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Abstract

Streams shape landscapes through headward growth and lateral migration. When these streams

are primarily fed by groundwater, recent work suggests that their tips advance to maximize the

symmetry of the local Laplacian field associated with groundwater flow. We explore the extent

to which such forcing is responsible for the lateral migration of streams by studying two features

of groundwater-fed streams in Bristol, Florida: their confluence angle and their curvature. First,

we find an anomalously wide 120◦ confluence angle within ∼ 10 m of the stream junctions and

show that this wide angle maximizes the symmetry of the groundwater field near the junction.

Second, we argue that streams migrate laterally within valleys and present a new spectral analysis

method to relate planform curvature to the surrounding groundwater field. Our results suggest

that streams can migrate laterally in response to fluxes from the surrounding groundwater table,

providing evidence of a new mechanism that complements Laplacian growth at tips.

1 Introduction

River networks form captivating geometries, but their present-day position often obscures the

rich history of their growth and evolution (Ritter et al., 2011). Fortunately, the processes

that shape this history, such as the migration of river bends (Hickin and Nanson, 1984;

1



Bierman and Montgomery, 2013), stream capture (Howard, 1971b; Willett et al., 2014),

and confluence movement and development (Carey et al., 2006; Unde and Dhakal, 2009),

often leave behind morphological evidence. However, such processes have not been well-

studied for groundwater-fed streams. In such landscapes, reemerging groundwater erodes

surface grains by sapping and undermining hillslopes (Dunne, 1990; Howard and McLane,

1988), forming shallow streams and steep ravines around them. These streams advance in

a planimetric direction that has been shown to be largely determined by the shape of the

surrounding groundwater field rather than dynamics within the stream (Devauchelle et al.,

2012; Petroff et al., 2013). In particular, recent work suggests that this advance maximizes

the symmetry of the local groundwater field (Cohen et al., 2015; Devauchelle et al., 2017).

For a confluence, this predicts an angle of 2π/5 = 72◦ between confluent streams, and these

observations have been observed in the planimetry of a groundwater-fed channel network in

Bristol, Florida (Devauchelle et al., 2012).

However, there is no indication that the current position of channels within valleys in

such networks represents the history of their growth. We therefore consider a third phase of

growth: lateral stream rearrangement. We suggest that this rearrangement is also influenced

by the surrounding groundwater field. In particular, we hypothesize that lateral migration is

driven by variable flux to either side of a stream and the subsequent filling-in of old stream

paths through soil creep. Here we study two morphological features of a groundwater-fed

river network to constrain the extent to which this groundwater field can describe network-

wide morphology: confluences and planform curvature.

This rearrangement may be of wider interest, both observationally and theoretically.

First, recent work has demonstrated that an average branching angle of 72◦ appears in humid

climates (Seybold et al., 2017), suggesting that the influence of groundwater on river planform

morphology may be widespread wherever shallow groundwater is present. Second, as we will

shortly explain, the height squared of the groundwater table solves Poisson’s equation and,

close to the streams, Laplace’s equation. Because these streams can be approximated as
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effectively one-dimensional, their advance can be understood as an example of thin-finger

Laplacian growth (Gubiec and Szymczak, 2008; Carleson and Makarov, 2002; Cohen et al.,

2015). Our results therefore present a novel mechanism for and example of lateral migration

of a thin-finger boundary in response to a Laplacian field.

In what follows, we present evidence of this rearrangement from a network of streams in

Bristol, Florida and discuss how it may arise. We first review a theoretical framework that

gives the shape of the groundwater table and the 72◦ branching angle. We also present an av-

eraging scheme that reveals a striking 120◦ angle near the junctions of first-order confluences

in Bristol, Florida. We then present a model for the migration in response to asymmetry in

the groundwater field that predicts the observed deviation. Next, we show how the spectral

analysis of streams can differentiate between clockwise and counter-clockwise downstream

flow, and we use this method to find a length scale of curvature fluctuation that agrees

with the length scale of the confluence deviation. Finally, we find evidence for network-wide

river migration, suggesting that forcing from groundwater may influence stream planimetry

throughout the network.

