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ABSTRACT

CD4 T cells are crucial coordinators of protective immune responses against microbes and
tumors. However, immune responses misdirected towards self-antigens are the hallmarks
of autoimmune diseases. Regulatory T cells (Tregs) maintain peripheral immune
tolerance, mainly by suppressing effector T cells. Unfortunately, immunosuppression by
Tregs can also favor cancer. Regulating the susceptibility of T cells towards Treg-
meditated immunosuppression presents an exciting approach to reconcile between
immune activation and tolerance in a disease-specific way. However, less is known about
the regulation and mechanism of Treg-mediated suppression in target T cells. The work
presented in this thesis is dedicated to unraveling the modulation of signaling cascades in
T cells upon T cell receptor (TCR) stimulation and suppression by Tregs.

By using unbiased phosphoproteomics, we have mapped the global phosphoproteome of
T cells upon TCR stimulation and suppression by Tregs. Our data indicate that Tregs
suppress T cells mainly by opposing activation-induced phosphorylation. We discovered
that Tregs revert activation-induced phosphorylation of DEF6 at specific sites (T 595/ S
597). Utilizing phospho-mutants, we discovered novel functions of these phosphorylations
in disrupting the interaction of DEF6 with the IP3R and regulating T cell signaling via
modulation of NFAT activation and transcriptional regulation of T cell cytokines. Upon
further exploration of the phosphoproteomic candidate list, we observed similarly altered
phospho-regulation of protein phosphatase 1, regulatory subunit 11 (PPP1R11) by Tregs.
We revealed that silencing of PPP1R11 renders T cells resistant to Treg-mediation
suppression. Our data indicates PPP1R11 to be a novel regulator of T cell activation and
Treg-mediated suppression. In light of several reports on resistant T cells in multiple
diseases, the phosphoproteomic mapping of suppressed T cells and the insights into novel
roles of DEF6 and PPP1R11 from our study may aid in regulating the sensitivity of T cells

towards immunosuppression by Tregs in cancer and autoimmune diseases.

Besides phosphorylation of proteins, the subcellular localization of proteins is also an
important regulatory mechanism of protein activity. Protein localization and activity is
modulated by TCR stimulation and was shown for well-known TCR signaling proteins
such as NFAT to be affected by Tregs as well. However, these mechanisms are not
understood on a global level. Since there is no global data set available on subcellular
protein localization and TCR stimulation-induced translocation in primary human T cells,
as the first milestone in this field, we have performed a comprehensive mapping of the
spatial proteome of T cells and TCR-induced subcellular protein translocation.

Besides exploring the target T cell side, in this work we also studied novel methods to
induce Tregs, which represents the “other side” of Treg-based immune therapies. We
present a novel method of inducing iTregs by using supernatants from M2 macrophages.
Our data demonstrate that M2 macrophages induce iTregs by binding and re-releasing
TGF-B, which may be explored for Treg induction in situ in the future.



Together, by presenting a global picture of T cell protein signaling yet with fine
resolution, our work provides new mechanisms and data sets to revisit the role of T cells in

therapy, especially in the context of T cell suppression by Tregs.
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1 INTRODUCTION

1.1 THE IMMUNE SYSTEM

A competent immune system is essentially a coordinated interplay between activatory and
tolerogenic waves to ensure adequate responsiveness and protection against harmful antigens
and tumors while also maintaining non-responsiveness to self and innocuous antigens.
Controlling these accelerations and brakes of the immune system serve as the basis of
devising immunotherapeutic interventions against malignancies. Broadly speaking,
immunological defense in vertebrates comprises of 2 main legions: innate (natural) immunity
conducting the early reactions and adaptive immunity conducting the later steps which are
based on cues acquired from previous exposure to antigens (Ags). The immunological battle
is fought on several fronts; B and T lymphocytes (T cells) are crucial mediators of humoral
and cell mediated-adaptive immune responses, respectively. Depending on the expression of
the coreceptor, T cells are aptly divided into helper CD4+ T cells and cytotoxic CD8+ T cells.
We have come far since J. Miller being publicly reminded that B and T were the first and last
letters of “bullshit” when he proposed the existence of these two subsets of lymphocytes in a
scientific conference in 1968 (Miller, 1999) till present day when CD4 and CD8 T cell counts
are routinely used even in basic clinical tests. With several chemo- and immunotherapeutic
treatment against cancers, infections, autoimmune diseases, allergies and transplant rejections
targeting T cells, both in pipelines and clinics along with the recently approved CAR T cell
therapies, it is truly an exciting time to work with T cells.

1.2 CD4 T CELLS: DEVELOPMENT AND TOLERANCE

T cells, like other blood cells, originate from the hematopoietic progenitor cells in bone
marrow. Unlike other hematopoietic cells, T cells mature in the thymus (Shortman and Wu,
1996). Immature thymocytes are CD4-CD8-, and are hence termed double negative (DN).
DN thymocytes proliferate and mature in thymus and eventually acquire a double positive
state (CD4+CD8+) (DP) (von Boehmer et al., 1988). During the process of maturation, they
acquire mature T cell receptor (TCR) proteins (aff or y0) determining their specificity and
selectivity to detect the vast array of Ags even before they have been encountered. DP
thymocytes which recognize the self Ag:MHC complex expressed by the cortical epithelial
cell with low affinity undergo positive selection and mature into functional CD4 or CD8 T
cells depending on their association with MHC class II or MHC class I respectively
(Mizuochi et al., 1992). Simultaneously, over 90% of DP thymocytes with none or too low
affinity to the Ag:MHC complex undergo apoptosis in lack of survival cues by the process
aptly named “death by neglect.”. Random combination of TCR gene segments to engineer
over 10°unique TCRs (Lythe et al., 2016) using a limited number of TCR genes is a genetic
masterstroke but also gives rise to TCRs with strong affinity to self-Ags (Feeney et al., 1994).
The generation of these potentially autoimmune T cells is averted by the process of “central
tolerance”. These DP T cells with too high affinity to self Ag:MHC complex on medullary
thymic epithelial cells are negatively selected for “clonal deletion” (Shortman and Wu, 1996).



Further, immature T cells which exhibit affinity stronger than the positively selected
population described above, but weaker than the clonally deleted population are rescued and
skewed to differentiate as regulatory T cells (Tregs) by the process of “clonal diversion”
(Klein et al., 2019).

Although about 98 % of cells do not survive central tolerance mechanisms in the thymus,
some autoreactive T cells still evade to systemic circulation which are then to be controlled
by various mechanisms of peripheral tolerance, as described here. TCR stimulated T cells
lacking co-stimulation undergo functional inactivation called “anergy”. Repeated activation
of T cells with persistent Ags leads to apoptosis via the process termed “activation-induced
cell death” (Green et al., 2003). Autoreactive T cells are further controlled by regulatory T
cells (Tregs) in the periphery.

1.3 CD4 T HELPER CELLS AND SUBSETS

CD4 T cells are the most abundant lymphocytes in peripheral blood which initiate and sustain
diverse immunological responses mainly by regulating other immune cells, hence aptly
named helper T cells. Depending on the immune micro milieu and the type of antigenic
stimulation, CD4 T cells have tendencies to polarize into several distinct subsets. These
subsets have specialized immunological functions which are mainly mediated by the
expression of signature cytokines and have unique genetic signatures mainly guided by their
lineage-defining “master” transcription factors. Further, preferred transcription factors of the
signal transducer and activator of transcription (STAT) family are also activated upon
cytokine receptor stimulation of the T cells, which then also regulates the cytokine profile,
upstream and in addition to the respective master transcription factors. Figure 1 depicts a
simplified and unidirectional map of CD4 T cell differentiation and functions. While it is well
understood that plasticity exists between the subtypes and functions (O’Shea and Paul, 2010;
Oestreich and Weinmann, 2012), CD4 T cells can be divided into two broad functional
categories: immunogenic effector T cells (Th1, Th2, Th17, and Tth) and immunosuppressive
Tregs as depicted in Figure 1 and described further.

1.3.1 Th1 and Th2 cells

Thl and Th2 cells were the first subtypes of effector CD4 T cells that were discovered. The
polarization of Th1 cells is mainly mediated by IL-12 and IFN-y secreted by innate immune
cells, NK cells, and T cells. Signaling mediated by STAT4 and the master transcription factor
T-bet dictate the immunological function of Thl cells via secretion of IL-2 and IFN-y as their
hallmark cytokines. Thl cells activate and recruit macrophages and cytotoxic CD8 T cells to
clear out cells infected with intracellular pathogens like bacteria and viruses. Similarly, Th2
cells are generated in the presence of IL-2 and IL-4 which drives the STAT6 and
subsequently GATA3-mediated secretion of Th2 cytokine profile consisting of IL-4, IL-5,
and IL-13. Th2 cells contribute to immunity against extracellular pathogens like parasitic
helminths and stimulate repair of tissue damage (Romagnani, 1991, 2014; Walker and



McKenzie, 2018). Anomalies in Th1 and Th2 cells contribute to autoimmunity and allergies
respectively.

