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Ballistically propagating topologically protected states harbor
exotic transport phenomena of wide interest. Here we describe
a nontopological mechanism that produces such states at the
surfaces of generic Dirac materials, giving rise to propagating
surface modes with energies near the bulk band crossing. The
robustness of surface states originates from the unique proper-
ties of Dirac–Bloch wavefunctions which exhibit strong coupling
to generic boundaries. Surface states, described by Jackiw–Rebbi-
type bound states, feature a number of interesting properties.
Mode dispersion is gate tunable, exhibiting a wide variety of
different regimes, including nondispersing flat bands and linear
crossings within the bulk bandgap. The ballistic wavelike char-
acter of these states resembles the properties of topologically
protected states; however, it requires neither topological restric-
tions nor additional crystal symmetries. The Dirac surface states
are weakly sensitive to surface disorder and can dominate edge
transport at the energies near the Dirac point.
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Surface states and the mechanisms allowing them to propa-
gate along crystal boundaries—the topics of long-standing

interest of the theory of solids—acquired a new dimension with
the advent of topological materials (1, 2). In these materials
robust surface states are made possible by nontrivial topology
of the bulk bands (1, 3). Here we outline a different mech-
anism leading to robust surface states, realized in solids with
Dirac bands that mimic relativistic particles near band cross-
ings (2). In this scenario robust surface states originate from
unusual scattering properties of Dirac particles, occurring for
generic boundary conditions at the crystal boundary. As we will
see, since this mechanism does not rely on band topology, it
can lead to robust surface states in solids with either topologi-
cal or nontopological bulk band dispersion. The surface states
exist for either gapless or narrow-gapped Dirac bulk bands. Fur-
thermore, these states are to some degree immune to surface
disorder. Namely, as discussed below, surface modes can prop-
agate coherently by diffracting around surface disorder through
system bulk. This diffraction behavior suppresses backscattering
and results in exceptionally long mean free paths. Since Dirac
surface states require neither special topological properties of
the band structure nor special symmetry, they are more generic
than the topological surface states. As such, these states can shed
light on recent observations of edge transport in nontopological
materials.

Indeed, it is often taken for granted that an observation of
edge transport signals nontrivial band topology (4–7). However,
recent experiments on semiconducting structures, where tunable
band inversion enables switching between topological and non-
topological phases, indicate that current-carrying edge modes
can appear regardless of the band topology (8–11). One piece
of evidence comes from transport and scanning measurements
in InAs/GaSb, which indicate that helical edge channels sur-
vive switching from a topological to a trivial band structure
(8). Additionally, refs. 9 and 10 report an unexpectedly weak
dependence of edge transport on the in-plane magnetic field.

Namely, it is found that the edge transport is observed even
when Zeeman splitting is considerably larger than the spin-orbit
splitting, i.e., in the nontopological regime. A similar behavior
is observed in HgTe devices (11). Furthermore, recently several
groups have used Josephson interferometry to directly image
long-range edge currents in graphene, a signature nontopolog-
ical material (12–16). These observations point to the existence
of robust nontopological surface states.

As we will see, the Dirac surface states can arise naturally
due to strong coupling of electronic waves to generic bound-
aries. Namely, the phase shifts of waves in the bulk that scatter
off the surface have a strong energy dependence near the Dirac
point where the particle and “antiparticle” bands cross (or nearly
cross). The energy dependence of phase shifts, as always, leads
to the formation of states behaving as plane waves confined to
the surface and decaying into the material bulk as evanescent
waves. The formation of these states is governed by a mecha-
nism that resembles the seminal Jackiw–Rebbi (JR) theory (17)
for the states formed at the domain walls separating regions with
sign-changing Dirac mass. Unlike the JR problem, however, the
Dirac surface states do not have a topological character; i.e., in
general they are not protected by topological invariants. Never-
theless, these states are robust and form surface modes with the
energies near the Dirac crossing of bulk bands (Fig. 1C).