2 Background

2.1 Groundwater flow

Groundwater-fed channels advance as reemerging groundwater erodes material, causing the

intersection point between the groundwater table and the ground to retreat, thereby ex-

tending the channel (Dunne, 1990). We begin by reviewing a theoretical framework that

can describe these dynamics. Consider a lone channel advancing in a groundwater field.

Pressure gradients from the surrounding groundwater table determine where and how the

groundwater flows into this channel (Darcy, 1856; Polubarinova-Kochina, 1962). When these

gradients are hydrostatic and flows are approximately horizontal, groundwater flux q (per

unit length in the horizontal plane) can be be simply described through Darcy’s law in the
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Dupuit approximation (Darcy, 1856; Dupuit, 1863; Bear, 1972):

q = −kh∇h, (1)

where k is hydraulic conductivity and h is the height of the groundwater table. Mass conser-

vation between flux out of the groundwater table and precipitation into it yields Poisson’s

equation for h2 (Bear, 1972):

∇2h2 = −2P

k
, (2)

where P is the precipitation rate. Sufficiently close to a stream, precipitation P can be

neglected, yielding Laplace’s equation (Devauchelle et al., 2012; Petroff et al., 2013):

∇2h2 = 0 (3)

This equation can be solved around a real channel network, and this solution has been shown

to accurately predict the shape of the water table (Abrams et al., 2009) and flow into the

channel network (Petroff et al., 2011).

2.2 Growth direction

The solution to (3) can be combined with a growth hypothesis to predict how the channels

grow forward. Recent results (Cohen et al., 2015; Devauchelle et al., 2017) suggest that

streams grow in a direction that can be equivalently described by three growth hypotheses:

streams maintain symmetry of the groundwater table around the spring as they grow, streams

grow in the direction of the streamline entering the spring, and streams grow in the direction

of maximum flux entering the tip. When a channel develops a confluence upstream, the

streamlines enter the springs without curving when the angle between the confluent streams

is 72◦ (Devauchelle et al., 2012; Petroff et al., 2013). If streams advance at an angle narrower

than 72◦, the streamlines entering the two springs will bend away from each other; if streams
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Figure 1: Streamlines around a confluence with an angle of 2π/5 between confluent streams.
The tip locations are marked as red dots. The streamlines entering the tips are indicated in
red, while all other streamlines are black. The stream is blue.

advance at an angle wider than 72◦, the streamlines entering the springs will bend toward

each other (Devauchelle et al., 2012; Petroff et al., 2013). The 72◦ confluence therefore can be

considered a stable fixed point for stream advance (Devauchelle et al., 2017). An illustration

of such a confluence and its streamlines are shown in Figure 1.

This predicted shape agrees with the average angle at which confluent streams join in

a river network in Bristol, Florida, determined by fitting individual streams to straight

lines (Devauchelle et al., 2012). However, as we will demonstrate, real confluences deviate

from this theory. We now proceed to briefly describe the field site used and methods employed

to this end.

3 Confluence migration

3.1 Wide angle confluences in Bristol, Florida

Confluences are ubiquitous in river networks, but the often sedimentologically complex dy-

namics that form them thwart attempts to construct a unifying theory for their development.

River confluence geometry can be influenced by a number of parameters: relative flow mag-
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Figure 2: A confluence in the Apalachicola river network in Bristol, Florida. The white lines
indicate the location of the streams with arrows denoting the flow direction.

nitudes and the depth of the deepest point along a stream bed (thalweg incision) (Kennedy,

1984), the overall power exerted by the network (Howard, 1971a), fluid and sediment trans-

port dynamics (Best, 1988), scour depth (Mosley, 1976), among others. However, these

factors may not be the primary factors influencing migration in landscapes formed primarily

through erosion by groundwater reemergence.

We study streams from a network of groundwater-fed streams located on the Florida

panhandle. These rivers are overlain by homogeneous sediment comprised primarily of un-

consolidated quartz sand (Abrams et al., 2009) which rests atop a layer of impermeable

clay (Schumm et al., 1995). The high hydraulic conductivity k ∼ 10−4 m s−1 of such clean,

unconsolidated sand causes rainfall P ∼ 5× 10−8 m s−1 to be quickly absorbed, prohibiting

surface runoff (Abrams et al., 2009). This supports a persistent water table in the subsur-

face. We first consider only first-order streams (those without any upstream confluences).