1.3.2 Th17 and Tfh cells

Th17 and Tth are more recent additions to the CD4 T cell subsets, and further subsets have
been proposed (Th3, Th9, and Th22) that are not discussed here. The polarization of Th17
cells is regulated majorly by IL-6 and TGF-3 which drive the STAT3 and subsequently
RORy-mediated secretion of IL-17A, IL-17F, and IL-22 (Romagnani, 2014), although other
cytokine combinations have also been described to induce Th17 cells. Th17 cells are
involved in clearing extracellular microbes like fungi and bacteria at the mucosal surfaces.
Tth cells are specialized T cell subsets, mainly present in the follicles of lymph nodes where
they contribute to B cell maturation and activation. Human Tth cells can be generated in the
presence of IL-6, IL-21 and TGF- which guides the STAT3 and BCL-6 mediated
expression of IL-21 while they also produce other Th cytokines (Crotty, 2014). Generally,
the differentiation factors and cytokines driving the above-described subsets are here noted in
a simplified way, since depending on the stimulation conditions and other factors in the
medium, different cytokines may mediate the effects. Further, species differences exist, most
notably also between human T cells and commonly used murine T cells.

Tolerogenic Immunogenic
Cytokines  Subsets Subsets Cytokines Defence against
~~~
nTreg Th1 T-bet — IL-2, IFN-y Intracellular pathogens
(Viruses, bacteria)
Foxp3)
N
Th2 GATA3 — |L-4, IL-5, Fg:::ﬁggl)ar pathogens
IL-13 1
iTreg ‘/\0: &‘
IL-10 Foxod \\'ﬂ'%«g\ STArg Th17 RORyt — |L-17A, IL-17F, Extracellular pathogens
~1Y%e— (Foxp3) ) "
IL-35 @,\ Lo IL-22 (fungi, bacteria)
- )
TeFp Tfh (BCL-6, — |L-21 Pathogens neutralized
by Abs

Figure 1: CD4 T helper cell subsets. Naive CD4 T cells (grey) can differentiate into immunogenic
effector T cells (Th1, Th2, Th17, and Tth) (right side) and immunosuppressive Tregs (left side)
(different colors) in the presence of TCR stimulation and CD28 co-stimulation. Cytokines that can
drive the polarization along with master transcription factors and STAT molecules which are
expressed by individual subsets are also mentioned. Additionally, major cytokines produced upon
differentiation and primary immune targets of each subtype are also depicted.

1.4 REGULATORY T CELLS

Tregs are tolerogenic subsets of CD4+ T cells which mediate peripheral self-tolerance by
suppression of effector T cells and other immune cells.



1.4.1 Tregs, a historical perspective

The history of Tregs dates back to the early 1970s after the discovery of thymus-derived cells
exhibiting suppressive effects on other immune cells (Gershon et al., 1972) and preventing
thymectomy-induced autoimmunity on adoptive transfer to the recipient mice (Kojima et al.,
1976). However, the next two decades witnessed a dramatic decline in research interest in the
field for these “suppressor cells”, mainly because of lack of characteristic molecular markers
and partly because of findings negating the proposed mechanism of suppression being
mediated by soluble factors (Shevach, 2011). The whole field showed some signs of
rejuvenation after the discovery of CD25 (IL-2 receptor a chain) as a surface marker for
Tregs in mice (Sakaguchi et al., 1995) and finally in humans (Baecher-Allan et al., 2001;
Stephens et al., 2001). It was after the discovery of Foxp3 as a lineage-defining transcription
factor for Tregs (Fontenot et al., 2003; Hori et al., 2003; Khattri et al., 2003) that the field of
Tregs started its “renaissance” and started to attract tremendous interest from the
immunological community. Now, Tregs are established as the primary mediator of peripheral
tolerance crucial for the aversion of autoimmune disease, allergies, transplant rejection and
graft versus host disease (GVHD). Several therapies involving Tregs are in experimental
phase and clinical trials in Type 1 Diabetes, Inflammatory bowel diseases (IBD) and organ
transplantation (Duggleby et al., 2018).

1.4.2 Phenotype of Tregs

Phenotypically, Tregs are broadly defined as CD4+, CD25++, Foxp3+ suppressor cells
(Sakaguchi, 2011). Although the expression of CD25 (IL-2 receptor a chain) is limited to
Tregs in naive mice, activated T cells are also known to transiently express medium levels of
CD25 (Baecher-Allan et al., 2001), hence Tregs in humans may rather be characterized by
high expression of CD25. Moreover, Foxp3 is widely accepted as the lineage-defining
“master” transcription factor for Tregs. In fact, it is the mutation in Foxp3 which mediates
systemic autoimmune disease both in mice (scurfy) and humans (IPEX syndrome) and hence
primarily established the importance of Tregs in autoimmunity. In contrast to murine T cells,
human conventional T cells have been reported to express medium levels of Foxp3 upon
activation (Pillai et al., 2007). Despite being the most characteristic marker for Tregs to date,
expression of Foxp3 cannot be an absolutely specific marker for Tregs and neither can CD25.
In light of such ambiguity, the methylation pattern in the Treg-specific demethylated region
(TSDR) in the Foxp3 locus and lack of or low expression of CD127 (IL-7Ra ) can be used to
distinguish Tregs from activated T cells (Huehn et al., 2009; Liu et al., 2006).

Naturally occurring Tregs (nTregs) consist of thymus-derived Tregs (tTregs) and
peripherally-derived Tregs (pTregs), whereas in vitro generated Tregs are termed as iTregs
(Rudensky et al., 2013). For all further discussions, the term “Treg” will indicate nTregs.
Apart from the formal location-based classification of Tregs, they may also be classified
according to the expression of FOXP3 / CD25 and CD45RA (a marker of naive T cells) into
CD45RA+FOXP3 low resting Tregs and CD45RA-FOXP3+ activated Tregs (Miyara et al.,
2009). Furthermore, specific suppressors of Tth; follicular Tregs expressing low or no CD25



and IL-10 producing Type 1 regulatory T cells which have transient or no FOXP3 expression
have also been widely considered as functional classes of Tregs (Groux et al., 1997; Wing et
al., 2018). Such classifications reflect uncovered knowledge about Treg biology.

1.4.3 Generation of Tregs

As mentioned earlier, thymic Tregs are differentiated from immature thymocytes in the
thymus by the process of “clonal diversion”. Strong TCR signal by self Ag:MHC along with
CD28 co-stimulation drive the expression of CD25 which enables the cellular response
towards IL-2 signaling and subsequent expression of FOXP3 mediated by STATS and other
factors (Burchill et al., 2008).

Although the majority of Tregs are estimated to be constituted of tTregs (70-80% in both
mice and men) as defined by the expression of IKZF2 (Helios) and reviewed in (Shevach and
Thornton, 2014), some portion of nTregs also consists of extrathymically derived pTregs.
While Helios is used to differentiate tTregs and pTregs, it is not an absolute marker, and
instead, Neuropilin-1 is recommended to be a more suitable marker of tTregs, at least in mice
(Yadav et al., 2012).

pTregs are either differentiated from naive T cells or may be generated by conversion from
other subsets of T helper cells in the periphery. The generation of pTregs is primarily shaped
by IL-2 and TGF-p. Furthermore, vitamin A metabolite all-trans retinoic acid (ATRA) and
commensal microbiota-derived short chain-fatty acids, mainly butyrate have also shown to
favor the induction of pTregs in the gut region. The mediators of pTreg generation have not
been fully understood and are also reported to be tissue-dependent and shaped by other
immune cells like macrophages and DCs (Arpaia et al., 2013; Schmitt and Williams, 2013).

In vitro generation of iTregs from naive T cells has been an excellent platform to understand
the development of pTregs. Protocols to generate iTregs have mainly been based on
mimicking the in vivo regulators of pTreg generation like IL-2 and TGF-p, and recent works
have also suggested the suitability of using molecules such as ATRA, butyrate and the mTOR
inhibitor Rapamycin (Lu et al., 2014; Schmidt et al., 2016; Schmitt and Williams, 2013).

1.5 TREG-MEDIATED SUPPRESSION OF T CELLS

CD4+CD25- conventional T cells (here called T cells or Tcons), being the most abundant cell
type among the lymphocytes, are crucial targets for immunosuppression by Tregs to maintain
peripheral tolerance. Tregs employ myriads of suppression mechanisms presumably
depending on the cytokine micro milieu and site of immune reaction as well as type and
activation status of target cells and Tregs themselves to control the effector cytokine
production and proliferation of T cells, as illustrated in Figure 2 (Schmidt et al., 2012).
Understanding the individual mechanisms and their relevance in specific disease settings may
be helpful to devise effective and suitable Treg-mediated therapies. The major mechanisms of
suppression are described below.



1.5.1 Indirect suppression by modulation of APC function

Tregs have been well documented to downregulate the stimulatory capacity of antigen
presenting cells (APCs) hence contributing to the suppression of T cells indirectly. Cytotoxic
T-lymphocyte-associated protein 4 (CTLA-4) has been shown to capture its ligands CD80 /
86 by trans endocytosis (Qureshi et al., 2011; Wing et al., 2008). Murine Tregs deficient in
CTLA-4 have been shown to be less suppressive mainly due to reduced potency to
downregulate CD80 / 86 on APCs. Strikingly, Treg-specific deletion of CTLA-4 resulted in
severe lymphoproliferative diseases (Wing et al., 2008). Competitive inhibition of co-
stimulatory signals to CD28 in T cells has also been partly attributed to downregulation of
CD80 / 86 in murine dendritic cells (DCs) by Lymphocyte function-associated antigen 1
(LFA-1) from human Tregs (Tran et al., 2009). Tregs have also been reported to stimulate
expression of tryptophan metabolizing enzyme, indoleamine 2,3-dioxygenase (IDO) in APCs
via CTLA-4-dependent signaling to promote starvation and direct cell cycle arrest (Fallarino
