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ABSTRACT 

Artificial Intelligence (AI) Support Vector Machine (SVM) 

learning algorithms have enjoyed rapid growth in recent years 

with applications in a wide range of disciplines often with 

impressive results. The present paper introduces this machine 

learning technology to the field of marine hydrodynamics for 

the study of complex potential and viscous flow problems. 

Examples considered include the forecasting of the seastate 

elevations and vessel responses using their past time records as 

“explanatory variables” or “features” and the development of a 

nonlinear model for the roll restoring, added moment of inertia 

and viscous damping using the vessel response kinematics from 

free decay tests as “features”. A key innovation of AI-SVM 

kernel algorithms is that the nonlinear dependence of the 

dependent variable on the “features” is embedded into the SVM 

kernel and its selection plays a key role in the performance of 

the algorithms. The kernel selection is discussed and its relation 

to the physics of the marine hydrodynamic flows considered in 

the present paper is addressed. 

1 INTRODUCTION 

SVM algorithms have their origins in statistical learning theory, 

functional analysis and convex optimization. Two standard 

applications of SVM involve classification and nonlinear 

regression of a dependent variable on a set of “features”. 

Regression is the pertinent application of SVM algorithms in 

the present paper which considers the development of nonlinear 

models of complex marine hydrodynamic loads. 

SVM algorithms represent the dependent variable as the linear 

superposition of a series of nonlinear basis functions which 

depend upon a set of explanatory variables or “features”. The 

mathematical form of the basis functions does not need to be 

made explicit, it is instead embedded into the form of the SVM 

kernel. In order to prevent the over-fitting of the input variables 

which may be corrupted by noise, SVM kernel algorithms 

minimize a cost function which includes an additive regulation 

term that penalizes the magnitude of the coefficients of the 

nonlinear basis function series. When the cost function is cast in 

the form of a Least-Squares quadratic penalty loss the popular 

LS-SVM algorithm is obtained. It leads to the solution of a 

linear system which may be carried out using standard matrix 

methods [1]. 

The selection of the kernel is essential for the successful 

performance of the SVM algorithms. The kernel encodes the 

covariance structure between the quantity being modeled and 

the features and is a positive definite function. This property 

brings to bear the tools of functional analysis and leads to the 

solution of a convex optimization problem which has a unique 

optimum. The positive definite Gaussian and polynomial 

kernels are popular choices and pertinent for the flow physics of 

the marine hydrodynamic flows studied in the present paper. 

SVM kernels depend on a small number of hyper-parameters 

which are determined during the algorithm learning stage by a 
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cross-validation procedure. An additional hyper-parameter in 

the regularization term of the cost function is also determined 

by the same procedure. The Gaussian kernel hyper-parameter is 

its “scale” or standard deviation which encodes the degree to 

which neighboring input features interact. For small values of 

the scale the Gaussian models a weak correlation between the 

features. For large values of the scale the Gaussian kernel 

reduces to a “flat” function which implies a nonlinear 

polynomial-like dependence of the quantity under study upon 

the features. This dependence may include linear, quadratic, 

cubic or higher-order terms which follow from a Taylor series 

expansion of the Gaussian kernel. For complex fluid flows 

encountered in marine hydrodynamics the proper value of the 

scale is not a priori known and is “learned” by the SVM 

algorithm.  

Often a large number of experimental samples is necessary for 

the training of the LS-SVM algorithm leading to the inversion 

of a large matrix. A key consideration is the numerical 

conditioning of the matrix equation to be inverted and robust 

algorithms must be developed. Positive definite kernels lead to 

matrices with positive eigenvalues which are easier to solve. An 

additional benefit of the Gaussian kernel is that its eigenvalues 

and eigenfunctions are known analytically. This permits the 

development of robust inversion algorithms even for large and 

ill-conditioned linear systems for a large number of samples 

necessary for the training of the LS-SVM algorithm for 

complex flows. These attributes of the Gaussian kernel have 

contributed to its widespread popularity. 