These streams are shallow, with little evidence of scouring or deposition, negligible difference

in bed height (bed discordance), minimal difference in discharge, and negligible suspended

load (Schumm et al., 1995); these properties make this field site ideal to study the influence

of groundwater seepage in isolation from factors that typically influence confluence geometry.

An example of such a confluence is shown in figure 2. These streams are roughly ∼ 20 cm

6



6m

0 10 m

D

6m

B
is

e
c

to
r

superimpose

rotate

average
6m

A
B

C

Figure 3: An illustration of our confluence averaging method. (a) A first-order confluence,
(b) rotated along its bisector, with (c) a few of these streams superimposed. (d) All 1225
first-order confluences shown in grey, set against 72◦ lines in red. We illustrate the averaging
scheme in the annulus: we take radial slices from confluence junctions and average the polar
angle for each stream within these slices.

(a)

6m

(b)

Figure 4: (a) Average shape of 1225 confluences in our network, shown in blue against a 72◦

confluence (red). The light blue shaded region around these lines (hidden mostly by the line)
indicates the standard error of the mean. Each point along the trajectory here represents the
average of 1300 observations. A small resolution anomaly occurs in these averaging schemes
close to the junction due to the limit of our grid resolution (1.2 m) and should be neglected.
(b) The same data from (a) transformed to polar coordinates to demonstrate the behavior of
the polar coordinate θ as measured from the junction. The previously mentioned resolution
anomaly over the first 1.2 meters is omitted.

in width and ∼ 1 cm in depth (Devauchelle et al., 2010).

We extracted the location of streams in Florida by thresholding the curvature of topo-

graphic contours, obtained from laser altimetry data with a horizontal resolution of 1.2 m

and a vertical resolution of about 5 cm (Devauchelle et al., 2012), as outlined by Devauchelle
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Figure 5: (a) Spatially averaged curves (binned by the same mechanism as in figure 3). Each
point represents the average of 250 points. (b) The maximum distance D from the 72◦ lines
against the average length L of these streams. The error bars in L indicate the standard
deviation and the error bars in D indicate standard error of the mean. The inset on the top
left illustrates the measurement D.

et al. (2010). We ordered our channels according to Horton-Strahler ordering (Horton, 1945;

Strahler, 1952) and aligned first-order confluence pairs along their bisector, as determined

by the sum of the vectors obtained from regression of each of the two confluent streams. To

obtain angle as a function of distance from the junction, the aligned channel coordinates

were converted to polar coordinates, and angle was averaged for each stream as a function

of distance from the junction, as illustrated in Figure 3.

A network-wide averaging of 1225 confluences from our field site by this method is shown

in figure 4(a), where each point represents an average of points within a radial slice. Fig-

ure 4(b) quantifies the angle as a function of distance from the junction by transformation

of the shape in figure 4(a) to polar coordinates. We note that the shape exhibits a wide

angle deviation (∼ 120◦) from the predicted 72◦ angle near the junction. We note that this

averaging scheme is not necessarily representative of the archetypal groundwater-fed stream

confluence shape, but a visualization of where channels are located on average.

There are three symmetric geometric adjustments that may give rise to this wide angle
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deviation: (1) headward growth in a direction that follows the deviant trajectory, (2) move-

ment (advance) of the junction, or (3) lateral migration of the channel after growth. We

hypothesize that the lateral migration of channels is responsible for the deviation from 72◦

we observed in figure 4. The average channel location therefore represents a balance between

migrational forcing and confinement by valley sidewalls. We therefore assume that figure 4

represents a statistical steady-state configuration.

To investigate these assumptions, we repeat the averaging scheme of Figure 4 for channels

sorted by arclength between spring and junction, precluding particularly small (< 25 m)

and large (> 120 m) channels from this analysis. Channels averaged in this manner are

shown in Figure 5, where different average channel lengths correspond to different colors. As

channel length increases, the size of the deviation from the 72◦ lines increases (figure 5(b)),

which suggests that the strength of confinement within valleys decreases with channel length.

This is consistent with confinement caused by diffusion of the valley sidewalls, which are

steepest near the springs. This observation will be discussed further when we talk about the

characteristic scales associated with network-wide fluctuations in curvature.