et al., 2006). Additionally, Tregs also recruit surface molecules like cluster of differentiation
40 (CDA40), neuropilin-1, Lymphocyte-activation gene 3 (LAG-3) and the antigen-
presentation attenuator A20 to downregulate the antigen (Ag) stimulatory capacity of DCs
(Schmidt et al., 2012). Further, one recent study has also shown Tregs to hamper antigen
presentation by capturing the MHC complex from APCs (Akkaya et al., 2019).

1.5.2 Suppression by secretion of soluble molecules

Tregs have been shown to produce various immunosuppressive cytokines like IL-10, TGF-f,
and IL-35 for suppression of T cells. The importance and redundancy of these cytokines for
Treg-mediated suppression of T cells seem to differ depending on the disease model, species
and in vitro setup (Schmidt et al., 2012).

Murine TGF-f has been shown to confer Treg-mediated suppression in vitro (Nakamura et
al., 2004) and has also been shown to be crucial for preventing colitis (Read et al., 2000).
Conversely, other groups had contradictory findings with reports of TGF- knock out (KO)
Tregs still being suppressive in vitro (Read et al., 2000). Furthermore, TGF-f plays a positive
role in the generation of iTregs (Marie et al., 2005). Similarly, the importance of IL-10 has
also been shown in several disease models like the experimental autoimmune
encephalomyelitis and most prominently colitis (Asseman et al., 1999; McGeachy and
Anderton, 2005).

Studies have shown IL-35 to be important in Treg-mediated suppression of T cells in murine
models; however human Tregs do not express IL-35 (Bardel et al., 2008).

Tregs produce other repressive molecules like cyclic adenosine monophosphate (cAMP)
(Bopp et al., 2007) and adenosine for direct or APC-mediated suppression of T cells
(Borsellino et al., 2007). Particularly, cAMP seems to be more important for direct Treg-
mediated suppression of T cells. Treg-mediated suppression of IL-2 expression in T cells was
initially suggested to act by the induction of inducible cAMP early repressor (ICER), which is
a transcriptional repressor (Bodor et al., 2007). While ICER has a role in cytokine gene



expression, recent studies found ICER to be dispensable, and instead showed cAMP to act by
promoting exchange protein directly activated by cAMP (EPAC) (Vang et al., 2013). Further
Tregs have also been reported to utilize granzyme / perforin-mediated apoptosis induction in
T cells (Grossman et al., 2004).

1.5.3 Suppression by IL-2 consumption

Tregs have been shown to induce IL-2 deprivation for T cells by consumption of IL-2 (an
important growth factor for T cell proliferation) via IL-2R containing CD25 (IL-2R a chain)
due to its high affinity for IL-2. Although shown to be important in an IBD model (Pandiyan
et al., 2007), the resultant net effects on target T cells have been unclear. Tregs have also
been shown to outcompete naive T cells for IL-2 and utilize it for the induction of IL-10
production (Barthlott et al., 2005).

Cytokine IL-2
IL-35 ihi
consumption \ Inhibitory
and cell death TGF-B  cytokines
CD25
induction IL-10
granzymes
i i [ ATP, ADP
Indirect suppression PO Suppressive
through DC inhibition CD39,CD73  metabolites
adenosine

MHC

Ca®¥y\  Suppression of TCR

NFATY
ICER # NF- j j
Transcriptional T NF-«xB¥ \ signaling pathways
repressors COl
CD4*CD25"

Foxp3~
Adapted from Schmidt ez al. 2012 Front. Immunol.

Figure 2: Mechanisms of Treg-mediated suppression of T cells. Tregs regulate T cells by several
immunosuppressive mechanisms illustrated in separate colors. Tregs can suppress T cells indirectly by
modulating APCs. Tregs also directly suppress T cells by secretion of inhibitory cytokines and
suppressive molecules. Furthermore, Tregs also suppress T cells by competing for IL-2 and apoptosis
induction. Additionally, Tregs can rapidly suppress TCR-induced calcium-mediated signaling

pathways in a contact-dependent manner.

1.5.4 Contact-dependent suppression: Does it exist?

While Treg-mediated suppression of T cells is mainly visualized within the boundaries of
mechanisms mentioned above (acting via APCs and secretion of soluble factors), the
relevance of direct suppression of T cells by Tregs is not widely accepted. This is in part
because of lack of detailed knowledge of molecular pathways mediating this contact-
dependent suppression and evidences proving its in vivo relevance and occurrence. However,

multiple in vitro studies have conclusively shown that Tregs can directly suppress



proliferation and / or activation of T cells in a contact-dependent manner without mediation
by APCs or soluble factors in mice and humans (Ermann et al., 2001; Hagness et al., 2012;
Huang et al., 2012; Oberle et al., 2007a; Thornton and Shevach, 1998). While earlier
microscopic studies in intact explanted or intravital lymph nodes concluded that stable
contact does not occur in vivo between Treg and T cells (Mempel et al., 2006; Tang and
Krummel, 2006), a recent breakthrough study reported that Tregs stably contact T cells at the
site of inflammation in murine non-lymphoid target tissues (Miska et al., 2014). In this study
of murine pancreatic islet graft transplantation model, the stable contact between Tregs and T
cells occurred both with and without mediation by APCs with only a minor role for CTLA-4
(Miska et al., 2014). Furthermore, another imaging study has reconfirmed the direct
interaction between endogenous Tregs and adoptively transplanted T cells in murine lymph
nodes in a CTLA-4-dependent manner (Matheu et al., 2015). Further works are required to
understand the in vivo significance and mechanism of direct suppression of T cells by Tregs.

1.6 T CELL RECEPTOR SIGNALING AND ROLE OF PHOSPHORYLATIONS

TCR signaling is essential for proliferation and cytokine secretion of T cells (Guy et al.,
2013). T cell activation requires recognition of Ag:MHC complex by TCR (Signal I), co-
stimulation via binding of CD80 / 86 to CD28 (Signal II) and finally signaling via cytokines
(Signal IIT) (Corthay, 2006). TCR signaling induces the activation of three core transcription
factors in T cells, which control cytokine transcription and decide cell fate. The central
transcription factors include nuclear factor kappa-light-chain-enhancer of activated B cells
(NF-kB), nuclear factor of activated T cells (NFAT), and activator protein 1 (AP-1).

Ligation of the TCR complex with Ag:MHC complex initiates TCR signaling to result in
activation of two Src kinases, CD3-associated Fyn kinase (via dephosphorylation by Tyrosine
(Tyr) (Y) phosphatase CD45) and CD4-associated Lck kinase. Fyn-mediated phosphorylation
of ITAMs in the cytoplasmic € chain of the CD3 receptor induces subcellular translocation of
inactive cytosolic zeta-chain-associated protein kinase 70 (ZAP-70) to membrane-bound
immunoreceptor tyrosine-based activation motif (ITAMs) of CD3, where ZAP-70 is further
activated upon phosphorylation by Lck. ZAP-70, in turn, phosphorylates and activates linker
for activation of T cells (LAT), which serves as an important branching point for further
downstream signaling. Phosphorylation of Y132 on LAT recruits phospholipase Cy1l

(PLCy1) to induce calcium-dependent NFAT and NF-kB or RAS-MAPK pathways, which is
primarily considered calcium independent. Phosphorylation of Y171, Y191, and Y226 on
LAT activate guanine nucleotide exchange factor, SOS and SH2 domain-containing
leukocyte protein of 76 kDa (SLP-76), which in turn regulate essential GTPases like Ras,
Rac, and Rho and subsequently activate mitogen-activated protein (MAP) kinases like p38,
JNK, and ERK1/2. The action of these kinases activates the AP-1 pathway by dimerization of
c-Jun and Fos (to form the AP-1 transcription factor) upon translocation into the nucleus.
Membrane recruitment and activation of PLCy1 by LAT is mediated by activation of adaptor
protein SLP-76 and IL2 inducible T cell kinase (Itk). PLCyl enzymatically cleaves
phosphatidylinositol 4,5-bisphosphate (PIP>) generating the second messengers,



diacylglycerol (DAG) and inositol 1,4,5-trisphosphate (IP3). IP; is crucial for mediating
calcium influx into the cytoplasm mainly by regulating Ca*" gates of the endoplasmic
reticulum (ER) by binding to IP3 receptor (IPsR). The resulting decrease in the ER Ca*" levels
activates stromal interaction molecules 1 and 2 (STIM 1 and 2) which then regulate the
opening of Ca?* channel in the plasma membrane composed of Calcium Release-Activated
Calcium Modulator 1 and 2 (Orail &2), resulting in store-operated Ca?" entry (SOCE).
Signaling induced by DAG and IP; consequently activates NF-kB and NFAT respectively by
unmasking nuclear-localizing sequences in the targets which mediates nuclear translocation
of the activated NFAT and NF-kB from the cytosol (Prole and Taylor, 2019; Smith-Garvin
and Koretzky, 2009; Vaeth and Feske, 2018; Zhang and Dong, 2005).

1.7 TREG-MEDIATED SUPPRESSION OF PROLIFERATION VERSUS
CYTOKINE EXPRESSION

Broadly speaking, suppression of proliferation is considered a necessary condition for Treg-
mediated suppression of T cells, while suppression of activation-induced cytokines is usually
considered as an intermediate step to install suppression of proliferation. However, it has
been shown that cytokine expression can be independent of proliferation, since distinct TCR
signaling pathways drive proliferation and cytokine secretion (Guy et al., 2013). Further, T
cells have been shown to proliferate even when major components of TCR signaling and
subsequently cytokine expression are disturbed (Oh-Hora et al., 2008). Even Tregs have been
reported to suppress the expression of certain cytokines without affecting proliferation in
CD4 T cells (Sojka and Fowell, 2011) and similarly, suppressing effector activity without
affecting proliferation in CD8 CTLs (Mempel et al., 2006). Work by Schmidt et al. has also
indicated that depending on the time point after the onset of suppression, Tregs can suppress
cytokine secretion and proliferation independently (Schmidt et al., 2011). While suppression
