.

As experiências, com base em classificadores de árvores de decisão, apresentam um erro de 3% e

5% para a OpenSARC T1 e T2, respetivamente. Os modelos de sequência, sendo capazes de car-

acterizar de forma mais precisa a dependência das sequências, reduzem o erro para valores ainda

mais baixos (i.e., 1% e 3%).

Após a deteção de um ataque, o acesso à JTAG é restringida. Mais especificamente, é desen-

volvida uma arquitetura JTAG que não só desativa a observabilidade e controlabilidade da JTAG,

como também ofusca a sua operação após o desencadear da restrição. Isto evita que o atacante

possa obter os parâmetros do modelo de ML por engenharia reversa, tornando o detetor robusto a

ataques de adversário. Experiências com o OpenSPARC T2 mostram que a modificação proposta

da arquitetura da JTAG apenas adiciona 22% na área de CI, isto quando comparada com a JTAG

original, e a adição global, face à OpenSPARC T2, são uns meros 0.01%.

O método de deteção de ataque é posteriormente expandido a redes IJTAG. O desafio na de-

teção de ataques a IJTAGs reside na elevada dimensionalidade dos dados recolhidos durante a

operação da IJTAG. De forma a tornar possível uma deteção em CI, a elevada dimensionalidade

dos dados é comprimida com recurso a uma matriz de low-density parity-check (LDPC). De acordo

iv

com as experiências realizadas numa versão modificada do processador OpenSPARC T2, a utiliza-

ção de compressão com PDPC elemina 91% das características e reduz o tamanho do circuito final

em 43%, sem afetar a qualidade da deteção.

v

Abstract

Security is now becoming a well-established challenge for integrated circuits (ICs). Various

types of IC attacks have been reported, including reverse engineering, dumping on-chip data, and

controlling/modifying IC operation. IEEE Standard 1149.1, commonly known as Joint Test Action

Group (JTAG), is a standard for providing test access to an IC. JTAG is primarily used at the time

of IC fabrication for test and debug, but is also employed in the field, allowing access to internal

sub-systems of the IC. Since introduced, IEEE Standard 1149.1 has been continuously extended

to a variety of standards for addressing challenges in IC test and debug. For instance, IEEE Stan-

dard 1687 facilitates efficient access to embedded instruments by supporting reconfigurable scan

networks. Because JTAG is left intact and operational after fabrication, it inevitably provides a

“backdoor” that can be exploited outside its intended use. This backdoor has gained increasing

attention due to the ubiquitous adoption of the JTAG.

Previous approaches, such as fusing-off the JTAG port and encrypting JTAG access, have been

proposed to prevent illegitimate access to the JTAG. However, fusing-off the JTAG also perma-

nently disables in-field debugging, while encrypting JTAG access typically suffers from key eaves-

dropping or requires availability of a network. In this work, a novel, machine-learning (ML) based

method is developed for monitoring and detecting illegitimate access to the JTAG. The ML-based

detector can be further implemented on chip so that these attacks can be detected and prevented

quickly. Compared to previous work, the ML-based attack detection not only preserves the func-

tions of in-field debugging/programming, but also minimizes the risk of key eavesdropping. More-

over, the proposed method, orthogonal with previous ones, can be combined with them (such as

encryption) to provide complementary protection for the JTAG.

Constructing an ML model that distinguishes legitimate and illegitimate JTAG access requires

1) relevant features, 2) a large amount of high-quality data, and 3) an effective ML algorithm. To

derive relevant features, JTAG operation of various designs are studied, including the OpenSPARC

T1, T2 and the LEON3 processors. Then, data corresponding to the features are collected through
vi

studying legitimate JTAG operation and attacks applicable to the JTAG. To detect attacks, sliding-

window-based detectors and sequence models are developed and evaluated. For sliding-window-

based detectors, JTAG operation is segmented into fixed-size sub-sequences which are then clas-

sified by an ML model. Experiments using a decision-tree classifier demonstrate an error rate of

3% and 5%, for the OpenSPARC T1 and T2, respectively. Further, sequence models, able to char-

acterize serial dependence more accurately, reduce the error rate to even lower levels (i.e., 1% and

3%).

Upon detection of an attack, access to the JTAG is restricted. Specifically, a secure JTAG

architecture is developed, which can not only disable observability and controllability provided

by the JTAG, but also obfuscate the JTAG operation triggering the restriction. This prevents the

attacker from reverse engineering the parameters of the ML model, making the detector robust to

adversarial attacks. Experiments using the OpenSPARC T2 show that the modification of the JTAG

architecture only adds 22% chip area compared to the original JTAG, and the overall addition to

the OpenSPARC T2 is mere 0.01%.

The method of attack detection is further extended to IJTAG networks. A challenge of detecting

IJTAG attacks resides in the high-dimensional data collected from IJTAG operation. To make on-

chip detection possible, the high-dimensional data is compressed using a low-density parity-check

(LDPC) matrix. According to the experiments using a modified version of the OpenSPARC T2

processor, the use of LDPC-based compression eliminates 91% of the features, and reduces circuit

size by 43% without affecting detection accuracy.

vii

Acknowledgement

I would like to give the first and deepest thank to my advisors, Prof. Shawn Blanton and

Prof. Vítor G. Tavares, without whose continuous support and guidance, I am not able to complete

this Ph.D. dissertation. During the six-year co-working, I have learned from them how to keep

motivated and do relevant research. Moreover, I see them as mentors because of their wisdom and

attitude towards not only scientific research, but also every aspect of the life. They will be excellent

examples that enlighten my future career.

Second, I would like to acknowledge Prof. Diana Marculescu, Prof. Jeff Schneider, Prof.

Kenneth Mai, and Prof. Jaime Cardoso, for sitting in my defense committee. I am grateful that they

take time from busy schedule to follow up with my work. Their insights and expertise contribute

to outlining and improving this dissertation.

I would also like to thank my colleagues and friends for supporting me through these years.

In particularly, I am grateful to the ACTL members: Matthew Beckler, Ben Niewenhuis, Yang

Xue, Cheng Xue, Xiang Lin, Zeye Liu, Soumya Mittal, Phillip Fynan, Brian Osbun, Shanghang

Zhang, Qicheng Huang, Chenlei Fang, Alfred Nguyen, and Jaime Kang. They are wonderful and

smart people that have inspired my research a lot. I would also like to thank the co-authors of

my publications: Francisco P. Torres and Mitchell Martin. In addition, I would like to thank the

colleagues in Porto: Ganga Bahubalindruni, Iman Kianpour and Helder Avelar. They helped me

so much with both research and life in Portugal.

Next, I would like to give special thanks to my family, the source of my hope and power. Their

encouragement and support make me overcome difficulties and become a better person. I would

also like to thank all my friends in Pittsburgh, in Porto, and in China, for sharing incredible and

enjoyable moments with me.

Last but not least, I would like to acknowledge the financial support that makes this Ph.D. work

possible. In particular, I would like to thank Portuguese Foundation for Science and Technology for

viii

granting me a five-year scholarship (SFRH/BD/52166/2013) through the Carnegie Mellon Portugal

Program. I would also like to express my gratitude to Prof. Shawn Blanton for granting me

financial support for the last year of my Ph.D.

ix

Contents

Resumo . iii

Abstract . vi

Acknowledgement . viii

List of Tables . xiv

List of Figures . xvi

1 Introduction 1

1.1 Characterizing JTAG/IJTAG Operation . 10

1.2 Detecting JTAG/IJTAG Attacks . 12

1.3 Restricting JTAG Access . 14

1.4 Dissertation Organization . 15

2 Characterization of JTAG Operation 17

2.1 JTAG Architecture . 17

2.1.1 Standard JTAG Architecture . 18

2.1.2 Bus-based Debug Architecture . 20

2.2 JTAG Attacks . 23

x

2.3 Feature Characterization . 26

2.4 Experiments . 29

2.4.1 OpenSPARC T1 and T2 . 29

2.4.2 LEON3 . 33

2.5 Summary . 34

3 Detection of JTAG Attacks 36

3.1 Detection Using a Sliding Window . 37

3.2 Classification Models . 40

3.2.1 Binary Classifiers . 40

3.2.2 Recurrent Sliding Window . 43

3.2.3 One-class Models . 43

3.3 Delayed Labeling . 45

3.4 Sequence Models . 49

3.4.1 Recurrent Neural Network . 49

3.4.2 Hidden Markov Model . 51

3.5 Detection of Unknown Attacks . 53

3.6 Experiments . 56

3.6.1 Search for Window Size . 56

3.6.2 Sliding-window-based Detectors . 56

3.6.3 Sequence Models . 60

3.6.4 Detection of Unknown Attacks . 62

3.7 Discussion . 64

xi

3.8 Summary . 69

4 Detection of IJTAG Attacks 70

4.1 Background . 71

4.1.1 IJTAG Architecture . 71

4.1.2 Prior Work . 74

4.2 IJTAG Attack Detection . 75

4.2.1 IJTAG Attacks . 75

4.2.2 Feature Extraction . 76

4.2.3 Compressed Sensing . 77

4.2.4 Overall Flow . 80

4.3 Experiments . 82

4.3.1 Modification of OpenSPARC T2 . 82

4.3.2 Evaluation of LDPC Matrices . 84

4.3.3 Evaluation of IJTAG Attack Detection . 84

4.4 Discussion . 85

4.5 Summary . 87

5 JTAG Restriction and Detector Implementation 89

5.1 Restriction of JTAG Access . 90

5.2 Security Analysis . 93

5.2.1 Adversarial Attack . 93

5.2.2 Disguised Attack . 95

xii

5.2.3 Other Security Concerns . 97

5.3 Detector Implementation . 97

5.3.1 ML Classifiers . 98

5.3.2 Evidence Collector . 101

5.3.3 Overhead Compared to Software . 102

5.4 Discussion . 105

5.5 Summary . 107

6 Summary and Future Work 108

6.1 Dissertation Contribution . 109

6.2 Future Work . 112

A Adversarial Analysis 115

Glossary 118

Bibliography 121

xiii

List of Tables

1.1 EXAMPLES OF INDUSTRIAL SOLUTIONS TO SECURING THE JTAG. 5

1.2 ATTACK MODEL ASSUMED IN THIS WORK (THE ENTRIES WITH 3 MEANS THAT

THE ATTACKER HAS THE CORRESPONDING ABILITY, WHILE 7 MEANS THE AT-

TACKER DOES NOT). 7

2.1 A LIST OF VARIOUS NON-INTRUSIVE ATTACKS. 23

2.2 JTAG ATTACK STRATEGIES ARE ORGANIZED IN THREE MAIN STEPS AND NINE

SUB-STEPS. 25

2.3 SOME FEATURES USED FOR CHARACTERIZING JTAG OPERATION. 27

2.4 THE JTAG FUNCTIONS IMPLEMENTED IN THE OPENSPARC T1 AND T2. . . . 30

2.5 LEGITIMATE JTAG OPERATION AND ATTACKS ARE CREATED FOR THE

OPENSPARC T1 AND T2. 30

3.1 THE PARAMETERS SELECTED FOR VARIOUS DETECTION MODELS. 58

4.1 FEATURES USED FOR CHARACTERIZING IJTAG OPERATION. 76

4.2 SYNTHESIS RESULTS ARE COMPARED FOR THE RANDOM FOREST (WITH

THREE TREES) DETECTORS (GATE EQUIVALENT = TOTAL AREA / AREA OF A

TWO-INPUT NAND GATE). 87

xiv

4.3 THE PROPOSED APPROACH IS COMPARED TO PRIOR WORK. 88

5.1 FOR EACH TYPE OF DR, CONTROLLABILITY AND OBSERVABILITY ARE PRO-

HIBITED THROUGH SPECIFIC ACTIONS. 90

5.2 ATTACK MODEL AIMED AT THE DETECTOR (AS A SUPPLEMENT TO TABLE 1.2). 94

5.3 DETECTORS BASED ON DIFFERENT CLASSIFIERS ARE COMPARED (GATE

EQUIVALENT = TOTAL AREA / AREA OF A TWO-INPUT NAND GATE). 102

xv

List of Figures

1.1 Example boards with the JTAG ports exposed: (a) D-Link DIR-620 router [1], and

(b) Broadcom BCM5354 processor [2]. 2

1.2 The JTAG standard has been extended to a variety of IEEE standards. 3

1.3 This diagram describes the methods of detecting and restricting illegitimate JTAG

accesses developed in this dissertation. 8

1.4 Supervised and unsupervised learning are illustrated using a classification and a

clustering problem, respectively. (a) The goal of classification is to identify an

optimal boundary between two or more classes, while (b) the goal of clustering is

to group observations based on their density. 13

2.1 The block diagram of a typical JTAG architecture. 19

2.2 The JTAG TAP controller is a one-input FSM. 20

2.3 The blocks of the LEON3 are connected through an AMBA Advanced High-

performance Bus (AHB) [3]. 21

2.4 The JTAG, acting as an AHB master, can access processor registers through a

debug support unit (DSU) [3]. 22

xvi

2.5 The importance of features is calculated using a decision tree and mutual infor-

mation for (a) the OpenSPARC T1 and (b) the OpenSPARC T2. In each chart, the

results of recursive feature elimination is indicated by the order of the features, i.e.,

features on the right will be eliminated firstly. 31

2.6 Legitimate JTAG operation and attacks for (a) the OpenSPARC T1 and (b) the

OpenSPARC T2, are reorganized using a sliding window, and then plotted using

t-SNE. 32

2.7 Legitimate JTAG operation and attacks via the bus of the LEON3 processor are

reorganized using a sliding window, and then plotted using t-SNE. 33

3.1 The overall flow for online detection of JTAG attacks using a sliding window (w= 3). 38

3.2 Illustration of some example classifiers, including (a) a decision tree, (b) a linear

SVM, (c) a three-layer feedforward ANN, and (d) k-NN. 41

3.3 Sequence collected in real-time is compared with three representative sequences,

namely 7-1-3, 2-3-1-4, and 8-8-7, from the first opcode to the last. Each repre-

sentative sequence is associated with a local score that may increment, saturate

(saturation score is 5 in this example) or reset, according to the matching result.

A global score, equal to the maximum local score, serves as an indicator of the

security status of the JTAG. 44

3.4 The computation of α̃L(t) and α̃A(t) involves a lattice-like process. 47

xvii

3.5 The parameters of an HMM used for collecting evidence of an attack. The hidden

state always starts from SL, i.e., assuming the user as legitimate initially. State tran-

sition, either from SL to SA or from SA to SL, occurs with a small probability v. The

emission probability can be derived through analyzing the probabilistic predictions

produced for legitimate operation and attacks, respectively. More precisely, legit-

imate operation is more likely to produce a negative prediction that results in a

small ot , while an attack is more likely to produce a positive prediction that results

in a large ot . 47

3.6 A gated recurrent unit (GRU). 50

3.7 The architecture of a two-level HHMM. 52

3.8 A binary classifier suffers from open-space risk, i.e., unable to correctly classify

observations that are “far” from historically-observed data (e.g., legitimate opera-

tion and known attacks). 54

3.9 A cascade model is constructed by combining a one-class SVM and a binary SVM

for detecting unknown attacks. 55

3.10 The impact of window size (w) on the regularized KL-divergence between legiti-

mate JTAG operation and attacks, for (a) the OpenSPARC T1, (b) the OpenSPARC

T2, and (c) the LEON3. 57

3.11 Sliding-window-based detectors and the representative-based anomaly detector are

evaluated using five-fold cross validation, with the performance evaluated using

error rate, FPR, and FNR. 59

3.12 The cost decreases as the training of an RNN proceeds. 61

3.13 Sequence models, including an RNN, an HMM, and a two-level HHMM, are eval-

uated using error rate, FPR, and FNR. 62

xviii

3.14 Two HMMs, namely HMM-X and HMM-Y, are trained based on legitimate JTAG

operation and attacks, respectively. Each testing trace is evaluated using both

HMMs, with the log-probability plotted. 63

3.15 Detection of unknown attacks that target different IC components are evaluated for

various models, including (a) a decision tree, (b) the cascade model, and (c) an RNN. 65

3.16 Detection of unknown attacks that exploit different strategies (listed in Table 2.2)

are evaluated for various models, including (a) a decision tree, (b) the cascade

model, and (c) an RNN. 66

3.17 Legitimate JTAG operation and attacks for the OpenSPARC T2 are plotted using

t-SNE. Two types of attacks (targeting an IC component not included in training)

are regarded as unknown, one located in (a) an open space, and the other located

in (b) an area overlapping with legitimate operation. 67

4.1 The structure of a segment insertion bit (SIB). 72

4.2 An example of an IJTAG architecture composed of four instruments, each of which

is gated by a SIB and/or selected by an SCB. 73

4.3 An industrial memory macro wrapped by a six-bit TDR. 73

4.4 (a) An example of a Tanner graph with eight variable nodes and four check nodes.

(b) The adjacent variable nodes and check nodes of the Tanner graph in Fig-

ure 4.4(a) are traversed starting from v0. 79

4.5 As d (density of A) increases, g (the local girth) decreases. The largest d that

satisfies g > 4 is chosen for constructing the LDPC matrix A. 80

4.6 The overall flow of IJTAG attack detection. 81

xix

4.7 The OpenSPARC T2 is partitioned into 11 sub-systems, and then each sub-system

is wrapped by a TDR. In addition, each TDR is gated by a SIB, and all SIBs

comprise a daisy chain that is accessible via the JTAG port. 82

4.8 The density distribution (i.e., number of non-zero entries) for the collected data

whose dimension is 280. 83

4.9 The performance of reconstructing the original data is evaluated for LDPC matri-

ces and three other types of matrices. 85

4.10 The data, whose dimension is reduced by (a) the LDPC-based feature reduction

and (b) feature selection using a decision tree, are classified using a random forest. 86

5.1 To protect the JTAG, access to DRs is modified as shown in red. 91

5.2 The error rate of identifying disguised attacks is evaluated using a decision-tree

detector and compared with the error rate of identifying legitimate operation and

undisguised attacks. An attack trace is disguised through segmenting the trace and

then inserting legitimate sequences between the segments. 96

5.3 The overall architecture of the sliding-window-based detector. 98

5.4 Architecture of (a) a combinational tree, (b) a sequential tree, and (c) an SVM. . . . 99

5.5 Architecture of the evidence collector. 101

5.6 Area of the SVM detector and the mean squared error of the classification results

(compared to software) are impacted by the number of bits for αi (n_alpha_bit)

and the RBF values (n_rbf_bit). 103

5.7 Performance and size of (a) the random-forest-based detector and (b) the SVM-

based detector are impacted by the variety of attacks used in classifier training. . . 106

6.1 A combination of hardware and software for attack detection. 113

xx

6.2 A mechanism that permits legitimate users to re-enable access to the JTAG. 113

xxi

Chapter 1

Introduction

During the past decades, integrated circuits (ICs) have been widely used in various fields, from

consumer devices to military equipment, because of the powerful capability of computation they

provide. Meanwhile, security of ICs is becoming a central issue considered by both IC providers

and users. An IC, if not secured, may be attacked by hackers, which further threatens the secu-

rity of personal information, IC providers and users, and even military defense. To ensure the

security of ICs, one typically needs to analyze potential vulnerabilities, and then develop solutions

to mitigate them. Today, the supply chain of ICs, including design, fabrication, testing, integra-

tion, packaging, and shipping, requires collaboration of various participants across the globe. This

makes the security problem of ICs even more severe and more complex. Any untrusted participant

could be an adversary and attack the IC using various tools and techniques. For example, cre-

dential on-chip information can be dumped via the ports of the IC [4, 5] and through side-channel

signals, such as power consumption [6], electromagnetic (EM) emissions [7] and the testing infras-

tructure [8–15]. On-chip information can also be dumped using hardware Trojans [16] that take

the form of a modification of the original circuitry. Hardware Trojans can also bypass/disable the

security characteristics of a system [17], and even destroy the IC [18]. Other than on-chip infor-

mation, intellectual property (IP) cores are also a common attack target. An attacker can reverse

engineer an IP core intrusively (via chemical etching [19]) or non-intrusively (via optical imag-

1

(a) (b)

Figure 1.1: Example boards with the JTAG ports exposed: (a) D-Link DIR-620 router [1], and (b)
Broadcom BCM5354 processor [2].

ing [20] and X-ray reconstruction [21]). An IP core, if stolen, can be used for overproducing or

cloning more copies without claiming the ownership of the IP, thus causing significant profit loss

for the IP owner. Another threat to ICs involves counterfeiting. An IC is counterfeit if it (or a

part of it) is recycled, remarked, cloned, or known to be defective [22]. IC counterfeiting causes a

significant profit loss ($100 billion annually [23]) and reputation damage for legitimate companies.

Finally, because there exist various attacking scenarios, to develop countermeasures, one needs to

make assumptions of who could be the adversary and which tools/strategies the adversary might

exploit.

Among the many security challenges that exist, the vulnerabilities caused by the Design-for-

Testability (DFT) infrastructure has gained increasing attention. DFT aims to make manufacturing

test of ICs easier and more efficient by adding testability features to the IC. Among the various

DFT techniques, the standard test access port and boundary scan architecture, defined by the IEEE

Standard 1149.1 (also referred to as JTAG), is a widely-used infrastructure that enhances IC man-

ufacturing test by providing a serial communication interface for accessing internal subsystems of

an IC [24]. Figure 1.1 shows examples of JTAG ports that are found on printed-circuit boards,

including D-Link DIR-620 router [1] and Broadcom BCM5354 processor [2]. When being tested,

an IC is configured in a test mode where the flip-flops within the IC are connected as one or mul-

tiple shift registers, typically referred to as scan chains. Scan chains can then be used for loading

2

1990

IEEE 1149.1

Original JTAG /
boundary-scan
specification

IEEE 1149.5

Module Test &
Maintenance
Bus (MTM-Bus)

1994

IEEE 1149.1b

Boundary-scan
Description
Language (BSDL)

IEEE 1149.4

Mixed-signal
test bus

1995

1999

2002

IEEE 1532

Configuration
of program-
mable devices

IEEE 1149.6

Advanced
digital
networks

2003

2009

IEEE 1149.7

Reduced-pin
& enhanced
functionality

IEEE 1581

Static component
interconnect
test

2011

2014

IEEE 1687

Reconfigurable
scan network
for embedded
instruments

Figure 1.2: The JTAG standard has been extended to a variety of IEEE standards.

test stimuli into the IC and capturing test responses from the IC. Since introduced as an industry

standard in the 1990s, JTAG continues to grow in terms of capability and usefulness. Today, JTAG

is almost implemented within all ICs, not only for manufacturing test, but also for in-field debug-

ging and programming [25–27]. For example, the JTAG within many processors provides access

to debugging registers (e.g., the trace buffer register), which is critical for software and firmware

debugging [28, 29]. The JTAG of the OpenSPARC T2 processor can be used for accessing cache,

configuring control registers, and programming electronic fuses (eFuse) [30].

To solve the problems arising in testing increasingly-complex ICs, 1149.1 has been extended

to a variety of new IEEE standards, some of which are shown in Figure 1.2. For example, IEEE

Standard 1149.4 expands boundary scan to analog and mixed-signal testing [31], while IEEE Stan-

dard 1500 supports the test of embedded cores by facilitating test integration and test reuse [32].

Among the extensions, IEEE Standard 1687, also referred to as internal JTAG (IJTAG), facilitates

efficient access to embedded instruments1 [33]. IJTAG reduces the cost and difficulty of testing

individual IP cores, and is therefore becoming more and more popular for testing complex ICs.

It is widely believed that JTAG and its related standards will continue to be extended to address

future challenges in IC test and debug [34].

1An instrument refers to an IP core with an IJTAG-compliant interface.

3

Because JTAG (or some portion of it) is usually left operational for in-field use, it inevitably

provides a “backdoor” that can be utilized for accessing internal subsystems of the IC. If not pro-

tected, the JTAG can be exploited outside its intended use. Even though attackers might exploit

various tools and techniques, it is reasonable to assume that JTAG will be a preferred conduit

due to its ubiquitous adoption and powerful debugging functionalities for control and observation.

Note that having access to the JTAG ports also enables observation of other side-channel signals

(e.g., power consumption). Nevertheless, side-channel analysis is more expensive to do than just

controlling/observing the JTAG ports. To exploit the JTAG, an attacker first must identify the

JTAG ports on the board. Then the attacker can explore the secrets within the system, through

loading data into the chip and observing chip responses from the input data. Actually, it has been

demonstrated that an attacker can modify or sniff the firmware using the JTAG [26, 27, 35, 36]. A

well-known example involves the hack of Xbox 360 gaming consoles. The hacker runs illegiti-

mate code with a hacked version of firmware [37]. Even if a new version of bug-free firmware is

updated, the user can still use the JTAG to downgrade the firmware to the hacked version. Another

example involves illegitimate access to FPGAs. The configuration bitstream, which contains the

IP information of a reconfigurable design, is mostly programmed via the JTAG. Obtaining access

to the JTAG, the attacker could modify the configuration of the system, and sniff configuration

bits or even retrieve the IP information. It has been reported that an FPGA for military use was

attacked successfully [25]. Another well-known attack via the JTAG involves deriving the keys of

on-chip cryptographic modules [8–15]. A cryptographic module typically uses a key to encrypt

plaintext. However, if the flip-flops storing the intermediate results of the encryption reside in scan

chains, then the attacker could dump this sensitive information using the JTAG, in order to discover

the key. More precisely, every time encryption executes for one iteration in the normal mode, the

attacker switches the IC to the test mode and shifts out the contents of scan chains. Repeating this

process, the attacker can uncover the key through differential analysis.

Recently, the vulnerability of JTAG has received even more attention in the area of Internet-of-

Things (IoT) [38]. A typical IoT network includes a number of technology components, including

4

TABLE 1.1: EXAMPLES OF INDUSTRIAL SOLUTIONS TO SECURING THE JTAG.

Company Product Solution

Intel
Sixth and seventh

motherboard (e.g., 100
Series Chipset Family)

Encrypt confidential JTAG instructions; the key is
distributed through a non-disclosure
agreement [40, 41]

Intel
40-, 28- and 20-nm FPGAs
(e.g., Arria V, Cyclone V)

Define multiple JTAG access and a secure mode
that allows only mandatory JTAG
instructions [42]

Intel (Altera) Cyclone III LS FPGAs Allow only mandatory JTAG instructions; a reset
can gain full access, but erases credential data [43]

Freescale i.MX6 series processors
Define three security modes (i.e., disabled,
enabled, and boundary-scan-only) using OTP
eFuse [44]

Silicon
Labs

EM35x chips Define bits in firmware that can enable a
read/write protection [45]

Infineon AURIX family controllers
Define bits in flash memory that can secure the
JTAG; the keys are configured using a pre-defined
instruction [46]

Samsung ARTIK IoT platform Contact Samsung for obtaining the key for
accessing the JTAG [47]

Xilinx Zynq-7000 AP SoC The JTAG is disabled by default, and can be
enabled/disabled through eFuse [48]

Texa
Instruments

MSP families Use several security solutions, including physical
fuse, eFuse, and a JTAG lock mechanism [49]

Bluetooth, Wi-Fi, device firmware, services, APIs, a variety of network protocols, and a whole host

of user-level applications. Because an IoT network strongly relies on over-the-air communication

among interconnected devices, an untrusted device, connected within the network, may leave a

“backdoor” that threatens not only the device, but also the entire IoT network [38, 39].

Due to these arising attacks via the JTAG, the industry has come to understand the necessity

and urgency to develop countermeasures. Different from software whose security can be improved

through patching, hardware cannot be patched after fabrication. Instead, the security of hardware

needs to be considered during the design and manufacturing stages. Table 1.1 gives some industrial

5

examples of securing the JTAG. These solutions can be summarized as follows. An intuitive so-

lution involves disabling the JTAG through one-time programmable (OTP) electronic fuse (eFuse)

after manufacturing test. The use of an eFuse disables JTAG access permanently, thus preventing

in-field debugging which may be a significant shortcoming for many end users [50]. Access to

the JTAG can also be hindered by distributing its ports across the chip (or board), however it has

been demonstrated that the JTAG ports can still be identified using exhaustive search [26]. This

identification can even be accelerated using tools such as the JTAGulator [51] and SEGGER J-

Link [52]. Third, on-chip compression/compaction, originally aimed at expediting manufacturing

test, also protects on-chip data from being directly observed through the inherent obfuscation of

test responses performed by this form of DFT [53]. However, compression/decompression only

obfuscates scan-chain data, and not other JTAG functions [13]. Another commonly-used solu-

tion involves password-based authentication that requires a correct password to gain access to the

JTAG [54–56]. The password is typically programmed through OTP eFuse or stored in firmware.

Nevertheless, since the password needs to be distributed to legitimate users by some means, it

might be eavesdropped during the distribution; this shortcoming is exacerbated if all fabricated

instances share the same password. The risk of plain-text passwords can be mitigated using more

complex encryption algorithms, such as DES [8], AES [9], RSA [10], and ECC [11], through a

challenge-response protocol. For example, when AES (Advanced Encryption Standard) is used

for encryption, the user needs to send a challenge to the chip, and the chip computes a hash using

both the challenge and a unique key within the chip. The computation result, as response to the

challenge, is then sent to a trusted server. Only if the response computed by the chip matches

the record stored in the trusted server, then the user gains a communication session with the de-

vice. This challenge-response-based authentication provides high security, but it requires a trusted

server to manage the multi-stage authentication between the user and the device, which relies on

availability of a network.