The diffraction-based mechanism that suppresses backscatter-
ing and makes the Dirac surface states insensitive to surface
disorder has an interesting analogy with the properties of the
high-mobility electron gas realized in GaAs/AlAs quantum wells.
In these systems an exceptionally high mobility could be achieved
by adjusting the well width to reduce the overlap of the carrier
mode with the well boundary and, in this way, suppress carrier
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Fig. 1. (A and B) Phase diagrams for Dirac surface states (A) and Tamm–
Shockley surface states (B) as a function of parameters that control bound-
ary conditions (main text). Dirac surface states occur in the entire parameter
space except for a subset of measure zero (black lines) and are there-
fore generic. In contrast, the Tamm–Shockley surface states appear upon
fine tuning, occurring in a relatively small region of the parameter space,
whereas most of phase space is incompatible with surface states. Different
types of Dirac surface bands, shown in C, correspond to regions of differ-
ent color (purple, blue, and pink) in A and B. For a detailed discussion see
main text.

scattering at the surface disorder. Scattering suppression through
this mechanism results in a dramatic increase of the mean free
path, growing rapidly vs. the well width, `∼wn with a large
n (18). Recently in wide quantum wells mobilities exceeding
107 cm2/V s were demonstrated (19). Likewise, Dirac surface
states, being nontopological, are, in principle, susceptible to dis-
order. However, the large width of Dirac surface states (arising
due to their slow decay into the bulk) can strongly reduce their
overlap with the atomic-scale disorder at the surface and make
them effectively immune to surface scattering. In this regime,
in direct analogy with the carriers in wide quantum wells, the
surface states can propagate coherently by diffracting around
surface disorder. This remarkable behavior is discussed in detail
below. We will see that, while Dirac surface states may be gapped
(Fig. 1) and are generally not immune to the bulk disorder, their
decoupling from the surface disorder can suppress backscatter-
ing and enable large mean free paths already for moderately
clean materials. This property also weakens the dependence of
these states on the details of the surface structure.

At this point it is instructive to compare Dirac surface states to
the well-known Tamm–Shockley states. These are nontopologi-
cal states residing inside the bandgap that governs surface physics
of many semiconductors. The Tamm–Shockley states form a sur-
face band that splits off the bandgap edge upon varying the
surface potential. The existence of these states depends on the
details of the crystal structure near the surface, which makes
them nonuniversal and less robust than the Dirac surface states
(SI Appendix, The Tamm-Shockley Surface States). Indeed, unlike
the Dirac states, they require fine tuning and are present only in a
part of parameter space (Fig. 1B). Further, since these states are
typically confined to the surface on the scale of a few lattice con-
stants, they are sensitive to surface disorder potential and, unlike
Dirac surface states, are easily localized by the disorder.

Dirac surface states arise in diverse fields, from high-energy
to solid-states physics. Early work on Dirac surface states in a
periodic potential dates back to the 1960s (20, 21). These stud-
ies have led to interesting developments in nuclear and particle
physics such as the MIT bag model and neutrino billiards (22–
25). Recently, the interest in this problem has been renewed with
the advent of graphene and other Dirac materials (26, 27). How-

ever, while a number of important aspects of these states have
been explored for atomically clean boundaries (28–31), the ease
with which Dirac surface states emerge, as well as their ubiqui-
tous character, has remained unnoticed. Below we discuss the
mechanism underlying this behavior and address the key proper-
ties such as robustness, stability, and immunity to disorder. Our
work complements recent studies of topological semimetals (32).

Surface States: General Theory
We first consider the general properties of Dirac surface states in
a 3D solid and then focus on the case of a graphene monolayer.
We analyze a Dirac Hamiltonian in 3D with boundary conditions
of a general form

H =αpv +β∆, Mψα
∣∣
B

=ψα
∣∣
B

, [1]

with p =−i(∂x , ∂y , ∂z ) the momentum operator. Here {ψα} is a
four-component wavefunction, and {αi} and β are 4× 4 Dirac
matrices satisfying the canonical algebra αiαi′ +αi′αi = 2δii′ ,
αiβ+βαi = 0, α2

i =β2 = 1. The parameters v and ∆ in Eq. 1
describe the 3D Bloch band structure near the Dirac band cross-
ing. The matrix M is a unitary Hermitian operator constrained
by time-reversal symmetry and current conservation (26, 27),

[T ,M ] = 0, IBM +MIB = 0, [2]

where T is the time-reversal operator, and IB is the current
component normal to the boundary.