of cytokine expression and proliferation have been mostly dependent for the APC-mediated
effect of Treg on T cell priming, suppressing the production of inflammatory cytokines might
be more crucial in the inflamed tissues, at least in the early phase.

1.8 RAPID SUPPRESSION OF TCR SIGNALING IN T CELLS BY TREGS

Deciphering the details of rapid and early suppression by Tregs could enable the discovery of
upstream mediators of suppression. It might be feasible to manipulate the machinery of Treg-
mediated suppression more effectively and specifically by targeting these upstream
molecules.

Initial studies in mice have characterized the dynamics for Treg-mediated suppression of IL-2
expression in T cells, ranging from 6 to 15 hours (Sojka et al., 2005; Thornton and Shevach,
1998). Oberle ef al. demonstrated that human Tregs suppress cytokine transcription even
more rapidly, within 1 to 3 hours in T cells independently of IL-2 consumption or secretion of
soluble molecules (Oberle et al., 2007a). Using stronger TCR activation to enable an earlier
robust read-out of cytokine expression, Schmidt ef al. showed that the suppression of
cytokines occurred as early at 30 minutes when pre-activated Tregs were used. The study



showed that Tregs rapidly suppress calcium and calcium-dependent NF-kB and NFAT
pathways while the AP-1 pathway was primarily unaffected in T cells as depicted in Figure 2.
Surprisingly, suppression was not mediated by known modification of proximal events of
TCR signaling like ZAP-70, PLC-y1, IP; levels, or PKCO phosphorylation. Additionally, this
contact-dependent suppression was shown to occur both in the presence and absence of APCs
and was independent of CTLA-4. More importantly, the hallmark of this study was the
finding that Tregs suppress T cells by inhibition of TCR-induced depletion of the intracellular
calcium stores and hence preventing the activation of NF-kB and NFAT 1, which could be
visualized as early as 5 minutes after activation (Schmidt et al., 2011).

In a study on multiple sclerosis patients, Schwarz and colleagues have also demonstrated that
Tregs fail to suppress calcium signaling but do not disrupt NFAT2 nuclear translocation in T
cells (Schwarz et al., 2013). Further, Huang and Fowell claimed that Tregs selectively
attenuate specific TCR signaling pathways to induce suppression. They have demonstrated
that murine Tregs attenuate NF-«xB signaling in T cells after 6 hours of activation in a setting
independent of APC-activity. However, they observed sustained expression of NFAT1 and
NFAT?2 in suppressed cells (Huang et al., 2012). While studies mentioned above present
NFAT as an activatory molecule for T cells especially within early time points, several
studies claim NFAT1 to exert suppressive effects on T cells at later time points (Bopp et al.,
2005; Chellappa et al., 2015; Shin et al., 2014). This would be well in accordance with the
dual role of NFAT mediating activation, but also the state of unresponsiveness (anergy) in T
cells in the absence of costimulation (Macian et al., 2002). A recent work by Aandahl and
colleagues suggested that human Tregs pre-activated for a prolonged time (48 hours) were
able to suppress TCR-proximal signaling molecules as well as NF-kB and AP-1 upon 48
hours of coculture and activation (Chellappa et al., 2015). Taken together, these studies hint
at the possibility of multiple mechanisms mediating rapid suppression of T cells. While the
NF-kB pathway appears to be consistently attenuated by Tregs across several studies, the role
of NFAT in suppressed T cells may be dependent on activation time points, Treg pre-
activation, NFAT isoforms, and experimental setups. Additionally, a growing amount of
recent works have reported impaired signaling in TCR pathways mainly involving Akt-
MAPK-AP-1 pathway to give rise to T cells resistant towards suppression by Tregs. Hence
the importance of understanding the details of Treg-mediated signaling in T cells is even

more evident.

1.9 RESISTANCE AGAINST TREGS (VIVA LA REVOLUCION)

Presently, most of the research into Treg-mediated therapies either in experimental phase or
clinical trials are mainly focused on regulating or strengthening the suppressive capacity of
effector Tregs. Since the efficacy of treatment ultimately depends on the effect these Tregs
have on the target cells, there can be untapped potential in modulating the susceptibility of the
target T cells as well. Further, an increasing number of evidence in multiple autoimmune
diseases shows that Tregs fail to suppress T cells partly because of resistance-induction in T
cells (Buckner, 2010; Mercadante and Lorenz, 2016; Walker, 2009). These resistant T cells
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serve as “red flags” and potential hurdles for therapies targeting T cells and Tregs. Less is
known about the exact mechanisms of resistance. Studies report that T helper cell subsets
vary in their susceptibility to Tregs. Th17 and Th2 cells along the diseases modulated by
respective Th subsets have been shown to be more resistant to Tregs than Thl cells (Cosmi et
al., 2004; Stummvoll et al., 2008; Taams et al., 2007). T cell resistance has been associated
with several cell-extrinsic factors, mainly impaired cytokine micro milieu involving the
expression of TNF-a (Valencia et al., 2006; Wehrens et al., 2013), IL-4 (Pace et al., 2005;
Pillemer et al., 2009), IL-6 (Schneider et al., 2013) and IL-15 (Ben Ahmed et al., 2009) in
both experimental and clinical settings. The knowledge is even sparser regarding the cell-
intrinsic causes of resistance in T cells partly because the understanding of signaling events in
the T cell upon suppression by Tregs is severely limited to canonical molecules and yet
incomplete. Deregulation of SMAD?7 (Fantini et al., 2009), CD28 (Thewissen et al., 2007),
TRAF6 (King et al., 2006) and phosphatase SHP1 signaling (Mercadante and Lorenz, 2017),
ultimately affecting the Akt-MAPK pathway, have been linked as some cell-intrinsic causes
of resistance so far. There is a pronounced need for unbiased global studies to elucidate the
molecular events initiated in T cells upon Treg-mediated suppression to fill the knowledge
gap and resolve the potential issues arising from T cell resistance.

1.10 PHOSPHOPROTEOMIC STUDIES IN T CELLS (TRADING THE TORCH
FOR THE FLOODLIGHT)
TCR signaling is largely mediated by phosphorylations, which is apparent by the
involvement of multiple kinases and phosphatases, as described earlier. It is feasible that
Tregs suppress T cells by regulating these already known or even unknown phosphorylations
as shown for Treg-mediated regulation of some key phosphorylations of TCR signaling
molecules (Chellappa et al., 2015; Huang et al., 2012; Schmidt et al., 2011). Hence the global
mapping of the phosphoproteome of T cells upon suppression by Tregs might elucidate
comprehensive mechanisms of Treg-mediated suppression of T cells. Since post translational
modifications (PTMs) like phosphorylations can occur within seconds, mapping the
phosphoproteome is even more suitable to study the mechanism of rapid suppression by
Tregs which can occur as soon as 30 minutes of contact between Tregs and T cells and is then
acting immediately after TCR stimulation, as soon as TCR signaling such as calcium influx
becomes detectable (Schmidt et al., 2011).

In eukaryotes, protein phosphorylations mainly occur on serine (Ser; S), threonine (Thr; T)
and tyrosine (Tyr; Y) residues and mediate multiple signal transduction pathways. Besides
these well-known substrates, phosphorylation can also occur on histidine, lysine, and arginine
residues (Hunter, 2012). Although these additional phosphorylations might have some
biological importance, their abundance is still debated and they are currently understudied
(Fuhs and Hunter, 2017). Phosphorylation is mediated by the action of kinases and
phosphatases which add and remove phosphate group to and from target proteins,
respectively. 518 protein kinases and 189 protein phosphatases are identified in humans till
date (Chen et al., 2017; Manning et al., 2002). Their importance in regulating biological
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pathways are reflected by the observations that over 30% of proteins encoded by the human
genome occur in a phosphorylated state (Cohen, 2002) and drugs targeting kinases are among
the fastest growing drug family in recent years (Santos et al., 2016). Understanding the
potential roles of kinases and phosphatases in mediating the phosphorylation-dependent
effect of Tregs on TCR signaling in T cells could have significant potential for basic research

as well as clinical application.

Despite recent advancements in mass spectrometry (MS), limited attempts have been
successful in mapping the global phosphoproteome and subcellular proteome of CD4 T cells
in resting state and upon TCR activation. Few attempts at global profiling of TCR-induced T
cell proteome are based on Jurkat T cell lines, not primary cells (Chylek et al., 2014; Nguyen
et al., 2015a). The recently updated Lymphos 2.0 database provides comprehensive coverage
of activation-induced changes in the phosphoproteome of human primary CD3+ T cells
(Nguyen et al., 2015b). Further publications have also surfaced in profiling the
phosphoproteome of murine CD8+ T cells (Navarro et al., 2011). In light of the central
contribution of CD4+ T cells in immunity, in particular autoimmune diseases and several T
cell-based immunotherapeutic approaches, there is a need of unbiased global profiling of
TCR-induced changes in human CD4+ T cells. Impressive works have been accomplished in
mapping the phosphoproteome of murine CD4+ T cells (Tan et al., 2017) and murine Tregs
(van Ham et al., 2017) in recent years.

Lacking any global study on the direct effect of Tregs on T cells, most knowledge is based on
targeted studies of selected canonical molecules. Although these targeted studies have