3.2 A mechanism for lateral migration

We hypothesize that forcing from an asymmetric groundwater field downstream is responsible

for this lateral stream migration, as streams adjust to the flux difference from their two sides.

While self-similar branches with a 72◦ angle between them have a locally symmetric field

around their tips, this field is not symmetric downstream from the tips. An illustration of

this asymmetry is shown in figure 6(a). Consider again the confluence geometry in which the

two confluent streams are finite and mirror symmetric about a third, semi-infinite stream

downstream. Let α be the angle between these two finite branches. Denote the region

between them as the “inside” and the regions between each branch and the semi-infinite

branch as “outside,” as labelled in Figure 6(a). We reference these two regions with the

subscripts i and o, respectively. The flux from the inside is therefore Qi(s) and, from the
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Figure 6: (a) Illustration of the flux asymmetry into stream confluences branching at an
angle of 72◦. The parent channels (oriented vertically) extend infinitely. The density of
streamlines indicates the flux density. The uneven streamline spacing downstream of the
tips suggests that the field is asymmetric. The shaded region is the difference between the
fluxes into these two sides, indicating that the flux is larger on the shaded side. The orange
and blue colors indicate association with the inside of the angle and the outside, respectively.
(b) The same illustration as (a) but with a confluence angle of 120◦. (c) Flux jump [Q] as
a function of arclength measured from the junction s (rescaled by length of the branch) for
Y-shaped confluences of varying confluence angle α.

outside, Qo(s), where s is the arclength measured from the junction. We define the flux jump

[Q(s)] as

[Q(s)] = Qi(s)−Qo(s). (4)

Symmetry arguments provide some intuition about the geometry that migration accord-

ing to [Q(s)] would produce. When α = 72◦, the field is locally symmetric at the tips (Cohen

et al., 2015) and so [Q(s)] = 0 at the tips. Therefore, no lateral migration would occur at

10



(a)
−300 −200 −100 0 100 200 300

−0.1

−0.05

0

0.05

0.1

Flux Jump (m)

C
u

rv
a

tu
re

 (
1

/m
)

(b)
−100 −50 0 50 100

−0.1

−0.05

0

0.05

0.1

Flux Jump (m)

C
u

rv
a

tu
re

 (
1

/m
)

Figure 7: (a) Curvature against numerically calculated flux jump for first-order confluences.
The dark grey line is a fit of slope −4 × 10−4, implying λ ≈ 47 ± 18 m. Each green point
represents the average of 10 observations. (b) Curvature against flux jump for all channels
in the network. The dark grey line corresponds to a slope of −0.0013 or a value of λ ≈ 27±1
m. Each point represents the average of 100 observations.

the tips. Close to the junction, the two confluent streams appear infinitely long, becoming

locally indistinguishable from the second-order, infinitely long downstream channel. When

α = 120◦ and all three branches are infinitely long, the field will be symmetric on either

side of each channel, producing flux jump [Q] = 0 everywhere. When the confluent streams

are finite, [Q(s)] increases most slowly with s when α = 120◦ (see Appendix A for proof).

Consequently, the flux jump near the junction is minimized when α = 120◦, and the angle

α = 120◦ can be understood as the most stable angle near the junction. We therefore hy-

pothesize that real channels that migrate according to this flux jump exhibit a ∼ 120◦ angle

near the junction and a ∼ 72◦ angle near the tips. These predictions agree with the angles

of real confluences near the junction and tips, respectively, shown in Figure 4(f).

The flux-dependent migration process we have discussed thus far suggests that streams

migrate with velocity vm perpendicular to themselves at a rate which grows with the flux

jump. Assuming a linear response, we then have

vm(s) = ε[Q̂(s)]− νκ(s), (5)
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where

[Q̂(s)] = Ql −Qr. (6)

[Q̂(s)] is the flux jump across the river at an arclength s with units of m. Ql is the flux from

the left of the stream when facing downstream and Qr is the flux from the right. We use

left and right here rather than inside and outside so that [Q̂(s)] behaves consistently with

the sign of curvature. This flux is the Poisson flux, which represents the area drained per

unit arclength (Petroff et al., 2011). Explicitly it is flux in m2/s divided by precipitation

rate. The quantity vm is the perpendicular velocity at which the channel is migrating, ε

is a constant with units s−1, ν is a constant with units m2/s, and κ is the local signed

curvature (Weisstein, 2017). A negative curvature indicates that, when facing downstream,

a channel rotates counter-clockwise. The νκ term represents a stabilizing effect that can be

understood as a first-order approximation to the influence of soil creep as streams migrate

against the valley wall.