The form of these boundary conditions and the constraints on
M in Eq. 2 can be understood as follows. First, since the Dirac
equation is first order in derivatives, the boundary condition must
be stated in terms of ψ alone without invoking derivatives of
ψ. The most general boundary condition can therefore be writ-
ten as (M − 1̂)ψ

∣∣
B

= 0 with M a suitably chosen 4× 4 matrix
with two eigenvalues equal to +1. Every eigenvalue equal to
+1 yields a scalar relation between the components of ψ, pro-
viding a convenient encoding of the boundary conditions in a
matrix form. A considerable simplification can be achieved, with-
out any loss of generality, by choosing M to be a Hermitian
matrix with eigenvalues +1, +1, −1, and −1 (the eigenvectors
corresponding to −1 eigenvalues do not impact the boundary
conditions in any way). The form of matrix M is further con-
strained by the requirements due to time-reversal symmetry and
probability current conservation (unitarity of scattering at the
boundary requires that the eigenvectors of M with +1 eigen-
values give current which is tangential to the boundary). These
constraints are expressed by the first and second relations in
Eq. 2, respectively (for a more detailed discussion see refs. 26
and 27).

The task of finding surface states from the Dirac Hamiltonian
of a general form, Eq. 1, can be simplified by transforming it
to a 1D Dirac problem as follows. Without loss of generality,
we take the system boundary to be a 2D plane perpendicular
to the x direction. Accounting for translation invariance along
y and z , we use Fourier transform, seeking the states of the
form ψ(x )e ikyy+ikz z . Assuming the system to be homogeneous
and isotropic in the y–z plane, we can choose a new coordinate
system such that k ‖ ŷ . This amounts to a unitary transformation
of the spinor wavefunction and Dirac matrices, α′i =U−1αiU ,
β′=U−1βU , such that

α′1 =α1,
β′=β,

α′2 = (α2ky +α3kz )/k ,
α′3 = (α2ky −α3kz )/k ,

[3]

where k =
√

k2
y + k2

z .
To simplify the analysis, we use, without loss of generality, an

asymmetric representation for the transformed matrices
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α′1,2 =

(
σ1,2 0

0 σ1,2

)
, α′3 =

(
0 σ3

σ3 0

)
, β′=

(
σ3 0
0 −σ3

)
,

[4]

writing it in a shorthand notation as α′1 = τ0σ1, α′2 = τ0σ2, α′3 =
τ1σ3, β′= τ3σ3, where τi and σi are 2× 2 Pauli matrices and τ0
is a unit 2 × 2 matrix (from now on, we suppress it for brevity).
This transforms the 3D Dirac equation into a quasi-1D problem
Hψk (x ) = εkψk (x ) on a half-line x ≥ 0:

H =−iv∂xσ1 + vkσ2 + ∆τ3σ3, Mψk (0) =ψk (0). [5]

Surface states in 3D correspond to the one-dimensional bound
states obtained from the Hamiltonian in Eq. 5 (see Fig. 2C).

The advantage of this representation, in particular the choice
of α′i , is that it allows us to bring the matrix M to a tractable
form. All possible situations that may occur near the surface are
parameterized by different choices of the matrix M , whereas the
Hamiltonian H takes a standardized form. This provides a vehi-
cle for classifying different types of behavior, parameterized by
the M manifold. The block representation in Eq. 4 greatly facil-
itates this analysis. In this representation the operators in Eq. 2
take the form IB = vα′1 = vσ1 and T = τ2σ2K, where K is com-
plex conjugation. The constraints on M given in Eq. 2 can now be
resolved as follows (26, 27). The relation IBM +MIB = 0 implies
that M ∼ n ·σ, where n is a vector tangential to the boundary or
a linear combination of several such terms. Combining it with the
first relation in Eq. 2 gives

M = (ν · τ)(n ·σ), nx = 0, [6]

where n and ν are three-component unit vectors. The Hamilto-
nian in Eq. 5 is invariant under unitary transformations of valley
matrices τi preserving τ3. Therefore, M can be fixed, without loss
of generality, by specifying only two real phases θn and θτ :

M (θτ , θn) = (τ3 cos θτ + τ2 sin θτ )(σ3 cos θn +σ2 sin θn). [7]

The 1D problem in Eq. 5 can now be solved for M of a general
form detailed in Eq. 7, giving states that decay into the bulk as
evanescent waves ψs

k ∼ exp(−µk ,sx ) (Fig. 2C). The energies εk ,s
and the decay parameters µk ,s obey

εk ,s = ∆ cos θτ cos θn + sK sin θn
µk ,s = ∆ cos θτ sin θn − sK cos θn

, s =±1, [8]

where K = (v2k2 + ∆2 sin
2
θτ )

1/2
and s labels two possible dis-

persion branches (SI Appendix, Dirac Mode Dispersion and Fig.
1). Solutions confined to the surface exist only when µk ,s > 0.
The resulting modes and their evolution upon changing boundary
conditions are illustrated in Fig. 2 A and B (see discussion below).