installed a backbone for understanding the signaling in suppressed cells, they are limited to
the discovery of known and canonical molecules (Chellappa et al., 2015; Schmidt et al.,
2011; Shin et al., 2014). Hence there is a need to span beyond probing known TCR signaling
molecules for their role in Treg-mediated suppression by performing a global and unbiased
mapping of the dynamics in the phosphoproteome in T cells upon Treg-mediated

suppression.

1.11 MS-BASED SUBCELLULAR PROTEOMICS IN T CELLS (BUILDING A
PROTEOME-WIDE “GPS”)
Subcellular localization is an important determinant of protein function, since specific
intracellular compartments can provide favorable niches for specific reactions, protein
interactions, modifications and stability (Lundberg and Borner, 2019). Deregulation of
subcellular localization has been implicated in several disorders like cancer,
neurodegeneration, obesity, genetical and protein misfolding diseases (Hunter, 2012; Kau et
al., 2004; Luheshi et al., 2008; Wang et al., 2016). Hence the determination of precise
subcellular location/s can be invaluable in understanding a protein’s biological function and
devising therapeutic interventions. While the determination of subcellular location by tagged
proteins (Huh et al., 2003) and antibody-based detection have been successful for targeted
approaches (Thul et al., 2017), MS-based proteomics methods can provide high coverage and
generate unbiased proteome-wide subcellular location data. For example, recent
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advancements in MS techniques have led to the curation of high-resolution maps of the
subcellular proteome in human cell lines (Itzhak et al., 2016; Orre et al., 2019), human
fibroblasts (Jean Beltran et al., 2016), murine pluripotent stems cells (Christoforou et al.,
2016), rat tissues (Jadot et al., 2017) and yeast (Nightingale et al., 2019). Although these
studies have immensely improved the general classification of the subcellular proteome, there
is a lack of context-specific classification of the subcellular proteome for primary human
immune cells like lymphocytes. Present efforts to classify the subcellular proteome of CD4+
T cells are mainly limited to subtractive approaches of profiling only a particular fraction of
interest (Filén et al., 2005; Graessel et al., 2015; Moltu, 2013; Moulder et al., 2010;
Procaccini et al., 2016) or have rather low coverage of the global proteome (Solstad et al.,
2011). High-resolution, global mapping of the subcellular location of the T cell proteome
would decrease the dependence on subcellular data from unrelated cellular sources and hence,
could guide a more specific and targeted validation for the spatial information of the protein
of interest for T cell-specific works.
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2 AIMS

1.

To elucidate the molecular mechanisms behind rapid suppression of T cells by Tregs

(Paper I & 1)
a. To map the global effect on the phosphoproteome of T cells upon suppression
by Tregs (Paper I)

b. To study the role of phosphatase inhibitor PPP1R11 in modulation of the
resistance of T cells against Treg-mediated suppression (Paper II)
To elucidate the mechanism and role of macrophages in the generation of iTregs

(Paper I1I)
To map the subcellular proteome and proteome-wide stimulation-induced subcellular

translocation in T cells (Paper IV)

15






3 METHODS SUMMARY

To achieve the aims described above, several different methods were employed. Below
follows a summary of the main methods. Of note, for a more detailed description please refer
to the individual articles.

3.1 TCELL:TREG COCULTURE SYSTEM AND STIMULATION

In order to facilitate the study of rapid signaling upon short term T cell: Treg coculture, we
used a previously optimized allo-disparate coculture system using cells magnetically isolated
from human peripheral blood (Schmidt et al., 2011). In short, freshly isolated and HLA-A2
disparate T cells (CD4+CD25-) were cocultured with pre-activated Tregs (CD4+CD25++;
O.N. anti-CD3 stimulation) or control T cells for 85 mins and then stimulated for 5 mins with
cross-linked anti-CD3/anti-CD28 antibodies (referred to as TCR stimulation) for
phosphoproteomic and phospho-Western Blot studies and 3-5 hours for transcriptomic
studies such as cytokine mRNA analysis (Paper I). Following quick magnetic separation
based on HLA-A2 expression, the target T cells were processed for further downstream
analysis. Alternatively, for long-term stimulation, responder T cells were labeled with CFSE
and stimulated alone or with Tregs for 3-5 days and proliferation was measured by flow
cytometry (Paper II). For iTreg generation, naive CD4+CD25-CD45RA+ T cells were
cultured with supernatants of macrophages such as M2 macrophages, or TGF-B1 +IL-2 as a
control (Paper III). Specific details regarding HLA-A2 disparity, pre-activation for Tregs,
nature and time point of stimulations and cocultures are specifically given in each publication
(Paper I -1V).

3.2 MS-BASED PHOSPHOPROTEOMICS

Apart from the technological limitations, the main constraint of performing
phosphoproteomics is the required amount of starting material. Utilizing comparatively low
amount of starting materials (57-196 pg protein per sample) we have been able to perform
global phosphoproteomics. In brief, trypsin-digested peptides from suppressed T cells,
stimulated T cells and resting T cells isolated from T cell-Treg, T cell-T cell cocultures and
untreated T cells (N = 3 donors) respectively were individually labeled with stable isotope
dimethyl labeling (Boersema et al., 2009) and mixed to enable multiplexing. Phosphopeptide
enrichment was carried on Titanium ion immobilized metal affinity chromatography (IMAC)
(Zhou et al., 2013) before processing in the LC-MS. The analyses were based on relative
quantification of the dimethyl ratios (Paper I).

3.3 NUCLEOFECTION OF UNSTIMULATED T CELLS

Nucleofection of plasmids and siRNAs (Paper I & II) were conducted by Neon transfection
system and Amaxa technology respectively, with several optimizations. The possibility of
optimizing transfection conditions and voltages enables Neon transfection to be suitable for
transfection of plasmids (1 kbp) with considerably good viability while transfection with
Amaxa technology yielded higher efficiency of transfection albeit with compromised cellular
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viability. Although these methods provide a relatively economical and possibly less labor-
intensive (once optimized) alternatives to study the biological effect of genetic perturbations
in cellular contexts, they come with their limitations. Of note is that we observed
electroporation in general affects cellular physiology with elevation in calcium signaling and
other activation-associated signaling molecules including cellular responses to stimulation.
Although these effects can be normalized with the use of empty vector or control siRNA,
caution needs to be administered while resolving differences which are small in magnitude.
DEF6 plasmids (phospho-mutants, wild type or empty vectors) were transfected in primary
human T cells. The cells were rested for 8 hours and then stimulated with 5 minutes or 3
hours of TCR stimulation for Western Blot and mRNA studies (Paper I). For siRNA studies,
silencing with PPP1R11 and control siRNAs were performed by incubation at 37°C for 4.5
days (Paper II). In general, cells were stimulated with crosslinked TCR stimulation for 3-6
hours (RNA studies) or 4.5 days with plate-bound anti-CD3 and soluble anti-CD28
stimulation (protein studies), or as described for specific experiments.

3.4 SUBCELLULAR FRACTIONATION AND MS-BASED PROTEOMICS

The subcellular fractionation strategy was mainly aimed at enabling robust isolation of basic
cellular meta-components from limited starting materials (20 Million T cells; at least 48 pg
protein per fraction) suitable for clinical and biological samples of a rare nature. Qproteome
Cell Compartment Kit was used to isolate cytosolic, nuclear and membrane fractions from T
cells upon steady state and following 15 or 60 minutes of TCR stimulation. It needs to be
mentioned that the membrane fraction consists of the plasma membrane as well as the
membranous organelles. Enzymatically digested peptides were labeled with 10 plex Tandem
mass tag (TMT) labeling. The multiplex mixtures were pre-fractionated by immobilized pH
gradient (IPG)-isoelectric focusing on pH 3-10 IPG strips using the high-resolution isoelectric
focusing (HiRIEF) method (Branca et al., 2014). Peptides were extracted from the gel strips
into 72 separate fractions which were analyzed by LC-MS/MS. Downstream analyses were
based on the relative ratios of the individual TMT intensities (Paper I'V).
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4 RESULTS AND DISCUSSION

41 MOLECULAR MECHANISMS OF RAPID SUPPRESSION OF T CELLS BY
TREGS (PAPERI)
A series of work by Oberle ef al. and Schmidt et al. (Oberle et al., 2007b; Schmidt et al.,
2011) have contributed to the process of understanding the mechanism and signaling in target
T cells during Treg-mediated direct and rapid suppression of T cells by Tregs. The most
upstream effect of Tregs was shown to be the inhibition of depletion of intracellular calcium
stores and suppression of downstream pathways like NFAT and NF-xB in T cells. Despite
“kick-starting” the discovery of the involved molecules, targeted studies including and
similar to these studies (Chellappa et al., 2015; Huang et al., 2012; Shin et al., 2014) paint an
ultra-canonical and yet incomplete view of this process. To understand the global effect of
Treg-mediated suppression on T cells, we decided to pursue an unbiased strategy by
comprehensibly mapping the phosphoproteome of T cells upon suppression. Owing to the
rapid nature of suppression (starting as soon as after 30 mins of T cell:Treg contact and
detectable with 5 mins of TCR stimulation) and the heavy involvement of phosphorylations
