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1 Introduction

In the present paper we consider a class of partially observed dynamical sys-
tems. As in the Rao-Blackwellized particle filter (RBPF) paradigm (see e.g.,
[Doucet et al. (2000)]), we assume the state x can be broken into two sets of
variables x = (z, r) and has the property that conditionally on z the system’s
dynamics possess geometrical contraction properties, or is amenable to such a
system by using a nonlinear observer whose dynamics possess contraction prop-
erties. Inspired by the RBPF we propose to use particles to approximate the r
variable and to use a simple copy of the dynamics (or an observer) to estimate
the rest of the state. This has the benefits of 1- reducing the computational
burden (a particle filter would sample the variable x also), which is akin to the
interest of the RBPF, 2- coming with some indication of stability stemming from
contraction (actual proofs of stability seem difficult), and 3- the obtained filter
is well suited to systems where the dynamics of x conditionally on z is precisely
known and the dynamics governing the evolution of z is quite uncertain.

2 A primer on contraction theory

2.1 Background on contraction theory

Consider a Riemannian manifold (M, g), where g denotes the metric. Consider
local coordinates. In the present paper, we will simplify the exposure by system-
atically assuming that M = Rn. The squared infinitesimal length is given by
the quadratic form:

‖dx‖2 =
∑

1≤i,j≤n

gij(x)dxidxj

The matrix G = (gij)1≤i,j≤n is called the Riemannian metric tensor and it
generally depends on x. Now, consider the continuous time deterministic system
described by the following ordinary differential equation (ODE) on Rn:

d

dt
x = f(x), (1)
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with f a smooth nonlinear function satisfying the usual conditions for global ex-
istence and unicity of the solution. For a detailed proof of the following theorem,
see e.g., [Pham and Slotine (2013)].

Theorem 1 ([Lohmiller and Slotine(1998)]) Let Jf (x) denote the Jacobian
matrix of f(x). Assume that M(x) = GT (x)G(x) is uniformly positive definite,
and that G(x)Jf (x)G−1(x) is uniformly negative definite, then all trajectories
exponentially converge to a single trajectory. Moreover, the convergence rate
is equal to λ > 0 which is the supremum over x of the largest eigenvalue of
G(x)Jf (x)G−1(x). More precisely, if a(t) and b(t) are two trajectories of (1),
we have:

dg(a(t), b(t)) ≤ dg(a(0), b(0))e−2λt,

where dg denotes the Riemannian distance associated to metric g.

2.2 Nonlinear observers for contracting systems

Consider the system (1) where x(t) ∈ RN , with partial observations

y(t) = h(x(t)), (2)

The goal of observer design, is to estimate in real time the unknown quantity
x(t) with the greatest possible accuracy given all the measurements up to current
time t. Assume that for a class of functions y(t), the dynamics

d

dt
z = f(z) +K(z, y)(y − h(z)) (3)

can be proved to be contractive with rate λ > 0. Then, the observer for the
system (1)-(2) defined by

d

dt
x̂ = f(x̂) +K(x̂, y)(y − h(x̂)), (4)

possesses convergence properties. Indeed, as the simulated x̂(t) and the true
trajectory x(t) are both solutions of equation (3), Theorem 1 applies and we
have:

dg(x̂(t), x(t)) ≤ dg(x̂(0), x(0))e−2λt.

3 The basic particle observer

3.1 The Rao-Blackwellized particle filter (RBPF)

Consider a (discrete) Markov process rt of initial distribution p(r0) and tran-
sition equation p(rt | rt−1). The variable rt is hidden, and assume we have as
observation a random variable yt at time t, which is correlated with rt. The
observations are assumed to be conditionally independent given the process rt.



The goal of discrete time filtering is to infer online the hidden variables from the
observations, that is, to compute:

p(rt | y1:t), where y1:t = {y1, · · · , yt},

or more generally p(r1:t | y1:t). Assume now, that we also want to infer another
related process zt, such that p(zt | y1:t, r1:t) can be analytically evaluated. This
is typically the case using a Kalman filter when conditionally on r the system is
linear and Gaussian. A simple version of the RBPF is given by Algorithm 1.