To mitigate the shortcomings of prior countermeasures, new methods are developed in this

dissertation that provide an orthogonal layer of protection for the JTAG. Particularly, a detector

6

TABLE 1.2: ATTACK MODEL ASSUMED IN THIS WORK (THE ENTRIES WITH 3 MEANS THAT

THE ATTACKER HAS THE CORRESPONDING ABILITY, WHILE 7 MEANS THE ATTACKER DOES

NOT).

The adversary can access ... The adversary knows ...
3 ports of the IC (including the JTAG ports) 3 mandatory JTAG instructions

7 side channels (e.g., power consumption,
EM emission)

7 private test/debug functions

7 netlist of the IC 7 JTAG instructions and their opcode

7 affect IC fabrication (e.g., insert Trojans)

can be implemented on chip, which monitors JTAG operation and predicts whether the user is

legitimate. The motivation resides in the fact that, based on the JTAG attacks reported in the

literature thus far, an attacker knows the mandatory JTAG instructions (defined by the 1149.1

standard and its related standards), but typically does not know which private test/debug functions

have been implemented and which JTAG instructions have been defined to support these functions.

The attack model is described in Table 1.2. In this dissertation, we further assume that the attacker

only has access to the external ports of an IC, including the JTAG ports. In other words, intrusive

attacks, such as obtaining the netlist of the IC or reverse engineering the design using chemical

etching, are beyond the scope of this dissertation. To exploit the private JTAG functions for further

exploration of the internal system, an attacker typically makes guesses about the JTAG functions

according to his/her experience, and then tries to uncover them using trial-and-error strategies [36,

57]. The attacker, with malicious objectives and less knowledge about the private JTAG functions,

is likely to operate the JTAG differently from a legitimate user, which provides an opportunity of

detecting illegitimate access through analyzing how the JTAG is operated.

There exist some methods for detecting illegitimate JTAG operation, such as monitoring the

number of clock cycles that a scan chain is shifted, checking if the user attempts to load an unde-

fined instruction opcode, and checking if the authentication fails too many times [58]. Although

these methods provide barriers for the attacker, they serve only as sanity checks, and therefore are

7

Figure 1.3: This diagram describes the methods of detecting and restricting illegitimate JTAG
accesses developed in this dissertation.

less effective in detecting complex attacks, especially when the attacker already has basic knowl-

edge of the JTAG. To detect more sophisticated attacks, one needs to study in depth how the JTAG

is operated by legitimate users and attackers. A possible method involves comparing the moni-

tored JTAG operation with a database of attack signatures [59] or legitimate traces [60, 61]. These

deterministic methods, however, are less likely to tolerate the variance in JTAG operation, thus

incurring false alerts. It will be demonstrated in a variety of experiments that JTAG operation is

difficult to be described using deterministic rules. Thus, machine learning, because of its statistical

nature, emerges as a promising technique for addressing these challenges.

8

Machine learning (ML) includes statistical models that equip a system with the capability of

learning, i.e., progressively improving performance using the knowledge learned from previous

data. Machine learning has shown a potential for addressing problems related to IC design, man-

ufacturing, test, etc., especially as the complexity of modern ICs is increasing and significant

amounts of data are produced [62]. When used for attack detection, an ML model is constructed

based on legitimate JTAG operation and known attacks. This model is then used for monitoring

JTAG operation and making online prediction of whether the user is legitimate or not. It is worth

noting that the detection is stand-alone and the user can operate the JTAG directly without any

prerequisite step. When compared to password-based encryptions whose major risk comes from

leakage of the password, the detection methods developed in this dissertation minimizes this risk

because the detector, already implemented on chip, does not need to be distributed to any user.

When compared to challenge-response-based authentications, detection methods perform assess-

ments locally without requiring the support of a network. Further, the methods developed in this

dissertation can be used individually, or with prior work for achieving complementary protection

of the JTAG.

Figure 1.3 shows an overall flow of detecting and restricting illegitimate access to the JTAG

developed in this dissertation, with major contributions highlighted using dark boxes. Particularly,

novel methods are developed to address how JTAG operation can be characterized, how ML models

can be used for detecting potential attacks, and how to restrict access to the JTAG upon detection

of an attack. When characterizing JTAG operation, three typical JTAG architectures are studied,

namely a standard JTAG, a bus-based debug architecture, and an IJTAG network. In the remaining

of this chapter more insights will be given for the developed methods.

In the rest of this chapter, more details will be elaborated upon for each part of the developed

methods.

9

1.1 Characterizing JTAG/IJTAG Operation

Machine learning aims to construct a statistical model from data. The performance of a ML

model depends on 1) the relevance of features, 2) the amount and quality of data, and 3) the

effectiveness of the ML algorithm. Here, a feature is defined as an individual measurable property

or characteristic of JTAG operation. Determining relevant features and collecting a large amount

of high-quality data are prerequisites for constructing an effective ML model.

Features are outlined to characterize various aspects of JTAG operation. To determine effective

features, we need to understand the architecture and basic operations of the JTAG. The IEEE

Standard 1149.1 defines the test access ports and a boundary-scan architecture. The test access

port (TAP) consists of four (or five) pins, namely the test data input (TDI), the test data output

(TDO), the test mode select (TMS), the test clock (TCK), and an optional test reset (TRST). A

boundary-scan chain, usually located at the periphery of a chip, not only allows test stimuli to be

supplied serially to the chip via the TDI, but also allows the test response to be observed serially via

the TDO. In addition to the boundary-scan chain, other registers, some through private test/debug

functions, can also be accessed using the TDI and TDO ports. For example, some designs allow

memory built-in self-test (MBIST) to be operated using the JTAG. To support the MBIST, the

designer may implement registers that are used for configuring the mode of the MBIST, initiating

the MBIST, and capturing the result of the MBIST.

Access to these data registers (DRs) is operated by the JTAG TAP controller. Every DR has one

or more affiliated instructions that provide access, configuration, and/or control. A user can select

a DR by loading the appropriate instruction opcode into the instruction register (IR) via the TDI.

A selected DR can be operated using three fundamental register operations, namely capture, shift

and update. When using the JTAG, a user typically operates the TAP controller for accessing the

IR and then the selected DR. Therefore, JTAG operation can be characterized from three aspects,

namely 1) the instruction opcode loaded into the IR, 2) the captured/loaded data in the DR, and

3) the control flow of the TAP controller. Moreover, feature engineering provides a means of

10

creating more features. Feature engineering aims at converting existing features into ones that

better represent the underlying problem for the predictive model [63]. However, since there are no

explicit rules for feature engineering, human effort is usually required.

After studying JTAG operation, a set of features are determined, but not all of them are relevant.

Moreover, a feature may show different relevance for different JTAG architectures. This will be

demonstrated using two representative JTAG architectures. For a standard JTAG architecture, a

test/debug function is operated through executing one or multiple instructions in some specific

order, so the sequence of instruction opcode is a very important aspect. For a system where debug

interfaces (e.g., the JTAG) are connected to a bus, the on-chip components (e.g., processor registers

and memory) are also accessed through the bus. In this scenario, the sequence of bus read and write

exemplifies higher importance. Hence, the relevance of features needs to be evaluated using data

collected from operating the JTAG. To collect a large amount of high-quality data, both legitimate

and illegitimate scenarios of JTAG use should be studied comprehensively. In this dissertation,

several open-source designs, including the OpenSPARC T1 [64] and T2 [30] processors, and the

LEON3 processor [28], are used for experiments. For each design, the JTAG functions are studied,

with traces of legitimate JTAG operation created, and attack traces, based on existing attacks to the

JTAG, are also created.

This dissertation also studies the operation of an IJTAG network. Different from the standard

JTAG, the IJTAG employs a reconfiguration scan network, where the scan chains within each

instrument can be accessed and configured individually. Debugging an IJTAG network is operated

by including/excluding the scan chains within each instrument and asserting/de-asserting the bits

within the scan chains. Therefore, the bits, which control either the configuration of scan chains

or the debugging/programming functions, are more relevant for characterizing the operation of an

IJTAG network.

11

Note that there might exist other JTAG architectures whose operation can be characterized us-

ing different features. However, the JTAG designs considered in this dissertation are representative,

providing guidelines for determining features and collecting data in other JTAG designs.

1.2 Detecting JTAG/IJTAG Attacks

Detection of JTAG attacks can employ deterministic approaches. For instance, an approach

involves comparing the monitored trace with a database of pre-collected attack signatures, with

an alert raised in case of a match [59]. This approach is commonly used in anti-virus software.

Alternatively, the monitored trace can be compared with pre-defined state machines that describe

legitimate JTAG operation, such that any operation deviating from the state machine is labeled as

an attack [60, 61]. These deterministic approaches, however, may cause excessive false alerts due

to the variance existing in both legitimate JTAG operation and attacks.

Machine learning is a preferable technique because it provides a statistical model and therefore

can accurately model the variance in JTAG operation. Two common tasks of machine learning

include supervised and unsupervised learning, as illustrated in Figure 1.4. In a supervised-learning

task, data appear as pairs of an observation and a label. The label can be either a category that

refers to the membership of the observation (the corresponding task is called classification), or a

real number (the corresponding task is called regression) [65]. A supervised-learning task aims to

construct a model that maps an observation to its most probable label, based on the collected data.

The process of constructing the model is called training, and the data used for constructing the

model are called training data. Detection of JTAG attacks, to be addressed in this dissertation, is a

supervised-learning and classification task because it aims to classify a trace of JTAG operation as

either legitimate or attack.

After an ML model is trained, another data set is usually used for evaluating the performance

of the trained model, and for avoiding the model overfitting the training data. This evaluation set is

12

boundary

cluster

(a)

boundary

cluster

(b)

Figure 1.4: Supervised and unsupervised learning are illustrated using a classification and a clus-
tering problem, respectively. (a) The goal of classification is to identify an optimal boundary
between two or more classes, while (b) the goal of clustering is to group observations based on
their density.

named a testing set. Many ML algorithms, such as decision tree [65], random forest [66], support

vector machines (SVM) [67], artificial neural network (ANN) [68], and k-nearest-neighbor (k-

NN) [65], can be used for constructing a classification model. In addition, sequential models, such

as hidden Markov models [69] and recurrent neural network [70], commonly used for analyzing

sequences, can also classify traces of JTAG operation. Distinguishing attacks from legitimate

operation is not a trivial task. The data collected from benchmark designs demonstrate that the

boundaries between legitimate operation and attacks are not easy to identify, and even worse, the

overlapping between legitimate operation and attacks makes the classification even harder.

In an unsupervised-learning task, observations are not labeled. The objective, instead, is to

discover hidden structures behind the observation. A central case of unsupervised learning is den-

sity estimation. A dense cluster of observations, if distinguished from sparse clusters, can be used

as a criterion for anomaly detection. Particularly, an observation, if residing outside dense clus-

ters, is more likely anomalous. In the scenario of JTAG attack detection, an anomaly detector, or

named a one-class model, can be constructed based solely on traces of legitimate JTAG operation.

When compared with binary models, a one-class model is typically less effective in identifying the

classification boundaries [71], but more likely to detect unseen attacks [72].

13

To monitor real-time JTAG operation and disable access to the JTAG upon detection of an

attack, the ML-based detector should be implemented on chip using either hardware or software.

For a hardware implementation, the ML algorithm may pose a challenge in terms of overhead.

If data collection and classifier training are processed online, then a large amount of data need

to be stored on chip and complex logic is required for supporting the training process. To avoid

this huge overhead, the classifier, developed in this dissertation, is trained offline, with only the

trained classifier stored on chip. Even so, the classifier may still consume a large amount of chip

area, especially if the classifier is trained using high-dimensional data. For example, the data

collected from an IJTAG network can have a high dimensionality, considering that each instrument,

including both their configuration status and the test data supplied to them, needs to be monitored.

This high-dimensional data usually lead to a classifier with large size. To make on-chip detection

possible, an on-chip data compression method is developed to reduce the dimensionality.

Besides the performance of attack detection and hardware implementation, other issues, such

as software implementation of the detector, detection of unknown JTAG attacks and attacks to the

ML classifier, will also be studied in this dissertation.

1.3 Restricting JTAG Access

Access to the JTAG should be restricted upon detection of an attack. The objective of access

restriction is to prevent on-chip data from being observed and to prevent on-chip system from be-

ing controlled. A method adopted in industry is to disable access to scan chains completely [50] or

partially [62, 73]. A complete disabling prevents in-field access to the JTAG through an anti-fuse,

while a partial disabling only excludes flip-flops that contain sensitive information (e.g., crypto-

graphic keys) from the scan chain. Some ICs can be programmed, through eFuse for instance, to

allow multi-level accesses. An industrial example involves the i.MX6 series processors developed

by Freescale that define three security modes for the JTAG, namely, disabled, boundary-scan-only,

and enabled. Advanced DFT techniques, including on-chip compression [74], X-tolerance [13],

14

and X-masking [75,76], also restrict observability provided by the JTAG, but bypassing these DFT

infrastructures is usually possible for the purposes of diagnosis and in-field debugging. Another

method, described in [77], aims to avoid leakage of sensitive data caused by switching from the

normal mode to the test mode. Particularly, a switch from the normal mode to the test mode will re-

set the flip-flops containing sensitive information [15]. Obfuscating test output is another effective

method that can prevent observability. To obfuscate the output, the architecture of scan chains is

modified through scrambling the order of sub-chains [78–80], or inserting multiplexors [55,81,82],

inverters [83, 84], and dummy flip-flops [85] into scan chains.

All these methods can be employed for restricting JTAG access. However, in this dissertation,

a new method is developed for securing the JTAG, which can improve the security of the attack

detection described before. Specifically, the JTAG architecture is modified, such that access to

the JTAG is restricted upon detection of an attack. The restriction not only prohibits observability

and controllability provided by the JTAG, but also obfuscates the JTAG operation that triggers the

restriction. This is important because if the attacker knows which JTAG operation triggers the

restriction, he/she can then avoid that operation in future attacks. Knowing which operation is

labeled as legitimate and which is labeled as an attack, an attacker can gain details of the detector;

even worse, repeating this process may even leak all information of the detector. However, if

the operation triggering the protection is obfuscated, then the attacker would obtain much less

information about the detector, such that reverse engineering the details of the detector becomes

much more difficult.

1.4 Dissertation Organization

The rest of this dissertation is organized as follows. In Chapter 2, the standard JTAG and the

bus-based debug architecture are studied, with JTAG operation characterized using relevant fea-

tures. More, typical strategies of attacking the JTAG are summarized according to existing work.

Chapter 3 describes how ML models are employed for distinguishing JTAG attacks from legitimate

15

operation. The performance is evaluated using several open-source designs. Chapter 4 discusses

attack detection for an IJTAG network. To fit high-dimensional data for on-chip detection, a novel

method of compression is developed for reducing the dimensionality of collected data. In Chap-

ter 5, hardware overhead is evaluated for the detector, and a secure JTAG architecture is developed

to prevent observability and controllability provided by the original JTAG. Finally, Chapter 6 con-

cludes the dissertation and discusses future works.

16

Chapter 2

Characterization of JTAG Operation

Despite the variety of possible architectures, JTAG designs share similar goals related to test

and debug, and therefore share similar ideas and philosophy of design for test/debug functionality.

This also makes it possible to study and even generalize the operation of JTAG. This chapter

will elaborate upon feature characterization and data collection for JTAG operation, which act as

prerequisites for constructing an effective ML model. First, the JTAG of various systems, including

the OpenSPARC T1, T2, and the LEON3 processors, are studied in Section 2.1. Then, the attacks

of uncovering the architecture of the JTAG are described in Section 2.2. Section 2.3 presents

four generic categories of features for characterizing JTAG operation, and then proposes specific

features for each category. Finally, in Section 2.4, both legitimate JTAG operation and attacks are

created for the benchmark designs on which the importance of each feature is evaluated.

2.1 JTAG Architecture

After fabrication, a chip needs to be tested for checking if it functions as expected, free of

defects. JTAG, defined by the IEEE Standard 1149.1, was designed to assist with device, board,

and system testing, diagnosis, and fault isolation. Today, JTAG is used as the primary means of

17

accessing subsystems of ICs. This section describes the standard JTAG architecture and a debug

architecture where the debug commands/data are communicated through a bus.

2.1.1 Standard JTAG Architecture

The IEEE Standard 1149.1 defines the test access port and a boundary-scan architecture. The

test access port (TAP) is an interface added to a chip, consisting of four (or five) pins, including the

test data input (TDI), the test data output (TDO), the test mode select (TMS), the test clock (TCK),

and the optional test reset (TRST), as shown in Figure 2.1. A boundary-scan architecture, usually

connecting internal pins as a daisy chain and located at the periphery of a chip, allows serial access

to internal pins via the TDI and the TDO ports. When multiple chips are integrated on a board, the

TAP interface allows each chip to be daisy-chained, such that a test probe only needs to connect to

a single JTAG port for accessing all chips on the board. The boundary-scan chain not only allows

test stimuli to be supplied serially to the chip pins via the TDI, but also allows the test response

to be observed serially via the TDO. Other than a boundary-scan chain, 1149.1 also defines a

mandatory bypass register (a one-bit flip-flop) and an optional ID register (storing data with a

standardized format, including manufacturer code, a part number assigned by the manufacturer,

and a part version code). Each of these registers is defined with an opcode, such that the register

can be selected (i.e., connected between the TDI and TDO ports) if its corresponding opcode is

loaded into the instruction register.

The JTAG standard allows implementation of additional data registers (DRs), in order to sup-

port testing, diagnosis, and in-field debugging. The design-for-testability (DFT) designer has flex-

ibility to decide which test/debug functions to implement, which DRs to add for supporting the

functions, which JTAG instructions to define for operating the DRs, and how to encode the in-

structions. The added DRs are usually used by authorized users (e.g., the manufacturer and the test

engineer) and not revealed to end-users. An example involves the internal scan chains that exist

in most chips. Particularly, flip-flops within a chip are typically connected as one or multiple scan

18

TDI

MBIST result

Firmware DR

Bypass

Select-DR Scan

Capture-DR

Exit1-DR

Exit2-DR

Update-DR

Select-IR Scan

Capture-IR

Exit1-IR

Exit2-IR

Update-IR

Shift-IR

Pause-IR

Test-Logic-Reset

Run-Test / Idle

1

0

TDO

Shift-DR

Pause-DR

write to firmware

TAP controller

TMS

TCK

TRST

ID register

Instruction reg.

0
1 11

1
0

0

0

0

0

0

0

0

0

0

0

0

0

0

1
1

1

1

1

1

1
1

1

1

1

read from MBIST

Figure 2.1: The block diagram of a typical JTAG architecture.

chains when the chip is switched from the normal mode to the test mode. These scan chains can be

accessed via the TDI and TDO ports, equipping the IC with high-level testability. A user, if aware

of how to access these scan chains, can not only observe the values stored in every flip-flop of the

scan chains, but also load data to specific segments of the scan chains. Besides scan chains, other

DRs, some through private JTAG functions, can also be accessed using the TDI and TDO ports.

Figure 2.1 shows two example DRs, one for updating the firmware, and the other for capturing the

result of the memory built-in self-test (MBIST).

Access to DRs is operated by the JTAG TAP controller that implements the state diagram

shown in Figure 2.2. The JTAG TAP controller is a finite state machine (FSM) controlled by the

TMS port. Every DR has one or more affiliated instructions that provide access, configuration, or

control. A user can select a DR by loading the appropriate instruction opcode into the instruction

register (IR) via the TDI pin. A selected DR can be operated using three fundamental register

operations, namely capture, shift, and update. For example, for ICs, selecting the boundary-scan

chain initially requires an all-zero opcode. The user then loads the input stimuli via the TDI by

19

TDI

MBIST result

Firmware DR

Bypass

Select-DR Scan

Capture-DR

Exit1-DR

Exit2-DR

Update-DR

Select-IR Scan

Capture-IR

Exit1-IR

Exit2-IR

Update-IR

Shift-IR

Pause-IR

Test-Logic-Reset

Run-Test / Idle

1

0

TDO

Shift-DR

Pause-DR

write to firmware

TAP controller

TMS
TCK
TRST

ID register

Instruction reg.

0
1 11

1
0

0

0

0

0

0

0

0

0

0

0

0

0

0

1
1

1

1

1

1

1
1

1

1

1

read from MBIST

Figure 2.2: The JTAG TAP controller is a one-input FSM.

repeatedly entering the SHIFT-DR state. Finally, the UPDATE-DR state applies the stimuli as in-

put to the chip logic. After the operation of the chip logic is completed, the response is captured

by the scan chain within the CAPTURE-DR state, which can then be shifted out via the TDO by

repeatedly entering the SHIFT-DR state. Another example involves the MBIST operation. Dif-

ferent from the boundary scan, the MBIST operation of the OpenSPARC T2 is executed using a

sequence of instructions with a predefined order, that is, typically, selecting the on-chip modules

to be tested (instruction MBIST_BYPASS), setting the MBIST mode (MBIST_MODE), initiating the

MBIST process (MBIST_START), and checking the result (MBIST_RESULT).

2.1.2 Bus-based Debug Architecture

Many system-on-a-chip (SoC) designs employ a bus architecture, meaning that the functional

blocks in a SoC are interconnected using a bus. Some bus examples involve the AMBA AHB

developed by ARM [86] and the WISHBONE developed in OpenCores [87]. The ARM Advanced

20

UART JTAG PCI
SPW

w/RMAP

LEON
processors

Memory
controllers

APB
bridge

Custom
IP cores

AMBA AHB

Ethernet USB

AMBA AHB

AHB master
interface

JTAG
interface

JTAG TAP
controller

TDI

TDO

TCK TMS

Debug
support

unit

LEON
processor

AMBA AHB

Figure 2.3: The blocks of the LEON3 are connected through an AMBA Advanced High-
performance Bus (AHB) [3].

Microcontroller Bus Architecture (AMBA) is an open-standard, on-chip interconnect specification.

Because the AMBA facilitates development of multi-processors with a large number of controllers

and peripherals, it is widely used in ASICs and SoCs, including application processors used in

modern portable mobile devices. The AMBA defines an Advanced High-performance Bus (AHB)

protocol. The AHB access to a target block is controlled through a non-tristate multiplexor, thereby

admitting bus access to one bus-master at a time. The LEON3, a 32-bit processor compliant with

the SPARC V8 RISC architecture, is an example that employs the AMBA AHB protocol [28]. As

shown in Figure 2.3, the blocks of the LEON3, including the processors, the memory controller,

the custom IP cores, and the interface ports, are connected through an AMBA AHB bus [3].

The LEON3 has multiple debug interfaces, such as UART, JTAG and Ethernet. The LEON3

processor implements a debug mode, during which the pipeline is idle and the processor is con-

trolled by a specified debug master. More precisely, a debug support unit (DSU) is used as the

AHB slave through which, the AHB master, including the debug interfaces, can access the pro-

cessor during the debug mode. Figure 2.4 shows that the JTAG TAP is used for accessing the

processors through the DSU [3]. The DSU can be accessed at any time, while the processor regis-

ters can only be accessed when the processor is placed in the debug mode.

A transaction on the AHB consists of an address phase and a subsequent data phase. More

precisely, an AHB master sends an address that specifies both the target AHB slave and the location

of the target register, and then, after two bus cycles, sends data into the target register or captures

21

UART JTAG PCI
SPW

w/RMAP

LEON
processors

Memory
controllers

APB
bridge

Custom
IP cores

AMBA AHB

Ethernet USB

AMBA AHB

AHB master
interface

JTAG
interface

JTAG TAP
controller

TDI

TDO

TCK TMS

Debug
support

unit

LEON
processor

AMBA AHB

Figure 2.4: The JTAG, acting as an AHB master, can access processor registers through a debug
support unit (DSU) [3].

data from the target register. When the JTAG is used as the debug interface, two data registers,

namely an address register and a data register, are implemented to comply with the AMBA AHB

protocol. To perform a read access, the user needs to shift a command, consisting of a read bit,

the AHB access size, and the AHB address, into the address register. Then, an UPDATE-DR state

initiates the read access, and the data is ready to be shifted out from the data register. A write

access is performed by shifting the command, consisting of a write bit, the AHB size and the

AHB address, into the address register, followed by shifting the write data into the data register.

Subsequently, an UPDATE-DR state initiates the write access.

Through the bus, a debug host can access processor registers (e.g., the instruction trace buffer,

the program counter register, and debug control register), caches, and memory. A debug host can

also control execution of the processors, for example, by inserting break points into a program.

These features are critical for software debugging. However, if not secured, the debug interfaces

might be misused deliberately to undermine the security of software. It is also worth noting that

not only the JTAG, but also other debug interfaces need to be monitored, because all of them can be

used for controlling the bus. In this case, it might be more appropriate to monitor bus transactions

rather than JTAG operation.

22

TABLE 2.1: A LIST OF VARIOUS NON-INTRUSIVE ATTACKS.

Non-intrusive attack Target / Objective Details

Differential attack
[8–14, 75, 88–93]

Steal cryptographic key
from scan chains

An attacker inputs challenge pairs,
running the cryptographic algorithm, and
compares the outputs

Test-mode-only
attack [15, 74]

Steal cryptographic key
Instead of switching between normal
mode and test mode, the key may be
stolen in only test mode

Replay attack Sniff password
If all chip instances share the same
password (even hashed), then an attacker
can eavesdrop the password

Resetting and
flushing attack [83, 84]

Reset or identify
key bits

For scan chains obfuscated by inverted
bits and modified bits, resetting or
flushing the scan chains can reveal the
modified bits

Mass erase of eFuse or
flash memory [43–45]

Reset the key

Some industrial designs use bits in eFuse
or flash memory for restricting JTAG
access, while a mass erase can reset the
bits

Fault injection attack
[94, 95]

Modify memory bit
dynamically

An Android system defines bits
controlling privilege of accessing
resources, which can be modified using
the JTAG

Logic analysis [96]
Uncover combinational

logic

Scan chains unfold sequential logic into
combinational logic that can be reverse
engineered

Reverse engineering
[36, 57]

Uncover JTAG functions An attacker investigates how to use the
JTAG to operate the hidden functions

2.2 JTAG Attacks

Various non-intrusive attacks via the JTAG have been reported, as summarized in Table 2.1. Ex-

isting attacks to cryptographic keys assume that the intermediate state of a multi-stage encryption

is stored within one or more scan chains. An attacker can run the encryption for one stage, and then

switch the chip to the test mode such that intermediate results of the encryption can be observed

23

through the scan chains. Then the key can be derived using differential attacks, i.e., inputting chal-

lenge pairs, running the cryptographic algorithm, and comparing the outputs [8–14, 75, 88–93].

The attack in [97] shows that the secret key in DES can be retrieved successfully using less than 30

plain-texts on average and 32 plain-texts in the worst case. Further, attacks may still be possible

even with the existence of countermeasures. One example involves test-mode-only attacks that

can derive the key even if the system is test-mode-protected (e.g., sensitive data is erased once the

chip is switched from the normal mode to the test mode) [15, 74]. Replay attacks occur when chip

instances share the same password. Particularly, if the password used for authentication is sniffed

by an attacker, then the attacker can reuse the password to access the chip. Resetting/flushing at-

tacks are used when scan chains are modified by inserting inverters or multiplexors between scan

flip-flops. The work in [83, 84] demonstrates that resetting or flushing the scan chains can reveal

the modified bits. In some real-world products, bits for restricting JTAG access are stored in eFuse

or firmware [43–45]. However, these bits, if too simple, can be reset using a mass erase. The work

in [94, 95] shows that fault injection attacks can also be conducted using the JTAG. Particularly,

an attacker can successfully modify a control bit in the memory of the Android OS, such that a

higher privilege of accessing system resources can be gained. Another possible attack involves

logic analysis [96]. Since the test mode essentially converts sequential logic into combinational

logic, an attacker may use scan chains to uncover the logic.

To conduct an effective attack, an attacker needs to know how to operate the JTAG functions,

including accessing scan chains. The JTAG of a processor design may implement dozens of JTAG

instructions and data registers [30, 64]. The way of accessing on-chip components, such as scan

chains, system registers, on-chip RAM, eFuse, and non-volatile memory, is commonly not revealed

to end users. Thus, reverse engineering the unrevealed (or private) JTAG functions serves as a pre-

requisite step for further attacks. Table 2.2 lists typical attack strategies, which can be categorized

as three main steps and nine sub-steps [36, 57]. The first step is to identify the JTAG ports phys-

ically. This step is relatively easy because the test ports are usually clustered together someplace

on the chip. The second step is to explore the property of the IR and the DRs. The length of the

24

TABLE 2.2: JTAG ATTACK STRATEGIES ARE ORGANIZED IN THREE MAIN STEPS AND NINE

SUB-STEPS.

Steps Sub-steps
Locate test ports S1 Identify the location of the JTAG ports on chip/board

Find DR property

S2 Identify the length of the IR
S3 Identify the length of each DR
S4 Find the opcodes that do not correspond to any DR
S5 Check if each DR can be captured/updated
S6 Identify internal scan chains

Interrogate private functions

S7
Separate opcodes into bundles based on their
associated functions

S8 Determine the nature (control vs. data) of each DR

S9
Investigate adjacent instruction opcodes for
characterizing any interactions between them

IR and the DRs can be easily extracted by shifting in a sufficiently long sequence of ones followed

by a single zero. Undefined opcodes, i.e., not associated with any DR, usually behave as a one-bit

bypass register or a disconnection. These opcodes are important because they likely lie between

valid opcodes corresponding to different JTAG functions. For example, in the OpenSPARC T2,

the instructions for control-register configuration and MBIST have opcodes that are separated by

undefined opcodes 11 and 12 (in hexadecimal format). Besides checking the length of a DR, it is

also beneficial to learn if a DR can be captured and updated. An attacker may dump on-chip data

from a DR that can be captured, and write data into the chip through a DR that can be updated.