in regulating TCR signaling we postulated that Tregs suppress T cells by regulating the
phosphoproteome of T cells.

4.1.1 Tregs revert the activation-induced phosphorylation in T cells

5 minutes of TCR stimulation with or without the presence of Tregs produced a massive
alteration in the T cell phosphoproteome (42% and 19% of total detected phosphopeptides
changing over 25% upon stimulation and suppression respectively). TCR stimulation mainly
induced elevation of phosphorylation (397 out of 431 regulated phosphopeptides) and
strikingly Tregs seemed to reverse the activation-induced phosphorylated state with the
majority of phosphopeptides exhibiting reduced phosphorylation compared to stimulation
without Tregs (158 out of 198 regulated phosphopeptides). Further analysis with a statistical
cutoff of P < 0.05 confirmed that most of these phosphopeptides with reduced
phosphorylation upon suppression exhibited increased phosphorylation upon activation. This
is the first indication that Tregs suppress T cells by globally altering the phosphoproteome of
the target T cells.

4.1.2 Tregs suppress DEF6 phosphorylation in T cells
Analyses of phosphoproteins regulated by TCR stimulation and / or by Tregs have unmasked

several novel candidates, the majority of which are not previously known to be involved in
TCR signaling, supporting the strength of our unbiased approach. Hence these
phosphorylations hold potential to unravel novel events in Treg-mediated suppression of

T cells which are poorly understood so far. These candidates exhibit significant enrichment in
cytoskeletal remodeling, which is one of the proximal events mediating TCR signaling and
possibly early signaling events upon T cell and Treg contact. Interestingly, a recent study
involving phosphoproteomic characterization of murine Tregs and T cells reports a Treg
specific activation of cytoskeletal regulators (van Ham et al., 2017), although suppressed
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target T cells were not studied here. Taken together, early signaling events upon T cell and
Treg contact may be mediated by molecules involved in cytoskeletal remodeling .

Among the molecules that were differentially phosphorylated by Tregs in our study, a
lymphocyte-specific guanine nucleotide exchange factor (DEF6 / SLAT) appeared. DEF6 has
been shown to regulate TCR signaling by IP;R-mediated regulation of Ca**/ NFAT signaling
and activation of cytoskeleton-regulating Rho-GTPases (Bécart et al., 2008; Gupta et al.,
2003). Our discovery that Tregs prevent the activation-induced phosphorylation of DEF6 T
595 and S 597 holds more relevance since these phospho-sites are located in the DH domain
of DEF6 which is crucial for the activity of DEF6 (Bécart et al., 2008; Cote et al., 2015; Fos
et al., 2014). Hence, we hypothesized that DEF6 T 595 and S 597 may be involved in
mediating the functionality of DEF6 in T cell activation and suppression.

4.1.3 DEF6 T 595 and S 597 phosphorylation contribute to T cell activation

The initial experiments involved generating mutants of the above-discovered DEF6 phospho-
sites, and transfection of phospho-silent mutants of DEF6 T 595 and S 597 in HEK 293 cells.
This revealed that these DEF6 phospho-sites mediated the interaction of DEF6 with the IP;R
which is crucial for the regulation of intracellular calcium levels. Next, we studied the
functional role of these phosphorylations in shaping the stimulation-induced signaling events
in primary T cells. Transfection of the phospho-silent mutants of DEF6 led to reduced
activation of NFAT upon TCR stimulation as compared to wild type DEF6. Similarly, T cells
overexpressing the phospho-silent mutant DEF6 protein also exhibited lower expression of T
cell activation-induced cytokines like /L2 and IFNG mRNA; notably, the hallmark cytokines
to be rapidly suppressed by Tregs. On the other hand, overexpression of the phospho-mimic
mutants led to enhanced expression of these cytokines as compared to the phospho-silent
mutants. A similar trend of regulation of other NFAT target genes like /L2RA and FASLG
was also observed with both the phospho-mutants. Taken together these results suggest that
these DEF6 phosphorylations positively regulate T cell activation.

Regulation of T cell activation via interaction with IP3R and NFAT activation by DEF6 may
be mediated by several domains of DEF6. Membrane translocation of DEF6, mediated by
domains other than the DH domain (containing T 595 and S 597) seems to be vital for the
influence of DEF6 on regulation of T cell activation (Bécart et al., 2008; Fos et al., 2014).
Expression of the DH domain alone has been shown to be insufficient to regulate DEF6:1P3R
binding unlike other subunits (Fos et al., 2014). However, upon forced membrane
translocation, the DH domain, alone can completely restore NFAT activation and cytokine
regulation in murine DEF6 -/- T cells. DEF6:IP3R interaction was not checked in this case
(Bécart et al., 2008). Taking these observations together with our results, it is highly likely
that upon proper membrane localization, phosphorylation of DEF6 T 595 and S 597 (in the
DH domain) regulate the DEF6:IPsR binding and hence stimulation of Ca?*/NFAT signaling
in T cells. It is feasible that these phospho-sites may distort the overall DEF6 structure to
hinder the DEF6:1P;R binding, which remains to be further determined.
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In conclusion, we propose DEF6 T 595 and S 597 phosphorylations to be novel mechanisms
to regulate T cell activation and Treg-mediated suppression via mediating DEF6:IP3R
interaction and Ca?*/ NFAT signaling, as depicted in Figure 3.
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4.2 PPP1R11: AREGULATOR OF T CELL RESISTANCE TO TREGS (PAPER
)
In Paper I, we found that the phosphoproteins regulated by Tregs are functionally enriched in
cytoskeletal remodeling and we subsequently discovered novel DEF6 phosphorylations
which regulated T cell activation. When we analyzed the phosphoproteins-regulated by Tregs
instead for overrepresented protein classes, we observed enrichment of phosphatases, kinases
and transcription factors. As discussed earlier, TCR signaling is heavily regulated by
phosphorylations, plus kinases and phosphatases are viable drug targets for clinical
intervention. Hence, we investigated the phosphoproteomic data for phosphatases and their
regulators. We observed that Tregs reverted the activation-induced phosphorylation of
PPP1R11S 73,S 74, T75 and S 77 (P = 0.057). PPP1R11 is an inhibitory (regulatory)
subunit of PP1 phosphatase (Zhang et al., 1998). These 4 phospho-sites constitute most of the
reported phospho-sites (4 out of 5) in the 12 amino acids long motif of PPP111. Further, this
motif which houses these phospho-sites, is crucial in maintaining the suppressive effect of
PPP1R11 on PP1 (Zhang et al., 2008). Since PP1 is the most common of the eukaryotic
phosphatases, and regulation of PP1 activity is highly dependent on regulatory subunits
(Bollen et al., 2010), we strived to investigate the relevance of PPP1R11 in shaping the
response of T cells towards Tregs. We performed siRNA-mediated silencing of PPP1R11 in
T cells and asked: “Does PPP1R11 affect Treg-mediated suppression?”

21



4.2.1 PPP1R11 modulates resistance to Tregs in T cells

We utilized an allogeneic T cell: Treg coculture setting with T cells treated with PPP1R11
siRNA and control siRNA respectively, and subsequently measured the resulting IL-2 and
IFN-y levels (mRNA and protein) to analyze the effect of PPP1R11 silencing in shaping the
T cell response towards activation and Treg-mediated suppression. We observed that Treg-
mediated suppression of stimulation-induced IL-2 and IFN-y was compromised upon
PPP1RI11 silencing. Further, the extent of abrogation of cytokine suppression was
proportional and correlated to the efficiency of PPP1R11 silencing in the respective T cells.
These results show that PPP1R11 regulates resistance of T cells towards Treg-mediated

suppression.

4.2.2 PPP1R11 regulates TCR stimulation-induced cytokine expression, and
PPP1R11 knockdown imparts an activated phenotype to T cells
While PPP1R11 has been shown to be involved in cell cycle regulation and apoptosis mainly
by suppression of PP1 in non-immunological settings, the role of PPP1R11 in human
immunology is not widely studied. We further dissected the direct effect of PPP1R11 on T
cells in experiments similar to those introduced in the previous paragraph. PPP1R11 silencing
upregulated the expression of T cell stimulation-induced cytokines like IL-2 and IFN-y upon
TCR stimulation (mRNA and protein). Hence, it is plausible that these overactivated T cells
cannot be sufficiently suppressed by Tregs anymore, as described above. Additionally,
PPP1RI11 silencing also upregulated the TCR-induced expression of CD69, a marker of early
T cell activation while late activation markers like /L2RA and CTLA4 were not significantly
affected. Furthermore, PPP1R11 silencing also downregulated PTPN22 (mRNA and protein),
a phosphatase. Since PTPN22 is reported to negatively regulate the proximal TCR signaling
(Bottini and Peterson, 2014), affecting PTPN22 might be an additional mechanism how
PPPIR11 regulates TCR activation, besides its primary target PP1. Some works that have
already indicated a role of PP1 in TCR stimulation (Thomas Mock, 2012; Wabnitz et al.,
2018) prompted us to follow up on these results, especially in the context of PPP1R11 as a
novel regulator of T cell activation. It is noteworthy that we observed neither an effect of
PPPIR11 silencing on PP1A mRNA or protein expression. Our observation is in line with
earlier works (Bollen et al., 2010; Ceulemans and Bollen, 2004) where it is suggested that
regulatory subunits instead influence substrate specificity and activity of PP1 by altering its
subcellular localization and interacting with PP1 substrates. To understand the role of PP1