In marine hydrodynamics a quadratic, cubic or higher-order 

nonlinear dependence of a load upon the flow or vessel 

kinematics are quite common. Examples include forces due to 

flow separation around bluff bodies and around bilge keels in 

the roll motion problem. Such nonlinear loads are usually 

modeled by Morison’s equation with inertia and drag 

coefficients determined empirically. In the multi-dimensional 

ship maneuvering problem the hydrodynamic derivatives are 

often modelled by including linear, quadratic and higher-order 

polynomial nonlinearities. For both types of problems may be 

treated by the LS-SVM algorithm using a Gaussian kernel 

trained against experiments. This leads to a unified nonlinear 

model which includes multi-dimensional polynomial 

representations obtained as a special case for small values of the 

scale of the Gaussian SVM kernel.  

The LS-SVM treatment of the ship roll damping problem is 

carried out along the following lines. The availability is 

assumed of experimental measurements of the roll kinematics 

either from free-decay tests, forced oscillation experiments or 

the roll response record in regular or irregular waves. Invoking 

Newton’s law the hydrodynamic force time record may be 

derived from experiments as a function of the measured roll 

response kinematics defined as the “features”. The training of 

the SVM algorithm then leads to a nonlinear model of the 

hydrodynamic force as a function of the roll displacement, 

velocity and acceleration including linear and nonlinear 

hydrostatic, potential flow and viscous separated flow effects. 

Forecasting of seastate elevations and vessel responses is useful 

in a variety of contexts in the fields of seakeeping and ocean 

renewable energy. Such forecasts are valuable for the vessel 

navigation in severe seastates and the development of advanced 

algorithms for the control of offshore wind turbines and wave 

energy converters. The LS-SVM algorithm generates forecasts 

using past time records of the seastate elevation and vessel 

responses defined as “features”. Filtering of these records is not 

necessary, circumventing the undesirable phase shift that may 

result from the use of band-limiting filter transfer functions. 

Wave forecasts using the LS-SVM algorithm using the Gaussian 

kernel are found to perform consistently better relative to the 

advanced auto-regression algorithms that require filtering. 

Accurate forecasts of seastate elevation records and vessel 

responses based on towing tank data were generated 5-10 

seconds into the future. 

In the present paper the basic attributes of the LS-SVM 

algorithm are summarized. Its performance is then illustrated 

for the modeling of the nonlinear hydrodynamic forces in the 

roll motion problem from free decay tests and the forecasting of 

seastate elevations based on tank data. 

2 SUPPORT VECTOR MACHINE ALGORITHMS 

The present section reviews the basic attributes of the SVM 

algorithm establishing connections with the marine 

hydrodynamic flows studied in subsequent sections. Detailed 

presentations of the SVM algorithms may be found in [1] and 

[2]. 

2.1  Support Vector Machine Regression 

Consider a physical quantity y dependent upon a set of k 

features cast in vector form 1 2, ,..., )( k Tx x xx . For example 

y may represent the seastate elevation at the current time step 

and 1 2, ,..., )( k Tx x xx  the record of the values of y  over 

k past time steps. Alternatively y  may represent the roll 

moment in a free decay test of a ship section obtained in terms 

of the roll kinematics by invoking Newton’s law. In his case the 

k features 1 2, ,..., )( k Tx x xx are the contemporaneous values 

of the roll displacement, velocity and acceleration, i.e. k=3. If 

memory effects are important, past values of the roll kinematics 

must be included in the features. In this case each of the k 

features with k=1,..,3, is a vector with dimension n, where n is 

the number of prior time steps over which the roll displacement, 

velocity and acceleration have been recorded. In the case of the 

wave elevation forecasting problem, the dependent variable is 

the current wave elevation and the scalar “features” are k past 

values of the wave elevation. In the case of the roll problem, the 

dependent variable is the roll hydrodynamic moment which 
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depends on k contemporaneous scalar “features” with k=1 being 

the displacement, k=2 the velocity and k=3 the acceleration. If 

memory effects are accounted for each of the k features with 

k=1,2,3 are vectors with dimension n, where n is the number of 

previous time steps over which their values has been recorded. 

The SVM algorithm can readily handle a large number k of 

scalar or vector features with a large vector dimension n. 

Moreover in order to train the SVM algorithm a sufficiently 

large number of “samples” N for each feature, scalar or vector, 

must be available. In the present context these are obtained 

from experimental measurements. The magnitude of k, n and N 

may be large and their relative size is not restricted. An 

extensive literature exists illustrating the development of SVM 

algorithms in a wide range of disciplines for very large of 

values of k, n and N depending on the application. 