Further, the attacker can employ a trial-and-error method to investigate the JTAG functionalities

controlled by the instructions and the DRs. For example, if a DR can be updated and another DR

with neighboring opcode can be captured, then an attacker can make a reasonable guess that these

two DRs are used for reading some memory. In other words, the first DR sends an address and the

second DR captures the corresponding data. Using similar means, the attacker can uncover more

JTAG functions by investigating the interactions between adjacent instruction opcodes.

25

2.3 Feature Characterization

To better characterize JTAG operation, we define an operation cycle based upon using the

JTAG. An operation cycle starts from the RUN-TEST/IDLE state, loads an instruction opcode into

the IR by traversing the states in the right column of the FSM shown in Figure 2.2, then cap-

tures/updates data from/to the selected DR by traversing the states in the middle column, and fi-

nally ends in the RUN-TEST/IDLE state. With the definition of an operation cycle, JTAG operation

can be regarded as a sequence of operation cycles. During each operation cycle, four categories

of features, as shown in Equation 2.1, will be constructed. The first two categories (Fir and Fdr)

characterize the opcode loaded into the IR and the data loaded into the selected DR, respectively.

The third category (Ff sm) characterizes state traversal of the FSM shown in Figure 2.2. The fourth

category (Fext) includes features that require information outside the operation cycle. The differ-

ence between Fir, Fdr and Ff sm can also be distinguished by the fact that Fir and Fdr are based on

data provided via the TDI port, while Ff sm is based on the bit stream provided to the TMS port.

Features =
(
Fir,Fdr,Ff sm,Fext

)
(2.1)

Equation 2.1 gives a guideline for constructing features, but does not provide specific features.

Constructing specific features, however, relies on the underlying problem. Table 2.3 shows some

features used in this work. These features are considered because they reflect some aspects of

JTAG operation, and therefore aid in the detection of JTAG attacks. For example, the feature

TMS_TRANSIT, representing the number of TMS transitions (either from zero to one or from one

to zero), is relevant in two circumstances: 1) reset-type instructions require fewer TMS transitions

because they do not select any DR, and 2) entering the PAUSE-DR state, which is necessary if

shifting a DR needs to be temporarily-suspended, leading to more TMS transitions.

Some features, representing deterministic rules, can be used as sanity checks for JTAG op-

eration. For example, when a DR is selected, the number of shifting cycles should be equal to

26

TABLE 2.3: SOME FEATURES USED FOR CHARACTERIZING JTAG OPERATION.

Category Feature Description Format

Fir

OPCODE
The opcode loaded into the IR during the
UPDATE-IR state

Integer

OPCODE_CHANGED
Whether the opcode is changed compared to
the previous operation cycle

Binary

Fdr

BUS_ADDR
The data loaded into the address register during
the UPDATE-DR state

Integer

BUS_DATA
The data loaded into the data register during
the UPDATE-DR state

Integer

BUS_RW Whether the bus operation is read or write Binary

Ff sm

CYC_SHIFT_DR No. of clock cycles within the SHIFT-DR state Integer

CYC_SHIFT_DR_EQ
Whether no. of clock cycles within the
SHIFT-DR state is equal to the length of the
selected DR

Binary

CYC_TLR
No. of clock cycles within the
TEST-LOGIC-RESET state

Integer

TMS_TRANSIT No. of TMS transitions Integer

Fext

LEGAL_OPCODE
Whether the opcode corresponds to a valid
JTAG function

Binary

TYPC_TRANSIT
Whether the transition from one instruction to
the next is typical

Binary

PREV_PRED Detection result of the previous operation cycle Binary

the length of the DR, for either a read or write operation (this is described by the feature CYC_-

SHIFT_DR_EQUAL). However, this rule might be violated if an attacker does not know the length

of the DR. Another example involves the feature LEGAL_OPCODE that describes whether the op-

code corresponds to a valid JTAG function. An n-bit IR allows 2n opcodes, meaning that at most

2n instructions can be defined. However, typically only a subset of the possible opcodes are used

for achieving specific functions, while the others remain undefined. The undefined opcodes may

select the BYPASS register, or simply behave as a disconnection, depending on the design. Typi-

cally, undefined opcodes seldom have a default functionality besides the BYPASS operation. If an

undefined opcode is loaded into the IR, then the user might be an attacker.

27

The features, listed in Table 2.3, may show different levels of importance for different JTAG

designs. For example, for a standard JTAG architecture, OPCODE might be more important because

it indicates the DR and the on-chip component that the user aims to access, while for a SoC design

that employs a bus-based debug architecture, the bus-related features, such as BUS_ADDR, BUS_-

DATA, and BUS_RW, are more relevant. Therefore, the choice of features relies on the underlying

JTAG design. For a new JTAG, one might need to construct additional features to better capture

the characteristic of its operation.

Even though more features are preferable for ML classification, coming up with new features

is typically difficult, time-consuming, and requires expert knowledge [98]. More, not only the

quantity but also the quality of features impacts the performance of ML models. Feature engi-

neering provides a means of converting raw data into features that better represent the underlying

problem for ML, resulting in improved model accuracy on unseen data [63]. However, the search

of high-quality features also relies on the underlying problem, meaning that there are no universal

rules. One example of feature engineering involves some features of the category Fext as shown in

Table 2.3. Specifically, the feature PREV_PRED represents the previous prediction made by the ML

model, while the feature TYPC_TRANSIT, requiring a pre-constructed look-up table that records

frequent opcode transitions, indicates if the observed transition of opcode is typical. Other possi-

ble features (not shown in Table 2.3) include temporal derivatives (i.e., the value change for some

feature during two successive operation cycles) and basic statistics (e.g., the maximal, minimal,

and mean values for some feature within a series of operation cycles).

Not all features constructed through brainstorming and feature engineering are relevant for

model performance, so a further step of feature selection is necessary. Moreover, selecting only

relevant features can also reduce dimensionality of the data, thus being beneficial for reducing the

overhead of online detection. There exist many methods for feature selection, such as removing

features with low variance, computing correlation between features and the class label [99], recur-

sive feature elimination [100], and tree-based feature selection [101]. Some of these methods will

be used for evaluating importance of the extracted features.

28

2.4 Experiments

This section describes feature characterization and data collection for several open-source de-

signs, namely, the OpenSPARC T1 and T2 processors developed by Oracle [30, 64], and the

LEON3 processor developed by Gaisler [28]. For each design, both legitimate JTAG operation

and attacks are created, which are used to identify effective features.

2.4.1 OpenSPARC T1 and T2

Both the OpenSPARC T1 and T2 are a multi-core, 64-bit multiprocessor, with a well-designed

JTAG. As shown in Table 2.4, the OpenSPARC T1 implements various JTAG functions for test

and debug, while the OpenSPARC T2 adds more functions for facilitating more powerful access

to on-chip components.

Different from the OpenSPARC T2, the JTAG of the OpenSPARC T1 employs a composite

IR. Particularly, a part of the IR (six bits) is used for the instruction opcode, while the remaining

portion (twelve bits) is used for configuration. For instance, when operating the clock, the user

first needs to load the opcode corresponding to the clock operation into the first six bits, and then

use the remaining twelve bits for specifying the targeted component (i.e., CPU, DRAM, or J-bus).

The OpenSPARC T2, instead, implements these configuration bits as DRs, and correspondingly,

defines additional opcodes for selecting the DRs. This also explains why the OpenSPARC T2 has

more DRs.

For each JTAG function listed in Table 2.4, a set of legitimate operations are created, as sum-

marized in Table 2.5. The operations are represented as traces, each consisting of a sequence

of JTAG instructions. Each trace aims to achieve some specific operation, such as initiating the

MBIST and updating specific bits of the eFuse. In addition to legitimate JTAG operation, JTAG

attacks are created based on the attack strategies described in Section 2.2.

29

TABLE 2.4: THE JTAG FUNCTIONS IMPLEMENTED IN THE OPENSPARC T1 AND T2.

JTAG function OpenSPARC T1 OpenSPARC T2
No. of DRs No. of inst. No. of DRs No. of inst.

Public 3 6 3 8
Clock control 0 3 4 7

Control register 4 9 3 8
Memory BIST 1 4 5 9

Direct memory observation - - 2 3
Electronic fuse 5 7 6 8
Shadow scan 4 4 9 9
Internal scan 20 7 34 5

Debug configuration register - - 8 19
L2 cache - - 3 4

Logic BIST - - 3 6
Total 37 40 80 86

TABLE 2.5: LEGITIMATE JTAG OPERATION AND ATTACKS ARE CREATED FOR THE

OPENSPARC T1 AND T2.

OpenSPARC T1 OpenSPARC T2

Legitimate operation
No. of traces 280 814
No. of inst. 24,765 136,417

Attack
No. of traces 343 4,096
No. of inst. 20,062 169,042

After simulating legitimate and illegitimate (attack) traces on the OpenSPARC T1 and T2, the

data, corresponding to the features listed in Table 2.3, are collected for every operation cycle. Note

that some features (i.e., CYC_SHIFT_DR_EQ and LEGAL_OPCODE) are used as sanity checks,

and thus will not be considered for building the ML model. The feature PREV_PRED requires

the ML model to provide the earlier prediction result and will be considered in the next chapter.

For the remaining features, their importance is evaluated using the tree-based feature selection,

recursive feature elimination, and the mutual information between each feature and the class label.

As exhibited in Figure 2.5, all of these methods indicate that OPCODE and CYC_SHIFT_DR are

30

0

0.04

0.08

0.12

0.16

0
0.1
0.2
0.3
0.4
0.5

OPCODE

CYC_S
HIFT_D

R

CYC_T
LR

TYPC_TRANSIT

OPCODE_CHANGED

TMS_T
RANSIT

M
ut

ua
l i

nf
o.

Im
po

rta
nc

e

Tree-based Mutual info.
(a)

0
0.06
0.12
0.18
0.24
0.3

0
0.1
0.2
0.3
0.4
0.5

M
ut

ua
l i

nf
o.

Im
po

rta
nc

e

Tree-based Mutual info.
(b)

Figure 2.5: The importance of features is calculated using a decision tree and mutual information
for (a) the OpenSPARC T1 and (b) the OpenSPARC T2. In each chart, the results of recursive
feature elimination is indicated by the order of the features, i.e., features on the right will be
eliminated firstly.

important features. Figure 2.5 also shows that, for the OpenSPARC T2, the sequential feature

(reflected by TYPC_TRANSIT) is quite important for characterizing JTAG operation.

An operation cycle is now represented by a h-dimensional vector, and a trace is then represented

by a sequence of h-dimensional vectors. To better capture the sequential characteristic of JTAG

operation, we use a sliding window (with four operation cycles) to reorganize the data, that is,

concatenating every successive four vectors as larger vector. The reorganized data are plotted

31

100 75 50 25 0 25 50 75 100
100

50

0

50

100

Attacks
Legitimate operation

(a)

75 50 25 0 25 50 75

75

50

25

0

25

50

75

100 Attacks
Legitimate operation

(b)

Figure 2.6: Legitimate JTAG operation and attacks for (a) the OpenSPARC T1 and (b) the
OpenSPARC T2, are reorganized using a sliding window, and then plotted using t-SNE.

using the technique of t-SNE1 [102], as shown in Figure 2.6. Figure 2.6 demonstrates that attacks
1The t-SNE employs a non-linear method that converts high-dimensional data into two or three dimensions, while

maintaining the similarity for neighboring data samples.

32

75 50 25 0 25 50 75

75

50

25

0

25

50

75

100 Attacks
Legitimate operation

Figure 2.7: Legitimate JTAG operation and attacks via the bus of the LEON3 processor are reor-
ganized using a sliding window, and then plotted using t-SNE.

and legitimate JTAG operations not only share a nonlinear boundary but also have overlapping

regions.

2.4.2 LEON3

The LEON3 implements two data registers, namely an address register and a data register,

within the JTAG, in order to support bus access. These two registers can be operated by a debug

tool called GRMON [103], provided by Gaisler. A user can program in the GRMON, which is then

compiled into bus transactions. The GRMON supports various debug functions, such as read/write

access to system registers and memory, breakpoint management, disassembler and trace buffer

management.

33

Through studying the documentation of the GRMON, a set of legitimate debug traces are cre-

ated, which are then converted into sequences of bus read and write operations. Attack traces are

also created based on the strategies described in Section 2.2. The assumptions made for the at-

tacker still hold, that is, the attacker does not know which debug functions are implemented, and

how to access the bus for operating these debug functions.

The JTAG of the LEON3 has significantly fewer instructions than the OpenSPARC T1 and T2,

because most of the debug functions are achieved through bus operation. As a result, because only

the bus-related registers are involved in debugging traces, we only consider BUS_ADDR, BUS_-

DATA and BUS_RW. Both the address and the data have 32 bits, which however can represent an

integer up to 232− 1. To avoid possible overflow during the following classification, the 32 bits

are divided into four bytes. Each bus transaction is then represented as a nine-dimensional vector,

i.e., four for the address, four for the data, and the other one indicating whether the transaction is a

read or a write.

Like the OpenSPARC T1 and T2, the sequences of bus transactions are reorganized by a sliding

window, that is, every eight successive bus transactions are concatenated. To better understand

how well the data are separated, they are plotted in Figure 2.7. Figure 2.7 clearly demonstrates that

legitimate debug operations are very similar to attacks, which challenges attack detection.

2.5 Summary

This chapter discusses feature characterization and data collection for JTAG operation, both of

which are significant for constructing an effective ML model for detecting JTAG attacks. More

precisely, JTAG operation is characterized using a set of features, whose importance is evaluated

using a tree-based feature selection method. The importance of a feature may vary for different

designs, and thus it is necessary to determine relevant features for a specific design. This is verified

using three benchmark designs, namely the OpenSPARC T1, T2, and the LEON3 processors. For

34

each design, the test/debug functions supported by the JTAG are studied comprehensively. A set of

legitimate JTAG operation created, and attacks to the JTAG, summarized based on prior work, are

also created. With features determined and data collected, the next step, i.e., building the detection

model, will be discussed in Chapter 3.

35

Chapter 3

Detection of JTAG Attacks

As described in Chapter 2, JTAG operation can be viewed as a sequence of operation cycles,

and correspondingly, the data collected from JTAG operation consists of multi-dimensional ob-

servations over time. This chapter will elaborate on how these data can be analyzed for detecting

illegitimate access to the JTAG. Specifically, Section 3.1 describes a sliding window for converting

sequences into fixed-size vectors, such that a variety of ML algorithms, described in Section 3.2,

can be applied for classification. The accuracy of sliding-window methods can be improved using

a delayed labeling method, which is described in Section 3.3. A fixed-size window, however, might

still not characterize JTAG operation accurately. On one hand, an observation might be correlated

with an observation that is outside the window, and on the other hand, the observations captured

within a window might not correlate with each other. For this reason, sequence models, which can

characterize serial dependence more accurately, are evaluated in Section 3.4. In addition, because

new attacks are likely on the horizon, implying that the effectiveness of a detector strongly relies

on its capability of detecting new, unseen attacks. To address this issue, a cascaded classifier is

described in Section 3.5. In Section 3.6, accuracy of the detectors is evaluated using benchmark

designs. Finally, Section 3.8 summarizes the chapter.

36

3.1 Detection Using a Sliding Window

JTAG operation can be viewed as a sequence of operation cycles, and correspondingly, the data

collected from JTAG operation involve a series of multi-dimensional observations. Classifying

the observations within an individual operation cycle does not capture serial dependence. In other

words, observations within an operation cycle may depend on prior operation cycles. For identify-

ing attacks accurately, both the current and prior operation cycles should be inspected. However,

determining the number of operation cycles is not a trivial task because serial dependence varies

in different cases. Some observations may only depend on recent observations, while others might

correlate with even earlier ones. Sequence models, such as the long short-term memory (LSTM)

networks [70], can learn serial dependence from data that involves variable amounts of historic

information can be retained. However, using sequence models for online detection is challeng-

ing due to their complexity. Sequence models, typically running in software, cannot make instant

predictions; however, if implemented using hardware, they incur significant overhead.

A fixed-size window serves as a trade-off between model complexity and capturing serial de-

pendence. That is, a window of w successive operation cycles is considered for classification. In

addition, the windows are collected in an overlapping manner (referred to as sliding windows),

meaning that a prediction will be made upon completion of every operation cycle, based on the

current cycle and the prior (w−1) cycles. A sliding window converts sequential observations into

fixed-size vectors, such that they can be classified using a variety of ML algorithms. Figure 3.1

shows an overall flow of detecting JTAG attacks, with data collected using a sliding window. Note

that due to the natural variance existing in JTAG operation, the user is not labeled until sufficient

evidence has been gathered. The collection of evidence may span several operation cycles.

A central issue concerning the sliding window involves deciding the size of the window, w. A

proper window size should be able to capture serial dependence, and make legitimate operation

and attacks as separable as possible. A small w performs poorly in separating legitimate operation

37

Classification
model

(Operation cycle) ... t t+1 t+2 t+3 t+4 ...

Sliding window

prediction Evidence
collector

Enough evidence
of attack?

Yes

No

Attack detected

Figure 3.1: The overall flow for online detection of JTAG attacks using a sliding window (w = 3).

and attacks, while a large w may lead to poor generalization (i.e., performing well for training data

but not for testing data).

The first objective (i.e., capturing serial dependence) can be realized through analyzing rep-

resentative sequences existing in both legitimate operation and attacks. For example, if the most

frequently-observed sequences consist of four operation cycles, then four might be a good choice

for the value of w. Alternatively, as indicated by the second objective (i.e., making legitimate

operation and attack as separable as possible), we can determine w by checking its influence on

classification. Particularly, for a given value of w, the traces of both legitimate operation and at-

tacks are re-collected using a sliding window. Now let us define a window of observation as a

multi-dimensional random variable x and the class label as y. Then we can construct two condi-

tional probability distributions for x, namely P(x|y = L) for legitimate operation and P(x|y = A)

for attacks. We notice that the more different these two distributions are, the more easily legitimate

operation and attacks can be separated. This can be illustrated using Bayes’ Theorem. That is, for

a given observation x, the probability that x belongs to class y can be determined by the probability

38

of x given y and the prior probability of y, as shown in Equation 3.1.

P(y|x) ∝ P(x|y)P(y) (3.1)

Since the prior probability is typically fixed, P(y|x) strongly depends on P(x|y). If P(x|y = A) is

much greater than P(x|y = L), then we can make a prediction of attack with high confidence. If

P(x|y = A) is close to P(x|y = L), then it is hard to make a prediction.

To measure the difference between P(x|y = L) and P(x|y = A), the Kullback-Leibler (KL)

divergence, as shown in Equation 3.2, is used. Moreover, to maintain generalization for a large w,

the probability distributions are adjusted to P̃(x|y = L) and P̃(x|y = A) using a regularization term

δ , as shown in Equation 3.3 and 3.4. This regularization term can be understood as a uniform prior

applied to P(x|y = L) and P(x|y = A).

DKL[P(x|y = L)‖P(x|y = A)] = ∑
X

P̃(x = X |y = L) log
P̃(x = X |y = L)

P̃(x = X |y = A)
(3.2)

where

P̃(x = X |y = L) =
P(x = X |y = L)+δ

∑Z(P(x = Z|y = L)+δ)
(3.3)

P̃(x = X |y = A) =
P(x = X |y = A)+δ

∑Z(P(x = Z|y = A)+δ)
(3.4)

The value of δ is set as the reciprocal of the number of observations, because this guarantees that

each discrete value of x contains at least one observation. For a small w, δ has negligible impact on

the KL-divergence because each value of x is likely to have many observations, while for a large w

where most values of x have few observations, the impact of δ becomes significant.

δ =
1

Nobs
(3.5)

39

3.2 Classification Models

In this section, a variety of algorithms, including binary models, one-class models, and recur-

rent sliding window, are described.

3.2.1 Binary Classifiers

Binary classification aims to construct a model G that maps an observation x to its most prob-

able class label y, based on collected data. The prediction produced by G can be deterministic

or probabilistic. A variety of algorithms, including decision tree [65], random forest [66], sup-

port vector machines (SVM) [67], artificial neural network (ANN) [68], and k-nearest-neighbor

(k-NN) [65], can be used for classification.

x G→ y x ∈ Rd,y ∈ {0,1} (3.6)

A decision tree employs a tree-like structure for classification. As shown in Figure 3.2(a), each

node of the decision tree represents a “test” on a feature. A classification starts from the root node,

and then descends to its branches according to the “test” outcome; this process terminates at a leaf

node where a class label is assigned [65]. The training of a decision tree employs a top-down,

greedy search. To avoid overfitting, the set of observations is partitioned into two parts: one for

training the full tree, and the other for validating the utility of post-pruning nodes. Subtrees are

removed if the resulting pruned tree performs no worse than the original one over the validation

set. A random forest involves an ensemble of trees, whose overall prediction is typically based on

a majority vote from the individual trees. Each tree in the ensemble is trained using a subset of the

data (called bootstrap aggregating or bagging) [66]. The use of bagging represses overfitting and

improves model accuracy.

40

Legitimate

Known attack

Unknown attack

F1 < TH1

F2 < TH2 F3 < TH3

Attack F3 < TH4
Attack Legitimate

Legitimate Attack

Hidden
Layer

Input
Layer

Output
Layer

F1

F2

F3

Output

y= -1

y=1

y=0

ξ<1

ξ>1

ξ=0
Margin

k=3

(a)

Legitimate

Known attack

Unknown attack

F1 < TH1

F2 < TH2 F3 < TH3

Attack F3 < TH4
Attack Legitimate

Legitimate Attack

Hidden
Layer

Input
Layer

Output
Layer

F1

F2

F3

Output

y= -1

y=1

y=0

ξ<1

ξ>1

ξ=0
Margin

k=3

(b)

Legitimate

Known attack

Unknown attack

F1 < TH1

F2 < TH2 F3 < TH3

Attack F3 < TH4
Attack Legitimate

Legitimate Attack

F1

F2

F3

Output

y= -1

y=1

y=0

ξ<1

ξ>1

ξ=0
Margin

k=3

Input
layer

Hidden
layer

Output
layer

(c)

Legitimate

Known attack

Unknown attack

F1 < TH1

F2 < TH2 F3 < TH3

Attack F3 < TH4
Attack Legitimate

Legitimate Attack

Hidden
Layer

Input
Layer

Output
Layer

F1

F2

F3

Output

y= -1

y=1

y=0

ξ<1

ξ>1

ξ=0
Margin

k=3

(d)

Figure 3.2: Illustration of some example classifiers, including (a) a decision tree, (b) a linear SVM,
(c) a three-layer feedforward ANN, and (d) k-NN.

SVMs aim to separate two classes of samples by finding a clear boundary between them, as

illustrated in Figure 3.2(b). The training of an SVM involves maximizing the minimum distance

between the decision boundary and any of the data samples. The decision boundary is modeled as

y(x) =W T
φ (x)+b (3.7)

41

where x is a sample, y(x) is the prediction of x, and φ(xi) represents some feature-space transfor-

mation. The decision boundary, characterized by W and b, is determined by solving

argmin
W,ξ

1
2
‖W‖2 +C

Nobs

∑
i=1

ξi (3.8)

s.t. ‖ti
(
W T

φ (xi)
)
+b‖≥ 1−ξi, i = 1, ...,Nobs

where xi is the i-th training sample, ti is the true label (either 1 or −1) of xi, ξi is a slack variable

that allows samples to be misclassified with a penalty, and C > 0 controls the trade-off between

the slack variable penalty and the margin. This optimization problem is convex so a solution can

be derived from its dual representation. More details concerning solving a convex problem can be

found in [104]. The decision boundary is formulated as

y(x) = sgn

(
∑

i∈SSV

aitik (x,xi)+b

)
(3.9)

and

b =
1

NSV
∑

i∈SSV

(
ti− ∑

j∈SSV

a jt jk
(
xi,x j

))
(3.10)

where SSV denotes the set of support vectors (SVs), NSV represents the number of SVs, and

k(x,x′) = φ (x)φ (x′) denotes the kernel function in terms of x and x′.

Multi-layer perceptron (MLP) is a type of feedforward ANN. Figure 3.2(c) shows a MLP with

three layers of nodes. Except for the input nodes, each node, named a neuron, involves a nonlinear

activation function. A classification starts with supplying a sample to the input nodes; each element

of the sample is processed within a neuron, with the result transferred through edges to the next

layer. The output neuron finally gives a classification result. An ANN is trained using a technique

called backpropagation [65].

k-NN is an instance-based, nonparametric algorithm. It assumes that two observations of the

same class are likely close to each other in the hyperspace that the observations reside in. An

42

observation is labeled by its k nearest neighbors (k = 3 in Figure 3.2(d)), through majority voting

[105]. A k-NN classifier does not involve a training process; instead, it only requires presence of

training data.

3.2.2 Recurrent Sliding Window

The models described in Section 3.2.1 are used for classifying a sliding window. One possible

way to improve the classification of a sliding window is to make the classification recurrent, that

is to use prior classification predictions as additional input for predicting yt , i.e., the class label

predicted for the window at time t. This might be useful because the prior predictions likely

contain information that is however not captured in the current window. For example, in part-

of-speech tagging, the grammar of natural language constrains the possible sequences of parts of

speech [106]. A simple sliding window cannot capture these patterns unless they are completely

manifested in the current input x as well, which is rarely the case. When used for detecting JTAG

attacks, a recurrent sliding window may also be useful. Because the previous JTAG instructions

are very likely operated by the same user, the earlier predictions provide more evidence of whether

the user is legitimate or not. In this work, we only consider the most recent prediction, as shown

in Equation 3.11.

yt = G(x,yt−1) (3.11)

Note that the recurrent sliding window concept can be used in conjunction with any classifier

described in Section 3.2.1.

3.2.3 One-class Models

Different from binary classifiers, one-class models (also named anomaly detectors) are trained

using only one class of observations. In this work, the training of a one-class model is based

only on legitimate traces. One-class models avoid the use of attacks, which is a strong advantage,

43

Local score
7-1-3

Local score
2-3-1-4

Local score
8-8-7

0 - 0 - 1 - 7 - 1 - 3 - 2 - 3 - 1 - 4 - 2 - 3 - 8 - 8 - 0Opcode
sequence

Global
score

complete match partial match

increment saturate reset

Figure 3.3: Sequence collected in real-time is compared with three representative sequences,
namely 7-1-3, 2-3-1-4, and 8-8-7, from the first opcode to the last. Each representative sequence is
associated with a local score that may increment, saturate (saturation score is 5 in this example) or
reset, according to the matching result. A global score, equal to the maximum local score, serves
as an indicator of the security status of the JTAG.

especially considering that collecting all types of attacks is challenging or even impossible. A one-

class model (e.g., a one-class SVM) aims to capture regions in the input space where observations

form high-density clusters. Then, it determines how probable a given observation is anomalous,

based on whether the observation falls within a high-density clusters or not.

In addition to these state-of-the-art algorithms, we develop an anomaly detector based on rep-

resentative sequences. Legitimate JTAG operation is characterized using a set of representative in-

struction sequences, such that any deviating operation will be labeled as an attack. The derivation

of representative sequences begins with collecting all instruction sequences with different lengths

from already-collected legitimate JTAG operations (for example, analysis of legitimate uses of the

JTAG reveals that most operations for the OpenSPARC T2 contain three to six instructions). Next,

the sequences are refined through 1) removal of low-frequency sequences, 2) checking whether

one sequence is contained within another with similar frequency, and if so, removing the shorter

subsumed sequence, and 3) removing the sequence with the least impact on detection accuracy

iteratively, until the detection accuracy shows an obvious drop.

44

The security status of the JTAG is measured using a score that indicates whether monitored

JTAG operation corresponds to any representative sequence. Specifically, each representative se-

quence is associated with a score that measures its matching degree with the JTAG operation, with

the maximum score selected as a global one. Figure 3.3 illustrates how the global score is calcu-

lated. The score associated with each representative sequence (named a local score) is initialized to

zero when the chip is powered on. Then opcode sequences are collected in real-time and compared

with each representative sequence from the first opcode to the last. Every time an opcode match is

observed, the local score increments (or remains the same if it has saturated); otherwise, it is reset

to zero. Finally, JTAG operation is labeled as an attack only if the global score stays saturated for

more than q consecutive operation cycles. The saturation value and the value of q are predefined

and determined empirically from simulation.

Compared to one-class SVMs, the representative-based anomaly detector, incurring moderate

overhead, can be used for online detection. Moreover, the representative sequences are derived

automatically, which is easier than characterizing JTAG operation using manually-created state

machines.

3.3 Delayed Labeling

The prediction made by individual sliding windows might not be reliable, because at times an

attack can be similar to or even the same as legitimate operation. This can also be observed in

the overlap of legitimate operation and attacks as shown in Figure 2.6 and 2.7. To address this

problem, we propose to delay the labeling of JTAG operation as legitimate or illegitimate until

sufficient evidence has been collected. Particularly, a hidden Markov model (HMM) is employed

for collecting the evidence.

An HMM aims to model a sequential system that is assumed to be a Markov process, i.e., the

state at time t only depends on the state at time t− 1 [104]. Although an HMM assumes that the

45

state of a system transitions over time (described by the state transition probabilities), the state is

invisible. To infer the hidden state, one needs to find clues from observations themselves because

each state shows a different probability distribution of observations (named emission probabilities).

When used for collecting evidence of attacks, the HMM involves two hidden states that rep-

resent the actual identification of the user, namely a legitimate state (SL) and an attack state (SA).