If this stabilization is balanced by the flux difference across the stream and the streams

are in a statistical steady state, we have

vm = 0 (7)

and therefore,

λ2 ≡ [Q̂(s)]

κ(s)
=
ν

ε
. (8)

Physically, λ2 represents the difference in area drained on either side over the length of the

curve. The ratio of [Q̂] to κ therefore provides a ratio ν/ε with units of m2. We note that

this steady-state assumption requires only that ν and ε be of the same sign. However, we

expect that the sign of ε is positive, representing a migration towards the side of the stream

that draws greater flux. We will provide evidence of this in section 4.2.

We calculate [Q̂] and κ for a number of first-order confluences in our network, shown

in Figure 7(a) and for all channels in our network, shown in figure 7(b). We restrict these
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measures to a portion of the network for which we have LIDAR data that can clearly resolve

curves in these streams. The slope of these lines can be used to obtain λ, which scales with

the characteristic difference in distance to the drainage divide on either side of a stream,

over the length of a curve in that stream. For all streams in our network on average, λ ∼ 30

m. Since the characteristic distance to the drainage divide is ∼ 100 m (Petroff et al., 2013),

this suggests that the field asymmetry produces a deviation in stream shape whose size

corresponds to roughly 15% of the characteristic distance to the divide. We will now briefly

explore the shapes of network-wide curves to explore precisely how this steady state shape

appears on the network scale.

4 Network migration

4.1 Network-wide power spectrum

To study how these stream curves appear in the network-wide regime, we measure the

periodicity of network-wide fluctuations in curvature. A representative channel colored by

curvature is shown in figure 8.

0 60 m
N

T

Figure 8: A second-order channel colored by curvature.

Determining the periodicity of stream curvature requires a rotation-invariant, differential

representation of the geometry. Traditionally, these periodicities are studied through spectral

analysis of the angle or curvature (Ferguson, 1975; Marani et al., 2002). However, while

these methods are sufficient in isolating the primary frequency of curvature fluctuation, they

ignore phase information that might reveal asymmetries in the growth. We therefore offer

an alternative method: we rewrite our signal in terms of the 2D Frenet equations. The
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Frenet equations fully describe the relationship between tangent vectors, normal vectors,

and curvature on a twice continuously differentiable curve (Kühnel, 2015):

d~T

dt
= κ ~N, (9)

d ~N

dt
= −κ~T , (10)

where ~T and ~N are the tangent and normal vectors to the curve. We calculate the tangent

vector over 3 meters (as determined by the vector drawn between the two points surrounding

the point in question) and curvature over 5 meters for each point in all first-order channels,

to obtain the d ~N/dt. No additional information in carried in d~T/dt, so we can use d ~N/dt

without loss of generality. We write the tangent vector ~T as a single imaginary number

Tx + iTy, where Tx and Ty are the x and y components of ~T , and i2 = −1. Equation (10)

becomes

d ~N

dt
= −κ(Tx + iTy). (11)

The averaged power spectra of (11) for channels of all orders in our network is shown in

figure 9. The power spectrum of (11) is roughly equivalent to the power spectrum of κ

alone, but the sign of the frequency spectrum also indicates whether the channel is moving

counterclockwise (positive) or clockwise (negative) as one travels downstream from the tip.

The network-wide effect of this bias is reflected in the slight asymmetry of Figure 9(a).

Positive and negative frequencies are combined in Figure 9(b) and in subsequent figures.