The SVM regression algorithm generates a nonlinear physical 

model for y in terms of the vector 1 2, ,..., )( k Tx x xx . The 

number of features k, scalar or vector, that are pertinent to 

include may be initially unknown and it is often appropriate to 

air on the side of caution and include more features than may be 

apparent by the flow physics. The SVM algorithm is often used 

in a subsequent stage to “prune” the features and reduce them to 

a compact subset in a parsimonious SVM model of acceptable 

accuracy.  

The SVM nonlinear regression assumes the following 

functional dependence of y on x : 

1

( )
M

j j

j

by w 


  x   (1) 

The series expansion in (1) involves M unknown weights 

jw and basis functions ( )j x . The constant b is the bias or 

the mean value of the quantity being modeled and is also 

assumed unknown. The magnitude of M is a priori unknown 

and may be infinite. It does turn out that M does not need to be 

specified in most implementations of LS-SVM. The algorithm 

is also initially silent about the mathematical form of the basis 

functions and it turns out that the statement of their explicit 

form is not necessary. This is a key property of the SVM 

algorithm discussed later in this section.  

Assuming that a sample of training data 1{( , )}N
i iy ix is 

available the LS-SVM algorithm minimizes the following cost 

function: 

2 2
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 denotes the L2 Euclidean norm,   is the regularization 

parameter which controls the trade-off between the bias and 

variance of LS-SVM model and e is the error vector, 

1 2, ,..., )( T
Ne e ee . 

Eq. (2) and (3) form a standard optimization problem with 

equality constraints. The Lagrangian of this problem is: 

1
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Where, i  are the Lagrange multipliers and a compact vector 

notation for the weights jw and basis function ( )j ix has been 

adopted. 

According to the Karush-Kuhn-Tucker Theorem, the conditions 

of optimality are: 
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Cast Eq. (5) into a linear matrix equation: 

1

00 b

 

     
     
      

T

1

y1 K I
  (6) 

Where, (1,1,...,1)T1 . I is the identity matrix. 

1 2, ,... )( T
Ny yyy  . , 1( )( ) N

i jk  i jK ,xx  is called the 

kernel matrix, and )( ( ) ( )Tk  i j i j,x x xx  . The length of 

the vector ( )T ix is M and the dimensions of the square kernel 

matrix K are NxN, where N is the size of the training sample. 

It follows that using the LS-SVM regression model the quantity 

y can be expressed in the form: 

1
) ( , )( i i

N

i
y k b


 x x x   (7) 

From (6) and (7), it can be seen that neither the basis 

functions ( )j x  nor their number M in (1) need to be specified 

explicitly. All LS-SVM requires is the inner product of ( )
j

 x , 

i.e., the kernel function )(k i jx ,x . This property is known as 

the “kernel trick” and is a key attribute of the SVM machine 

learning algorithm.  
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Some widely used kernels are the linear, polynomial and 

Gaussian functions. In this study, the popular Gaussian kernel 

2 2( ) exp( / )k  x,z x - z   (8) 

and the polynomial kernel 

( ) ( )T dtk  zx, z x   (9) 

are used.   

In (8),   denotes the 2-norm of a vector.   is the “scale” 

that determines the width or variance of the Gaussian kernel. d 

is the degree of the polynomial kernel and t  is its bias term. 

More generally, the value of d may be positive or negative, it 

does not need to be an integer, but its value and that of the bias  

must be such that the kernel (9) is positive definite ([2]). 

Expression (7) provides an explicit nonlinear model for the 

dependent quantity )(y x . The summation in (7) is over the 

number of samples N used to train the SVM algorithm with the 

values of the sample features , 1,...,i i Nx which appear in 

the second argument of the kernel. The Lagrange multipliers 

i are obtained from the solution of the linear system (6) and 

are known in the SVM literature as the “support vectors”.  

The hyper-parameters ( , )  and ( , )d t are calibrated to 

optimal values during the training and validation stages of the 

SVM nonlinear regression using a sufficiently large sample of 

features. As soon as the values of the hyper-parameters have 

been determined the nonlinear model (7) may be used either to 

generate forecasts or to represent complex hydrodynamic 

dominated loads dependent on the selected set of features. 