The probabilistic prediction produced by the classifier serves as the observation o of the HMM,

i.e., o = P(y = A|x). The hidden state, either SL or SA, is inferred based on the sequence of proba-

bilistic predictions. Here, we use α̃L(t) and α̃A(t) to represent the likelihood that the hidden state

at time t is SL and SA, respectively, given the observation sequence o1o2 . . .ot and the parameters

of the HMM, λ . α̃L(t) and α̃A(t) are represented in Equations 3.12 and 3.13.

α̃L(t) = P(st = SL | o1o2 . . .ot ,λ) (3.12)

α̃A(t) = P(st = SA | o1o2 . . .ot ,λ) (3.13)

For example, if the prediction produced by the classifier is a very positive value (i.e., more

likely an attack), then α̃A(t) will be increased compared to α̃A(t − 1), which can be understood

as an accumulation of evidence for a JTAG attack. This may not label the operation as an attack

immediately, but the labeling will happen if α̃A(t) exceeds a predefined threshold δAT K (i.e., suffi-

cient evidence has been collected). The value of δAT K indicates how strict the criterion is to label

the user as an attacker. A small δAT K represents a harsh criterion that may classify more legiti-

mate operation as attacks (i.e., false positive), while a large δAT K indicates a tolerant criterion that

may classify more attacks as legitimate (i.e., false negative). The impact caused by false positive

and false negative typically depends on the underlying problem. Therefore, the optimal value for

δAT K should also be determined based on specific objectives for preventing false positives and false

negatives, which is a subject for future work.

46

...

αL(t-1)

...

SL SA

v

v

1-v 1-v

P(s1=SL) = 1Initial probability

State transition
probability

Emission
probability

αL(t) αL(t+1)

αA(t-1) αA(t) αA(t+1)

~ ~ ~

~ ~ ~

ot ot

P(s1=SA) = 0

P(ot|st=SL) P(ot|st=SA)

Figure 3.4: The computation of α̃L(t) and α̃A(t) involves a lattice-like process.

...

αL(t-1)

...

SL SA

v

v

1-v 1-v

Initial probability

State transition
probability

Emission
probability

αL(t) αL(t+1)

αA(t-1) αA(t) αA(t+1)

~ ~ ~

~ ~ ~

ot ot

P(ot|st=SL) P(ot|st=SA)

P(s1=SL) = π P(s1=SA) = 1-π

Figure 3.5: The parameters of an HMM used for collecting evidence of an attack. The hidden
state always starts from SL, i.e., assuming the user as legitimate initially. State transition, either
from SL to SA or from SA to SL, occurs with a small probability v. The emission probability can
be derived through analyzing the probabilistic predictions produced for legitimate operation and
attacks, respectively. More precisely, legitimate operation is more likely to produce a negative
prediction that results in a small ot , while an attack is more likely to produce a positive prediction
that results in a large ot .

Assuming N hidden states and M observation values, the parameters of the HMM (λ) include

initial probabilities (π), state transition probabilities (R), and emission probabilities (B), as shown

in Equations 3.14-3.17.

λ = (R,B,π) (3.14)

47

where

R =
{

ri j
}
, ri j = P(st+1 = S j | st = Si) 1≤ i, j ≤ N (3.15)

B = {bim} , bim = P(ot = vm | st = Si) 1≤ i≤ N,1≤ m≤M (3.16)

π = {πi} , πi = P(s1 = Si) 1≤ i≤ N (3.17)

The value of M depends on how many discrete values are used for approximating the probabilistic

prediction. In this work, N = 2 since there are two hidden states, and M = 8. Then, αL(t) and

αA(t) can be represented as

αL(t) = P(o1o2 . . .ot ,st = SL | λ) (3.18)

αA(t) = P(o1o2 . . .ot ,st = SA | λ) (3.19)

αL(t) and αA(t) can be derived recursively using a forward procedure [104]. For t = 1,

αL(1) = πLbLo1 αA(1) = πAbAo1 (3.20)

and for t > 1,

αL(t) = [αL(t−1)rLL +αA(t−1)rAL] ·bLot (3.21)

αA(t) = [αL(t−1)rLA +αA(t−1)rAA] ·bAot (3.22)

Then, α̃L(t) and α̃A(t) can be derived through normalizing αL(t) and αA(t).

α̃L(t) =
αL(t)

αL(t)+αA(t)
(3.23)

α̃A(t) =
αA(t)

αL(t)+αA(t)
(3.24)

The computation of αL(t) and αA(t) involves a lattice-like process, as shown in Figure 3.4.

48

Figure 3.5 shows the parameters of the HMM. The initial probability depends on the prior

assumption of the user. In this work, we initially assume the user is legitimate, i.e., π = 1, although

π can also be set to a smaller value between 0 and 1. The state transition probability, either from

state SL to state SA or from SA to SL, occurs with a small value, v, and thus describes how likely

the identity of the user transitions between legitimacy and illegitimacy. The transition might occur

in many scenarios. For example, a board discarded due to malfunction/upgrade might be exploited

by an attacker for malicious purposes. An attacker may even purchase a brand-new board for

malicious purposes. Although it is hard to find a precise value for v, we heuristically set it to

a small number (i.e., 0.1) because the same user is likely to continue operating the JTAG. The

emission probability can be derived through analyzing the probabilistic predictions produced for

legitimate operation and attacks, respectively. More precisely, legitimate operation is more likely

to produce a negative prediction that results in a small ot , while an attack is more likely to produce

a positive prediction that results in a large ot .

3.4 Sequence Models

As explained in Section 3.1, sequence models can learn serial dependence existing in time-

based data better than sliding-window-based detectors. Even though sequence models are typi-

cally complex and not suitable for online detection, they are still evaluated in this work, including

recurrent neural networks, HMMs, and hierarchical HMMs. In this work, we only consider the

instruction opcode as the feature processed by the sequence models.

3.4.1 Recurrent Neural Network

Recurrent neural networks (RNNs) form a class of artificial neural networks that employ neuron

feedback. In feedforward-only networks, input samples are fed to network inputs, and transferred

in one direction towards the output layer. For RNNs, the state of a neuron (ct) depends not only on

49

tanh σ

update

ct
~ Γu

σ

Γr

×

xt

ct

softmax

yt

ct-1

Figure 3.6: A gated recurrent unit (GRU).

the current input sample (xt), but also on what they have perceived previously (ct−1). RNNs differ

from feedforward networks due to the feedback loop involving their past decisions. This feedback

provides RNNs with memory, enabling sequential information to be learned.

ct = f (ct−1,xt) (3.25)

The function f (·) is modeled using a gated recurrent unit (GRU) as shown in Figure 3.6 and

described by equations 3.26-3.29. Compared to the LSTM, the GRU is more computationally

efficient. The GRU employs a memory cell, denoted by ct . At time t, ct is updated based on the

previous memory cell ct−1 and a candidate c̃t . Γu serves as a coefficient that decides the impact

of ct−1 and c̃t on ct . The calculation of c̃t involves a coefficient Γr that represents the relevance of

ct−1 relative to the current observation xt . The training of an RNN also employs a backpropagation

technique (referred to as backpropagation through time), which however requires the feedback of

the GRU to be unfolded. Finally, the output yt involves a softmax function to ct , since the attack

50

detection is a classification task.

c̃t = tanh(Wc · [Γrct−1,xt]+bc) (3.26)

Γu = σ(Wu · [ct−1,xt]+bu) (3.27)

Γr = σ(Wr · [ct−1,xt]+br) (3.28)

ct = Γu · c̃t +(1−Γu) · ct−1 (3.29)

3.4.2 Hidden Markov Model

HMMs are another model widely used for sequential analysis. The basics of HMM have been

described in Section 3.3. When used for analyzing JTAG instruction sequences, an HMM is trained

using observed JTAG traces. As described by equation 3.30. the training of an HMM aims to find

the most likely parameters that maximize the probability of the observations. The training employs

an expectation-maximization (EM) approach [104]. In this work, to detect attacks, two HMMs

are trained, based on legitimate and attack traces, respectively. Then, an observed sequence is

evaluated using both HMMs, and labeled based on the outcome with higher probability.

λ̂ = argmax
λ

P(o1o2 . . .ot | λ) (3.30)

HMMs assume conditional independence for observations given the state. That is, the current

observation only depends on the current state, but does not depend explicitly on previous obser-

vations. For example, if a state represents an MBIST operation, then the use of each MBIST

instruction is independent given the state. However, this assumption might be problematic because

these instructions are typically executed in specific orders. To mitigate this problem, standard

HMMs are extended to a hierarchical structure.

51

S1 S2

S3 S4 S5 S6 S7

Figure 3.7: The architecture of a two-level HHMM.

Hierarchical HMMs (HHMMs) are structured multi-level stochastic processes [107]. HHMMs

generalize the standard HMMs by making each of the hidden states an “autonomous” probabilistic

model on its own, such that the states of an HHMM emit sequences rather than a single symbol.

Here, we consider an HHMM with two levels of states, as illustrated in Figure 3.7. The main states

(i.e., in the first level) typically represent JTAG functions, such as MBIST and cache access, while

the sub-states (i.e., in the second level) describe how instructions execute for each JTAG function.

For the HHMM in Figure 3.7, state S1 may activate its sub-state S3 (through a vertical transition),

which then lead to state transitions among S3 and S4 according to the corresponding transition

probabilities (via horizontal transitions). Upon completion of horizontal transitions, control returns

to the main state that originates the activation (i.e., S1). Next, the control may transition to S2, or

activate its sub-states (i.e., S3 and S4) again. Note that only the sub-states (i.e., S3-S4, S5-S7) emit

observations, while the main states (i.e., S1-S2) do not emit observations directly.

The training of the two-level HHMM involves training of the main HMM and the sub-HMMs.

To train sub-HMMs, we first extract representative sequences from legitimate JTAG operation

(for example, using the method described in Section 3.2.3). These representative sequences are

then divided into K clusters using K-means, each cluster used for training a sub-HMM (shown

in Algorithm 1). Now, it is obvious that the main HMM has K states, each one corresponding

to a sub-HMM. To derive the state transition probabilities for the main HMM, we need to tag

the representative sequences within legitimate operation, and then count the transitions between

52

Algorithm 1: Use K-means to cluster representative sequences and train an HMM for each
cluster

Input : A set of representative sequences {si}
K HMMs whose parameters λ1,λ2, . . . ,λK are randomly initialized

Output: K trained HMMs, i.e., λ1,λ2, . . . ,λK
1 do
2 for each representative sequence si do
3 l = argmaxk=1,2,...,K hmm_decode(si,λk)

4 assign si to the l-th cluster Cl
5 end
6 for k← 1 to K do
7 train the k-th HMM (λk) based on the k-th cluster of representative sequences (Ck)
8 end
9 while λ1,λ2, . . . ,λK converge;

them. Note that in Algorithm 1, the function hmm_decode(s,λ) calculates the posterior state

probabilities for the sequence s based on a hidden Markov mode λ .

Attack detection using an HHMM is similar to an HMM. That is, two HHMMs are trained

for legitimate operation and attacks, respectively. An observed sequence is evaluated using both

HHMMs and labeled based on the outcome with higher probability.

3.5 Detection of Unknown Attacks

ML models can naturally identify unseen data, which however is based on the assumption

that the data are from the same distribution as the training data. If the data are from a different

distribution, then the effectiveness of ML models is weakened. For example, if the attacker exploits

new attack strategies or targets an IC component that was not considered when building the ML

model, then the ML model may fail to detect such attacks. Figure 3.8 illustrates a new type of

attack as a cluster that is far from both legitimate operation and known attacks. Even though

the binary classifier will finally label each new attack instance as either positive or negative, its

accuracy is poor. This inaccuracy can be modeled using the notion of open-space risk introduced

in [71]. An open space refers to an area where few prior observations reside. Considering that the

53

One-class
SVM

Binary
SVM

Weibull
distribution

Dist(x, boundary)

Weibull
distribution

Dist(x, boundary)

PO(x)

PL(x), PA(x)

x Combine P(y=A|x)

Legitimate

Known attack

Unknown attack

Figure 3.8: A binary classifier suffers from open-space risk, i.e., unable to correctly classify ob-
servations that are “far” from historically-observed data (e.g., legitimate operation and known at-
tacks).

collection of legitimate operation is relatively complete compared to attacks (i.e., a legitimate user

typically knows well how to operate the JTAG), it is safer to label observations located in an open

space as a new type of attack.

To minimize open-space risk, we develop a cascade model that combines a one-class model and

a binary classifier, as shown in Figure 3.9. One-class models are preferred for anomaly detection,

while binary classifiers are more effective in determining the boundary between different classes.

Specifically, the method of Weibull-calibrated SVM described in [108] is employed. The work

in [108] demonstrates that the Weibull-calibrated SVM performs significantly better than common

binary models, such as SVM, Logistic Regression, and Nearest Neighbor. The first step involves

training a one-class SVM using only legitimate traces. Then, the probability of class inclusion

for the one-class SVM is modeled by fitting a Weibull distribution based on all training samples.

This process converts the distance between an observation and the classification boundary to a

probability PO(x). The next step is to train a binary SVM using both legitimate and attack traces.

Then, two Weibull distributions are fitted based on legitimate and attack samples, respectively (both

correctly-classified and misclassified samples are used for fitting the distributions). Particularly,

these two distributions model the probability that an observation x is legitimate, PL(x), and the

54

One-class
SVM

Binary
SVM

Weibull
distribution

Dist(x, boundary)

Weibull
distribution

Dist(x, boundary)

PO(x)

PL(x), PA(x)

x Combine P(y=A|x)

Legitimate

Known attack

Unknown attack

Figure 3.9: A cascade model is constructed by combining a one-class SVM and a binary SVM for
detecting unknown attacks.

probability that the observation is attack, PA(x). Note that PL(x)+PA(x) is not necessarily equal to

one because PL(x) and PA(x) are derived from two Weibull distributions. For example, if x resides

in an open space, then both PL(x) and PA(x) are likely small.

The final prediction P(y = A|x) is based on PO(x), PL(x) and PA(x). First, a binary variable ιL is

defined, such that ιL = 1 if PO(x)> λτ , and ιL = 0 otherwise. λτ is a threshold that determines the

degree of anomaly. Typically, λτ is set to a very small probability such that only very anomalous

samples are identified as attacks. As suggested by [108], λτ is set to 0.0001 in the experiments of

this work. Then, the probabilistic prediction of an attack is calculated as

P(y = A|x) = 1−
√

PL(x)× [1−PA(x)]× ιL (3.31)

According to Equation 3.31, if an observation x is too far from legitimate operation, then ιL is

likely zero, meaning that x is identified as an unknown attack with high probability. If x resides

in a cluster of legitimate operation, then both PL(x) and 1−PA(x) are large, resulting in a small

P(y = A|x). If x resides in a cluster of known attack, then both PL(x) and 1−PA(x) are small,

resulting in a large P(y = A|x). If x resides in an open area, then PL(x) is likely small and 1−PA(x)

is likely large, resulting in a medium P(y = A|x). Note that P(y = A|x) needs to be supplied to the

evidence collector described in Section 3.3.

55

3.6 Experiments

This section evaluates the performance of attack detection for all of the models described in the

earlier sections of this chapter. Same as Chapter 2, the experiments are based on the OpenSPARC

T1 and T2 processors that are developed by Oracle [30, 64], and the LEON3 processor that is

developed by Gaisler [28].

3.6.1 Search for Window Size

To find the optimal value of w, we evaluate the impact of w on the regularized KL-divergence

for the OpenSPARC T1, T2, and the LEON3 processors, with results shown in Figure 3.10. For

the OpenSPARC T1 and T2, the features shown in Figure 2.5 are used, while for the LEON3, nine

features are used, four for BUS_ADDR, four for BUS_DATA, and one for BUS_RW. According to

the results shown in Figure 3.10, as w changes, the divergence between legitimate JTAG operation

and attacks increases when w is small, but then saturates and even decreases when w is large, due

to the regularization effect provided by δ . For the OpenSPARC T1 and T2, a w of four or five

performs best. However, for the LEON3, the optimal value of w is almost 40, revealing that the

bus operation of the LEON3 is not only more complex than the operation of JTAG TAP, but is

much more difficult to classify.

3.6.2 Sliding-window-based Detectors

In this set of experiments, the capability of detecting known attacks is evaluated for the sliding-

window-based detectors and the representative-based anomaly detection. In particular, for binary

classifiers, five-fold cross validation is performed, i.e., all traces, including legitimate ones and at-

tacks, are partitioned into five subsets of the same size; four subsets are used for training the classi-

fier, and the fifth for evaluating the accuracy of the resulting classifier; each subset is used once for

testing, with the final accuracy being averaged. For one-class models and the representative-based

56

2 4 8 10 12
0.5

1.0

1.5

2.0

2.5

3.0

3.5

 6
w

 OpenSPARC T1

R
eg
ul
ar
iz
ed

 K
L-
di
ve
rg
en
ce

(a)

2 4 8 10 12
1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

 6

OpenSPARC T2

w

R
eg
ul
ar
iz
ed

 K
L-
di
ve
rg
en
ce

(b)

0 10 40 50
0.05

0.10

0.15

0.20

0.25

 20 30

LEON3

w

R
eg
ul
ar
iz
ed

 K
L-
di
ve
rg
en
ce

(c)

Figure 3.10: The impact of window size (w) on the regularized KL-divergence between legitimate
JTAG operation and attacks, for (a) the OpenSPARC T1, (b) the OpenSPARC T2, and (c) the
LEON3.

anomaly detector, 90% of the legitimate traces are used for training the model, and the remaining

legitimate traces and attack traces are used for testing the accuracy of the model.

Table 3.1 lists the parameters selected for each classifier. The performance is evaluated using

three metrics, namely error rate, false positive rate (FPR), and false negative rate (FNR) as defined

57

TABLE 3.1: THE PARAMETERS SELECTED FOR VARIOUS DETECTION MODELS.

Algorithm Setting
Decision tree max_depth = 16

Random forest n_trees = 3, max_depth = 10
SVM kernel = RBF, γ = 0.125

MLP
n_hidden_layer = 1, n_hidden_neuron = 10,

learning_rate = 0.02, max_epochs = 100
k-NN k = 3

Naïve Bayes model = Multinomial
One-class SVM ν = 0.05, kernel = RBF, γ = 0.125
Representative saturation_score = 5, q = 25

in Equations 3.32-3.34, respectively.

Error rate =
No. of misclassified traces

No. of all traces
(3.32)

FPR =
No. of legitimate traces that are classified as attack

No. of legitimate traces
(3.33)

FNR =
No. of attack traces that are classified as legitimate

No. of attack traces
(3.34)

In addition, the threshold for the evidence collector (i.e., δAT K) is set to 0.9, which leads to bal-

anced FPR and FNR (nevertheless, δAT K can be set to other values to fit the needs specified by

the designer). Alternatively, the performance of classifiers can be evaluated using the receiver

operating characteristic (ROC) curve and measured using the area under the curve (AUC) [109].

Different from FPR and FNR, AUC can evaluate classifier performance regardless of threshold.

Note that the parameters listed in Table 3.1 are selected because they demonstrate better error rate

than others through simulation.

The results of each classifier is exhibited in Figure 3.11, where the error bars represent the

standard deviation resulting from cross validation. Figure 3.11 show that the decision tree, random

forest, SVM, and k-NN have similar performance in identifying attacks for all three benchmarks.

The MLP shows poor performance for the OpenSPARC T1 and T2, possibly due to insufficient

58

Tree Forest SVM MLP k-NN Recurren
t tree

1-class
SVM

Naïve
Bayes

Represen
tative

Error rate 0.057 0.083 0.091 0.277 0.093 0.072 0.132 0.327 0.223
FPR 0.097 0.030 0.152 0.267 0.092 0.092 0.153 0.389 0.485
FNR 0.029 0.113 0.053 0.294 0.091 0.034 0.128 0.277 0.073

0

0.2

0.4

0.6

0.8

OpenSPARC T1

(a)

Tree Forest SVM MLP k-NN Recurren
t tree

1-class
SVM

Naïve
Bayes

Represen
tative

Error rate 0.058 0.073 0.136 0.298 0.084 0.086 0.163 0.379 0.092
FPR 0.066 0.074 0.139 0.296 0.091 0.027 0.154 0.479 0.083
FNR 0.052 0.073 0.130 0.298 0.079 0.128 0.170 0.259 0.099

0

0.2

0.4

0.6

0.8

OpenSPARC T2

(b)

Tree Forest SVM MLP k-NN Recurre
nt tree

1-class
SVM

Naïve
Bayes

Error rate 0.350 0.320 0.340 0.460 0.320 0.344 0.652 0.440
FPR 0.172 0.164 0.198 0.329 0.169 0.162 0.600 0.122
FNR 0.479 0.441 0.449 0.561 0.414 0.442 0.691 0.675

0

0.2

0.4

0.6

0.8

LEON3

(c)

Figure 3.11: Sliding-window-based detectors and the representative-based anomaly detector are
evaluated using five-fold cross validation, with the performance evaluated using error rate, FPR,
and FNR.

59

number of hidden neurons. The recurrent tree does not show obvious improvement compared to

the decision tree, meaning that the most recent binary prediction does not improve attack detection.

The results also demonstrate that one-class SVM and the representative-based anomaly detector are

inferior to binary classifiers in identifying decision boundaries. Moreover, the LEON3 processor

exhibits much higher error rate than the OpenSPARC T1 and T2, revealing that detecting anomalies

in bus traffic is more challenging than monitoring the JTAG TAP. Thus, more features and more

complex models are required for more accurate classification. Note that the one-class SVM results

in error rate that is greater than 0.5, as exhibited in Figure 3.11(c). In this case, flipping the

classification results can improve the accuracy.

3.6.3 Sequence Models

In this set of experiments, the performance of sequence models, including RNNs, HMMs and

HHMMs, are evaluated. Note that only the feature OPCODE is considered. In addition, all JTAG

traces are partitioned into three sets, namely, a training set (80%), a validation set (10%) and a

testing set (10%). The training of the RNN employs a cost function of softmax-with-cross-entropy.

Figure 3.12 shows that the cost is decreasing as the training proceeds, for both the OpenSPARC T1

and T2. The hyper-parameters, including learning rate, number of hidden neurons, size of mini-

batch, are searched using an exhaustive, coarse-to-fine method. Note that the number of hidden

neurons decides the history capacity that the RNN can memorize, while the learning rate decides

the speed and smoothness of convergence. To avoid overfitting, accuracy of the validation set

is examined after each epoch, such that training stops when the accuracy for the validation set

starts to decrease. Finally, the test set is used for evaluating the performance of the trained model.

According to the results shown in Figure 3.13, the RNN demonstrates an error rate of 1.3% for

the OpenSPARC T1 and 2.2% for the OpenSPARC T2, which is much better than the sliding-

window-based detectors. A possible explanation is that an RNN is more effective in learning serial

dependence and retaining a varying amount of historic information.

60

0 10 20 40 50 60

0.2

0.4

0.6

0.8
learning_rate = 0.001
n_hidden = 32
minibatch_size = 32

30
epochs

co
st

 OpenSPARC T1

(a)

0 20 60 80

0.1

0.2

0.3

0.4

0.5

0.6

 40

OpenSPARC T2

learning_rate = 0.004
n_hidden = 32
minibatch_size = 32

epochs

co
st

(b)

Figure 3.12: The cost decreases as the training of an RNN proceeds.

Next, two HMMs are trained for legitimate and attack traces, named HMM-X and HMM-Y,

respectively. Each testing trace is evaluated using both HMMs, with the log-probability plotted in

Figure 3.14. Since a trace is labeled by the HMM that gives a higher probability, the dots located

61

RNN HMM HHMM
Error rate 0.028 0.119 0.081
FPR 0.026 0.192 0.123
FNR 0.029 0.082 0.064

0

0.1

0.2

0.3

0.4
OpenSPARC T1

(a)

RNN HMM HHMM
Error rate 0.022 0.145 0.093
FPR 0.025 0.241 0.139
FNR 0.020 0.076 0.068

0.0

0.1

0.2

0.3

0.4

OpenSPARC T2

(b)

Figure 3.13: Sequence models, including an RNN, an HMM, and a two-level HHMM, are evalu-
ated using error rate, FPR, and FNR.

in different sides of the diagonal line will have different labels. Figure 3.14 shows that many dots

are in the wrong side. Then, a two-layer HHMM is trained. The main HMM has twelve states, and

each sub-HMM has three states. Figure 3.13 shows that the HHMM improves the performance of

the HMM, but is still inferior to the RNN.

3.6.4 Detection of Unknown Attacks

In this set of experiments, the performance of detecting unknown JTAG attacks is evaluated

for the OpenSPARC T2. An unknown JTAG attack is one that targets a different IC component or

exploits a different strategy not included in training the model. In the first case, the attack traces are

divided into eight categories based on the components they target1. Seven out of eight categories

of attacks and all cases of legitimate operations are simulated using five-fold cross-validation, with

the FPR and the FNR evaluated. Then the eighth category of attack is evaluated using the trained

classifier, with the error rate evaluated.
1The components include clock control, control register, electronic fuse, L2 cache access, logic BIST, memory

BIST, and shadow scan. Note that attack0 represents an initial search of all instructions and data registers, not referring
to a specific component but still considered as a category of attack.

62

1200 1000 800 600 400 200 0
log(prob) using HMM-X

1200

1000

800

600

400

200

0 Legitimate
Attack

OpenSPARC T1

lo
g(

pr
ob

) u
si

ng
 H

M
M

-Y

(a)

1200 1000 800 600 400 200 0
log(prob) using HMM-X

1200

1000

800

600

400

200

0 Legitimate
Attack

 OpenSPARC T2

lo
g(

pr
ob

) u
si

ng
 H

M
M

-Y

(b)

Figure 3.14: Two HMMs, namely HMM-X and HMM-Y, are trained based on legitimate JTAG
operation and attacks, respectively. Each testing trace is evaluated using both HMMs, with the
log-probability plotted.

63

In the second case, the attack traces are divided into nine categories based on the strategies

listed in Table 2.2, and then evaluated using the similar method for the first case. The performance

of the cascade model is compared with a decision tree and an RNN, as shown in Figure 3.15

and 3.16. According to the results, although performing better than a decision tree, the cascade

model is not able to detect all categories of unknown attacks effectively. A possible explanation

involves that some categories of attacks, overlapping with legitimate operation, are hard to detect.

To illustrate this, Figure 3.17 shows two examples of unknown attacks (targeting an IC component

not included in training) for the OpenSPARC T2. The first example of attack resides in an open

space and thus can be detected by the one-class model, while the second example of attack overlaps

with legitimate operation, which is hard to classify using both one-class and binary classifiers.

Note that the background contours outline the boundary of the one-class SVM, where the white

area represents inlier and the blue area represents outlier. Figure 3.15(c) and 3.16(c) show that

an RNN can also improve performance of detection unknown attacks. However, there are still

several categories of attacks that cannot be detected by both the cascade model and the RNN.

Considering the improvement resulting from the cascade model and the RNN, a possible way of

further improving the performance is to construct the cascade model using a one-class classifier

and an RNN, a good subject for future work.

3.7 Discussion

This section discusses two issues, namely ability of detecting unknown attacks and occurrence

of false positives.

Collecting and evaluating unknown attacks are not trivial tasks. First, the “unknown” attacks

used in Section 3.6.4 are not perfectly unknown. This is because different categories of attacks

might be similar to some extent. For example, attacks of different IC components, although

achieved by different sets of JTAG instructions, exploit similar strategies as listed in Table 2.2.

Second, the experiment results exhibited in Figure 3.15 do not guarantee that the detectors can

64

attack0 clock efuse shscan mbist l2access lbist creg

FPR 0.035 0.043 0.003 0.036 0.051 0.059 0.046 0.044

FNR 0.068 0.069 0.047 0.062 0.059 0.050 0.058 0.083

Unknown 0.329 0.910 0.890 0.039 0.101 0.940 0.980 0.780

0

0.2

0.4

0.6

0.8

1

Decision tree

(a)

attack0 clock efuse shscan mbist l2access lbist creg

FPR 0.052 0.029 0.046 0.035 0.048 0.029 0.036 0.030

FNR 0.054 0.069 0.040 0.071 0.069 0.027 0.058 0.069

Unknown 0.003 0.743 0.134 0.036 0.084 0.846 0.527 0.003

0

0.2

0.4

0.6

0.8

1

Cascade

(b)

attack0 clock efuse shscan mbist l2access lbist creg
FPR 0.051 0.049 0.045 0.043 0.112 0.021 0.020 0.067
FNR 0.074 0.067 0.050 0.036 0.070 0.035 0.038 0.044
Unknown 0.000 0.693 0.114 0.000 0.000 0.191 0.098 0.496

0
0.2
0.4
0.6
0.8
1

RNN

(c)

Figure 3.15: Detection of unknown attacks that target different IC components are evaluated for
various models, including (a) a decision tree, (b) the cascade model, and (c) an RNN.

65

FPR 0.067 0.056 0.056 0.038 0.035 0.061

FNR 0.133 0.130 0.127 0.058 0.251 0.117

Unknown 0.471 0.679 0.623 0.640 0.876 0.650

0

0.2

0.4

0.6

0.8

1

Decision tree

S4 S5 S6 S7 S8 S9

(a)

FPR 0.119 0.070 0.038 0.070 0.049 0.054

FNR 0.036 0.059 0.066 0.038 0.128 0.046

Unknown 0.412 0.156 0.671 0.662 0.529 0.243

0

0.2

0.4

0.6

0.8

1

Cascade

S4 S5 S6 S7 S8 S9

(b)

FPR 0.075 0.066 0.074 0.060 0.091 0.079

FNR 0.053 0.065 0.077 0.103 0.097 0.081

Unknown 0.628 0.000 0.143 0.518 0.139 0.036

0

0.2

0.4

0.6

0.8

1

RNN

S4 S5 S6 S7 S8 S9

(c)

Figure 3.16: Detection of unknown attacks that exploit different strategies (listed in Table 2.2) are
evaluated for various models, including (a) a decision tree, (b) the cascade model, and (c) an RNN.