The dependence of the dispersion in Eq. 8 on the angles θn , θτ
indicates that the surface modes exist for generic θn , θτ values,
disappearing only for a subset of measure zero. Possible disper-
sion types, comprising either two branches or a single branch, are
shown in Fig. 1. The modes lie inside and outside the bandgap of
the bulk spectrum. The two branches, when present, are separated
by a minigap which closes at particular values θn , θτ . Notably, the
modes are present for both ∆ 6= 0 and ∆ = 0, i.e., for gapped and
gapless bulk bands. In the latter case the modes lie outside the
bulk Dirac continuum |ε|> v |k | and have linear dispersion of the
form ε=−v sin θn |k |. This gives propagation velocity of v sin θn .
The reduction in velocity relative to the bulk velocity value
provides a clear experimental signature of surface modes.

A Relation to the Jackiw–Rebbi Bound States
To better understand the unique properties of the bulk Bloch
states which enable surface states we sketch a relation between

A B

C D

Fig. 2. (A and B) Surface states in monolayer graphene generated by
surface potential for (A) armchair boundary conditions and (B) zigzag
boundary conditions. Mode dispersion changes in a cyclical manner . . .1→
2→ 3→ 4→ 5→ 6→ 1. . . with the increase of the effective potential
strength θV (see Eq. 18 and accompanying discussion). (C) Edge modes are
confined at the boundary and propagate along it in both directions, as indi-
cated by arrows. (D) The density of states (DOS) as a function of energy and
distance from zigzag edge, with DOS in the bulk far from the edge sub-
tracted to enhance contrast. Shown are results for case i in Eq. 12 for the
phase-shift value θV =−π/4. The bright peak in DOS near the edge x = 0 at
positive energies is due to surface states. The surface states contribution is
embedded in a family of Friedel oscillations dispersion as x∼ ~v/ε.

our problem and the seminal JR problem of the midgap states
of the 1D Dirac operator with a sign-changing mass. As a first
step we perform a similarity transformation that brings M to a
standardized form by moving all the complexity of the problem
from the boundary conditions into the transformed Hamiltonian
(SI Appendix, Transformation to the Universal Boundary Condi-
tions). The transformation is generated by a 4× 4 unitary matrix
that is position independent (but in general is k dependent),
giving two decoupled 2 × 2 Hamiltonians

H =

(
H+ 0
0 H−

)
, M =

(
σ′2 0
0 σ′2

)
, [9]

on the half-line x ≥ 0 in the new (generally, k -dependent) basis,

Hs =−iv∂xσ′1 + εk ,sσ
′
2 +µk ,sσ

′
3, s =±1, [10]

where εk ,s and µk ,s are defined in Eq. 8. The matrices σ′i are (in
general, k - and s-dependent) superpositions of σi .

The 2× 2 block structure of the transformed Hamiltonian can
now be used to solve the boundary value problem. This is done
by extending the problem on the half-line x > 0 to that on a full
line −∞< x <∞, described by a Hamiltonian with a mass kink:

HR
s =−iv∂xσ′1 + εk ,sσ

′
2 +µk ,sσ

′
3sgn(x ). [11]

To identify the eigenstates which lie in the “physical” subspace
of the doubled Hilbert space, we note that the Hamiltonian pos-
sesses reflection symmetry [HR

s ,R] = 0, whereR=σ′2I and I is
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spatial inversion x→−x . The solutions of the problem in Eq.
10 are given by the R-symmetric eigenstates of HR

s satisfying
Rψ(x ) =ψ(x ), projected on x > 0.

This representation helps us to understand the robustness of
surface states. It is instructive to treat µk ,s as a fixed mass and
use εk ,s as a tuning parameter. For εk ,s = 0 Eq. 11 is nothing but
the canonical JR problem, yielding zero-mode eigenstates which
at the same time are eigenstates of σ′2 (17). Upon varying εk ,s
in Eq. 11 these states remain bound to the surface albeit with
a shifted energy ε= εk ,s . This energy, taken as a function of k,
defines dispersion of surface states. For |εk ,s | ≥µk ,s the bound
states cease to exist. The k dependence of εk ,s and µk ,s is such
that the bound state may disappear in a finite range of k but
persist at large enough k (with the exception of a measure-zero
subset of θn and θτ shown in Fig. 1A).