2.2  Kernel Selection 

The selection of the Gaussian kernel appears at first to be 

somewhat arbitrary. Moreover its connection to the set of basis 

functions ( )j x has not yet been made explicit. Assume that the 

physical quantity under study has a well-defined mean and that 

is otherwise oscillatory around its mean, a common occurrence 

in marine hydrodynamic applications dealing with signals that 

are deterministic or quasi-stationary and stochastic. In such 

cases appropriate basis functions would be a set of orthonormal 

functions in a multi-dimensional space with dimensions equal to 

the number of features. 

The connection between the kernel and the basis functions in 

the SVM algorithm is established by Mercer’s theorem ([2]) 

which states that for a positive definite kernel: 

1

( ) ( ) ( ) ( )
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j j j
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j j j

j

k d
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x, z z z x

x, z x z

  (10) 

The solution of the first kind integral equation (10) is in 

principle not available in closed form nor is the a priori 

selection of the kernel evident. A reasonable selection of the 

basis functions capable to accurately describe the physical 

quantity under study according to (1) would a reasonable 

starting point. For such a basis function set the kernel would be 

the generating function as indicated by the second equation in 

(10). This would also require knowledge of the eigenvalues. 

Moreover the robust performance of the LS-SVM algorithm is a 

consequence of the positive definite kernel which guarantees a 

unique solution of the optimization problem (2). Within the LS-

SVM algorithm the positive definitiveness of the kernel matrix 

K in (6) makes available robust algorithms for the inversion of 

large linear systems that arise when a large number of training 

samples is necessary. 

For the Gaussian kernel the solution of (10) is available in 

closed from in any number of dimensions. The basis functions 

( )j x are the generalized Hermit functions which are 

orthogonal over the entire real axis and are known to be a 

robust basis set for the representation of the wide range of 

sufficiently smooth functions. This is the case for the marine 

hydrodynamic applications considered in the present paper. 

Consider the multi-dimensional Gaussian kernel assuming K 

un-correlated features. The explicit solution of (10) takes the 

form: 

2 2 2 2 2 2
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Where, 2 21/k k  , and 
k  refers to the constant 

determining the scale or variance of the k-th feature of Gaussian 

kernel (as in Eq. (8)). The cross-correlation of the features is 

assumed to vanish following a Principal Components Analysis 

or singular value decomposition of the covariance matrix of 

input feature dataset. 

The eigenvalues and eigenfunctions in (11) are available in 

closed form: 
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Where, )•(nH is the classical Hermite polynomial of degree n. 

j are the integral weights which are related to the global scale 

of the problem. 
j  are the scale parameters which are related 

to the local scale of the problem. ,,
jj j k    are auxiliary 

parameters defined in terms of ,j j  . Refer to [3] for details 

on the derivation of (12) & (13). 

This formulation of (12) and (13) allows us to select different 

shape parameters 
j  and different integral weights 

j  for 

different space dimensions (i.e., K may be an anisotropic 

kernel), or we may assume that they are all equal (i.e., K is 

spherically isotropic). 

The eigenvalues of the Gaussian kernel are seen in equation 

(12) to be positive therefore the matrix of the linear system (6) 

is positive definite. The basis functions ( )k x  in (13) are the 

product of an exponential term and Hermite functions where 

both are dependent on the auxiliary parameters 
k  which must 

be properly selected. While these parameters do not appear 

explicitly in the definition of the kernel they affect the condition 

number of the matrix in equation (6). They must be properly 

selected to determine the rank of the matrix K and in order to 

develop a robust inversion algorithm for the inversion of large 

linear systems (6) that may be ill-conditioned. More details on 

the robust inversion of (6) are presented in [3]. 

The set of equations (11)-(13) underscore the popularity of the 

Gaussian kernel in LS-SVM applications. The reason is that the 

orthonormal Hermite functions are known to be a robust basis 

set for the approximation of a wide range functions on the entire 

real axis. These properties of the Gaussian kernel have led to 

the use of the LS-SVM algorithms in wide range of problems 

and underscore its popularity.   

In a number of LS-SVM applications a polynomial kernel is 

used instead of the Gaussian. In the context of the marine 

hydrodynamics applications this is equivalent to replacing the 

Gaussian in the right-hand side of (7) by a polynomial of 

( , )ix x which may involve linear, quadratic, cubic and higher 

order terms. On closer inspection of (11) this is equivalent to 

expanding the Gaussian kernel into Taylor series for small 

values of the inverse scales
2

k .  