66

80 60 40 20 0 20 40 60 80
1. Local Outlier Factor

80

60

40

20

0

20

40

60

80

learned decision function
normal
known attack
unknown attack

80 60 40 20 0 20 40 60 80
2. Isolation Forest

80

60

40

20

0

20

40

60

80

learned decision function
normal
known attack
unknown attack

80 60 40 20 0 20 40 60
3. One-Class SVM

80

60

40

20

0

20

40

60

80

learned decision function
normal
known attack
unknown attack

80 60 40 20 0 20 40 60 80
4. Robust covariance

80

60

40

20

0

20

40

60

80

learned decision function
normal
known attack
unknown attack

Outlier detection when mbist is unknown

(a)

80 60 40 20 0 20 40 60 80
1. Local Outlier Factor

80

60

40

20

0

20

40

60

80

learned decision function
normal
known attack
unknown attack

80 60 40 20 0 20 40 60 80
2. Isolation Forest

80

60

40

20

0

20

40

60

80

learned decision function
normal
known attack
unknown attack

80 60 40 20 0 20 40 60
3. One-Class SVM

80

60

40

20

0

20

40

60

80

learned decision function
normal
known attack
unknown attack

80 60 40 20 0 20 40 60 80
4. Robust covariance

80

60

40

20

0

20

40

60

80

learned decision function
normal
known attack
unknown attack

Outlier detection when efuse is unknown

(b)

Figure 3.17: Legitimate JTAG operation and attacks for the OpenSPARC T2 are plotted using
t-SNE. Two types of attacks (targeting an IC component not included in training) are regarded as
unknown, one located in (a) an open space, and the other located in (b) an area overlapping with
legitimate operation.

67

identify all types of attacks not included in training. Collecting JTAG attacks is an important but

difficult process because 1) hardware attackers typically do not publish their attacks, and 2) un-

known attacks always exist. Nevertheless, hardware companies should still be aware of potential

attacks, not only for mitigating the current vulnerability, but also for improving security of future

designs. We suggest that hardware companies build a database of JTAG attacks and collect po-

tential attacks using similar strategies as anti-virus software, including for example analyzing user

reports and periodic security examination. When new attacks are collected, it needs to be checked

if they can be effectively detected by the existing detector with high confidence. If not, the detector

should be re-trained and uploaded to the on-chip memory.

A false positive occurs when a legitimate user is classified as an attacker. It causes inconve-

nience for legitimate users because the JTAG will be permanently protected in the case of false

positives. There exists a tradeoff between false positive rate (FPR) and false negative rate (FNR),

meaning that a reduction of the FPR leads to a higher probability that an attacker escapes detection.

The evidence collection described in Section 3.3 is an effective method for mitigating both false

positives and false negatives. According to the results in Figure 3.13, an RNN can reduce FPR and

FNR to 1.3% and 1.2%, respectively, for the OpenSPARC T1. Considering that an FPR of 1.2%

is small, and that in-field uses of JTAG involve only a few scenarios (e.g., flash programming and

software debugging) and are typically not frequent [110, 111], the JTAG is not likely to enter the

protection mode. In other words, if used legitimately, the JTAG is expected to be accessible for a

sufficiently long period.

A more holistic way of reducing false alerts is to pass the prediction to the system, such that

the final decision is made globally by the system instead of the proposed detector. The system may

need to monitor features from other modules/interfaces and exploit more complex classification

models, in order to make more accurate decisions concerning access to the JTAG. This topic,

however, is beyond the scope of this dissertation and is suggested as a topic to be explored in

future work.

68

3.8 Summary

This chapter discusses how the characterized features and collected data can be analyzed for

detecting illegitimate JTAG accesses. To capture existing serial dependence in JTAG operation,

several detection models have been developed and evaluated, including sliding-window-based de-

tectors, sequence models, and a representative-based anomaly detector. In addition, to detect un-

seen attacks (or to minimize open-space risk), a cascade classifier, combining a one-class SVM and

a binary SVM, is developed. Experiments using the OpenSPARC T1, T2 and the LEON3 proces-

sors demonstrate effectiveness of the detection models. Several ML models, including a decision

tree, a random forest, SVMs and k-NN, show similar performance. The experiments also demon-

strate that an RNN is more effective in detecting attacks and even unseen attacks compared to the

sliding-window-based detectors and the cascade model. For model selection, a designer needs to

consider the trade-off between detection performance and overhead. On-chip overhead for attack

detection is discussed next in Chapter 5.

69

Chapter 4

Detection of IJTAG Attacks

The IEEE Standard 1687 (IJTAG), an extension to the IEEE Standard 1149.1, facilitates effi-

cient access to embedded instruments by supporting reconfigurable scan networks. Specifically,

IJTAG allows each IP to be wrapped by a test data register (TDR) whose access is controlled by a

segment insertion bit (SIB) or a scan-mux control bit (SCB). Because the TDRs and the SIB/SCB

network are typically not made known to the public but are critical for accessing embedded in-

struments1, they might be used for illegitimate purposes. Machine learning has been proposed to

detect attacks to the JTAG (in Chapter 3), but the large number of instruments and parallel exe-

cution enabled by the IJTAG produce high-dimensional data, which poses a challenge to on-chip

detection. In this chapter, we propose to compress the high-dimensional data collected from IJTAG

operation based on a low-density parity-check (LDPC) matrix. Compression is possible because

IJATG operation is likely to result in a sparse data set. According to the experiments using a mod-

ified version of the OpenSPARC T2, the use of LDPC matrices exhibit a good trade-off between

detection accuracy, compression and hardware overhead.

The rest of this chapter is organized as follows. Section 4.1 reviews the background of IJ-

TAG and illegitimate IJTAG accesses, and studies existing work on IJTAG protection. Section 4.2

elaborates upon the LDPC-based feature reduction and the process of IJTAG attack detection. Sec-

1An instrument refers to an IP core with an IJTAG-compliant interface.

70

tion 4.3 describes changes to the OpenSPARC T2 in order to incorporate IJTAG, and evaluates the

performance of feature reduction. Section 4.4 discusses several issues concerning the proposed

approach, and Section 4.5 summarizes the work of this chapter.

4.1 Background

The increasing complexity of ICs requires integration of a large number and variety of IPs.

Learning the setup, integration, and test procedure of each IP imposes additional burden on IC

designers and test engineers. To mitigate the resulting test issues, IEEE Std 1687 (IJTAG), as an

extension to the IEEE Std 1149.1, has been developed to facilitate efficient access to embedded

instruments [33]. IJTAG allows scan chains in each instrument to be configured using a segment

insertion bit (SIB) or a scan-mux control bit (SCB). In addition to SIBs/SCBs, IJTAG also defines

a standard interface for accessing an instrument, an instrument connectivity language (ICL), and

a procedure description language (PDL). The adoption of IJTAG not only reduces the effort in

learning the setup, integration, and test procedure, but also allows IPs to be modified or added

locally without affecting other instruments.

4.1.1 IJTAG Architecture

In an IJTAG network, access to an instrument is configured using SIBs/SCBs, whose structure

is shown in Figure 4.1. A SIB gates an instrument, such that access to the instrument is possible

only if the SIB is open (i.e., the signal “Select” is high); otherwise, the instrument is bypassed. An

SCB controls a multiplexer that exclusively selects a scan chain. A SIB or an SCB consists of two

flip-flops (FFs), for shifting and updating. Figure 4.2 shows an example of an IJTAG architecture

with four instruments. To access the TDR of an instrument, the user needs to operate the TAP

controller to shift in a logic one to its gating SIB, and/or shift in a proper value to its selecting SCB.

After the UPDATE-DR state loads the values into the updating FF of the SIBs/SCBs, the target TDR

71

Shift
Update0

1

0
1

0
1TDI

TDOShiftDR
UpdateDR

TCK

Select

Select

From
Instru.

To
Instru.

Figure 4.1: The structure of a segment insertion bit (SIB).

is configured as a part of the chain. For example, to access the TDR of MEM1 in Figure 4.2, the

user needs to operate the TAP controller and supply the proper opcode into the instruction register

(IR) that selects the SIB/SCB network configuring MEM1. Now the TAP controller has access to

a four-bit chain, i.e., SIB1→SCB2→SIB3→SIB4. Next, the user needs to shift in ‘1100’ during

the SHIFT-DR state (the LSB is shifted in first) and update the value to the SIBs/SCBs during the

UPDATE-DR state. The TDR of MEM1 is from hereon configured within the scan chain, meaning

that the TAP controller can now access it. Note that there might exist a hierarchy of SIBs/SCBs, in

which case, accessing a TDR involves asserting multiple levels of SIBs/SCBs.

A TDR, consisting of a shift register, can be accessed via a standard eight-port interface, as

shown in Figure 4.3. A serial data stream is shifted into the instrument via the TDR_SIN port and

shifted out via the TDR_SOUT port. The other ports are controlling signals decoded from the TAP

controller. The TDR can supply test vectors or debugging commands to the instrument when the

TDR_UPDATE is set, and capture test response data when the TDR_CAPTURE is set. Figure 4.3

shows an industrial example of a memory wrapped by a six-bit TDR [112]. Bit one is used for

resetting the BIST (built-in self-test). Bit two is used for starting the BIST and capturing the status

of the BIST (busy or not). Bits three and four are used for updating a new BIST mode and capturing

the existing BIST mode. Bit five only has a shift cell since it can only be used for capturing the

BIST result (pass or not), but not for updating. Bit six is used like a SIB/SCB, because it can

72

TDI
TMS
TCK

TRST
TDO

FSM &
Decoder

MEM0

bypass

idcode

TDR

TDR TDR

TDR

TAP

MEM1

CORE

Update
bit 1

Shift
bit

Shift
bit 1

Update
bit 2

Shift
bit

Shift
bit 2

DFT_CLK

TDR_SHIFT

TDR_CAPTURE

TDR_UPDATE

TDR_RST

TDR_SEL

TDR_SIN

TDR_SOUT

TDR_SEL

RST

RUN

MODE[1:0]

Shift
bit

Shift
bit 5

Update
bit 6

Shift
bit

Shift
bit 6

BUSY

Update
bit

Shift
bit

Shift
bit

Update
bit 3-4

Shift
bit

Shift
bit 3-4

DATA[1:0]

PASS

MEMBIST

Address[3:0]

Data[3:0]

State[3:2]

State[1:0]

EFUSE

TDR

IR

SIB1 SIB3 SIB4SCB2

0
1

Figure 4.2: An example of an IJTAG architecture composed of four instruments, each of which is
gated by a SIB and/or selected by an SCB.

TDI
TMS
TCK

TRST
TDO

FSM &
Decoder

MEM0

bypass

idcode

TDR

TDR TDR

TDR

TAP

MEM1

CORE

Update
bit 1

Shift
bit

Shift
bit 1

Update
bit 2

Shift
bit

Shift
bit 2

DFT_CLK

TDR_SHIFT

TDR_CAPTURE

TDR_UPDATE

TDR_RST

TDR_SEL

TDR_SIN

TDR_SOUT

TDR_SEL

RST

RUN

MODE[1:0]

Shift
bit

Shift
bit 5

Update
bit 6

Shift
bit

Shift
bit 6

BUSY

Update
bit

Shift
bit

Shift
bit

Update
bit 3-4

Shift
bit

Shift
bit 3-4

DATA[1:0]

PASS

MEMBIST

Address[3:0]

Data[3:0]

State[3:2]

State[1:0]

EFUSE

TDR

IR

SIB1 SIB3 SIB4SCB2

0
1

Figure 4.3: An industrial memory macro wrapped by a six-bit TDR.

be used for accessing the next level of registers. Since these bits can be set simultaneously, their

corresponding operations can also be executed in parallel. For example, a simultaneous setting of

73

bits three to five indicates the parallel execution of selecting the BIST mode and querying the BIST

result.

4.1.2 Prior Work

Various countermeasures have been proposed to protect the IJTAG, including access restriction,

encryption, attack detection and obfuscation. Access to the IJTAG can be restricted through fusing

off the JTAG port, or monitoring if a user attempts to assert the SIBs that gate secure scan chains

[113]. Both methods disable access to entire or parts of a scan chain, and therefore hinder in-

field debugging and programming. The work in [114] proposes to insert key bits into scan chains

such that the SIBs are opened only if a correct key is supplied. The use of an LFSR [115] and

honeytraps [116] makes the key more complex. A honeytrap refers to the SIBs that are used as

key bits for other SIBs. This makes key searching even more complex than the case where key

bits are located in scan chains. However, the key might still be leaked during distribution [117].

The work in [118] improves the security of the IJTAG using a challenge-response protocol, which,

however, requires availability and security of network communication. Another countermeasure

involves detection of illegitimate IJTAG access through checking if the number of shifting cycles

exceeds a pre-defined range [58]. This simple, rigid rule, however, is not able to detect complex

attacks, and may also result in many false positives [119, 120].

Although machine learning proves to be an effective approach for detecting JTAG attacks [119,

120], detection of illegitimate IJTAG access is more challenging than JTAG, primarily for two

reasons. First, characterizing IJTAG operation may require many more features. Different from

JTAG operation that can be characterized using the sequence of instruction-register opcodes [120],

IJTAG operation involves configuring a hierarchy of SIBs/SCBs and setting/resetting the bits in

a large number of TDRs. Second, the IJTAG not only allows simultaneous assertion of multiple

SIBs/SCBs, but also allows simultaneous setting of multiple bits in a TDR, implying that many

more combinations of operations become possible compared to JTAG.

74

4.2 IJTAG Attack Detection

This section describes the features used for characterizing IJTAG operation, reduction of the

features, and attack detection using a random forest classifier.

4.2.1 IJTAG Attacks

IJTAG-compliant instruments may also be accessed illegitimately because of their accessibility

via the JTAG port. For example, prior work has demonstrated that cryptographic keys can be

derived by analyzing the data dumped from scan chains [8]. An attacker may also reverse engineer

the SIB/SCB network and the meaning of each bit in TDRs, which can then be used to derive

data from on-chip memory [25], update firmware [26], and control chip operation [27]. Because

IJTAG has gained growing support from EDA vendors, and is projected to be adopted widely in

industry [34], the security of IJTAG is therefore a topic of importance.

As illustrated by Figure 1.2, an attacker is assumed to have access to only the JTAG port and

is, at least initially, unaware of which private JTAG functions, instructions, and data registers are

implemented. Thus, the attack strategies described in Table 2.1 can still be employed. Further, it

is assumed that the attacker does not know the SIB/SCB network and how to operate the TDR bits

within each instrument. To uncover the SIB/SCB network, the attacker would tentatively load one

and zero to each bit, and observe if the length of the chain between the TDI and TDO changes. The

attacker can repeat this interrogation until the whole SIB/SCB network is uncovered. Once gaining

access to a TDR, the attacker can uncover the operation corresponding to each TDR bit, exploiting

strategies similar to those described in [119]. More precisely, an attacker can set each TDR bit

and check the response. The attacker can also vary the order of bit setting, and examine possible

interactions between them. Further, since the attacker can set multiple bits simultaneously, other

than sequentially, for checking their interaction, reverse engineering an IJTAG network becomes

even more efficient.

75

Table 4.1: FEATURES USED FOR CHARACTERIZING IJTAG OPERATION.

Category Index Description Count

SIBs/SCBs
F1 SIB/SCB bits NS

F2 No. of asserted SIBs/SCBs 1
F3 No. of bit transitions2 in SIBs/SCBs 1

TDRs
F4 No. of ones in each TDR NT

F5 No. of bit transitions in each TDR NT

F6 No. of dependent bits in TDRs 1

TAP
F7 No. of TMS transitions 1
F8 TEST-LOGIC-RESET activated? 1

4.2.2 Feature Extraction

As described in Section 4.1.1, IJTAG allows simultaneous setting of multiple bits in a TDR,

which means IJTAG operations can be performed in parallel. This typically happens in two scenar-

ios, namely independent operation and pipelining operation. TDR bits are dependent if swapping

their order leads to a different result. For example, bit two and bits three to four in Figure 4.3 are

dependent because a different BIST mode (operated by bits three to four) may initiate a different

BIST process (operated by setting bit two). Dependent bits are typically not set simultaneously

unless they are operated in a pipelining manner. For example, bit two and bits three to four, if set

simultaneously for a pipelining use, means that the BIST mode is set for the next BIST process

rather than the current one. Besides dependent bits, TDR bits may even conflict if setting them si-

multaneously causes uncertain results. For example, bit one, used for resetting the BIST, conflicts

with bit two, which is used for starting the BIST. Although this conflict can be handled through a

careful design, simultaneously initiating operation should be avoided. In other words, if conflicting

operations are detected, operation should be immediately labeled as an attack.

IJTAG operation, consisting of SIBs/SCBs, TDRs and the TAP controller, is characterized

using the features shown in Table 4.1 (NS and NT refer to the number of SIBs/SCBs and the number

2A bit transition refers to a SIB/SCB changing from asserted to de-asserted, or from de-asserted to asserted.

76

of TDRs, respectively). F1 refers to the bits stored in the SIBs. F2 and F3 characterize the number

of ones (i.e., the number of opened SIBs) and the number of SIB transitions compared to the

previous cycle (i.e., the number of SIBs that change from open to closed, or from closed to open).

Similar to F2 and F3, F4 and F5 are used for characterizing the bits in each TDR. F6 represents

the number of dependent bits found in all TDRs. F7 and F8 characterize the operation of the TAP

controller, namely the number of TMS transitions (from low to high, or from high to low) and

whether a TEST-LOGIC-RESET state is encountered.

Recall that features characterizing JTAG operation, as described in Section 2.3, are collected

during the UPDATE-IR state. For the IJTAG, in order to capture the change of values in SIBs/SCBs

and TDRs, features are collected during the UPDATE-DR state instead. Correspondingly, an opera-

tion cycle is defined as the period between two successive UPDATE-DR states. To better reflect the

sequential feature of IJTAG operation, a sequence of operation cycles, rather than a single one, are

monitored. Specifically, data are collected using a sliding window (with w operation cycles) in an

overlapping manner.

4.2.3 Compressed Sensing

The data collected using a sliding window typically have a large dimension, but they are likely

sparse. This is because the operations corresponding to the TDR bits, in most cases, should still

be executed in specific orders. A simultaneous setting of all TDR bits (or most of them) is not

practical. This observation means that the dimensionality of the data is likely reducible. A possible

technique to reduce dimension is fixed-length encoding (i.e., encode each possible combination of

the observed data using a fixed-length code, whose length depends on the number of combinations

in the observed data). However, fixed-length encoding may not reduce the dimension effectively

because most combinations, although absent from the training set, are still possible. Another

technique involves compressed sensing that aims to compress and reconstruct high-dimensional

data with low complexity [121]. Let x ∈ Rn, z ∈ Rm, and A ∈ Rm×n (m� n), the compression and

77

reconstruction of x can be formulated as

z = Ax (4.1)

and

x̂Lasso := argmin
x
‖z−Ax‖2

2 +λ1 ‖x‖1 (4.2)

respectively. The compression is simply a multiplication of x and a matrix A representing a linear

transformation from Rn to Rm. The reconstruction involves a linear regression using Lasso reg-

ularization (i.e., ‖x‖1). Note that although reconstruction is not necessary for classification, it is

still useful because it evaluates the quality of the compression. The linear regression formulated in

Equation 4.2 is underdetermined (m� n), meaning that the solution of x̂ is not unique. To achieve

a sparse solution of x̂, the Lasso regularization, rather than ‖x‖2
2, is used. The performance of the

Lasso declines if the columns of A are highly correlated (in this case, the Lasso simply chooses

one column of A). To mitigate this problem, matrix A should satisfy the restricted isometry prop-

erty (RIP) that requires a matrix to be “almost” orthonormal, at least when operating upon sparse

vectors. However, there exist no effective approaches to construct such matrices, although some

matrices, like Gaussian matrices, satisfy the RIP with exponentially high probability [122].

As studied in [123], LDPC codes, originally used as error correcting codes, show an outstand-

ing performance when used for compressed sensing. An LDPC code can be represented using a

binary matrix (typically called the LDPC matrix) or a bipartite graph (which is also referred to as

a Tanner graph) [124]. Figure 4.4(a) shows an example of a Tanner graph that represents the same

LDPC code as the matrix A in Equation 4.3. The graph consists of n variable nodes (the number

of bits in a code word) and m check nodes (the number of parity bits). Check node ci is connected

to variable node v j if the element ai j of A is a 1. The Tanner graph shown in Figure 4.4(a) can also

be represented using a tree that is constructed by traversing the adjacent nodes non-repeatedly as

shown in Figure 4.4(b). Note that, starting from the root node (i.e., v0), there exist many cyclic

paths, among which the length of the shortest path is defined as local girth, g. A large value for

g means that the root node is significantly independent from other variable nodes, and therefore is

78

c0 c1 c2 c3

v0 v1 v2 v3 v4 v5 v6 v7

v0

v1

v2

v3

v4

v5

v6

c3

c1

c2

c0

v7

check nodes

variable nodes

(a)

c0 c1 c2 c3

v0 v1 v2 v3 v4 v5 v6 v7

v0

v1

v2

v3

v4

v5

v6

c3

c1

c2

c0

v7

check nodes

variable nodes

(b)

Figure 4.4: (a) An example of a Tanner graph with eight variable nodes and four check nodes. (b)
The adjacent variable nodes and check nodes of the Tanner graph in Figure 4.4(a) are traversed
starting from v0.

more likely to lead to an orthonormal matrix. In addition, because the entries of an LDPC matrix

are either one or zero, feature reduction using an LDPC matrix involves only additions, rather than

matrix multiplication.

A =



0 1 0 1 1 0 0 1

1 1 1 0 0 1 0 0

0 0 1 0 0 1 1 1

1 0 0 1 1 0 1 0


(4.3)

To construct A, two variables, namely the reduced dimension (m) and the number of ones in each

column of A (d), need to be determined. Because the complexity of the original data is reflected by

its density (number of non-zero entries), the optimal value for m might also be close to the average

density of the original data. The number of ones in each column of A (d), reflecting the density of

A, affects the orthogonality of A. According to the analysis in [123], as d increases (g decreases

as a result), the correlation between the columns of A decreases when g > 4, and increases again

79

8
6
4

g

d

How well is
RIP satisfied?

Figure 4.5: As d (density of A) increases, g (the local girth) decreases. The largest d that satisfies
g > 4 is chosen for constructing the LDPC matrix A.

when g = 4. Thus, the largest d that satisfies g > 4 is chosen, as shown in Figure 4.5 (note that this

value should be close to but may not be the theoretically-optimal value).

4.2.4 Overall Flow

Figure 4.6 shows the overall flow of IJTAG attack detection. During an UPDATE-DR state, the

bits in each SIB/SCB and each TDR are collected for primary checks, i.e., the user is labeled as

an attacker immediately if an illegal opcode (not correspond to any JTAG function) is loaded into

the IR or conflicting bits in TDRs are detected. If these checks do not detect an attack, then the

features described in Table 4.1 are collected. The dimensionality of the collected data is

s = (NS +2+2NT) ·w+3 ·w (4.4)

The first term in equation (4.4) corresponds to features F1-F5 (as shown in Table 4.1) that can be

reduced using an LDPC matrix due to their sparsity. The second term corresponds to features F6-

F8 whose dimension can be reduced by deriving their statistics (such as max, min, and/or mean)

within a window. Thus, the reduced dimensionality is

s′ = m ·w+3 · r (1≤ r ≤ 3) (4.5)

80

SIBs/SCBs
TDRs

TAP
Feature collection

LDPC compression (z1=Ax1) Derive statistics

Classify (z1, z2)

x1(F1-F5)

y1 y2

pt

Attack

Illegal
opcode?

Conflict
TDR bits?

no

no

yes
Legitimate

no

x2(F6-F8)

SIBs/SCBs

TDRs

TAP

Feature
collection

LDPC compress (y1=Ax1) Derive statistics

Classify (y1, y2)

x1(F1-F5)

y1 y2

pt

Attack

Illegal
opcode?

Conflict
bits?

pt&...&pt-T+1=1?

no

no

yes

Legitimate

no

yes

x2(F6-F8)

yes

Enough
evidence
of attack?

Evidence collection

yes

yes

Start

Figure 4.6: The overall flow of IJTAG attack detection.

where r is a constant between 1 and 3 because F6-F8 may only use partial, but not all, the statistics

of max, min, and mean. According to equation (4.5), the dimensionality of the reduced data is

bounded because neither term depends on the number of SIBs/SCBs and TDRs. The reduced data

are supplied to a pre-trained random forest classifier that labels IJTAG operation as either legitimate

or as an attack. A random forest, consisting of an ensemble of decision trees, is a preferred model

for classifying high-dimensional data [66]. Finally, to avoid false alerts caused by the variance

within IJTAG operation, the evidence collector described in Section 3.3 is employed.

81

TDI
TMS
TCK

TRST
TAP

bypass

idcode

TAP

TDR_SEL

IR

SIB

5-bit TDR

Control
registers

SIB

4-bit TDR

L2-cache

SIB

7-bit TDR

Efuse

SIB

8-bit TDR

Shadow scan
(Cores)

SIB

8-bit TDR

SIB

9-bit TDR

SIB

3-bit TDR

DMO

SIB

16-bit TDR

Core debug
control

SIB

5-bit TDR

Internal
scan chain

SIB

6-bit TDR

LBIST

SIB

9-bit TDR

MBIST

Shadow scan
(L2-cache)

Access
mode

TDO

From TDI

To TDO

Figure 4.7: The OpenSPARC T2 is partitioned into 11 sub-systems, and then each sub-system is
wrapped by a TDR. In addition, each TDR is gated by a SIB, and all SIBs comprise a daisy chain
that is accessible via the JTAG port.

4.3 Experiments

This section evaluates the performance of IJTAG attack detection and the LDPC-based com-

pressed sensing. The evaluation is based on a modified version of the OpenSPARC T2.

4.3.1 Modification of OpenSPARC T2

The OpenSPARC T2 processor is used as the platform for experiments3. The JTAG of the

OpenSPARC T2 not only has 32 scan chains, but also can be used for dozens of testing/debugging

functions. Based on these functions, the OpenSPARC T2 is partitioned into 11 sub-systems as

exhibited in Figure 4.7, and then each sub-system is wrapped by a TDR by learning from industrial

examples [112]. Then, a set of SIBs are inserted such that each wrapped sub-system is gated by a

SIB. All SIBs comprise a daisy chain that is accessible via the JTAG port.

3Nevertheless, the proposed detector is generic, and can be applied to other IJTAG architectures.

82

μ = 18.9

Figure 4.8: The density distribution (i.e., number of non-zero entries) for the collected data whose
dimension is 280.

To operate the T2 IJTAG, a set of legitimate operations (135 traces) are created based on the

documentation of the OpenSPARC T2. Each trace achieves a basic operation, like reading specific

cache lines. Independent operation and pipelining operation allowed by the IJTAG are also ex-

ploited when creating the traces. The number of TDR bits that are operated simultaneously (which

is equivalent to the degree of parallelism) varies from two to four, depending on specific scenarios.

In addition to legitimate IJTAG operation, a variety of attacks (156 traces) are also created, based

on the strategies described in Section 4.2.1, namely uncovering the SIB network and the meaning

of TDR bits. Note that parallel execution can also be exploited by an attacker, but the degree of

parallelism may vary in a much larger range assuming that the attacker searches many more com-

binations of the TDR bits. The resulting traces are then simulated using the modified OpenSPARC

T2 and the features (as described in Table 4.1) are collected using a sliding window of eight cycles.

The density of the collected data, as shown in Figure 4.8, reveals that most data have fewer than

40 non-zero entries (the dimension of the data corresponding to F1-F5 is 280). This also verifies

the initial assumption that data collected from IJTAG operation are sparse.

83

4.3.2 Evaluation of LDPC Matrices

The collected data corresponding to F1-F5 are then compressed using an LDPC matrix. To

construct an LDPC matrix A, two variables, namely m (the reduced dimension) and d (the number

of ones in each column of A), must be determined. According to the analysis in Section 4.2.3, the

largest d that satisfies g > 4 is preferred, and this value, through calculation, is three (assuming

m = 30). This value is verified through simulation. Specifically, the collected data, both legitimate

and attack, are compressed and reconstructed using LDPC matrices with different values of d, and

then the mean squared error (MSE) of the reconstructed data is evaluated. The simulation result,

as shown in Figure 4.9, verifies the calculated value of m (i.e., 3), and demonstrates that the quality

of compression becomes worse if d is too large or too small. Figure 4.9 also compares LDPC

matrices to three baseline matrices, namely random matrices with degree = d (each column has d

ones whose positions are random), arbitrarily-random matrices (each column has arbitrary number

of ones) and Gaussian matrices (each entry is a Gaussian i.i.d random variable). According to the

comparison, an LDPC matrix outperforms the other matrices when d = 3 but not for other values.

Note that a random matrix with degree = d, showing a convergence when d > 5, also achieves

competitive MSE, which however is still inferior to an LDPC matrix with d = 3.