We now calculate the power spectra separately for first-, second-, and third-order channels

and average them, shown in Figure 9(c). We only use streams longer than 50 meters for this

calculation, to diminish the effect of the length distribution on the power spectra. Stream

curvatures in our network appear to fluctuate at a dominant frequency that corresponds to

a wavelength of 26.7 m for first-order channels, 28.3 m for second-order channels, and 28.4

for third-order channels. The higher power spectral density of the second and third-order

channels results from higher values of curvature in second-order channels. However, because a
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Figure 9: (a) The averaged power spectrum of channels (all orders) in the Bristol, Florida
network, binned by frequency. The asymmetry reflects the direction in which channels turn:
clockwise (negative frequencies) or counterclockwise (positive) from the tip. (b) The same

data as (a), symmetrized. (c) The averaged power spectrum of d ~N
dt

for first-order channels
in orange, second-order channels in blue, and third-order channels in purple. The red dots
indicate the peaks of these curves, labelled with the corresponding periodicity in meters.

higher value of curvature generates an increased wavelength by simply extending the channel

arclength, the correspondence of first-order and second-order channel curvature wavelengths
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may be even closer than we have found. The agreement of this ∼ 30 m wavelength to the

length scale over which the wide opening angle of confluences returns to the 72◦ lines (seen

in the intersection between the light blue and red lines in Figure 4(f)) suggests that both

network-wide fluctuations in curvature and confluence migration may be influenced by a

common mechanism.

This spectral analysis resembles analyses conducted on river meanders, which form as

flowing water erodes river banks and redeposits eroded sediment downstream (Speight, 1965;

Hooke, 1984; Gutierrez et al., 2014). However, we contend that the distinct morphology of

the streams we study here suggests that they were shaped by different processes than those

typically attributed to the formation of river meanders. For meanders confined by val-

ley walls, the meander wavelength is ∼ 17 times larger than the width of the meandering

river (Nicoll and Hickin, 2010). In contrast, first-order channel widths in the Bristol, Florida

network range from ∼ 10−20 cm near the springs up to 50 cm near downstream confluences,

producing a ratio of wavelength to channel width of ∼ 50-500. Streams in our network also

have a sinuosity (defined as the ratio of channel length to valley length) < 1.3, which would

generally be classified as “straight”, rather than “meandering” (Bierman and Montgomery,

2013). We therefore suggest that the fluctuations reflected in Figure 9 are not primarily the

result of erosional dynamics typically associated with river meanders, though the increased

curvature in higher order streams may signify an increasing importance of typical mean-

dering dynamics downstream as confinement by valley sidewalls decreases. This behavior

is consistent with our observation in figure 5 that the size of the deviation of confluences

from 72◦ increases with channel length. Finally, the independence of curvature wavelength

with order suggests that this length scale is initially set by factors independent of dynamics

within the streams and only later augmented by such dynamics, if at all.
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Figure 10: An illustration of the physical interpretation of the sign of curvature and slope
asymmetry, as defined in the text.

4.2 Evidence of network-wide migration

We now present field evidence that these channels are indeed migrating in the manner we

suggest. We measure slope asymmetries along the valley sidewalls, which we define as the

valley sidewall slope on one side subtracted from the other. We hypothesize that, if channels

are laterally migrating, they should steepen the sidewall which they migrate into.

We quantify the slope asymmetry by extracting the channel direction over a window of

four meters along all channels in the network. We then obtain values of slope over 10 meters

on either side of the channel along the axis perpendicular to this direction from LIDAR data.

We take the steepest 20% of these slopes and average them, under the assumption that the

steepest sections of a valley represent the steepest steady-state configuration sustainable by

a balance between sediment transport and diffusive transport. Facing downstream, we call

the averaged slope to the left of the stream Sl and to the right, Sr. We then calculate the

slope asymmetry, which we define as (Sl − Sr)/(Sl + Sr). This quantity is therefore positive

when the steeper slope is on the left and negative when on the right.

We compare slope asymmetry, curvature, and flux jump as defined in equation (6). The

signs of curvature and slope asymmetry are illustrated in Figure 10. The relationship between

slope asymmetry and curvature is shown in figure 11(a). A negative curvature indicates a
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Figure 11: For both plots, each point is the average of 100 observations. (a) Curvature
against slope asymmetry, as defined by (Sl−Sr)/(Sl +Sr), where Sl and Sr are the slopes to
the left and right of the stream, r spectively, when facing downstream. (b) Slope asymmetry
against flux jump, (Ql −Qr), where Ql and Qr are the fluxes from the left and the right of
the stream, respectively, when facing dowstream.

negative second-derivative: facing downstream, this corresponds to a channel that rotates

counter-clockwise. Negative values of curvature appear to correspond to positive values of

slope asymmetry, suggesting that the valley side into which a channel veers has a higher

slope. The data for flux jump against slope asymmetry, shown in figure 11(b), also scale

linearly. This suggests that the steeper side of the valley tends to draw greater groundwater

flux. These results suggest that streams migrate, steepening the topography as they do.