A polynomial representation of the physical 

quantity )(y x would for example be justified when developing 

an LS-SVM model for a viscous load in terms of the ambient 

flow kinematics, the Morison drag formula being an example. 

Another example involves the representation of the 

hydrodynamic derivatives in the ship maneuvering problem by a 

high-order polynomial of the ship kinematics. It follows from 

the Taylor series expansion of (11) that the polynomial kernel 

with an integer power d is related to the Gaussian kernel for 

small values of
2

k for some or all of the k features. Therefore 

the use of the polynomial kernel may be unnecessary and 

emphasis must instead be placed upon the proper calibration of 

the parameters 
2

k for each of the k features depending of the 

physics of the flows under study. In a number of applications 

the same value of 
2  for all features is selected simplifying 

the calibration process often with very satisfactory results. In 

marine hydrodynamics applications the selection of small 

values of 
2

k  for some features may be appropriate but not for 

others, leading to a kernel that is a mixture of polynomial like 

factors for some features and exponential factors for others. 

These choices will be determined by the cross-validation 

procedure during the training of the LS-SVM algorithm. 

3 SHIP ROLL HYDRODYNAMICS MODELLING VIA 

SVM REGRESSION 

The hydrodynamic modelling of ship roll motions is of great 

interest and is significantly affected by various nonlinear 

effects. The LS-SVM regression algorithm is applied in this 

section to study the modelling of ship roll hydrodynamics. The 

study is based on free decay tests in a tank experiment of a 

barge with and without liquid cargo in spherical tanks. More 

detailed information about the tank tests is described in [4]. 

3.1  Free Decay Tests 

For a free decay test of the ship rolling motion, the 1DOF 

equation of motion can be expressed as: 

( , , ) 0hI F K         (14) 

Where, I is the moment of inertia of the ship hull structure and 

K is the hydrostatic restoring coefficient. hF  denotes the 

hydrodynamic moment of the ship roll motion, which includes 

contributions from added mass, damping and nonlinear 

restoring effects. , ,    are the ship roll displacement, 

velocity and acceleration, respectively. 

From Eq. (13), the hydrodynamic force hF  in a free decay test 

can be derived from: 

( , , ) ( ( ) ( ))hF t K tI         (15) 

The displacement ( )t  was directly measured in the 

experiments. The velocity and acceleration ,   are obtained 

from a finite difference approximation. 

The free decay tests were conducted under three different 

conditions (Table 1). The sketch of the experimental set-ups [4] 

is shown in Figure 1. 
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TABLE 1. LOAD CONDITIONS OF THE FREE DECAY TESTS 

Case 

NO. 

Initial displacement 

(degrees) 

Liquid or 

solid cargo 

With or without 

bilge keels 

1 10 Solid No Bilge keels 

2 10 Solid Bilge keels 

3 10 Liquid Bilge keels 

  

 FIGURE 1. SKETCH OF EXPERIMENT SET-UPS [4] 

3.2  SVM Regression Model 

Clearly, the liquid cargo or the bilge keels would incite various 

different nonlinear flow effects and loads. The original time 

series of the free decay tests under the three loading conditions 

thus have different periods and decaying rates accordingly 

(Figure 2). When modelled using traditional nonlinear damping 

models as in [4], the nonlinear effects of the liquid cargo motion 

or bilge keels would be approximated using different linear and 

nonlinear damping coefficients. In the SVM regression model, 

the different flow effects would result in different optimized 

nonlinear kernel selections and hyper-parameter values.  

 

FIGURE 2. MEASURED TIME SERIES OF SHIP ROLL FREE 

DECAY TESTS 

The total number of time samples used in each case is 400, 

among which a random selection of 300 samples are used to 

train the SVM hydrodynamic models and the rest 100 samples 

are used as test cases to validate the model.  