4.3.3 Evaluation of IJTAG Attack Detection

After compressing the data corresponding to F1-F5 and deriving the statistics from the data

corresponding to F6-F8 (only max is used in this experiment), the data is supplied to a random

forest with three trees for evaluation. The evaluation uses a five-fold cross-validation. The LDPC-

based feature reduction is compared with a baseline approach, namely feature selection using a

decision tree. More precisely, the features that demonstrate superior capability of reducing the

impurity of the data are selected. The performance of both approaches is measured by error rate,

false positive rate (FPR), and false negative rate (FNR), as shown in Figure 4.10. According to the

results in Figure 4.10(a), the features reduced by an LDPC matrix demonstrate similar error rate

84

0.18

0.20

0.22

0.24

0.26

0.28

2 3 4 5 6 7 8 9

M
S

E
 o

f
re

co
n

st
ru

ct
io

n

d (assuming m=30)

LDPC

Random (degree=d)

Random (arbitrariy)

Gaussian

Figure 4.9: The performance of reconstructing the original data is evaluated for LDPC matrices
and three other types of matrices.

as the original features (0.084), for a reduced dimension larger than 27. Let the reduced dimension

be 27 (meaning that m ·w = 24), the LDPC matrix reduces the original dimension (304) by 91%

without weakening the performance of classification. It is worth noting that m ·w= 24 is somewhat

larger than the average density of the original data (as shown in Figure 4.8). The feature selection,

as shown in Figure 4.10(b), is also effective for dimension reduction, but is less efficient. In other

words, to achieve a similar level of error rate, the reduced dimension needs to be higher than 100,

which is almost four times larger than the LDPC-based feature reduction.

4.4 Discussion

Several aspects concerning the proposed detector still need further examinations. First, al-

though the modified OpenSPARC T2 only has 11 instruments, the LDPC-based feature reduction

is effective for a system with more instruments. This is because the reduced dimension depends

more on the sparsity of the data than the number of instruments. However, more instruments may

85

0

0.1

0.2

0.3

0.4

19 27 35 43 51 59 67
Dimension after reduction

LDPC-based feature reduction

Error rate
FPR
FNR

(a)

0

0.1

0.2

0.3

0.4

16 24 32 40 48 64 80 96 112 128
Dimension after reduction

Feature selection

Error rate
FPR
FNR

(b)

Figure 4.10: The data, whose dimension is reduced by (a) the LDPC-based feature reduction and
(b) feature selection using a decision tree, are classified using a random forest.

incur wiring overhead since the SIB/TDR values need to be tapped for a global detector. This

important aspect is a topic that should be explored in future work (also presented in Chapter 6).

86

TABLE 4.2: SYNTHESIS RESULTS ARE COMPARED FOR THE RANDOM FOREST (WITH THREE

TREES) DETECTORS (GATE EQUIVALENT = TOTAL AREA / AREA OF A TWO-INPUT NAND
GATE).

Original
detector

w/ feature
selection

w/ LDPC

Data dimension 304 96 27
Area (gate equivalent) 20,585 14,384 11,749

Compare to area of JTAG/IJTAG 14% 9.8% 8%
Latency (clock cycles) 4 4 8

Second, a comprehensive security analysis should take into consideration all types of attacks,

which is difficult since different types of attacks will likely arise. Nevertheless, the experiments in

Section 3.6 show that a ML-based detector has potential to detect unseen attacks.

Third, the LDPC-based feature reduction, although requiring additional adders, reduces the

size of registers storing features and the depth of each decision tree. Table 4.2 shows the synthesis

results using Synopsys Design Compiler with a 0.18 µm library. According to the results, a random

forest detector with LDPC-based feature reduction adds only 8% chip area compared to the JTAG

and IJTAG, which is smaller than the technique using feature selection. As for latency, each row of

the LDPC matrix has n·d
m ones on average, meaning that n·d

m features, on average, need to be added.

This consumes log4dn·d
m e clock cycles assuming that the adder in each clock cycle has at most four

inputs. Since the LDPC matrix has m rows, the additions described above need to be operated for

m times. This results in log4dn·d
m e+m−1 clock cycles in total if the m additions are executed in a

pipeline manner.

4.5 Summary

In this chapter, an ML-based detector and LDPC-based feature reduction are developed for

detecting real-time attacks of IJTAG-compliant systems. According to experiments based on a

87

TABLE 4.3: THE PROPOSED APPROACH IS COMPARED TO PRIOR WORK.

Technique Security Overhead Drawback
Access restriction [113] +++ ++ Hinder in-field test/debug

SIB locking [114–116] ++ +
Key leakage during distribu-

tion or via power analysis

Challenge-response [118] +++ ++
Require availability and

security of a network

ML-based attack detection ++ ++ False positives and false negatives

modified version of the OpenSPARC T2, the on-chip detector only adds ∼ 8% more chip area to

the IJTAG. Further, the use of an LDPC-based feature reduction eliminates 91% of the features,

and reduces circuit size by 43% without affecting detection accuracy. Nevertheless, it is hard to

compare the proposed detector to other techniques shown in Table 4.3 because there is no universal

metric to evaluate the level of security each method provides. However, these techniques might be

combined to achieve complementing protection to the IJTAG.

88

Chapter 5

JTAG Restriction and Detector

Implementation

The detector needs to be implemented on chip using either hardware or software, in order

to monitor real-time JTAG/IJTAG operation and detect attacks in time. The study of typical

JTAG/IJTAG operations demonstrates that attacks can take as few as dozens of clock cycles. Thus,

the classification also needs to be completed within this period. Upon detection of an attack, access

to the JTAG needs to be restricted immediately, in order to prevent further attacks (e.g., leakage of

sensitive on-chip information). In Section 5.1, restriction of JTAG access is described, which not

only prohibits observability and controllability provided by the JTAG, but also hinders adversarial

attack of the ML model. An adversarial attack involves reverse engineering of the ML model (i.e.,

uncovering structure and parameters of the ML model) or simply searching for attacks that can

escape detection. Section 5.2 analyzes security provided by the access restriction and ML-based

detection. Section 5.3 describes implementation of the sliding-window-based detectors, and then

evaluates the resulting overhead. Section 5.4 discusses several issues concerning the implementa-

tion, and finally, Section 5.5 summarizes the chapter.

89

TABLE 5.1: FOR EACH TYPE OF DR, CONTROLLABILITY AND OBSERVABILITY ARE PROHIB-
ITED THROUGH SPECIFIC ACTIONS.

Type of DR Disable controllability Disable observability

Capture-only N/A
Read from decoy
shadow register

Update-only Disable update operation N/A

Capture/update
Only write to decoy

shadow register
Read from decoy
shadow register

Scan-accessible Disable shift operation
Shift out LFSR for cycles equal to DR
length, then shift out decoy DR data

5.1 Restriction of JTAG Access

Upon detection of an attack, the JTAG needs to be protected, to prevent further attacks. How-

ever, if the attacker knows which operation triggers the protection, then he/she may avoid that op-

eration in future attacks (to other chips). Consequently, that particular triggering operation should

be obfuscated. In order to achieve this objective, access to DRs is modified as shown in Figure 5.1.

It prevents the chip from being controlled/modified, and also prevents on-chip data from being

observed.

Data registers (DRs) are categorized into four types, namely capture-only DR, update-only DR,

capture/update DR, and scan-accessible DR, as shown in Figure 5.1. It should be noted that some

DRs may have multiple types. For example, it is not unusual for a DR to have capture, update

and scan functionality. A capture-only DR is typically connected to a shadow register and data is

read in parallel from the shadow register to the scan register within the CAPTURE-DR state. An

update-only DR allows its data to be updated from the scan register to the shadow register within

the CAPTURE-DR state. A capture/update DR allows data transferring in both directions. A scan-

accessible DR is not connected to any shadow register, so the operations of capture and update are

not needed.

90

down
counter

...
LFSR

1 1 0 0 0 01 1

scan-accessible DR

update-only DR

capture-only DR

capture/update DR

decoy DR
0

1

> 0

TDO

TDI

opcode

protect

0

1

shadow reg.

decoy shadow reg.

shadow reg.

decoy shadow reg.

logic for
DR length

shadow reg.
reset

To other on-chip logic

TCK

TDO

Modified JTAG

TMS
TDI TAP controller

Other on-chip
logic

Protected
DRs

protect

ML
classifier

Evidence
collector

probabilistic
predictionFeature

collector

features

Non-volatile memory (optional)

TCK

TDO

Modified JTAG

TMS
TDI TAP controller

Attack
detector

Other on-chip
logic

Protected
DRs

protect

down
counter

0

1

...
LFSR

1 1 0 0 0 01 1

scan-accessible DR

update-only DR

capture-only DR

capture/update DR

decoy DR
0

1

> 0

TDO

TDI

opcode

protect

0

1

shadow reg.

decoy shadow reg.

shadow reg.

decoy shadow reg.

logic for
DR length

shadow reg.
reset

To other on-chip logic

Other on-chip
logic

Protected
DRs

protect

Modified JTAG

TCK

TDO

TMS
TDI

TAP
controller

ML
classifier

Evidence
collector

probabilistic
predictionFeature

collector

features

Non-volatile memory (optional)

Attack
detector

Attack
detector

Sanity
check

0

1

Figure 5.1: To protect the JTAG, access to DRs is modified as shown in red.

Table 5.1 lists how controllability and observability are prohibited for each type of DR. For a

capture-only DR, a decoy shadow register and a linear-feedback shift register (LFSR) are employed

to disable observability. More precisely, upon detection of an attack, connection to the actual

shadow register is disabled; instead, the DR captures data from the decoy shadow register. Further,

the data in this decoy shadow register is provided by the LFSR. An LFSR is commonly used as

a pseudo-random number generator for stream ciphers due to its low hardware overhead, long

91

period, and uniformly distributed output stream [125]. The period of an LFSR is maximized if

and only if its corresponding feedback polynomial is primitive. In this work, a 32-bit LFSR with a

primitive-polynomial for feedback is implemented; its period is over 109. As shown in Figure 5.1,

the hardware of an LFSR is a shift register whose leftmost bit is driven by the XOR of some bits

of the shift register. The data in the decoy shadow register is updated by the LFSR only when the

data in the actual shadow register is updated. The attacker may find that the data supplied via the

TDO is random, but it is difficult to know when the data became random because the attacker does

not know what to expect. Hence, the LFSR is effective in preventing the attacker from knowing

which operation triggers the restriction. For an update-only DR, controllability is disabled through

disabling the update operation. For a capture/update DR, a decoy shadow register is employed.

Upon detection of an attack, connection to the actual shadow register is disabled; instead, the decoy

register responds to the operations of capture and update. Because the decoy shadow register is

stand-alone, it cannot control or observe any on-chip data. For a scan-accessible DR, because data

should neither be shifted in nor out, the shift operation is disabled. A decoy DR and the LFSR are

used instead to support the shift operation and supply data to the TDO. The decoy DR is a shift

register that imitates the shift operation of the normal DRs. Once the JTAG enters the protection

mode, the decoy DR and the LFSR, instead of the normal DR, are used for shifting data in and out.

The selection of either the decoy DR or the LFSR relies on the comparison between the number

of shifting clock cycles and the length (L) of the DR. The LFSR supplies bits to the TDO for the

first L clock cycles, while the decoy DR provides bits after L clock cycles, allowing the serial input

supplied by the user (via the TDI) to be observed at the TDO after an expected delay (i.e., L clock

cycles). To achieve this function, the decoy DR needs to be as long as the longest scan-accessible

DR and its length should always correspond to the DR that is being selected in real-time.

Obfuscation provided by the restricted JTAG access might be circumvented in two scenarios.

In the first scenario, a read-after-write operation may exhibit inconsistent results, which can be

noticed by the attacker. The second scenario involves the random bit stream supplied by the LFSR.

However, these two scenarios do not necessarily reveal evidence of the JTAG under protection

92

because an attacker is assumed to have no prior knowledge of the private JTAG functions. In

other words, the attacker neither recognizes an accidentally-executed read-after-write operation,

nor knows that a selected DR should provide certain data rather than the observed bits.

5.2 Security Analysis

This section analyzes security of both the access restriction (described in Section 5.1) and

the ML-based detection (described in Chapter 3). Particularly, two types of attacks are analyzed,

namely, adversarial attack and disguised attack.

5.2.1 Adversarial Attack

The detector, including a feature collector, a ML classifier and an evidence collector, needs to

be implemented on chip for detecting JTAG attacks. Different from password-based encryption,

the detection is stand-alone, meaning that no extra steps (e.g., authentication) are needed before

using the JTAG. Since the parameters of the detector need not be distributed to users, it is reason-

able to assume that the attacker described by the model in Table 1.2 does not know the parameters

of the classifier.

Despite of lack of knowledge, an attacker can attempt to learn sufficient information about

the classifier in order to construct attacks that can escape detection. The work in [126] defines an

adversarial classifier reverse engineering (ACRE) learning problem, where the goal of the attacker

is not to perfectly find the classification boundary, but rather to identify high-quality instances that

are not classified as attacks. The quality of an instance can be interpreted as the effectiveness of

accomplishing the attack. Typically, when an attack is modified in order to escape detection, its

effectiveness is compromised. This effectiveness is measured by a pre-defined adversarial cost

function. For example, in the domain of email spam detection, spammers may learn to fool the

classifier by inserting “non-spam” words into emails. The resulting email may not be effective in

93

TABLE 5.2: ATTACK MODEL AIMED AT THE DETECTOR (AS A SUPPLEMENT TO TABLE 1.2).

The adversary knows ...
3 size of the sliding window w
3 features used by the detector
3 underlying algorithm (e.g., decision tree)
7 parameters of the classifier and the evidence collector

selling their products as the original emails, but it can escape detection of the classifier. The work

in [126] demonstrates that an attacker can find near-optimal evasion instances for a linear classifier,

using a reasonable number of queries to the classifier. Further, the work in [127] generalized their

result from linear classifiers to the family of convex-inducing classifiers that partition the space of

instances into two parts, one of which is convex. Both methods, however, rely on a prerequisite that

the attacker can query the membership for arbitrary instances. However, the detector developed in

this work does not provide explicit membership for negative instances.

In addition to the attack model in Table 1.2, we make more assumptions for the attacker in

terms of awareness of the detector, as exhibited in Table 5.2. The aim of the attacker is to uncover

private JTAG functions and access the JTAG for other malicious purposes, without being detected.

To construct disguised attacks, the attacker needs to learn sufficient information about the classifier.

Based on the aforementioned analysis, this is typically achieved through querying the membership

of specific instances.

To examine the possibility of querying the membership for arbitrary instances, two cases are

considered. The first case assumes that the restricted JTAG access described in Section 5.1 is not

employed. The test output instead provides zeros or ones upon detection of an attack. In this case,

the attacker can observe when access to the JTAG is disabled, and further conclude that the most

recent sliding window is classified as positive (see proof in Appendix A). Nevertheless, the mem-

bership of even earlier sliding windows are not revealed because labeling a user is decided by the

evidence contributed by a series of sliding windows instead of individual ones. For example, a la-

94

beling of an attack might be caused by a few strong positive predictions, or a large number of weak

positive predictions. The second case assumes that the restricted JTAG access is employed. As an-

alyzed in Section 5.1, the attacker cannot identify the triggering sliding window, and consequently

cannot obtain any more positive instances.

Hence, since the use of the HMM-based evidence collector and the restricted JTAG access

prevents leakage of membership for both positive and negative instances, adversarial attacks to the

detector become quite difficult. To reverse engineer the ML classifier, the attacker needs to make

guesses for the membership of an instance.

5.2.2 Disguised Attack

In this subsection, it is further assumed that the attacker has already obtained some negative

instances (i.e., legitimate sequences). Under this assumption, we will evaluate how likely it is

the attacker can use these negative instances to disguise other attacks. The problem is modeled

as follows. An attacker knows how to operate a portion of the private JTAG functions but not

all. To discover the unknown functions, the attacker will attempt to disguise attacks through in-

terleaving them with already-known legitimate sequences. For example, if the attacker loads one

unknown instruction into the JTAG after every nine legitimate ones, then it may escape the detec-

tion because 90% of the instructions seem “legitimate”. To verify this assertion, an experiment is

performed using the OpenSPARC T2, as described next. The attacker is assumed to know how

to operate control registers (shown as “creg” in Figure 3.15). To disguise the attack, a legitimate

operation of the control registers (with sequence length = 6) is inserted into the attack traces after

every segment of l instructions, where l varies from one to eight. The error rate of identifying dis-

guised attacks is compared with the error rate of identifying legitimate operation and undisguised

attacks, as shown in Figure 5.2. According to the results, attacks disguised by legitimate operation

demonstrate higher probability of escaping detection. Although it is expected that back-and-forth

jumps between unknown functions and known ones are likely to produce positive predictions, the

95

0

0.1

0.2

0.3

0.4

0.5

0.6

1 2 3 4 5 6 7 8

E
rr

o
r

ra
te

Length of attack segments

Legitimate Undisguised Disguised

Figure 5.2: The error rate of identifying disguised attacks is evaluated using a decision-tree detec-
tor and compared with the error rate of identifying legitimate operation and undisguised attacks.
An attack trace is disguised through segmenting the trace and then inserting legitimate sequences
between the segments.

detector is still weakened by disguised attacks. It is worth noting that the high error rate resulted

from short attack segments, as exhibited in Figure 5.2, is not always achievable. The first reason

is that the length of attack traces varies. Some attack traces comprise only a few instructions (e.g.,

read data from a sensitive register), while others can be much longer. Second, inserting legitimate

segments into an attack trace may compromise/damage the effectiveness of the attack. Hence, the

detector, although likely to be weakened by disguised attacks, is still effective, especially for the

attack traces that are long and/or unsplittable.

Even worse, if the attacker has full knowledge of the private JTAG functions, then he/she can

operate the JTAG in a legitimate way, which cannot be detected. In another scenario, if the attacker

has obtained the parameters of the detector (e.g., the tree nodes of the forest, the SVs and their α

for the SVM, or the representative instruction sequences), then the attacker can also escape the

detection by mimicking legitimate operation. Nevertheless, this is outside the attack model for this

work.

96

5.2.3 Other Security Concerns

Once restricted, the JTAG will supply fake data, which however may cause a problem for legit-

imate users. An example involves using the JTAG for software debugging. If the JTAG is restricted

due to a misclassification, then the user is provided with fake data without any notification. This

will cause a problem if debugging data are supplied to other systems and/or used for further analy-

ses. This problem can be mitigated by reducing occurrence of false positives. However, to further

avoid risks caused by fake data (this might be significant in some scenarios), the JTAG should

never be restricted. A possible solution is to authenticate the identity of the user.

Another security issue attackers may exploit is the proposed disabling of JTAG functionalities.

In particular, an attacker could successfully execute a denial-of-service (DoS) attack by inserting

malicious code into legitimate JTAG programs. This attack needs to be considered for achieving

comprehensive security; however, detecting DoS attacks may need other features and/or models,

which is beyond the scope of this dissertation.

5.3 Detector Implementation

This section elaborates upon hardware implementation of a sliding-window-based detector and

feasibility of software implementation. As shown in Figure 5.3, the detector includes a feature

collector, an ML classifier (may require non-volatile memory), a sanity-check function, and an

evidence collector. These modules will be implemented and evaluated using the OpenSPARC T2

design.

97

down
counter

...
LFSR

1 1 0 0 0 01 1

scan-accessible DR

update-only DR

capture-only DR

capture/update DR

decoy DR
0

1

> 0

TDO

TDI

opcode

protect

0

1

shadow reg.

decoy shadow reg.

shadow reg.

decoy shadow reg.

logic for
DR length

shadow reg.
reset

To other on-chip logic

TCK

TDO

Modified JTAG

TMS
TDI TAP controller

Other on-chip
logic

Protected
DRs

protect

ML
classifier

Evidence
collector

probabilistic
predictionFeature

collector

features

Non-volatile memory (optional)

TCK

TDO

Modified JTAG

TMS
TDI TAP controller

Attack
detector

Other on-chip
logic

Protected
DRs

protect

down
counter

0

1

...
LFSR

1 1 0 0 0 01 1

scan-accessible DR

update-only DR

capture-only DR

capture/update DR

decoy DR
0

1

> 0

TDO

TDI

opcode

protect

0

1

shadow reg.

decoy shadow reg.

shadow reg.

decoy shadow reg.

logic for
DR length

shadow reg.
reset

To other on-chip logic

Other on-chip
logic

Protected
DRs

protect

Modified JTAG

TCK

TDO

TMS
TDI

TAP
controller

ML
classifier

Evidence
collector

probabilistic
predictionFeature

collector

features

Non-volatile memory (optional)

Attack
detector

Attack
detector

Sanity
check

0

1

Figure 5.3: The overall architecture of the sliding-window-based detector.

5.3.1 ML Classifiers

According to the results of cross-validation in Figure 3.11, several ML models, including a

decision tree, a random forest, and an SVM, show similar performance in distinguishing legitimate

operation and attacks. The implementation of these classifiers is discussed as follows.

A decision tree can be implemented using combinational logic since it can be described as

a hierarchy of “if-then” rules. Figure 5.4(a) shows the architecture of a combinational decision

tree. Each block “L” in Figure 5.4(a) represents a level of tree nodes. The signal “sel_in” selects

the specific tree node to be processed, including the feature to be evaluated (i.e., test_val) and the

threshold stored in the tree node (i.e., split_val). Then, test_val and split_val are compared, with

the result (together with the comparison results of previous levels) used for determining which

tree node of the next level will be processed. The classification terminates at a leaf node where

a three-bit result indicating the probabilistic prediction is provided. Note that the probabilistic

98

non-volatile
memory

data
collector

majority vote

...

αn

threshold

v1, v2, ...

...

ADRLADRR classL classR

...

A1

A2

...

CMP
Ai

control unit

MUX MUX

output
class

input
sample

v

final label

RBF-RAM

control unit
pred

addr

data

SV1

SV2

...

α1

α2

...

input
sample

SVM
classifier

delayed labeling

class

fundamental
check

final label

JTAG TAP controller

representative1

...

...

counter

select
max

local
score

global
score

current
opcode

delayed
labeling

final
label

counter

counter

tree
unit

delayed labeling

tree
unit

tree
unit

ADRLADRR classL classR

non-volatile
memory

JTAG TAP controller

representative2

representativem

local
score

local
score

...

αn
RBF-RAM

control unit
output
class

addr
data

SV1

SV2

...

α1

α2

...

input
sample

...
...

<

(,)

...

k

3 3

test_val

split_val

sel_in

pred_in

sel_out

pred_out

...0

0

sel
pred

L L L

input sample

× +

threshold

v1, v2, ...

...

ADRLADRR classL classR

...

A1

A2

...

CMP

Ai

control unit

MUX

input sample

v

ADRLADRR classL classR

pred

MUX

+

SVM-RAM

RAM

k+1

(a)

non-volatile
memory

data
collector

majority vote

...

αn

threshold

v1, v2, ...

...

ADRLADRR classL classR

...

A1

A2

...

CMP
Ai

control unit

MUX MUX

output
class

input
sample

v

final label

RBF-RAM

control unit
pred

addr

data

SV1

SV2

...

α1

α2

...

input
sample

SVM
classifier

delayed labeling

class

fundamental
check

final label

JTAG TAP controller

representative1

...

...

counter

select
max

local
score

global
score

current
opcode

delayed
labeling

final
label

counter

counter

tree
unit

delayed labeling

tree
unit

tree
unit

ADRLADRR classL classR

non-volatile
memory

JTAG TAP controller

representative2

representativem

local
score

local
score

...

αn
RBF-RAM

control unit
output
class

addr
data

SV1

SV2

...

α1

α2

...

input
sample

...
...

<

(,)

...

k

3 3

test_val

split_val

sel_in

pred_in

sel_out

pred_out

...0

0

sel
pred

L L L

input sample

× +

threshold

v1, v2, ...

...

ADRLADRR classL classR

...

A1

A2

...

CMP

Ai

control unit

MUX

input sample

v

ADRLADRR classL classR

pred

MUX

+

SVM-RAM

RAM

k+1

(b)

non-volatile
memory

data
collector

majority vote

...

αn

threshold

v1, v2, ...

...

ADRLADRR classL classR

...

A1

A2

...

CMP
Ai

control unit

MUX MUX

output
class

input
sample

v

final label

RBF-RAM

control unit
pred

addr

data

SV1

SV2

...

α1

α2

...

input
sample

SVM
classifier

delayed labeling

class

fundamental
check

final label

JTAG TAP controller

representative1

...

...

counter

select
max

local
score

global
score

current
opcode

delayed
labeling

final
label

counter

counter

tree
unit

delayed labeling

tree
unit

tree
unit

ADRLADRR classL classR

non-volatile
memory

JTAG TAP controller

representative2

representativem

local
score

local
score

...

αn
RBF-RAM

control unit
output
class

addr
data

SV1

SV2

...

α1

α2

...

input
sample

...
...

<

(,)

...

k

3 3

test_val

split_val

sel_in

pred_in

sel_out

pred_out

...0

0

sel
pred

L L L

input sample

× +

threshold

v1, v2, ...

...

ADRLADRR classL classR

...

A1

A2

...

CMP

Ai

control unit

MUX

input sample

v

ADRLADRR classL classR

pred

MUX

+

SVM-RAM

RAM

k+1

(c)

Figure 5.4: Architecture of (a) a combinational tree, (b) a sequential tree, and (c) an SVM.

99

prediction is decided by the fraction of samples of the same class within the leaf node. In this work,

the probabilistic prediction ranges from 0 to 7, where a greater value means higher probability

of attack. A combinational tree, although incurring small overhead, cannot be modified once

implemented. If the designer needs to modify the classifier (this might be needed considering that

the classifier is retrained based on newly-collected attacks), then the parameters of the decision

tree needs to be stored in a memory, which results in a sequential implementation. As shown

in Figure 5.4(b), the parameters of a tree are loaded into a RAM when the chip is powered on.

Since the access to nonvolatile memory only occurs at the power-on stage, the online classification

latency is not impacted. A tree unit employs the architecture of a universal tree node described

in [128]. During the classification, one node is processed per clock cycle, so the required number

of clock cycles is equal to the depth of the tree. It is noted that a continuous feature is compared

with a threshold, while a discrete feature is compared with a set of values (i.e., v1, v2,. . .). In this

work, the size of the RAM storing the learned tree is 2KB assuming at most 512 tree nodes.

A random forest is implemented as an ensemble of trees, using either combinational or sequen-

tial logic. In this work, a forest includes three trees, and its probabilistic prediction involves the

average of the predictions provided by the trees. For the sequential implementation, the size of the

RAM storing the learned forest relies on the number of trees and the size of each tree. In this work,

a RAM with 3KB is used, assuming three trees and at most 256 nodes per tree (the trees within the

ensemble are smaller than the tree that acts as a classifier individually).

Figure 5.4(c) shows the architecture of an SVM classifier. When the chip is powered on,

the parameters of the learned SVM (i.e., each SVi and each corresponding weight αi) are loaded

into a RAM (named SVM-RAM). The SVM classifier employs a fully pipelined architecture that

consists of distance computation, an RBF kernel computation, a multiplication, and an addition.

The distance computation employs L1-norm and the computation of the RBF kernel employs an

LUT (loaded in RBF-RAM) that is built in advance by calculating all possible values. Note that

the chip area required by an SVM classifier depends on w (i.e., size of the sliding window) in two

ways. First, w affects the width of the pipeline linearly since it represents the dimension of data.

100

...

αL(t-1)

...
SL SA

v

v

1-v 1-v

1 0Initial probability (π)

State transition
probability (R)

Emission
probability (B)

αL(t) αL(t+1)

αA(t-1) αA(t) αA(t+1)

~ ~ ~

~ ~ ~

×

×

×

×

+

+

×

×
αL(t-1)

αA(t-1)

~

~

rLL

rLA

rAL

rAA

Emis. Prob. (A)

Emis. Prob. (L)

ot

Norma-
lization

αL(t)

αA(t)

~

~

αL(t)

αA(t)

>𝛿ATK

protect

Figure 5.5: Architecture of the evidence collector.

Second, the size of the SVM-RAM relies on w because w affects both the number of SVs and the

size of each SV. A larger w produces more SVs, that is, for example, the numbers of SVs produced

by w = 3, 4, 5, 6 are 763, 844, 901 and 962, respectively. However, because these numbers are

between 512 and 1024, the number of rows remains 1024 (each row stores an SV). Consequently,

the area for the SVM-RAM is linearly dependent on w. The size of the RBF-RAM also depends

on w linearly. To summarize, the relative area overhead in terms of w is: 0.75 (w = 3), 1 (w = 4),

1.25 (w = 5), 1.5 (w = 6).

5.3.2 Evidence Collector

As described in Section 3.3, the evidence collector employs an HMM with two hidden states

(i.e., SL and SA). The evidence collector aims to calculate the probability of SA using a lattice-like

process shown in Figure 3.4. As shown in Figure 5.5, the architecture of the evidence collector

contains multiplications and normalizations. Nevertheless, since all the operators, except for the

three-bit prediction provided by the classifier, have eight bits, the overhead caused by multiplica-

tion and normalization is tolerable.

101

TABLE 5.3: DETECTORS BASED ON DIFFERENT CLASSIFIERS ARE COMPARED (GATE EQUIV-
ALENT = TOTAL AREA / AREA OF A TWO-INPUT NAND GATE).

Hardware Software
Tree

(comb.)

Forest

(comb.)

Tree

(seq.)