Edge States in Graphene
This general discussion has direct implications for graphene, the
Dirac material best studied to date. In monolayer graphene, σi

and τi are 2× 2 matrices representing pseudospin and valley
degrees of freedom, respectively. Pristine graphene is gapless
with the carrier velocity v ∼ 106 m/s. A gap as large as ∆∼ 30
meV can be created in graphene/hexagonal boron nitride super-
lattices. However, as discussed above, the gap has no direct
significance for the existence of surface states. The types of states
depend solely on the boundary conditions, i.e., the values of
the phases θn and θτ parameterizing M , which depend on the
symmetries and edge structure.

Particle–hole symmetry C, if present, generates universal val-
ues θn and θτ (27); namely, surface states are reduced to just two
distinct types, isomorphic to those found for crystalline zigzag
and armchair edges. The allowed values are

(i) θn = 0,π, θτ = 0,π; (ii) θn =±π
2

, θτ =±π
2
. [12]

Boundary conditions in these two cases are given by M1 =±τ3σ3

and M2 =±τ2σ2, respectively (33). In case i surface states form
a flat band that touches one of the bulk bands bottom or top, ε=
±∆. In case ii there are no surface states. However, as we now
show, these restrictions are lifted for realistic non-particle–hole-
symmetric edges, allowing the phases θn and θτ to take generic
nonuniversal values.

The C symmetry can be lifted by an edge potential that cre-
ates Dirac band bending near the edge. The edge potential can
either occur naturally due to, e.g., edge reconstruction (34) or
hydrogen passivation (35, 36) or be induced externally by a side
gate, as illustrated in Fig. 3 A and B. Focusing on the first case,
we consider electrostatic potential localized near the edge at a
lengthscale of a few atomic spacings r0∼ 1 nm:

H (x ) =H +V (x ), lim
x→∞

V (x ) = 0. [13]

Potential V (x ) affects states only in the vicinity of the edge. It
is therefore convenient to incorporate the effect of V (x ) into
the boundary conditions. This can be achieved by introducing
a transfer matrix T (x1, x2) connecting the wavefunction values,
separately at each k , at adjacent points x1 and x2,

ψk (x1) =T (x1, x2)ψk (x2), 0< x2< x1<∞, [14]

where ψk (x ) is obtained from the Dirac equation with the
Hamiltonian in Eq. 13. The transfer matrix can be obtained by
integrating the Dirac equation over x ,

T (x1, x2) = Xexp

∫ x1

x2

dx
i

v

(
Dk −σ1V (x )

)
, [15]

A B

Fig. 3. (A) Armchair edge in graphene monolayer. Hydrogen passivation
produces atomic-scale dipoles which create electrostatic potential at the
edge. (B) Potential at the edge can be tuned by a side gate. Positive or nega-
tive potential attracts to the edge electrons or holes, respectively, modifying
the dispersion of edge states as shown in Fig. 2 (Eq. 18 and accompanying
discussion).

where Dk = iσ1ε+σ3vk − τ3σ2∆ and Xexp denotes an x -
ordered exponential. Assuming that the term V (x ) gives neg-
ligible contribution for x > r0, we can approximate the trans-
fer matrix as a product of a free-particle contribution and a
boundary term,

T (x , 0) =T (x , r0)T (r0, 0)≈T0(x , r0)T (r0, 0), [16]

where T0 is a transfer matrix for zero potential V (x ) = 0. The
boundary contribution T (r0, 0) can be expressed in a closed form
through V (x ) when the potential width r0 is much smaller than
electron wavelength λ= ~v/ε. This is achieved by writing ψk (x >
r0) =T0(x , r0)ψk (r0), shifting the boundary position to x = r0,
and writing the boundary conditions as

ψk (r0) =MVψk (r0), MV = ΘMΘ−1, [17]

where we denote Θ =T (r0, 0). Under the conditions kr0� 1
and ∆r0/~v� 1 we can ignore the first term inside Xexp in Eq.
15. Approximating

∫ r0
0

V (x )dx ≈
∫∞
0

V (x )dx then gives a new
matrix M that describes the boundary condition altered by V (x ):

MV =M (θτ , θn + θV ), θV =
2

v

∫ ∞
0

V (x )dx . [18]

This simple result is valid as long as the edge potential width r0
is small compared with the electron wavelength in the bulk.