The ship roll displacement, velocity and acceleration are used 

as features (i.e., ,[ ],  x ) in the SVM algorithm. Both the 

polynomial kernel (Eq. 9) and Gaussian kernel (Eq. 8) have 

been tested. The hyper-parameters of the SVM regression 

model are optimized via a 10-fold cross-validation including the 

regularization parameter  ,  the Gaussian kernel width 

parameter   or the power and bias ,d t  of the polynomial 

kernel. Intuitively the polynomial kernel implies that the 

hydrodynamic force is a high-order polynomial function of the 

ship roll displacement, velocity and acceleration and the 

Gaussian kernel implies a more general nonlinear dependence.  

The results of the training and test data sets are shown in Figure 

3 for each of the three cases. From these results, the SVM 

regression model can capture the nonlinear mapping relations 

between the ship roll kinematics and the corresponding 

hydrodynamic forces with appropriate training under all three 

scenarios. The power of the polynomial kernel optimized via 

cross-validation is 4 ~ 6.   

 

 

(A) TRAINING AND TEST RESULTS OF CASE 1: SOLID 

CARGO, NO BILGE KEELS 
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(B) TRAINING AND TEST RESULTS OF CASE 2: SOLID 

CARGO, WITH BILGE KEELS 

 

 

(C) TRAINING AND TEST RESULTS OF CASE 3: LIQUID 

CARGO, WITH BILGE KEELS 

FIGURE 3. SVM REGRESSION RESULTS 

The SVM regression models can be used to further study the 

complex flow physics of the hydrodynamic loads induced by 

bilge keels or the motion of the liquid cargo. From Eq. (7) and 

Eq. (15), the hydrodynamic force model learned by the SVM 

algorithm from separate free decay tests can be expressed as: 

1 1

2 2

( ) ( , )

( ) ( , )

h i

i

hl i

i

s b

F

F K

K b





 







i

i

x x x

x x x
  (16) 

For example, ,hs hlF F  denote the hydrodynamic force models 

for the vessel with solid cargo and liquid cargo obtained from 

separate free decay tests. Analogous force models have been 

derived above for the vessel with solid cargo, without and with 

bilge keels from separate free decay tests. Equation (16) 

obtained from the training of the SVM algorithm for each free-

decay test reveals a nonlinear dependence of the respective 

hydrodynamic forces on the features, namely the vessel 

displacement, velocity and acceleration of the feature samples 

used to train the algorithm. This dependence includes nonlinear 

hydrostatic effects, and viscous separated flow effects upon the 

vessel roll added-moment of inertia and damping mechanisms. 

Equations (16) are nonlinear models of the hydrodynamic force 

expressed as functions of the current values of the vessel 

kinematics x and the values
ix of the N feature samples 

measured in the free decay test. Assume that the model (16) is 

valid in a more general setting where the current vessel 

kinematics x corresponds to a forced oscillation experiment or 

the interaction of the vessel with ambient waves. In this 

setting
ix are fixed at their values obtained from the controlled 

free decay tests and are constants of the models (16). The model 

(16) may be used to extract more information about the physics 
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of the individual force mechanisms associated with the flow 

around bilge keels and due to liquid cargo.  

Taking the difference of the hydrodynamic forces derived from 

the two forced oscillation tests, one with solid and the second 

with liquid cargo, the contribution of the hydrodynamic forces 

due to the liquid cargo motion can be derived as: 

1 2( ) { ( ) ( )}i i

i

F K K b     i i
x x,x x,x   (17) 

A similar derivation applies to study the hydrodynamic effects 

of bilge keels. The differential force model (17) may be further 

validated against independent experimental data and will be the 

subject of future studies.  

4 SHORT-TERM WAVE ELEVATION FORECAST 

The short-term forecast of wave elevations is a critical issue to 

various operational or control problems for ships, offshore 

platforms and ocean renewable energy systems [5]. 

The implementation of the LS-SVM regression for the 

prediction of wave elevations considers a one-step ahead 

prediction for a time series using the nonlinear autoregressive 

model first: 

1 1 1( , ,..., )t t t t df         (18) 

Where, 
t  denotes the sampled time series. d is the order of 

autoregressive model. 

In the context of the LS-SVM, the training data 1{ }, trainingN

i iy ix  

are formatted as: 

1 1

1

[ ,..., ],
i i i

i

t dt t

i ty

  



  







ix
  (19) 

Where, trainingN  is the number of the data sets, or “samples”, 

used in the training process.  