Forest

(seq.)
SVM Tree SVM RNN

RAM - - 2KB 3KB 2.94KB - - -

Area (gate equivalent) 4,286 6,286 176,170 275,266 223,298 - - -

% of OpenSPARC T2 area 0.021% 0.031% 0.869% 1.36% 1.1% - - -

Area compared to JTAG 0.66× 0.97× 27.2× 42.4× 34.41× - - -

Latency (clock cycles) 5 5 23 17 520 750 5,780 28,900

Dynamic power (mW) 0.093 0.144 7.62 11.6 9.45 - - -

Error rate for detection 5.8% 7.3% 5.8% 7.3% 14.1% 5.8% 13.6% 2.2%

Updatable No Yes Yes

5.3.3 Overhead Compared to Software

The detectors are synthesized using the commercial logic synthesis tool Design Compiler with

a 0.18 µm library (by Synopsys) [129]; synthesis results are given in Table 5.3. The results show

that the sequential implementation of the decision tree is 40 times larger than a combinational

tree, excluding the overhead of non-volatile memory. The random forest even demonstrates a 43

times difference. The latency of the combinational tree and forest is five clock cycles, including

one for feature collection, two for classification, and two for evidence collection. Note that both

the classification and the evidence collection take two clock cycles, because registers are inserted

into the tree and the evidence collector in order to shorten their critical path. For the sequential

tree and forest, since each tree node is processed per clock cycle, the classification requires many

more clock cycles. The SVM classifier requires the most clock cycles due to a serial, pipelining

processing of support vectors.

It is noted that the SVM classification results computed by hardware may differ from software

due to limited precision for αi and the RBF values. Figure 5.6 shows that a higher precision reduces

the mean squared error (MSE) for the classification results (compared to software), but at the cost

102

n_alpha_bit
5 10 15

A
re

a
(g

at
e

eq
ui

va
le

nt
)

#105

2.2

2.21

2.22

2.23

2.24

2.25

n_alpha_bit
5 10 15

M
ea

n
sq

ua
re

d
er

ro
r

1E-6

1E-5

1E-4

1E-3

1E-2

1E-1

1

n_rbf_bit=4 n_rbf_bit=8 n_rbf_bit=12 n_rbf_bit=16

Figure 5.6: Area of the SVM detector and the mean squared error of the classification results
(compared to software) are impacted by the number of bits for αi (n_alpha_bit) and the RBF
values (n_rbf_bit).

of more chip area. In the implementation, both αi and the RBF value employ 12-bit, fixed-point

representations, which can reduce the MSE significantly to a low level (3×10−6) when compared

to the representations with fewer bits.

All of the detectors can also be implemented using software, i.e., classification and evidence

collection are computed using a software program executed within a processor. The JTAG of the

LEON3 design, as shown in Figure 2.4, serves as an example. Recall that the LEON3 processor

implements a debug mode during (described in Section 2.1.2) which the pipeline is idle and the

processors are controlled through a debug interface (e.g., the JTAG). Therefore, executing the

detection algorithm using software is possible if one or several processors are properly configured

for this purpose. Since no additional processor is needed for executing the detection algorithm,

the overhead of chip area incurred by software implementation is not considered in Table 5.3. To

estimate the execution time, a decision tree and an SVM are implemented using the C++ interface

of the OpenCV [130]. According to experiments using an Intel Core i7 with a 3.4 GHz clock,

classification takes 2.2× 10−7s for the decision tree and 1.7× 10−6s for the SVM. This latency

103

is interpreted as number of clock cycles as exhibited in Table 5.3, which is much longer than

hardware.

The detection algorithm may also be executed within a remote processor. In this case, the

data collected from JTAG operation need to be transferred to a remote processor, and the resulting

detection result needs to be sent back to the chip. To estimate the communication time, we connect

a local computer to a variety of remote servers located within both LAN and WAN, using the ping

command1. The resulting communication time ranges from 1 ms to 200 ms, which however is too

large compared the execution time. Therefore, a remote processor is not suggested to be used for

online detection.

Based on the results listed in Table 5.3, the designer is suggested to choose the ML algorithm

and its corresponding implementation based on complexity of the JTAG functions and the trade-off

among area, latency, performance of detection, and the need to upgrade. The area of the detec-

tors might be acceptable compared to the whole design, considering that the OpenSPARC T2, due

to its complex testing/debugging functions, is likely to require a complex detector. Although the

sequential detectors are much larger than the JTAG, it may be worthwhile because the detector

aims to protect the whole system rather than only the JTAG (the JTAG serves as an interface for

the system). Moreover, this area difference is expected because a classical JTAG, consisting of

a TAP controller and DRs (excluding internal scan chains), is typically quite small. In addition

to area, latency also needs to be considered carefully because attacks to JTAG/IJTAG can happen

very quickly (e.g., a few dozen clock cycles). To detect these attacks, the detector should be as

fast as possible. According to the latency numbers shown in Table 5.3, a hardware implementation

is significantly better than software. Table 5.3 indicates that the software-based detector consume

hundreds or thousands more clock cycles than hardware; nevertheless, a software-based detector

may still be used because they can typically run with a much faster clock than the clock for JTAG.

In terms of detection accuracy, a decision tree, a random forest, and an SVM demonstrate similar

1The ping command operates by sending Internet Control Message Protocol (ICMP) Echo Request messages to a
destination computer and waiting for a response [131].

104

performance (although the experiments for the OpenSPARC T2 shows that a decision tree outper-

forms the others). An RNN achieves the best performance but at the cost of longer latency. To

obtain the best detection accuracy, an RNN should be used. Another consideration involves the

upgrade of detectors to deal with future types of attacks. This requires that the parameters of the

detector are stored in non-volatile memory (e.g., firmware), also implies that a combinational deci-

sion tree or random forest cannot be used. The feasibility of upgrading a detector will be discussed

further in Section 5.4.

All of the aforementioned issues, including the complexity of the JTAG functions, area, latency,

performance of detection, and the need to upgrade, need to be considered for choosing the most

suitable detector. The first scenario involves multi-core processors (such as the OpenSPARC T1,

T2 and the LEON3 processors) that are typically equipped with a variety of JTAG functions for

testing and debugging. If an on-chip core is available and detection accuracy is the primary goal,

then software implementation of an RNN can be chosen. Another scenario involves IoT devices.

Different from multi-core processors, an IoT device is typically used for a specific application, thus

resulting in simple, repeated operation [132]. To detect an attack of an IoT device, a combinational

decision tree may suffice. Other than monitoring the JTAG ports of individual devices, the traffic

within the network should also be monitored and analyzed, an interesting topic for future research.

5.4 Discussion

This section discusses two issues concerning detector implementation. The first issue involves

scalability of the detectors. That is, as new types of attacks emerge, the performance and the size of

the detectors may be impacted. We conduct the following experiment as a preliminary evaluation.

First, attacks S4 to S9 listed in Table 2.2 are gradually added to the training set for both the random

forest and the SVM. Next, the performance of both detectors are evaluated using ten-fold cross-

validation. The size of the random forest is evaluated using the average number of nodes per tree,

while the SVM size is evaluated using the number of support vectors. The results in Figure 5.7

105

Attacks used in forest training

S4 S
4-5

S
4-6

S
4-7

S
4-8

S
4-9

A
ve

ra
ge

 n
o.

 o
f

no
de

s
pe

r
tr

ee

0

50

100

150

200

250
Random forest

Attacks used in SVM training

S
4

S
4-5

S
4-6

S
4-7

S
4-8

S
4-9

N
o.

 o
f

su
pp

or
t v

ec
to

rs

0

100

200

300

400

500
SVM

A
cc
ur
ac
y
fo
r 1
0-
fo
ld

 c
ro
ss
-v
al
id
at
io
n

A
cc
ur
ac
y
fo
r 1
0-
fo
ld

 c
ro
ss
-v
al
id
at
io
n1

0.8

0.6

0.4

1

0.8

0.6

0.4

(a)

Attacks used in forest training

S4 S
4-5

S
4-6

S
4-7

S
4-8

S
4-9

A
ve

ra
ge

 n
o.

 o
f

no
de

s
pe

r
tr

ee

0

50

100

150

200

250
Random forest

Attacks used in SVM training

S
4

S
4-5

S
4-6

S
4-7

S
4-8

S
4-9

N
o.

 o
f

su
pp

or
t v

ec
to

rs

0

100

200

300

400

500
SVM

A
cc
ur
ac
y
fo
r 1
0-
fo
ld

 c
ro
ss
-v
al
id
at
io
n

A
cc
ur
ac
y
fo
r 1
0-
fo
ld

 c
ro
ss
-v
al
id
at
io
n1

0.8

0.6

0.4

1

0.8

0.6

0.4

(b)

Figure 5.7: Performance and size of (a) the random-forest-based detector and (b) the SVM-based
detector are impacted by the variety of attacks used in classifier training.

demonstrate an overall increase of size and a decrease of performance as more types of attacks

are used in classifier training. However, the impact of different attacks varies. The size and the

accuracy change dramatically for the first two types of attacks (i.e., S4 and S5); then they become

more stable as the variety of attacks increases.

The second issue involves the update of detectors in case that new attacks are collected. This re-

quires that the parameters of the detector are stored in non-volatile memory (e.g., firmware), such

that a combinational decision tree or random forest cannot be used. When new attacks are col-

lected, it needs to be checked if they can be effectively detected by the existing detector with high

confidence. If not, the detector might be retrained and updated via the on-chip memory. This can

be achieved by incorporating the parameters of the detector into firmware that is typically upgraded

via USB [133] or JTAG [134]. To ensure security of firmware upgrade, two issues need to be con-

sidered. First, only authorized firmware can be upgraded. This can be realized using firmware

signature [135], i.e., generating a unique hash code for each authorized copy and appending it to

the firmware when distributed. The other issue involves leakage of firmware contents. This can be

106

mitigated by encrypting the firmware using cryptographic blocks [45]. The decryption of firmware

needs to be performed on chip, which however requires additional chip area. Since firmware, as

well as its encryption/decryption, is ubiquitous for electronic systems, the overhead caused by

incorporating detector parameters into firmware can be amortized.

5.5 Summary

This chapter describes a secure JTAG architecture, which not only restricts access to the JTAG

through prohibiting observability and controllability provided by the JTAG, but also hinders ad-

versarial attack to the ML model through obfuscating the JTAG operation triggering the detection.

This architecture is implemented within the OpenSPARC T2 and demonstrates moderate overhead

(i.e., 22% chip area compared to the original JTAG and 0.01% of the T2). This chapter also de-

scribes hardware implementation of the attack detectors that employ various ML algorithms, and

evaluates their overhead using the commercial logic synthesis tool Design Compiler by Synopsys.

According to the synthesis results, the combinational implementation of a decision tree and a ran-

dom forest leads to small overhead (even smaller chip area than the original JTAG). The sequential

implementation of a decision tree, a random forest, and an SVM, although incurring much larger

overhead, allows the detector to be updated (e.g., when new attacks are collected and the classifier

is retrained). In addition, the detector may also be implemented using software if the system has a

processor core. To summarize, a designer is suggested to choose the ML algorithm and its corre-

sponding implementation based on the trade-off between overhead, performance, and the need to

upgrade.

107

Chapter 6

Summary and Future Work

JTAG and its related standards are primarily used for facilitating IC testing and design de-

bug. However, because JTAG needs to be left operational after fabrication, for the purpose of

in-field debugging and programming, it inevitably provides a “backdoor” that can be exploited by

illegitimate users. Previous approaches, such as fusing-off the JTAG port and encrypting JTAG

access, have been proposed to prevent illegitimate access to the JTAG. However, fusing-off the

JTAG also permanently disables in-field debugging, while encrypting JTAG access typically suf-

fers from eavesdropping of the key or requires availability of a network. In this work, we propose

to ensure security of the JTAG through real-time detection of illegitimate access to the JTAG using

machine learning (ML). We also develop a secure JTAG architecture that can restrict access to the

JTAG upon detection of an attack. Compared to previous work, the ML-based attack detection

not only preserves the functions of in-field debugging/programming, but also minimizes the risk

of key eavesdropping. The methodology and experiments presented in this work demonstrate the

effectiveness of the ML-based attack detection and the access restriction, and further verify the

feasibility of implementing the methodology on chip for online detection and restriction. In addi-

tion, this dissertation analyzes security that the developed method provides, and characterizes its

vulnerability.

108

JTAG protection approaches, including previous work and this work, are developed assuming

specific attack models. Hence, the designer is advised to assess the security specification for the

IC, and then adopt the approaches that best satisfies the outcomes of the assessment. Moreover,

the ML-based attack detection, orthogonal with previously-reported approaches, can be combined

with them (such as encryption) for achieving complementing JTAG protection.

6.1 Dissertation Contribution

This dissertation has presented a JTAG protection method, including ML-based detection of

JTAG/IJTAG attacks and a restriction of JTAG access when attacks are detected. The main contri-

butions of both aspects are summarized next.

Characterization of JTAG Operation

• JTAG operation and attacks - This work considers a standard JTAG architecture and a bus-

based debug architecture. Then, three representative designs, including the OpenSPARC T1,

T2 and the LEON3 processors, are studied, with a set of legitimate JTAG operations created.

In addition, existing non-intrusive attacks to the JTAG are summarized, based on which

attack traces are created, mimicking reverse engineering of the private JTAG functions.

• Features - JTAG operation is characterized using four categories of features. The features

monitor the instruction register, the data registers, and the TAP controller, while the last

category of features aim to improve classification accuracy through incorporating additional

information. Then, effectiveness of these features is evaluated, with relevant features se-

lected for attack detection.

JTAG Attack Detection

• Sliding-window-based detection - JTAG operation is monitored and collected using a fixed-

size window that behaves in an overlapping manner (called a sliding window). The use of
109

a sliding window not only allows a variety of ML algorithms to be used for the following

classification, but also benefits online detection because it allows a ML model with less

complexity, such as a decision tree, to be implemented on chip. In addition, a regularized

Kullback-Leibler divergence is used for measuring similarity between legitimate JTAG oper-

ation and attacks, based on which the size of the sliding window is determined. Experiments

using a decision tree demonstrate an error rate of 3% and 5%, for the OpenSPARC T1 and

T2, respectively.

• Delayed labeling - Due to the variance that naturally occurs in JTAG operation, classification

based on a single sliding window might not be reliable. To mitigate this problem, a hidden

Markov model is employed for collecting evidence of an attack, such that the user is not

labeled until sufficient evidence has been collected.

• Sequence models - Sequence-based models, including recurrent neural networks and hidden

Markov models, are evaluated. Compared with sliding-window-based detectors, sequence

models reduce the error rate to even lower levels (i.e., 1% and 3%), possibly because they

can better capture serial dependence within JTAG operation.

• Detection of unseen attacks - A concept of open-space risk is used for modeling the inac-

curacy of detection caused by new attacks that typically appear as a cluster far from known

attacks. To minimize the open-space risk, a cascade model, combining a one-class SVM and

a binary SVM, is developed, both of which demonstrate an improvement in attack detection

for an open space.

Detection of IJTAG Attacks

• Features - Different from a standard JTAG, access to an IJTAG network involves configur-

ing a hierarchy of SIBs/SCBs and setting/resetting a large number of TDR bits. Correspond-

ingly, IJTAG operation is characterized using features that describe the value stored in the

SIBs/SCBs and the TDRs.

110

• Feature reduction - The features characterizing IJTAG operation are likely high-

dimensional, which poses a challenge for on-chip detection. A low-density parity-check

(LDPC) based compression method is developed for reducing the dimension of data. Ac-

cording to experiments based on a modified version of the OpenSPARC T2, the use of

LDPC-based feature reduction eliminates 91% of the features and reduces circuit size by

43% without affecting detection accuracy.

Restriction of JTAG Access and Implementation of Detectors

• Restriction of JTAG access - An architecture of secure JTAG is developed, which can

restrict access to the JTAG upon detection of an attack. The secure JTAG not only prohibits

observability and controllability provided by the JTAG, but also obfuscates the operation

triggering the restriction, which consequently hinders adversarial attack. The architecture,

implemented within the OpenSPARC T2 design, incurs moderate overhead (i.e., 22% chip

area compared to the original JTAG and 0.01% of the T2).

• Security analysis - The use of the secure JTAG architecture and the HMM-based evidence

collection prevents an attacker from querying the membership for arbitrary instances, there-

fore making the ML-based detector robust to adversarial attacks.

• Hardware implementation of detectors - The feasibility of a sliding-window-based detec-

tor is verified through implementing it within the OpenSPARC T2 design and evaluating the

resulting overhead. Various ML algorithms are implemented using either combinational or

sequential logic, which results in different circuit size and latency. The designer is advised

to choose the ML algorithm and its implementation (either combinational or sequential) ac-

cording to the trade-off between detection accuracy, overhead and the need to upgrade.

111

6.2 Future Work

Listed below are some topics to be explored in future work, for improving the JTAG protection

method developed and analyzed in this dissertation.

• Generating JTAG attacks automatically - Overhead of the ML-based attack detection not

only includes circuit size and latency, but also includes the effort of collecting attacking data

for constructing the ML model. Although the ML-based attack detection is a generic method

for JTAG, the detection model trained for a given JTAG design cannot be used for another

JTAG design directly. Thus, it is beneficial to automate the process of generating JTAG

attacks. This is possible because the attack strategies listed in Table 2.2 are also generic for

uncovering the private JTAG functions.

• Hardware and software co-detection - As shown in Section 3.6.3 and 3.6.4, recurrent

neural networks (RNNs) demonstrate extremely high accuracy in detecting JTAG attacks,

and even unknown attacks. Even so, an RNN is more suitable to run in software because

implementing an RNN in hardware can incur intolerable overhead. A possible idea is to

combine a hardware detector (e.g., a combinational decision tree) and a software RNN for

achieving comprehensive detection, as shown in Figure 6.1. A combinational tree incurs

small on-chip overhead, which is suitable for online detection, while a software RNN, though

slow, can provide more accurate prediction.

• Re-enabling of JTAG access - In this work, access to the JTAG is restricted permanently

upon detection of an attack, which however causes inconvenience for legitimate users in

case of false positives. Although the use of HMM-based delayed labeling has reduced false

positives effectively, it would be beneficial if a false positive can be properly addressed. An

intuitive solution is to permit a legitimate user to re-enable access to the JTAG. The mecha-

nism of re-enabling the JTAG should be sufficiently secure however. Recall our underlying

assumption that the attacker does not know how to operate the JTAG legitimately. Thus, it

112

Online attack detection

Attack

detected?

Restrict JTAG access

All golden sequences

have been activated?

Disable JTAG

permanently

Provide at least one

inactivated golden

sequence

No

Yes

Yes

No Succeed?

Yes

No

HW detection

Attack

detected by

HW?

Yes
Restrict JTAG

access

No

Send JTAG sequence

to a remote processor

for SW detection

Attack

detected by

SW?

Re-enable

JTAG access
No

Yes

JTAG access

remains restricted;

END

Figure 6.1: A combination of hardware and software for attack detection.

Online attack detection

Attack

detected?

Restrict JTAG access

All golden sequences

have been activated?

Disable JTAG

permanently

Provide at least one

inactivated golden

sequence

No

Yes

Yes

No Succeed?

Yes

No

HW detection

Attack

detected by

HW?

Yes
Restrict JTAG

access

No

Send JTAG sequence

to a remote processor

for SW detection

Attack

detected by

SW?

Re-enable

JTAG access
No

Yes

JTAG access

remains restricted;

END

Figure 6.2: A mechanism that permits legitimate users to re-enable access to the JTAG.

might be possible to use legitimate JTAG sequences as a “key” to re-enable access to the

JTAG, as illustrated in Figure 6.2. Specifically, a set of legitimate JTAG sequences (named

golden sequences) are stored in chip. Every time an attack is detected and the JTAG is re-

stricted, the user can re-enable it through operating a golden sequence that has never been

operated before (once a golden sequence is operated, it is activated).

• ML model retraining - Although the detectors demonstrate a potential of detecting un-

known attacks, it still does not guarantee that all types of attacks can be detected. We suggest

113

that hardware companies build a database of JTAG attacks and collect potential attacks using

similar strategies as anti-virus software, such as analyzing user report and periodic security

examination. When new attacks are collected, the detector is re-trained and updated to the

on-chip memory. This can be achieved by incorporating the parameters of the detector into

firmware that is typically upgraded via USB [133] or JTAG [134]. The security of firmware

upgrade needs to be ensured, i.e., only authorized firmware can be upgraded [135] and the

firmware needs to be encrypted [45].

• Scalability of IJTAG protection - An IJTAG-compatible system may have a large number

of instruments. Even though the LDPC-based feature compression can significantly reduce

the number of features, collecting data from each instrument can incur significant wiring

overhead if the SIB/TDR values are tapped from each instrument to the global detector.

This problem can be mitigated by 1) compressing the SIB/TDR values within the instrument

before transmission to the detector, or 2) implementing an additional monitor that decodes

the test input directly into the data to be loaded into the SIBs and TDRs, without accessing

the SIBs and TDRs.

• Improving detection accuracy for bus-based debug architecture - The experiments using

the LEON3 processor shows that a very large window (∼40 operation cycles) is needed for

distinguishing attacks from legitimate operation, resulting in data with high dimension. Even

so, the ML-based detectors demonstrate poor accuracy, revealing that detecting anomalies in

bus traffic is more challenging than monitoring the JTAG TAP. Thus, future work involves

seeking more features and building more complex detection models for identifying attacks

aimed a bus-based debug architecture.

114

Appendix A

Adversarial Analysis

Assume a sliding-window-based detector that involves a binary ML classifier and an evidence

collector. The binary classifier gives a probabilistic prediction ot for operation cycle t, while the

evidence collector employs an HMM described in Section 3.3. For the state transition probabilities

of the HMM, it is assumed that v > 0.5, meaning that the hidden state (either SL or SA) is more

likely to remain unchanged, rather than to transfer to the other state. For the emission probability,

it is assumed that the probability distributions for SL and SA are monotonically decreasing and

increasing, respectively, and that they intersect at o = 0.5.

Theorem: If the detector labels the user as attack at operation cycle t, i.e.,

α̃A(t)≥ δAT K and α̃A(t−1)< δAT K (A.1)

then the probabilistic prediction provided by the classifier at t must be illegitimate, i.e.,

ot > 0.5 (A.2)

Proof:

115

Since the evidence accumulator employs an HMM with two states (i.e., SL an SA), the probability

of the hidden state being SL and SA can be computed using a forward procedure.

αL(t) = [v ·αL(t−1)+(1− v) ·αA(t−1)] ·bLot (A.3)

αA(t) = [v ·αA(t−1)+(1− v) ·αL(t−1)] ·bAot (A.4)

Let ρt = α̃L(t)/α̃A(t), ξt = bLot/bAot , and u = v/(1− v), and then we have

ρt =
α̃L(t)
α̃A(t)

=
αL(t)
αA(t)

=
v ·αL(t−1)+(1− v) ·αA(t−1)
v ·αA(t−1)+(1− v) ·αL(t−1)

· bLot

bAot

=
1+uρt−1

u+ρt−1
·ξt = ξt +

(u−1)(ρt−1−1)
u+ρt−1

·ξt

(A.5)

If the detector labels the user as an attacker at operation cycle t, then ρt−1 and ρt must satisfy

ρt < ρt−1 and ρt < 1 (A.6)

Case 1: When ρt−1 ≤ 1, to satisfy

ρt−ρt−1 =
1+uρt−1

u+ρt−1
·ξt−ρt−1 =

1+uρt−1

u+ρt−1
·ξt−ρt−1 ·ξt−ρt−1 · (1−ξt)

=
1−ρ2

t−1

u+ρt−1
·ξt−ρt−1 · (1−ξt)< 0

(A.7)

We need to guarantee

ξt < 1 (A.8)

Case 2: When ρt−1 > 1, to satisfy

ρt = [1+
(u−1)(ρt−1−1)

u+ρt−1
] ·ξt < 1 (A.9)

We also need to guarantee

ξt < 1 (A.10)

116

To summarize, if the detector labels the user as an attacker after operation cycle t, then

bLot < bAot (A.11)

Because the emission probability distributions for SL an SA are monotonically decreasing and in-

creasing, respectively, and they intersect at ot = 0.5, we can conclude that ot > 0.5, meaning that

the probabilistic prediction provided by the classifier for operation cycle t must be illegitimate.

117

Glossary

A A m× n matrix that can compress an n-dimensional vector x to an m-dimensional vector z
(n >> m). xix, 77–80, 84

B Emission probabilities of an HMM. 47, 48

C A coefficient that controls the trade-off between the slack variable penalty and the margin, used
in SVM training. 42

Fdr Features that characterize the data loaded into the data register (DR) that is selected by a
specific opcode. 26, 27

Fext Features that require information outside an operation cycle. 26–28

Ff sm Features that characterize state traversal of the TAP finite state machine. 26, 27

Fir Features that characterize the opcode loaded into the instruction register (IR). 26, 27

G A statistical model that maps an observation x to its most probable class label y. 40, 43

NS Number of SIB/SCB bits in an IJTAG network. 76, 80

NT Number of test data registers (TDRs) in an IJTAG network. 76, 80

NSV Number of support vectors resulting from SVM training. 42

Nobs Number of observations collected from legitimate JTAG operation and attacks. 39, 42

P(x|y = A) Probability distribution for an observation x, given that the user is an attacker. 38, 39

P(x|y = L) Probability distribution for an observation x, given that the user is legitimate. 38, 39

PA(x) Probability that an observation x is an attack based on an SVM model. 55

PL(x) Probability that an observation x is legitimate based on an SVM model. 54, 55

PO(x) Probability that an observation x is inlier based on a one-class SVM model. 54, 55

R State transition probabilities of an HMM. 47, 48

SA A hidden state within the HMM (used for collecting evidence of attack), representing that the
actual user is an attacker. xviii, 46, 47, 49, 101, 115, 117

118

SL A hidden state used by HMM (used for collecting evidence of attack), representing that the
actual user is legitimate. xviii, 46, 47, 49, 101, 115, 117

SSV The set of support vectors resulting from SVM training. 42

W A matrix of weights used for calculating the class label when SVMs or neural networks are
used for classification. 42, 51

Γr A coefficient used by an RNN, which represents relevance of the previous neuron state ct−1
relative to the current observation xt . 50, 51

Γu An update coefficient used by an RNN, which decides the current neuron state ct based on the
previous state ct−1 and a state candidate c̃t . 50, 51

αi The i-th weight corresponding to the i-th support vector within a trained SVM. xx, 100, 102,
103

δAT K A threshold that determines if sufficient evidence has been collected for labeling the user.
46, 58, 115

δ A regularization term used for searching for the optimal window size. 39, 56

λ̂ The parameters of an HMM that are estimated using maximum likelihood estimation. 51

x̂ A vector reconstructed from a compressed vector z (x is compressed to z using a matrix A, i.e.,
z = Ax). 78

ιL A binary variable that indicates if an observation x is anomaly. 55

λτ A threshold that determines the degree of anomaly for an observation x. 55

λ Parameters that define an HMM, including initial probabilities, state transition probabilities,
and emission probabilities. 46–48, 51

π Initial probabilities of an HMM. 47, 48

σ A softmax function. 51

P̃(x|y = A) Regularized probability distribution for an observation x, given that the user is an
attacker. 39

P̃(x|y = L) Regularized probability distribution for an observation x, given that the user is legiti-
mate. 39

α̃A(t) Likelihood that the hidden state of an HMM at time t is SA, i.e., an attacker. xvii, 46, 47,
115, 116

α̃L(t) Likelihood that the hidden state of an HMM at time t is SL, i.e., legitimate. xvii, 46, 47, 116

ξi A slack variable (corresponding to the i-th observation xi) that allows xi to be misclassified with
a penalty, used by SVMs with a soft margin. 42

119

b A bias term used for calculating the class label when SVMs or neural networks are used for
classification. 42, 51

ct The state of neurons at time t within a recurrent neural network (RNN). 49, 50

d Number of ones in each column of matrix A (used for compressed sensing). xix, 79, 80, 84, 87

g Local girth for a low-density parity-check (LDPC) matrix. xix, 78–80, 84

k(x,x′) A kernel function in terms of x and x′ used in SVM training and classification. 42

k Number of nearest neighbors involved in k-NN. 43, 58

m Dimensionality of a vector z after compression. 78, 79, 84, 85, 87

n Dimensionality of a vector x before compression. 78, 87

o Observation defined for the HMM (used for collecting evidence of attack), representing the
likelihood of an attack that is produced by the ML classifier, i.e., P(y = A|x). 46, 115

q For a representative-based anomaly detector, JTAG operation is labeled as an attack only if the
global score stays saturated for more than q consecutive operation cycles. 45, 58

v Probability that defines state transition within the HMM (used for collecting evidence of attack),
either from SL to SA, or from SA to SL. xviii, 47, 49, 115, 116

w Size of a sliding window, i.e., number of operation cycles included in a sliding window. xviii,
37–39, 56, 57, 77, 80, 85, 100, 101

xt The window of JTAG operation observed at time t. 50

x An observation collected from JTAG operation using a sliding window. 38–40, 42, 43, 54, 55,
77, 78

yt Predicted label for a user at time t. 43, 50

y Predicted label for a user, i.e., either legitimate (L) or attack (A). 38–40

z A low-dimensional vector resulting from compressing a high-dimensional vector x. 78

120

Bibliography

[1] “D-Link DIR-620 Router.” https://openwrt.org/doku.php?id=ru%3Atoh%3Ad-
link%3Adir-620&do=.

[2] “Broadcom BCM5354.” https://wiki.openwrt.org/toh/edimax/ps-1208mfg, 2009.

[3] “GRLIB IP Core User’s Manual.” https://www.gaisler.com/products/grlib/grip.
pdf, 2018.

[4] M. Tehranipoor and C. Wang, Introduction to hardware security and trust. Springer, 2012.

[5] Y. Kim, R. Daly, J. Kim, C. Fallin, J. H. Lee, D. Lee, C. Wilkerson, K. Lai, and O. Mutlu,
“Flipping bits in memory without accessing them: an experimental study of DRAM distur-
bance errors,” in ACM SIGARCH Computer Architecture News, pp. 361–372, IEEE, 2014.