We note parenthetically that the latter condition restricts the
validity of our approach to short-range edge potentials and
narrow-gap Dirac band structures such that r0�λ= ~v/∆. In
wide-gap band structures the interaction of carriers with the
crystal surface is in general not described by a simple scalar
potential model. In addition, long-range potentials can produce
many bound states at the edge and thus create many surface
modes.

To understand the impact of the edge potential on the edge
states dispersion we consider the setup in Fig. 3B wherein V (x )
is tuned by a side gate. Through varying θV the edge states dis-
persion changes in a complex way, as illustrated in Fig. 2 A and
B for the armchair and the zigzag edge. The armchair edge hosts
a one-branch mode with relativistic dispersion

εk =−
√

k2v2 + ∆2 cos θV . [19]

Interestingly, the mode in Eq. 19, despite its relativistic appear-
ance, has no C-symmetric counterpart; i.e., it does not obey
particle–hole symmetry. Furthermore, the dispersion acquires a
flat-band character at θV =±π/2.

The solution for the zigzag edge features a more complex
behavior. For each θV value, the edge modes contain two distinct
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branches, propagating to the right and to the left, as illustrated
in Fig. 2B. Modes occurring at 0<θV <π for zigzag edges with
θn = 0 and at −π<θV < 0 for zigzag edges with θn =π (cases 3
and 4 in Fig. 2B) span both positive and negative energies. Upon
variation of θV they sweep through the bulk bandgap. For other
θV values, the modes also consist of two branches; however, their
energies are either above or below the bulk gap (cases 1 and 6
in Fig. 2B). The dispersion becomes flat at θV = 0, π (cases 2
and 5 in Fig. 2B). Since according to ref. 27 the zigzag bound-
ary condition with θV = 0 describes a generic C-symmetric lattice
termination in monolayer graphene, our solution for θV 6= 0
describes modes for a generic gated graphene edge.

The contribution of surface states to spatially resolved DOS
is illustrated in Fig. 2D (for derivation see SI Appendix, Spa-
tially Resolved Density of States). Surface states give rise to an
enhanced DOS near the boundary for one type of carriers,
electrons or holes, depending on the θV value. In Fig. 2D the con-
tribution of surface states is seen as a high-DOS region at posi-
tive energies, embedded into the family of Friedel oscillations
dispersing as r ∼ ~v/ε.

The Role of Disorder
An interesting aspect of Dirac surface states is their weak inter-
action with surface disorder. Realistic crystal boundaries often
feature strong disorder potential, arising due to dangling bonds
and other defects, which impedes transport along the surface.
Suppression of conduction by surface disorder is typically quite
strong for the Tamm–Shockley states. However, Dirac surface
states are to a great extent protected from surface scatter-
ing due to their small overlap with the surface disorder. This
behavior is reminiscent of the carrier dynamics in GaAs/AlAs
quantum wells where the mobility increases drastically with the
well width due to a rapid mean free path growth `∼wn , with
large n (18). Since the well width is much greater than the inter-
face roughness scale, carriers can diffract around the interface
disorder. In our case, a similar diffraction-enhanced conduc-
tion occurs since the width of the surface states, which defines
their extent into the bulk and is on the order of the bulk
wavelength ∼λF , is much larger than atomic surface rough-
ness. Effectively, in this case the mode width takes on a role
analogous to the width of quantum wells. This allows Dirac sur-
face states to propagate quasi-ballistically with negligible surface
scattering.

To illustrate the effect of backcattering suppression by elec-
tron-wave diffraction around surface disorder, we consider
gaussian short-range correlated disorder at the graphene edge,

Hdis =H + ξ(y)δ(x ), 〈ξ(y)ξ(y ′)〉dis =αδ(y − y ′), [20]

with α the disorder strength parameter. While the disorder spec-
trum is broad band, only the harmonics comparable to carrier
wavelengths scatter efficiently (37) whereas the contribution of
other harmonics is relatively weak (19).