5 Conclusion

We have presented evidence that stream migration can occur in response to an asymmetric

groundwater table. We suggested that this migration is responsible for two planform features:

a wide confluence angle and a network wide curvature fluctuation along the reach. First,

we presented theoretical results that suggest that confluence migration according to this

asymmetry would favor a symmetric configuration with a 120◦ angle near stream junctions,

narrowing to a 72◦ angle near stream tips. We found evidence of such a feature in real

streams. Second, we found that network-wide river curvature fluctuates at a length scale

18



comparable to the length scale of this deviation, and we presented topographic evidence that

suggests that this fluctuation is a product of the same migration mechanism. Our results

reveal the presence of a novel mechanism in Laplacian growth that may inform understanding

of other thin-finger systems.
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w = u + iv

f(w)

z = x + iy

g(z)

α

Figure 12: An illustration of the map from the upper half plane w = u+ iv to the physical
plane z = x + iy given by equation (12). The map has a single parameter c = α/2π, where
α is the angle between the two branches.

A Optimal migration angle

A.1 Conformal map

The general form of the conformal map which produces the fishtail shape in Figure 1 is

f(w) = w2c

(
1

c
− w2

)1−c

, (12)

where c is the angle (α) between the two branches as a fraction of 2π. f(w) : w → z maps

from the upper half plane, w = u+ iv, to the physical plane z = x+ iy. Because the Laplace

equation 3 is conformally invariant, then the imaginary part of f−1(z) = g(z) : z → w is

harmonic and provides us with the shape of the groundwater field around the bifurcated

geometry. This map is illustrated in Figure 12.
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A.2 Flux

While we cannot invert f(z) directly, we can calculate the flux jump implicitly in terms of

the mathematical variable v by choosing a rotation of the map such that one of the branches

lies along an axis. Conveniently, this is the case for (12), for which one branch lies along the

positive x axis, as shown in Figure 12. The flux into this branch is therefore dv/dy, where

v is the imaginary part of w. To this end, the derivative dz/dv is given by

∂z

∂v
= 2ic

(
1

c
− w2

)1−c

w2c−1 − 2i(1− c)
(

1

c
− w2

)−c
w2c+1. (13)

And ∂y/∂v is the imaginary component of this quantity evaluated at v = 0:

∂y

∂v
= −2Re

(
u2c−1

(
1

c
− u2

)−c
(u2 − 1)

)
. (14)

If 0 < u ≤ 1√
c
, which is the range along the x-axis we are concerned with, the argument

within Re is always real. The flux Q within this domain is given by the reciprocal of this

quantity:

Q =
∂v

∂y
= − 2

u2c−1
(
1
c
− u2

)−c
(u2 − 1)

(15)

The flux jump is therefore implicitly defined by (12) and (15). An illustration of the resulting

behavior for a few values of c is shown in figure 6(c).

A.3 Flux jump as x→ 0

Q exhibits a peculiar behavior: the flux Q and, consequently, the flux jump [Q] go to 0

regardless of the choice of c. To demonstrate this analytically, we can calculate the limit of
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(15) as u→ 0, 1√
c
, the roots that correspond to the junction. First, in the limit u→ 0,

lim
u→0

Q = lim
u→0

2

u2c−1cc
(16)

= 0, (17)

assuming c < 1/2 (the bifurcation angle is less than π). Similarly, for u→ 1√
c
,

lim
u→ 1√

c

Q = lim
u→ 1√

c

−2
(
1
c
− u2

)c
c

2c−1
2

(
1
c
− 1
) (18)

= 0, (19)

assuming c > 0 (the bifurcation angle is greater than 0). The flux jump therefore also

approaches 0 for all values of c as x→ 0.