itself in T cells and draw comparisons with the effect of PPP1R11 on T cells, we performed
chemical inhibition of PP1 by tautomycetin (Mitsuhashi et al., 2001), an antifungal agent
under investigation for usage as an immunosuppressive agent following organ transplantation
(Wee et al., 2010). PP1 inhibition by tautomycetin suppressed the expression of IL-2 and
IFN-y (mRNA and protein). The seemingly reciprocal nature of regulation of the TCR
activation-associated cytokines between chemical silencing of PP1 and siRNA-mediated
silencing of PPP1R11 correlatively suggest that PPP1R11 regulates T cell activation via
repressing its target PP1. In line with our conclusion, PP1A has been indicated as a positive

22



regulator of TCR-induced IL-2 and IFN-y expression by regulating NF-kB by so far unknown
mechanism (Thomas Mock, 2012).

To gain additional understanding of PPP1R11 effects on T cells besides well-known targets
and TCR signaling regulators, we next performed RNAseq on PPP1R11-silenced T cells in
the resting stage and upon 6 hours of TCR stimulation to study the potential mechanism and
global effect of PPP1R11 silencing on the T cell transcriptome. We observed that PPP1R11
differentially regulated the stimulation-induced expression of several genes which were
highly enriched in pathways associated with T cell activation. Among this subset of genes
were surface and proximal mediators of T cell signaling and most of the genes were
associated with phosphatidylinositol and AKT / MAPK pathways. Furthermore, we also
observed downstream products of the NF-xB pathway. Our observation indicates that the
PPP1R11-mediated effect on T cell activation might involve alterations in the MAPK, AKT,
AP-1 and NF-kB pathways, all of which are reported to be involved in the induction of
resistance in T cells towards Treg-mediated suppression (Mercadante and Lorenz, 2016;
Wohlfert and Clark, 2007). However, targeted Western Blot analysis did not exhibit a
significant difference in the phosphorylated or the total levels of exemplary canonical
molecules in the MAPK-AP1, NFAT and NF-«kB pathways upon PPP1R11 silencing. It
needs to be considered that regulation may occur via phospho-sites other than the ones we
have inspected or even by PTMs other than phosphorylation. Further, modulation may also
be dependent on the time point of activation, all of which were not feasible to be tested by
targeted studies.

Taken together, we propose PPP1R11 as a novel negative regulator of T cell activation-
induced cytokine expression and regulator of susceptibility of T cells towards Tregs, as
depicted in Figure 4.

suppressed Tcon CD4*CD25- Figure 4: Novel role of PPP1R11 in

/_\ the induction of resistance in T cells

towards immunosuppression by
Tregs. We propose PPP1R11 to
modulate Treg-mediated suppression of

Treg . o .
cytokine expression in T cells possibly
CD4*CD25**Foxp3* . ) .
g via repression of PP1, which itself
augments cytokine expression in T

cells.

Treg
CD4*CD25*Foxp3*

Joshi et al. 2019 J. Leukoc Biol.
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4.3 UNRAVELING THE EFFECT OF MACROPHAGES IN THE GENERATION
OF ITREGS (PAPERIII)

In Paper I and II we studied the effect of Tregs on the target T cells, but the differentiation,
suppressive capacity, and stability of the Tregs themselves are influenced by other immune
cells (Sakaguchi et al., 2008). Further, the suppressive mechanisms employed by iTregs are
basically unstudied. /n vitro differentiation of iTregs from naive T cells, mainly by protocols
involving IL-2 and TGF-f and / or other stimulants have been an excellent option to elucidate
Treg biology and have also been proposed to be a possible alternative to ex vivo isolated
Tregs (Lan et al., 2012). However, none of the iTreg-inducing protocols so far has been
successful in specifically generating TSDR demethylation in the FOXP3 locus, which is one
of the distinct Treg signatures. Hence the stability and integrity of iTregs are the biggest
concerns for their clinical application. Conversely, in vivo generated pTregs acquire TSDR
demethylation in several mouse models (Ohkura et al., 2012; Schmitt and Williams, 2013);
this suggests that it may be feasible to generate TSDR demethylation and stable iTregs if the
in vitro induction protocols are optimized to recreate the in vivo generation of pTregs.
Furthermore, macrophages have been reported to be involved in the generation of Tregs in
vivo. Recent studies involving the adoptive transfer of tolerogenic macrophages or similar
cell types in experimental models of autoimmunity have resulted in positive prognosis,
possibly aided by the generation of iTregs (Haribhai et al., 2016; Weber et al., 2007). Hence
in Paper III, we studied the feasibility of using supernatants from anti-inflammatory M2
macrophages generated by using a novel stimulatory protocol (IL-4 / TGF-f / IL-10) (Mia et
al., 2014; Parsa et al., 2012) in generating human iTregs from naive T cells. We observed that
the M2 supernatants could induce iTregs with expression levels of FOXP3 as high as in
nTregs. These iTregs also expressed high levels of other Treg signature molecules like CD25
and CTLA-4 with low expression of inflammatory cytokines like IFN-y. Further, M2-iTregs
possessed superior suppressive potential regarding in vitro proliferation of responder T cells.
However, suppression assays with iTregs come with their own complications compared to
assays with nTregs, one being that the iTreg cells are highly activated and expanded (i.e. not
anergic) in vitro, hence being able to overgrow responder T cells and suppress unspecifically,
for example by IL-2 consumption. Therefore, correct controls (like activated T cells
generated without TGF-3 hence not expressing FOXP3) are crucial in such assays, and often
unspecific yet dose-dependent suppression by non-Tregs is indeed observed (Schmidt et al.,
2016). Studying the differences and similarities in Treg suppression mechanisms between
iTregs and nTregs is therefore intricate. Although it would be interesting to study whether
iTregs suppress by similar mechanisms like nTregs regarding DEF6 and PPP1R11,
preliminary experiments on the suppression of /L2 and /FNG mRNA in Tcons by iTregs
were inconclusive, perhaps due to the problems associated with the highly activated state of
iTregs and control T cells as mentioned above (Angelika Schmidt, unpublished data).
Therefore, we could not further follow up on the mechanistic aspects of iTreg-mediated

suppression.
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FOXP3 induction in the iTregs was found to be mediated by TGF-f, initially used to generate
M2 macrophages. Despite extreme washing and complete removal of soluble TGF-f3,
macrophages captured and rereleased active TGF-$ which largely mediated the iTreg
differentiation. Interestingly, knocking down TGFB expression in macrophages and hence
blocking new TGF- expression showed no significant effect on the secreted levels of active
TGF-B or FOXP3 levels in the iTregs, confirming that initially added TGF-f3 conferred the
effects. Notably, none of the iTreg populations we tested acquired TSDR demethylation as
displayed by nTregs, and consequently, FOXP3 expression was not stable upon
restimulation. However, M2-induced macrophages exhibited somewhat more stable FOXP3
expression than iTregs which were generated with IL-2 and TGF-f directly, despite the
importance of TGF-f in the generation of iTregs by M2 supernatants. In addition, M2-
induced iTregs exhibited superior IFN-y repression compared to TGF-f-induced iTregs.
These observations highlight the importance of additional unknown factors besides TGF-3 in
the M2 macrophage-driven iTreg generation. Taken together, instead of in vitro generation of
iTregs that come with concerns, M2 macrophage transfer may be a more viable option to
induce Tregs for therapeutic purposes in vivo, which should be further explored in the future.

44 MAPPING THE SUBCELLULAR PROTEOME AND SUBCELLULAR
PROTEIN TRANSLOCATION IN T CELLS (PAPER IV)
Paper I and II helped us to appreciate how “looking beyond” the well-known molecules can
give us novel perspectives in biological pathways like T cell activation and Treg-mediated
suppression. Since phosphorylation and other PTMs are reported to regulate subcellular
localization of proteins, we were excited by the idea of mapping the spatial proteome of T
cells. As discussed earlier, shuttling of several critical elements of TCR signaling across
subcellular compartments play key roles in T cell activation, so we decided to map the

proteome-wide subcellular translocation upon TCR activation.

441 TcellSubC: an atlas of the subcellular proteome of T cells

T cells from three different donors in steady state or stimulated states (15 minutes or 1 hour
of TCR stimulation) were fractionated into three subcellular components, namely cytosol,
membranes (including organelles), and nuclei. Using high-resolution fractionation and MS-
based peptide detection, our study identified and allocated subcellular localization for
proteins corresponding to more than 8,000 genes with more than 7,000 shared between the
three donors. The three clusters acquired by k means clustering corresponded strongly with
the gene ontology (GO) classification of cytoplasm, membrane, and nucleus and additionally
with the comparable subcellular classification generated by SubCellBarCode, a recently
published high-resolution mapping of the subcellular proteome of 5 different cell lines (Orre
etal., 2019).

4.4.2 Stimulation-induced subcellular protein translocation

By considering the proteins that were simultaneously changing in the opposite direction in 2
or more compartments with [logogFC[>0.201 upon 60 minutes of TCR stimulation, we were
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able to identify 210 potentially translocating proteins. The majority of these translocating
proteins involved the membrane fraction (which also includes organelles). Since GO analysis