In the limit of a weak disorder the mean free path can be eval-
uated by perturbation theory (SI Appendix, Disorder at the Edge).
Here we discuss the results for the zigzag surface state (case i
in Eq. 12). In this case, the mean free path is

`=
λ2
B

ζ
, ζ =

8π2α

~2v2
cot2 θV , [21]

where λB = 2π~v sin θV /εF is the carrier wavelength in the
edge mode, and εF is Fermi energy. The lengthscale ζ, propor-
tional to disorder strength, can be estimated as ζ ∼α/~2v2∼
U 2

0 a
3/~2v2∼ 1 nm, where U0∼ 1 eV is an atomic-scale poten-

tial and a ∼ 1 nm is surface roughness. For ζ�λB Eq. 21
predicts mean free path values much greater than the carrier
wavelength; the dimensionless parameter λB/ζ describes the

effect of scattering suppression by diffraction. As an illustra-
tion, for θV ≈ 1 and wavelength of order λB∼ 100 nm we obtain
the value λB/ζ ≈ 100, giving the diffraction-enhanced mean free
path as large as L∼ 102λB = 104 nm.

We note that localization effects may become important if the
disorder is strong enough. In our case, since disorder is mainly
at the surface, the behavior is expected to be quite different for
electron energies inside and outside the bulk energy gap. In the
first case, electron states with energies within the bulk gap reside
near the surface. These states couple to surface disorder rela-
tively strongly and can become localized. In the second case the
states at the surface will hybridize with the states in the bulk,
which suppresses localization due to surface disorder. In addi-
tion, as discussed above, the slow decay of electron states from
the surface into the bulk gives the surface states a large width that
allows electrons to diffract around surface disorder. Such diffrac-
tion also suppresses localization. For quasi-1D surface states,
such as those in graphene, the 1D mean free path provides a
good estimate for localization length at the energies in the bulk
gap. For 2D surface states, on the other hand, the localization
length is expected to be much longer than the mean free path
estimated perturbatively. The latter in this case sets only a lower
bound for localization length.

The Effect of Magnetic Field
Experimental detection of surface states by conventional trans-
port techniques can be challenging since the signatures of surface
states are often obscured by the continuum of bulk states (the
overlap of bulk and surface states contributions to the density
of states is illustrated in Fig. 3D). Here we consider a different
approach relying on the Landau-level spectroscopy in a mag-
netic field applied perpendicular to the surface. The signatures
of Landau levels of the states in a 3D bulk are usually soft-
ened by the momentum dispersion in the direction along the
field. In contrast, the spectrum of the 2D surface states will be
discrete. Therefore, while both the bulk states and the surface
states produce Landau levels, the spectral features such as, e.g.,
the tunneling density of states measured by scanning tunneling
microscopy will be dominated by the surface states.

To study the effect of magnetic field, we use a simple model of
electrons confined by a 2D delta-function sheet potential of the
strength proportional to θV (Eq. 18):

H =σ1vpx +σ2v (py + eBz )+ τ2σ3vpz + τ3σ3∆ + vθV δ(x ).

[22]

The states confined near the x = 0 plane can be found as evanes-
cent solutions for x > 0 and x < 0, ψ∼ exp(ipxx + ipyy −µ|x |)
(SI Appendix, Surface States in Magnetic Field). For B = 0, the
spectrum of this model coincides with the spectrum of surface
states for armchair boundary conditions:

εk =−sgn(θV ) cos θV
√

v2k2 + ∆2, k2 = p2
y + p2

z . [23]

In a nonzero magnetic field B , we obtain discrete nondispersing
levels resembling Landau levels of 2D Dirac particles:

εn =−sgn(sin θV ) cos θV
√

2veBn + ∆2, n = 0, 1, 2 . . . .

[24]

Interestingly, similar to the B = 0 solution Eq. 23, the discrete
levels exist only for one sign of energy, positive or negative.

The discrete character of the surface Landau levels as well as
their striking lack of particle–hole symmetry provides a direct
and simple diagnostic of the surface states. Further evidence can
be obtained using the property of surface states to be tunable
through changing the surface potential by side gates (Fig. 3 and
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Eq. 18). Due to a periodic dependence on the potential strength,
the electron–hole asymmetry can be inverted by reversing the
potential sign or by applying a stronger potential.

In conclusion, our key finding is that surface states are a nat-
ural attribute of a Dirac band structure, appearing in a robust
manner for generic boundary conditions. The surface states
feature a number of interesting and potentially useful proper-
ties. In particular, we predict that these states are insensitive
to surface imperfections: By diffracting around surface disorder
electron waves can propagate ballistically with abnormally long

mean free path values. These states can coexist with the bulk
states or appear within the bulk bandgap; their dispersion can
be tuned by gate potential or by magnetic field, giving rise to a
range of unique signatures amenable to a variety of experimental
probes.
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