Denote the current time as ct , then for the one-step ahead 

prediction, the input and output in Eq. (7) is: 

1 1

1

, ,...,[ ]
c c c

c

dt t t

ty

  



  







x
  (20) 

To achieve multi-step ahead prediction, one only needs to 

repeat the one-step ahead prediction multiple times, substituting 

the output iy  in Eq. (17) as 
i kt   in the training step and 

similarly y  in Eq. (18) as 
c kt   in the forecast 

( 1,2,..., forecastk N  ). 

Two wave records under different sea states measured in tank 

tests are used in this study to validate the forecast performance 

of the SVM regression algorithm. The sampling rate of the 

wave records is 0.495 seconds and the forecast horizon is 5 

seconds.  

The Gaussian kernel is chosen for the forecast algorithm, and 

both hyper-parameters   and   are optimized through 10-

fold cross-validation as well. The order of the autoregressive 

model d and the number of training samples trainingN  are 

determined based on sensitivity studies to obtain the most 

consistent and robust results. The order of the autoregressive 

model corresponds to around 1~2 typical wave periods and the 

number of training samples is equivalent to about 50~60 wave 

periods. 

The Root-Mean-Square (RMS) error of the forecasted signal is 

defined as: 

1

21
 | |

k k k

N
RMS error

N
 


    (21) 

Where, k  is the forecasted wave elevation. k  is the 

original wave elevation. To better evaluate the forecast 

performance, the RMS error is normalized using the significant 

wave height Hs. 

Three 300-second segments of the original wave records are 

forecasted for the two sea states separately. The statistical 

results of the forecast error are summarized in Table 2. The 

overall RMS error of the entire forecasted signal of the three 

segments is summarized. Besides, the maximum RMS error for 

each five-second forecast horizon is listed as a measure of 

worst-case performance. Comparisons of the original and 

forecasted wave elevations of one segment are shown here to 

illustrate the forecast performance (Figure 5 and Figure 6). 

TABLE 2. STATISTICAL RESULTS OF THE FORECAST 

ERROR 

Sea state 
Overall RMS 

Error/Hs (%) 

Maximum 5-second 

RMS Error /Hs (%) 

Sea state 1:  

Hs=1.7m, Tp=8.7s 
13.16 32.33 

Sea state 2:  

Hs=4.5m, Tp=11.8s 
12.74 32 
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FIGURE 5 SEA STATE 1: RMS ERROR = 12.8% HS 

 

FIGURE 6. SEA STATE 2: RMS ERROR = 12% HS 

All tested records are the original measured wave records 

without any filtering. The real-time measured wave elevations 

contain unknown noise. To forecast a time series, the challenge 

is to learn higher frequency components of the signal itself 

while canceling noise simultaneously. This can be interpreted as 

finding the optimal balance between overfitting the model 

during training in sample and achieving the best forecasts out of 

sample. 

From the results shown in Table 2 and Figure 5~Figure 6, the 

LS-SVM regression method can forecast the real-time wave 

elevations 5 seconds into the future with good accuracy. 

Furthermore, its performance is consistent and robust regardless 

of the noise ratio or the band-width of the signal.  

5 DISCUSSION AND CONCLUSIONS 

In this study, the SVM regression algorithm is thoroughly 

reviewed. Two promising aspects of its applications are studied 

in this paper: to carry out the physical modelling of complex 

marine hydrodynamic flow problems and to forecast real-time 

noisy signals in a seastate.  

Through an appropriate training process combined with convex 

optimization schemes, the SVM regression method can produce 

nonlinear mapping relations from the “features” to “targets” 

with great accuracy for both the modelling (i.e., interpolation) 

and the forecast (i.e., extrapolation) problems. The kernelized 

method itself and the optimization on hyper-parameters through 

cross-validation have both enhanced its generalization 

capability.  

As a result, it is able to model the ship roll hydrodynamics with 

different loading conditions and ship configurations. Moreover 

its performance on the forecast of real-time wave elevations is 

also consistent and robust with good accuracy. 

The hydrodynamic modelling of the ship roll motions can be 

further applied and extended to the maneuvering or seakeeping 

problems in the presence of irregular waves. Under such 

scenarios, the real-time prediction of the wave elevations and 

the physical modelling of ship hydrodynamics can be combined 

to better predict or improve the ships’ maneuvering or 

seakeeping performance and will be the subject of future 

studies. 
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