Algorithm 1 RBPF with prior sampling (see e.g., [Doucet et al. (2000)])

Draw N particles from the prior initial distribution p(r0)
loop

Sample from the prior

r
(i)
t ∼ p(rt | r

(i)
t−1), and let r

(i)
1:t =

(
r
(i)
t , r

(i)
1:t−1

)
Evaluate and update weights

w
(i)
t = p(yt | y1:t−1, r

(i)
1:t) w

(i)
t−1

Normalize weights

w̃
(i)
t =

w
(i)
t

[
∑

j w
(j)
t ]−1

The estimate of the expected value E (F (z, r)) of any function F is∑
i

w̃
(i)
t E

p(zt|y1:t,r
(i)
1:t)

(
F (r

(i)
t , zt)

)
Resample if necessary, i.e., duplicate and suppress particles to obtain N random
samples with equal weights (i.e., equal to 1/N).

end loop

3.2 The particle observer for conditionally contracting systems

Consider a noisy dynamical system of the form

d

dt
z = f(z, r) (5)

d

dt
r = g(r) + w(t) (6)

where f , g are smooth maps, w(t) is a process noise, and we have an initial
prior distribution π0(z, r) at time t = 0. Assume one has access to discrete time
uncertain measurements yn = h(ztn , rtn) + Vn at times t0 < t1 < t2 < · · · , and
where Vn are unknown independent identically distributed random variables with



known density l, that is, p(y | z, r) = l(y − h(z, r)). We introduce the following
definition.

Definition 1. The system (5)-(6) is said to be a contraction conditionally on z
if equation (5) is a contraction when r(t) is considered as a known input.

The rationale of our particle observer is as follows. If r(t) were known, then,
all trajectories of the system (5) would converge to each other due to the
conditional contraction properties we assume. Thus, if we call ẑ(t) a solution
of (5) associated to some trajectory {r(t)}t≥0, then asymptotically we have
p(z(t) | {r(s)}0≤s≤t) ≈ δ(z(t)− ẑ(t)), which means that contrarily to the RBPF
paradigm we can not compute the conditional distributions in closed form but

we have access to relevant approximations to them. Thus, letting (ẑ
(i)
t , r

(i)
t ) be

a solution to the stochastic differential equations (5)-(6), we have the following
approximations that stem from the partial contraction properties of the system:

p(zt | y1:t, r(i)1:tn
) ≈ δ(zt − ẑ(i)t ), p(ytn | y1:tn−1 , r

(i)
1:tn

) ≈ l(ytn − h(ẑ
(i)
tn , r

(i)
tn )).

Thus, resorting to those approximation, and applying the RBPF methodology
to the above system (5)-(6) we propose the following Algorithm 2.

Algorithm 2 The PO with prior sampling

Draw N particles (z
(1)
t0
, r

(1)
t0

), · · · , (z(N)
t0

, r
(N)
t0

) from the prior initial distribution π0(z, r)
loop

Sample (z
(i)
tn
, r

(i)
tn

) from the prior by numerically integrating the stochastic differential
equations (5)-(6) from time tn−1 to tn.
Evaluate and update weights

w
(i)
t = l(ytn − h(z

(i)
tn
, r

(i)
tn

)) w
(i)
t−1.

Numerically enforce that at least one weight is not equal to zero.
Normalize weights

w̃
(i)
t =

w
(i)
t

[
∑

j w
(j)
t ]−1

.

The estimate of the expected value E (F (z, r)) of any function F is approximated by∑
i

w̃
(i)
t F (r

(i)
t , z

(i)
t )

In particular the state is approximated by∑
i

w̃
(i)
t (r

(i)
t , z

(i)
t )

Resample if necessary, i.e., duplicate and suppress particles to obtain N random
samples with equal weights (i.e., equal to 1/N).

end loop



3.3 Some comments on the choice of model

The relevance of system (5)-(6) is debatable, for the two following reasons. First,
it might be surprising that the dynamics of z conditionally on r be deterministic,
whereas the dynamics of r be noisy. Second, because it is rare to find systems that
are naturally (conditionally) contracting. Both issues will be partly addressed in
the extensions outlined in the sequel. At this stage, we can make the following
comments regarding the first issue. Assume both equations (5)-(6) to be noisy.
Then, thanks to the contraction property, the asymptotic distribution of z(t)
conditionally on r(t) is not very dispersed if the process noise is moderate, see
[Pham et al. (2009)]. So the method may yield good results in practice. Assume
on the other hand, both equations (5)-(6) to be deterministic. Then, it is hopeless
to estimate and track efficiently the state with a (RB) particle filter, as the
state space will not be explored adequately. Indeed, because multiple copies
are produced after each resampling step, the diversity of the particle system
decreases to a few points, which can be very different from the true state. To
solve this degeneracy problem, the regularized particle filter was proposed in
[Musso and Oujdane (1998)]. Albeit debatable, this technique may yield good
results in practice. Following this route, we can postulate noisy equation (6) to
implement our particle filter.