on the translocating proteins exhibited components of oxidative phosphorylation and
mitochondrial complexes this might hint at the importance of protein shuttling during the
early metabolic changes initiated upon TCR stimulation. Besides, we also observed several
important transcription factors that were translocating upon activation like NFKB2,
NFATCI1, NFATC3, STAT3, STATSA, which are already known to translocate upon TCR
activation (Busino et al., 2012; Meier et al., 2017; Okamura et al., 2000).

Since PTMs like phosphorylations are known to regulate the subcellular localization of
proteins, we integrated our translocating proteins with curated sets of activation-induced
phosphoproteins in T cells in Paper I and other published data sets (Joshi et al., 2017; Nguyen
et al., 2015b) including PTMs experimentally verified to regulate subcellular localizations
(Hornbeck et al., 2019). We identified 21 translocating molecules with associated
phosphorylations or ubiquitinations, which have strong biological relevance to be studied as
regulators of subcellular localization in T cells.

Further, orthogonal verification of subcellular translocation was performed with an image-
based approach which produced reproducible results involving stimulation-induced nuclear
translocation of complement component 3 while the well-studied nuclear translocation of
NFATC2 was used as a control. This indicates the robust nature of our findings regarding

subcellular location and stimulation-induced protein shuttling.
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5 CONCLUDING REMARKS AND PERSPECTIVES

(Paper I) We have curated a novel resource describing the phosphoproteomic characterization
of human T cells under resting, stimulated and suppressed states. Our data indicate that Tregs
suppress T cells mainly by negating the activation induced-phosphorylation of T cells. We
believe that these phosphoproteins have paved the way for the discovery of novel regulators
and mechanisms of T cell stimulation and suppression of T cells by Tregs. For instance, we
have discovered novel roles of DEF6 phosphorylations in regulating the interaction of DEF6
with IP3R as well as in promoting T cell stimulation via activation of NFAT and transcription
of activation-induced genes. Our data indicate that Tregs target these DEF6 phosphorylations
to rapidly suppress T cell activation. However, the specific molecule on the surface of Treg
and T cells that interact with each other and orchestrate suppression along with the exact
kinase or phosphatase that regulate DEF6 phosphorylation is still unknown. Further studies
focusing on the immune synapse formed upon Treg-T cell contact and interaction of several
phosphorylations in our study are required for a comprehensive understanding of the direct
suppression pathway. Further, it would be of importance to generate DEF6 phospho-mutants
in a DEF6 knockout background and study the effects on T cell activation and Treg
suppression, also in disease models, to further understand the importance of DEF6
phosphorylation in vivo.

It is to be considered that the phospho-regulation of contact-dependent rapid suppression is
one among various mechanisms of suppression which vary depending on the immune micro
milieu and possibly the subsets of both T cells and Tregs. The direct regulation of T cells by
Tregs is more likely to be relevant in the inflamed tissue to control the inflammation and
probably serve as an additional mechanism to implement peripheral tolerance when the
suppression of classical DC-mediated priming of T cells in the lymph nodes fail or is

insufficient.

(Paper II) By following up on candidates from our phosphoproteomic screen, we have
identified the role of phosphatase inhibitor PPP1R11 in inducing resistance towards Tregs in
T cells, and as a novel negative regulator of TCR activation-induced cytokine expression. The
underlying molecular mechanisms mediating the effect of PPP1R11 in T cells is still unclear.
However, our data indicate that PPP1R11 affect T cell signaling by inhibiting PP1
phosphatase possibly via regulating the substrate specificity, activity of PP1 or competing
with PP1 substrate rather than direct transcriptional or translational regulation of PP1. Our
data also point at the possible involvement of AP-1 and NF-kB pathways while the
identification of the exact molecule/s and mode of regulation still remains elusive. Since the
efficiency of siRNA-based transient silencing of PPP1R11 dilutes with each cell division,
future follow-up studies with stable PPP1R11 knockout as well as phospho-mutants in
cellular and animal models are required to elucidate the exact molecular mechanism and in

vivo relevance.

Discovery of PPP1R11 as a regulator of T cell resistance and a potential role of PTPN22
phosphatase in mediating part of the effects of PPP1R11 from our study and reports of SHP-1
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phosphatase being involved in T cell resistance from another study (Mercadante and Lorenz,
2017) support the possibility of using phosphatase-modulating drugs in the therapeutic
intervention of T cell resistance. Although the PP1 inhibiting drug Tautomycetin is presently
available, targeting a ubiquitous and multi-functional phosphatase, which may even have
opposing functions in different cell types (Gu et al., 2014; Thomas Mock, 2012), needs to be
done in a cautious and cell type-specific manner. Instead of targeting the catalytic core of PP1
as done for kinases, it might be more specific to target regulatory subunits like PPP1R11
which have been reported to control the substrate specificity and activity of the phosphatase
and even its cell-type specific function (Bollen et al., 2010).

The biological significance of PPP1R11, DEF6, and our phosphoproteomic database provide
novel targets and avenues to revisit the role of T cells in immunotherapy, especially to
modulate the sensitivity of T cells towards suppression of T cells by Tregs. Interesting

clinically relevant and open questions remain to be explored:

1. Can the candidate molecules from our phosphoproteomic study be used to predict
disease prognosis or therapy outcome for ongoing clinical trials involving Tregs?

2. Can the candidate molecules be targeted to regulate the T cell susceptibility to Tregs
in disease situations?

(Paper III) By shifting our focus to the generation of iTregs, we discovered the ability of M2
macrophages in generating human iTregs mainly by capturing and re-releasing TGF-f3,
primarily used in the differentiation of M2 macrophages themselves. The superior stability
and suppressive capabilities of M2-iTregs over TGF-B-iTregs may be accredited to additional
factors produced by M2 macrophages which are yet to be identified. We provide a novel
protocol for in vitro generation of iTreg using M2 macrophages induced by TGF-f-
containing optimized cytokine cocktail. In contrast to the systemic delivery of TGF-f,
adoptive transfer of M2 macrophages might be a more specific and effective alternative for
targeted delivery of TGF-f3 and restoration of immune suppression possibly via Treg
induction. Whether this scenario could be exploited in vivo, and which molecular
mechanisms of suppression are employed by iTregs, remain to be investigated.

(Paper IV) We have curated a high-resolution subcellular proteomic map of primary human T
cells, divided into cytosolic, nuclear and membrane (including organelles) fractions under
steady-state conditions and upon 15 minutes and 1 hour of T cell receptor (TCR) stimulation
respectively. The subcellular classification is presently based on clustering analysis and can
certainly be improved by applying machine learning aided subcellular classification in the
future as done in other studies (Christoforou et al., 2016; Orre et al., 2019). Our database will
particularly support functional studies of the novel molecules identified from several global
omics and prediction studies which are getting more and more common with the advent of
high throughput technologies. The subcellular location from our study can be readily used as
a basis for hypothesis generation for T cell-specific cellular function of proteins, as well as
for studies exploring the importance of these localizations in Treg-mediated suppression of T
cells.
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Mapping the spatial proteome by targeted experiments, tagged proteins and antibody-based
imaging approaches like Human Cell Atlas (Huh et al., 2003; Thul et al., 2017) and global
MS-based studies (Christoforou et al., 2016; Itzhak et al., 2016; Jadot et al., 2017; Jean
Beltran et al., 2016; Nightingale et al., 2019; Orre et al., 2019) including our present study
have contributed an immense amount of data involving subcellular localization of proteins in
different cells and contexts. The next challenge of the field is to integrate the data for meta-
analysis of subcellular proteome acquired from several of these approaches and make it more
accessible via a user-friendly interface. Ultimately, it would be of great interest to study
subcellular protein translocations globally also in T cells upon suppression by Tregs.
However, the amount of starting material required despite highly sensitive proteomics
methods employed so far, precluded us from performing these studies with Treg-suppressed
T cells as well.

In conclusion, with these novel phosphoproteomic and subcellular proteomic data in T cells
and transcriptomic data on resistant T cells, we set the stage for further studies employing
targeted analysis of the relevance of these novel findings in TCR activation and Treg-
mediated suppression. Our data contribute to understanding and revisiting the role of T cells
in basic biology and disease, and ultimately, to develop better therapeutic strategies for

autoimmune diseases, allergies and cancer.
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