[6] V. Banciu, E. Oswald, and C. Whitnall, “Reliable information extraction for single trace
attacks,” in Design, Automation and Test in Europe, pp. 133–138, EDA Consortium, 2015.

[7] D. Strobel, F. Bache, D. Oswald, F. Schellenberg, and C. Paar, “Scandalee: a side-channel-
based disassembler using local electromagnetic emanations,” in Design, Automation and
Test in Europe, pp. 139–144, EDA Consortium, 2015.

[8] B. Yang, K. Wu, and R. Karri, “Scan based side channel attack on dedicated hardware
implementations of data encryption standard,” in International Test Conference, pp. 339–
344, IEEE, 2004.

[9] B. Yang, K. Wu, and R. Karri, “Secure scan: A design-for-test architecture for crypto chips,”
IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, vol. 25,
no. 10, pp. 2287–2293, 2006.

[10] R. Nara, M. Yanagisawa, and N. Togawa, “Scan-based side-channel attack against RSA
cryptosystems using scan signatures,” Fundamentals of Electronics, Communications and
Computer Sciences, vol. 93, no. 12, pp. 2481–2489, 2010.

[11] R. Nara, N. Togawa, M. Yanagisawa, and T. Ohtsuki, “Scan-based attack against elliptic
curve cryptosystems,” in Asia and South Pacific Design Automation Conference, pp. 407–
412, IEEE, 2010.

[12] Y. Liu, K. Wu, and R. Karri, “Scan-based attacks on linear feedback shift register based
stream ciphers,” Design Automation of Electronic Systems, vol. 16, no. 2, pp. 1–15, 2011.

121

https://openwrt.org/doku.php?id=ru%3Atoh%3Ad-link%3Adir-620&do=
https://openwrt.org/doku.php?id=ru%3Atoh%3Ad-link%3Adir-620&do=
https://wiki.openwrt.org/toh/edimax/ps-1208mfg
https://www.gaisler.com/products/grlib/grip.pdf
https://www.gaisler.com/products/grlib/grip.pdf

[13] J. Da Rolt, G. Di Natale, M.-L. Flottes, and B. Rouzeyre, “Are advanced DfT structures
sufficient for preventing scan-attacks?,” in VLSI Test Symposium, pp. 246–251, IEEE, 2012.

[14] J. Da Rolt, A. Das, G. Di Natale, M.-L. Flottes, B. Rouzeyre, and I. Verbauwhede, “A new
scan attack on RSA in presence of industrial countermeasures,” in International Workshop
on Constructive Side-Channel Analysis and Secure Design, pp. 89–104, Springer, 2012.

[15] S. S. Ali, O. Sinanoglu, S. M. Saeed, and R. Karri, “New scan-based attack using only
the test mode,” in International Conference on Very Large Scale Integration, pp. 234–239,
IEEE, 2013.

[16] R. S. Chakraborty, S. Narasimhan, and S. Bhunia, “Hardware Trojan: threats and emerging
solutions,” in High Level Design Validation and Test Workshop, pp. 166–171, IEEE, 2009.

[17] S. Adee, “The hunt for the kill switch,” IEEE Spectrum, vol. 45, no. 5, pp. 34–39, 2008.

[18] U. D. of Commerce, “Defense industrial base assessment: counterfeit electronics,” 2010.

[19] R. Torrance and D. James, “The state-of-the-art in IC reverse engineering,” in Cryptographic
Hardware and Embedded Systems, pp. 363–381, Springer, 2009.

[20] E. I. Cole, “Non-destructive IC defect localization using optical beam-based imaging,” in
Custom Integrated Circuits Conference, pp. 53–56, IEEE, 2008.

[21] R. Courtland, “X-rays map the 3D interior of integrated circuits,” IEEE Spectrum, 2017.

[22] U. Guin, K. Huang, D. DiMase, J. M. Carulli, M. Tehranipoor, and Y. Makris, “Counterfeit
integrated circuits: a rising threat in the global semiconductor supply chain,” Proceedings
of the IEEE, vol. 102, no. 8, pp. 1207–1228, 2014.

[23] M. Pecht and S. Tiku, “Bogus: electronic manufacturing and consumers confront a rising
tide of counterfeit electronics,” IEEE Spectrum, vol. 43, no. 5, pp. 37–46, 2006.

[24] “IEEE Std 1149.1-2013 - IEEE standard for test access port and boundary-scan architec-
ture.” https://standards.ieee.org/findstds/standard/1149.1-2013.html.

[25] S. Skorobogatov and C. Woods, “Breakthrough silicon scanning discovers backdoor in mil-
itary chip,” in International Workshop on Cryptographic Hardware and Embedded Systems,
pp. 23–40, Springer, 2012.

[26] Z. Basnight, J. Butts, J. Lopez, and T. Dube, “Firmware modification attacks on pro-
grammable logic controllers,” Critical Infrastructure Protection, vol. 6, no. 2, pp. 76–84,
2013.

[27] I. Breeuwsma, “Forensic imaging of embedded systems using JTAG (boundary-scan),” Dig-
ital Investigation, vol. 3, no. 1, pp. 32–42, 2006.

[28] “LEON3 processor.” https://www.gaisler.com/index.php/products/processors/
leon3.

122

https://standards.ieee.org/findstds/standard/1149.1-2013.html
https://www.gaisler.com/index.php/products/processors/leon3
https://www.gaisler.com/index.php/products/processors/leon3

[29] “MinSOC.” https://opencores.org/project/minsoc.

[30] “OpenSPARC T2 processor.” http://www.oracle.com/technetwork/systems/
opensparc/opensparc-t2-page-1446157.html.

[31] “IEEE Std 1149.4-2010 - IEEE standard for a mixed-signal test bus.” https://standards.
ieee.org/findstds/standard/1149.4-2010.html.

[32] “IEEE Std 1500-2005 - IEEE standard testability method for embedded core-based in-
tegrated circuits.” https://standards.ieee.org/findstds/standard/1500-2005.
html.

[33] “IEEE Std 1687-2014 - IEEE standard for access and control of instrumentation embedded
within a semiconductor device.” https://standards.ieee.org/findstds/standard/
1687-2014.html.

[34] “What is JTAG?.” http://www.corelis.com/education/What-Is-JTAG.htm.

[35] I. Slochinsky, “Introduction to embedded reverse engineering for PC reversers,” in REcon
Conference, p. 1, 2010.

[36] F. Domke, “Blackbox JTAG reverse engineering,” in Chaos Communication Congress,
pp. 1–5, 2009.

[37] “How to JTAG your Xbox 360 and run Homebrew.” http://www.instructables.com/
id/How-to-JTAG-your-Xbox-360-and-run-homebrew/.

[38] “A primer on IoT security research.” https://blog.rapid7.com/2015/03/10/iot-
security-research-whats-it-take/.

[39] “Why are JTAG and UART still effective attack vectors for IoT devices.” https://
p16.praetorian.com/blog/why-are-jtag-and-uart-still-effective-attack-
vectors-for-iot-devices.

[40] M. Goryachy and M. Ermolov, Where there’s a JTAG, there’s a way: obtaining full system
access via USB. Positive Technologies, Framingham, MA, USA, 2017.

[41] Intel, Santa Clara, CA, USA, Intel hardware-based security technologies for intelligent re-
tail devices, 2013.

[42] Intel, Santa Clara, CA, USA, Using the design security features in Intel FPGAs, 2017.

[43] Altera, San Jose, CA, USA, Protecting the FPGA design from common threats, 2009.

[44] M. Hunter, Using the Kinetis security and flash protection features. NXP Semiconductors,
Eindhoven, Netherlands, 2012.

[45] Silicon Labs, Austin, TX, USA, AN0060: Bootloader with AES encryption, 2016.

[46] “Password protected JTAG flashing query.” https://www.infineonforums.com/
threads/5250-Password-Protected-JTAG-Flashing-Query.

123

https://opencores.org/project/minsoc
http://www.oracle.com/technetwork/systems/opensparc/opensparc-t2-page-1446157.html
http://www.oracle.com/technetwork/systems/opensparc/opensparc-t2-page-1446157.html
https://standards.ieee.org/findstds/standard/1149.4-2010.html
https://standards.ieee.org/findstds/standard/1149.4-2010.html
https://standards.ieee.org/findstds/standard/1500-2005.html
https://standards.ieee.org/findstds/standard/1500-2005.html
https://standards.ieee.org/findstds/standard/1687-2014.html
https://standards.ieee.org/findstds/standard/1687-2014.html
http://www.corelis.com/education/What-Is-JTAG.htm
http://www.instructables.com/id/How-to-JTAG-your-Xbox-360-and-run-homebrew/
http://www.instructables.com/id/How-to-JTAG-your-Xbox-360-and-run-homebrew/
https://blog.rapid7.com/2015/03/10/iot-security-research-whats-it-take/
https://blog.rapid7.com/2015/03/10/iot-security-research-whats-it-take/
https://p16.praetorian.com/blog/why-are-jtag-and-uart-still-effective-attack-vectors-for-iot-devices
https://p16.praetorian.com/blog/why-are-jtag-and-uart-still-effective-attack-vectors-for-iot-devices
https://p16.praetorian.com/blog/why-are-jtag-and-uart-still-effective-attack-vectors-for-iot-devices
https://www.infineonforums.com/threads/5250-Password-Protected-JTAG-Flashing-Query
https://www.infineonforums.com/threads/5250-Password-Protected-JTAG-Flashing-Query

[47] Samsung ARTIK, San Jose, CA, USA, Locking the JTAG port, 2017.

[48] “How to enable JTAG in secure mode?.” https://www.xilinx.com/support/answers/
64275.html.

[49] Texas Instruments, Dallas, TX, USA, MSP code protection features, 2015.

[50] O. Kömmerling and M. G. Kuhn, “Design principles for tamper-resistant smartcard proces-
sors,” Smartcard, vol. 99, no. 1, pp. 9–20, 1999.

[51] “JTAGulator.” http://www.grandideastudio.com/portfolio/jtagulator/.

[52] “SEGGER J-Link.” https://www.segger.com/products/debug-probes/j-link/.

[53] “High quality test solutions for secure applications.” https://www.mentor.com/
products/silicon-yield/resources/overview/high-quality-test-solutions-
for-secure-applications-1e68b08d-0490-4efb-a867-4cabba2221b5, 2013.

[54] A. Das, Ü. Kocabaş, A.-R. Sadeghi, and I. Verbauwhede, “PUF-based secure test wrapper
design for cryptographic SoC testing,” in Design, Automation and Test in Europe, pp. 866–
869, EDA Consortium, 2012.

[55] S. Paul, R. S. Chakraborty, and S. Bhunia, “VIm-Scan: A low overhead scan design ap-
proach for protection of secret key in scan-based secure chips,” in VLSI Test Symposium,
pp. 455–460, IEEE, 2007.

[56] F. Novak and A. Biasizzo, “Security extension for IEEE std 1149.1,” Journal of Electronic
Testing, vol. 22, no. 3, pp. 301–303, 2006.

[57] A. Iamburg, “The JTAG interface: an attacker’s perspective.” https://www.optiv.com/
resources/library/the-jtag-interface-an-attackers-perspective?page=1&
searchQuery=&itemsPerPage=0&category=, 2016.

[58] S. Kan, J. Dworak, and J. G. Dunham, “Echeloned IJTAG data protection,” in Asian
Hardware-Oriented Security and Trust, pp. 1–6, IEEE, 2016.

[59] D. E. Denning, “An intrusion detection model,” Software Engineering, vol. 1, no. 2, pp. 222–
232, 1987.

[60] K. Ilgun, R. A. Kemmerer, and P. A. Porras, “State transition analysis: a rule-based intrusion
detection approach,” Software Engineering, vol. 21, no. 3, pp. 181–199, 1995.

[61] J. M. Estevez-Tapiador, P. Garcia-Teodoro, and J. E. Diaz-Verdejo, “Stochastic protocol
modeling for anomaly based network intrusion detection,” in International Workshop on
Information Assurance, pp. 3–12, IEEE, 2003.

[62] H. Fujiwara, K. Fujiwara, and H. Tamamoto, “Secure scan design using shift register equiv-
alents against differential behavior attack,” in Asia and South Pacific Design Automation
Conference, pp. 818–823, IEEE, 2011.

124

https://www.xilinx.com/support/answers/64275.html
https://www.xilinx.com/support/answers/64275.html
http://www.grandideastudio.com/portfolio/jtagulator/
https://www.segger.com/products/debug-probes/j-link/
https://www.mentor.com/products/silicon-yield/resources/overview/high-quality-test-solutions-for-secure-applications-1e68b08d-0490-4efb-a867-4cabba2221b5
https://www.mentor.com/products/silicon-yield/resources/overview/high-quality-test-solutions-for-secure-applications-1e68b08d-0490-4efb-a867-4cabba2221b5
https://www.mentor.com/products/silicon-yield/resources/overview/high-quality-test-solutions-for-secure-applications-1e68b08d-0490-4efb-a867-4cabba2221b5
https://www.optiv.com/resources/library/the-jtag-interface-an-attackers-perspective?page=1&searchQuery=&itemsPerPage=0&category=
https://www.optiv.com/resources/library/the-jtag-interface-an-attackers-perspective?page=1&searchQuery=&itemsPerPage=0&category=
https://www.optiv.com/resources/library/the-jtag-interface-an-attackers-perspective?page=1&searchQuery=&itemsPerPage=0&category=

[63] J. Brownlee, “Discover feature engineering, how to engineer features and how to get good
at it.” https://machinelearningmastery.com/discover-feature-engineering-how-to-engineer-
features-and-how-to-get-good-at-it/, 2014.

[64] “OpenSPARC T1 processor.” http://www.oracle.com/technetwork/systems/
opensparc/opensparc-t1-page-1444609.html.

[65] T. Mitchell, Machine learning. McGraw Hill, 1997.

[66] L. Breiman, “Random forests,” Machine Learning, vol. 45, no. 1, pp. 5–32, 2001.

[67] C. Cortes and V. Vapnik, “Support-vector networks,” Machine Learning, vol. 20, no. 3,
pp. 273–297, 1995.

[68] F. Rosenblatt, Perceptions and the theory of brain mechanisms. Springer, 1962.

[69] L. E. Baum, T. Petrie, G. Soules, and N. Weiss, “A maximization technique occurring in the
statistical analysis of probabilistic functions of Markov chains,” The Annals of Mathematical
Statistics, vol. 41, no. 1, pp. 164–171, 1970.

[70] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural Computation, vol. 9,
no. 8, pp. 1735–1780, 1997.

[71] W. J. Scheirer, A. de Rezende Rocha, A. Sapkota, and T. E. Boult, “Toward open set recog-
nition,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 35, no. 7,
pp. 1757–1772, 2013.

[72] C. Bellinger, S. Sharma, and N. Japkowicz, “One-class versus binary classification: Which
and when?,” in International Conference on Machine Learning and Applications, vol. 2,
pp. 102–106, IEEE, 2012.

[73] M. Inoue, T. Yoneda, M. Hasegawa, and H. Fujiwara, “Partial scan approach for secret
information protection,” in European Test Symposium, pp. 143–148, IEEE, 2009.

[74] S. M. Saeed, S. S. Ali, O. Sinanoglu, and R. Karri, “Test-mode-only scan attack and coun-
termeasure for contemporary scan architectures,” in International Test Conference, pp. 1–8,
IEEE, 2014.

[75] J. Da Rolt and G. Di Natale, “Scan attacks and countermeasures in presence of scan response
compactors,” in European Test Symposium, pp. 19–24, IEEE, 2011.

[76] A. Das, B. Ege, S. Ghosh, L. Batina, and I. Verbauwhede, “Security analysis of industrial
test compression schemes,” IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems, vol. 32, no. 12, pp. 1966–1977, 2013.

[77] D. Hely, F. Bancel, M.-L. Flottes, and B. Rouzeyre, “Secure scan techniques: a comparison,”
in International On-Line Testing Symposium, p. 6, IEEE, 2006.

125

http://www.oracle.com/technetwork/systems/opensparc/opensparc-t1-page-1444609.html
http://www.oracle.com/technetwork/systems/opensparc/opensparc-t1-page-1444609.html

[78] G.-M. Chiu and J. C.-M. Li, “A secure test wrapper design against internal and boundary
scan attacks for embedded cores,” Very Large Scale Integration Systems, vol. 20, no. 1,
pp. 126–134, 2012.

[79] J. Lee, M. Tehranipoor, C. Patel, and J. Plusquellic, “Securing designs against scan-based
side-channel attacks,” Dependable and Secure Computing, vol. 4, no. 4, pp. 325–336, 2007.

[80] D. Hely, M.-L. Flottes, F. Bancel, B. Rouzeyre, N. Berard, and M. Renovell, “Scan design
and secure chip [secure IC testing],” in International On-Line Testing Symposium, vol. 4,
pp. 219–224, 2004.

[81] D. Zhang, M. He, X. Wang, and M. Tehranipoor, “Dynamically obfuscated scan for pro-
tecting IPs against scan-based attacks throughout supply chain,” in VLSI Test Symposium,
pp. 1–6, IEEE, 2017.

[82] J. Lee, M. Tebranipoor, and J. Plusquellic, “A low-cost solution for protecting IPs against
scan-based side-channel attacks,” in VLSI Test Symposium, p. 6, IEEE, 2006.

[83] G. Sengar, D. Mukhopadhyay, and D. R. Chowdhury, “Secured flipped scan-chain model for
crypto-architecture,” IEEE Transactions on Computer-Aided Design of Integrated Circuits
and Systems, vol. 26, no. 11, pp. 2080–2084, 2007.

[84] Y. Atobe, Y. Shi, M. Yanagisawa, and N. Togawa, “Dynamically changeable secure scan ar-
chitecture against scan-based side channel attack,” in International SoC Design Conference,
pp. 155–158, IEEE, 2012.

[85] M. A. Razzaq, V. Singh, and A. Singh, “SSTKR: Secure and testable scan design through
test key randomization,” in Asian Test Symposium, pp. 60–65, IEEE, 2011.

[86] “ARM AMBA specification.” https://www.arm.com/products/system-ip/amba-
specifications.

[87] “SoC interconnection: WISHBONE.” https://opencores.org/howto/wishbone.

[88] E. Biham and A. Shamir, “Differential fault analysis of secret key cryptosystems,” in Annual
International Cryptology Conference, pp. 513–525, Springer, 1997.

[89] S. P. Skorobogatov and R. J. Anderson, “Optical fault induction attacks,” in International
Workshop on Cryptographic Hardware and Embedded Systems, pp. 2–12, Springer, 2002.

[90] J. Da Rolt, G. Di Natale, M.-L. Flottes, and B. Rouzeyre, “A novel differential scan attack on
advanced DFT structures,” ACM Transactions on Design Automation of Electronic Systems,
vol. 18, no. 4, p. 58, 2013.

[91] R. Nara, N. Togawa, M. Yanagisawa, and T. Ohtsuki, “A scan-based attack based on dis-
criminators for AES cryptosystems,” IEICE Transactions on Fundamentals of Electronics,
Communications and Computer Sciences, vol. 92, no. 12, pp. 3229–3237, 2009.

[92] B. Ege, A. Das, L. Batina, and I. Verbauwhede, “Security of countermeasures against state-
of-the-art differential scan attacks,” in European Test Symposium, IEEE, 2013.

126

https://www.arm.com/products/system-ip/amba-specifications
https://www.arm.com/products/system-ip/amba-specifications
https://opencores.org/howto/wishbone

[93] J. Da Rolt and A. Das, “A scan-based attack on elliptic curve cryptosystems in presence of
industrial design-for-testability structures,” in VLSI and Nanotechnology Systems, pp. 43–
48, IEEE, 2012.

[94] F. Majeric, B. Gonzalvo, and L. Bossuet, “JTAG combined attack: Another approach for
fault injection,” in International Conference on New Technologies, Mobility and Security,
pp. 1–5, IEEE, 2016.

[95] F. Majéric, B. Gonzalvo, and L. Bossuet, “JTAG fault injection attack,” IEEE Embedded
Systems Letters, 2017.

[96] K. P. Parker, The boundary-scan handbook, vol. 101. Springer, 1992.

[97] H. Kodera, M. Yanagisawa, and N. Togawa, “Scan-based attack against DES cryptosystems
using scan signatures,” in Asia Pacific Conference on Circuits and Systems, pp. 599–602,
IEEE, 2012.

[98] A. Ng, “Machine learning and AI via brain simulations.”
https://helper.ipam.ucla.edu/publications/gss2012/gss2012_10595.pdf, 2013.

[99] M. A. Hall, Correlation-based feature selection for machine learning. PhD thesis, Univer-
sity of Waikato Hamilton, 1999.

[100] P. M. Granitto, C. Furlanello, F. Biasioli, and F. Gasperi, “Recursive feature elimination
with random forest for PTR-MS analysis of agroindustrial products,” Chemometrics and
Intelligent Laboratory Systems, vol. 83, no. 2, pp. 83–90, 2006.

[101] K. Grabczewski and N. Jankowski, “Feature selection with decision tree criterion,” in Inter-
national Conference on Hybrid Intelligent Systems, p. 6, IEEE, 2005.

[102] L. v. d. Maaten and G. Hinton, “Visualizing data using t-SNE,” Journal of Machine Learning
Research, vol. 9, no. 11, pp. 2579–2605, 2008.

[103] “GRMON3.” https://www.gaisler.com/index.php/products/debug- tools/
grmon3.

[104] C. Bishop, Pattern recognition and machine learning. Springer, 2006.

[105] N. S. Altman, “An introduction to kernel and nearest-neighbor nonparametric regression,”
The American Statistician, vol. 46, no. 3, pp. 175–185, 1992.

[106] J. A. Perez-Ortiz and M. L. Forcada, “Part-of-speech tagging with recurrent neural net-
works,” in International Joint Conference on Neural Networks, vol. 3, pp. 1588–1592, IEEE,
2001.

[107] S. Fine, Y. Singer, and N. Tishby, “The hierarchical hidden Markov model: Analysis and
applications,” Machine Learning, vol. 32, no. 1, pp. 41–62, 1998.

127

https://www.gaisler.com/index.php/products/debug-tools/grmon3
https://www.gaisler.com/index.php/products/debug-tools/grmon3

[108] W. J. Scheirer, L. P. Jain, and T. E. Boult, “Probability models for open set recognition,”
IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 36, no. 11, pp. 2317–
2324, 2014.

[109] “ROC curve.” http://www.mathworks.com/help/stats/perfcurve.html.

[110] A. Dushistova, Debugging with JTAG. MontaVista Software Incorporation, San Jose, CA,
USA, 2009.

[111] A. Sirotkin, “Debugging the Linux kernel with JTAG.” https://www.embedded.com/
design/operating-systems/4207333/Debugging-the-Linux-kernel-with-JTAG,
2017.

[112] Avago Technologies, San Jose, CA, USA, Avago IJTAG implementation at the IP level,
2012.

[113] R. Baranowski, M. A. Kochte, and H.-J. Wunderlich, “Securing access to reconfigurable
scan networks,” in Asian Test Symposium, pp. 295–300, IEEE, 2013.

[114] J. Dworak and A. Crouch, “Don’t forget to lock your SIB: hiding instruments using P1687,”
in International Test Conference, pp. 1–10, IEEE, 2013.

[115] H. Liu and V. D. Agrawal, “Securing IEEE 1687-2014 standard instrumentation access by
LFSR key,” in Asian Test Symposium, pp. 91–96, IEEE, 2015.

[116] A. Zygmontowicz, J. Dworak, A. Crouch, and J. Potter, “Making it harder to unlock an
lsib: Honeytraps and misdirection in a p1687 network,” in Design, Automation and Test in
Europe, p. 195, European Design and Automation Association, 2014.

[117] S. Gupta, J. Dworak, D. Engels, and A. Crouch, “Mitigating simple power analysis attacks
on LSIB key logic,” in North Atlantic Test Workshop, pp. 1–6, IEEE, 2017.

[118] R. Baranowski, M. A. Kochte, and H.-J. Wunderlich, “Fine-grained access management in
reconfigurable scan networks,” IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems, vol. 34, no. 6, pp. 937–946, 2015.

[119] X. Ren, V. G. Tavares, and R. D. Blanton, “Detection of illegitimate access to JTAG via
statistical learning in chip,” in Design, Automation and Test in Europe, pp. 109–114, EDA
Consortium, 2015.

[120] X. Ren, R. D. Blanton, and V. G. Tavares, “A learning-based approach to secure JTAG
against unseen scan-based attacks,” in IEEE Computer Society Annual Symposium on VLSI,
pp. 541–546, IEEE, 2016.

[121] D. L. Donoho, “Compressed sensing,” IEEE Transactions on Information Theory, vol. 52,
no. 4, pp. 1289–1306, 2006.

[122] B. Bah and J. Tanner, “Improved bounds on restricted isometry constants for Gaussian ma-
trices,” SIAM Journal on Matrix Analysis and Applications, vol. 31, no. 5, pp. 2882–2898,
2010.

128

http://www.mathworks.com/help/stats/perfcurve.html
https://www.embedded.com/design/operating-systems/4207333/Debugging-the-Linux-kernel-with-JTAG
https://www.embedded.com/design/operating-systems/4207333/Debugging-the-Linux-kernel-with-JTAG

[123] W. Lu, K. Kpalma, and J. Ronsin, “Sparse binary matrices of LDPC codes for compressed
sensing,” in Data Compression Conference, p. 10, 2012.

[124] R. Gallager, “Low-density parity-check codes,” IEEE Transactions on Information Theory,
vol. 8, no. 1, pp. 21–28, 1962.

[125] M. Bushnell and V. Agrawal, Essentials of electronic testing for digital, memory and mixed-
signal VLSI circuits. Springer, 2000.

[126] D. Lowd and C. Meek, “Adversarial learning,” in International Conference on Knowledge
Discovery and Data Mining, pp. 641–647, ACM, 2005.

[127] B. Nelson, B. Rubinstein, L. Huang, A. Joseph, S.-h. Lau, S. Lee, S. Rao, A. Tran, and
D. Tygar, “Near-optimal evasion of convex-inducing classifiers,” in International Confer-
ence on Artificial Intelligence and Statistics, pp. 549–556, 2010.

[128] J. Struharik, “Implementing decision trees in hardware,” in International Symposium on
Intelligent Systems and Informatics, pp. 41–46, IEEE, 2011.

[129] “Design Compiler.” http://www.synopsys.com/Tools/Verification/.

[130] G. Bradski, “The OpenCV Library,” Dr. Dobb’s Journal of Software Tools, 2000.

[131] T. Fisher, “Ping command.” https://www.lifewire.com/ping-command-2618099,
2018.

[132] “IoT Security.” https://www.avast.com/en-au/technology/iot-security.

[133] J. Kaye, BL600 firmware upgrade over JTAG. Laird Technologies, Chesterfield, MO, USA,
2015.

[134] Struck Innovative System, Hamburg, Germany, SIS3300/3301 JTAG firmware upgrade in-
structions, 2005.

[135] Hewlett Packard Enterprise, Palo Alto, CA, USA, HPE digitally signed firmware, 2017.

129

http://www.synopsys.com/Tools/Verification/
https://www.lifewire.com/ping-command-2618099
https://www.avast.com/en-au/technology/iot-security

	Resumo
	Abstract
	Acknowledgement
	Contents
	List of Tables
	List of Figures
	1 Introduction
	1.1 Characterizing JTAG/IJTAG Operation
	1.2 Detecting JTAG/IJTAG Attacks
	1.3 Restricting JTAG Access
	1.4 Dissertation Organization

	2 Characterization of JTAG Operation
	2.1 JTAG Architecture
	2.1.1 Standard JTAG Architecture
	2.1.2 Bus-based Debug Architecture

	2.2 JTAG Attacks
	2.3 Feature Characterization
	2.4 Experiments
	2.4.1 OpenSPARC T1 and T2
	2.4.2 LEON3

	2.5 Summary

	3 Detection of JTAG Attacks
	3.1 Detection Using a Sliding Window
	3.2 Classification Models
	3.2.1 Binary Classifiers
	3.2.2 Recurrent Sliding Window
	3.2.3 One-class Models

	3.3 Delayed Labeling
	3.4 Sequence Models
	3.4.1 Recurrent Neural Network
	3.4.2 Hidden Markov Model

	3.5 Detection of Unknown Attacks
	3.6 Experiments
	3.6.1 Search for Window Size
	3.6.2 Sliding-window-based Detectors
	3.6.3 Sequence Models
	3.6.4 Detection of Unknown Attacks

	3.7 Discussion
	3.8 Summary

	4 Detection of IJTAG Attacks
	4.1 Background
	4.1.1 IJTAG Architecture
	4.1.2 Prior Work

	4.2 IJTAG Attack Detection
	4.2.1 IJTAG Attacks
	4.2.2 Feature Extraction
	4.2.3 Compressed Sensing
	4.2.4 Overall Flow

	4.3 Experiments
	4.3.1 Modification of OpenSPARC T2
	4.3.2 Evaluation of LDPC Matrices
	4.3.3 Evaluation of IJTAG Attack Detection

	4.4 Discussion
	4.5 Summary

	5 JTAG Restriction and Detector Implementation
	5.1 Restriction of JTAG Access
	5.2 Security Analysis
	5.2.1 Adversarial Attack
	5.2.2 Disguised Attack
	5.2.3 Other Security Concerns

	5.3 Detector Implementation
	5.3.1 ML Classifiers
	5.3.2 Evidence Collector
	5.3.3 Overhead Compared to Software

	5.4 Discussion
	5.5 Summary

	6 Summary and Future Work
	6.1 Dissertation Contribution
	6.2 Future Work

	A Adversarial Analysis
	Glossary
	Bibliography