Remark 1 Note that, here we do not deal with parameter identification, as
in e.g., [Saccomani et. al (2003)]. Although this might look similar, r(t) is not a
parameter, preventing us to directly apply the results of e.g., [Wills et. al (2008)]

4 A chemical reactor example

4.1 Retained model

Consider the exothermic chemical reactor of [Adebekun and Schork(1989)]. It
was shown in [Lohmiller and Slotine(1998)] that, if the temperature T is known,
and thus can be considered as an input, then the system is a contraction. But to
achieve best performance, and filter the noise out of the temperature measure-
ments, the temperature should be considered as a (measured) part of the state
as in [Adebekun and Schork(1989)]. This leads to a system that is not a contrac-
tion. To make our point, we even propose to slightly modify the temperature
dynamics to make it clearly unstable, yielding the more challenging following
system:

d

dt
I =

q(t)

V
(If − I)− kde−

Ed
RT (t) I (7)

d

dt
M =

q(t)

V
(Mf −M)− 2kpe

− Ed
RT (t)M2I (8)

d

dt
P =

q(t)

V
(Pf − P ) + kpe

− Ed
RT (t)M2I (9)

d

dt
T = βT + σ2w(t) (10)



where w(t) is a white Gaussian standard noise, and σ2 > 0 a parameter encoding
the noise amplitude. Letting Vn ∼ N (0, 1) a random standard centered Gaussian,
we assume discrete temperature measurements of the form:

yn = T (tn) + σ1Vn. (11)

[Lohmiller and Slotine(1998)] already proved the system is contracting condi-
tionally on T (t). Thus, we can use the method described in Algorithm 2.

4.2 Simulation results

The true system is simulated according to the equations (7)-(8)-(9)-(10) where
we turned the noise off in equation (10) (this means we started from a noise-free
system for which the RBPF would not work properly, and used the regularization
technique discussed at Section 3.3). The noisy output (11) was also simulated,
where an observation is made every 5 steps. We chose σ̃2 = 0.1. Density l is

dictated by the observation noise, that is, l(u) = 1
σ1

√
2π

exp(− u2

2σ2
1
) with σ1 = 1K.

To apply our methodology, we assume that we have plausible physical upper
bounds on the concentrations inside, and denote them by Imax,Mmax, Pmax and
we let π0 be the uniform distribution on the hyperrectangle [0, Imax]×[0,Mmax]×
[0, Pmax] with a Dirac on the measured initial temperature. In the simulation,

all those upper bounds are set equal to 4mol. q(t)V and T (t) are slowly oscillating

around 1min−1 and 300K, we have kde
+

Ed
RT (t) ≈ 0.8min−1 and kpe

+
Ed

RT (t) ≈
0.2L mol−1 min−1. We also let β = 0.01min−1.

N=15 particles are used (which results in a very cheap to implement particle
filter, as each particle is associated only to a naive observer). We resampled3 each

time the number of effective particles 1/(
∑M

1 w2
j ) drops below N/4, i.e., 25% of

the total population. The resampling step is necessary, so that all particles grad-
ually improve their estimation of the temperature, allowing the concentrations
to be well estimated in turn.

The noise is efficiently filtered and all values asymptotically very well re-
covered, although a very reduced number of particles is used (15 observers are
running in parallel) and measured temperature is noisy. See Figures 1 and 2.

5 Possible extensions and concluding remarks

Possible extensions are twofold. First, if equation (5) is noisy, one can use the
same RBPO. Using the result of [Pham et al. (2009),Pham and Slotine (2013)],
we can have an approximation of the asymptotic variance associated to the

3 i.e., draw N particles from the current particle set with probabilities proportional to
their weights; replace the current particle set with this new one. Instead of setting
the weights of the new particles equal to 1/N as in the standard methodology, we
preferred in the simulations to assign them their former weight and then normalize.



Fig. 1. Left: True concentrations (dashed lines) and trajectories of the 15 particles.
We see the effect of resampling, that refocuses the bundle of trajectories on the fittest
ones, when too many become unlikely. Right: True concentrations (dashed lines), and
estimates of the particle observer (solid lines).

distribution p(z(t) | {r(s)}0≤s≤t). Thus, a Gaussian approximation to this dis-
tribution can be leveraged to implement a RBPF. Second, if f is not contracting
conditionally on r, but, is amenable to it using an observer of the form

d

dt
z = f(z) +K(z, y, r)(y − h(z))

then the method may still be applied.

The ideas introduced in this short paper might also be applied to differen-
tially positive systems [Forni and Sepulchre(2016),Bonnabel et al.(2011)]. In the
future, we would also like to study the behavior of particle filters for systems with
contraction properties. A starting point could be to seek how to use the recent re-
sults of [Pham et al. (2009),Pham and Slotine (2013),Tabareau et. al (2010)] on
stochastic contraction.
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