A.4 Flux jump departs from 0 most slowly for α = 2π/3

We seek to determine the rate at which flux jump departs 0 from the junction as a function

of c = α/2π. This can be found by solving ∂2v
∂x∂y

= 0 for c. To this end, recall that ∂z, the

partial derivative with respect to z, and ∂2z can be written in terms of x and y as

∂z =
1

2
(∂x − i∂y) (20)

∂2z =
1

4

(
∂2x − 2i∂x∂y + ∂2y

)
. (21)

The derivative ∂2v
∂x∂y

can therefore be rewritten in terms of z as

∂2v

∂x∂y
= −1

2
Im

(
∂2v

∂z2

)
. (22)
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However, we only have ∂v/∂z in terms of u and v. We therefore require this expression to

be rewritten in terms of ∂2z/∂2v, which we can now calculate directly:

∂2v

∂x∂y
= −1

2
Im

(
∂2v

∂z2

)
(23)

=
1

2
Im

(
∂2z
∂v2(
∂z
∂v

)3
)
. (24)

We are only concerned with w = u, for 0 < u < 1√
c
. Therefore,

∂Q

∂x
=

∂2v

∂x∂y
=

1

2

(
1
c
− u2

)2c
(a+ b+ c+ d)(

2c
(
1
c
− u2

)
u2c−1 − 2(1− c)u2c+1

)3 , (25)

where

a = 4(1− c)cu2c (26)

b = 2(1− c)(1 + 2c)u2c (27)

c = 2c(1− 2c)

(
1

c
− u2

)
u2c−2 (28)

d = 4(1− c)c
(

1

c
− u2

)−1
u2+2c. (29)

We want ∂x[Q(x)] = ∂x(Q(u1(x))+Q(u2(x))) as a function of c as x approaches its roots. To

this end, we invert the conformal map (12) in the limit as u approaches its roots, u→ 0, 1√
c
.

Because we are dealing only with values on the real axis both in the mathematical and

physical plane, we let v = 0 for equation (12). For small u, x is given by

x = f(u) = u2c
(

1

c
− u2

)1−c

(30)

≈ u2ccc−1. (31)
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Similarly for u→ 1/
√
c,

x = f(u) = u2c
(

1

c
− u2

)1−c

(32)

≈ c−c
(

1

c
− u2

)1−c

. (33)

Inverting equations (31) and (33) gives us the two values of u that correspond to a single

value of x,

u1 =
( x

cc−1

) 1
2c
, u2 =

√
1

c
− x

1
1−c c

c
1−c . (34)

We combine equations (34) and (25) to obtain ∂x[Q(x)] explicitly for small x:

∂x[Q(x)] ≈ ∂Q

∂x

∣∣∣∣
u=( x

cc−1 )
1
2c

+
∂Q

∂x

∣∣∣∣
u=

√
1
c
−x

1
1−c c

c
1−c

. (35)

Substituting these values in, we obtain an expression for ∂x[Q(x)] for small x:

∂x[Q(x)] ≈ −

(
c

1
1−c

+ 1
2

4(c− 1)2

)
︸ ︷︷ ︸

α

x
1

1−c
−2 +

(
1

8
c

1
2( 1

c
−5)(1− 2c)

)
︸ ︷︷ ︸

β

x
1
2c
−2. (36)

To understand the behavior of this function, note that within the range 0 < c < 1/2,

both α and β are positive. Since we are concerned with the behavior of (36) in the vicinity

of c = 1/3, we happily restrict ourselves to this range. For values on either side of c = 1/3,

we have

∂x[Q(x)] ≈ −αx
1

1−c
−2 → −∞ for c < 1/3 as x→ 0 (37)

∂x[Q(x)] ≈ βx
1
2c
−2 → +∞ for c > 1/3 as x→ 0. (38)

Therefore, c = 1/3 represents a special point for which the rate at which flux jump increases
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Figure 13: A plot of ρ(c), as defined in equation (39).

with x near the junction is at a minimum. This can be seen by considering the quantity

ρ(c) = max

(
1

1− c
− 2,

1

2c
− 2

)
(39)

where equation (38) for small x behaves as

∂x[Q(x)] ≈ xρ(c). (40)

ρ(c) is shown in figure 13, and as expected by our reasoning above, ρ has a minimum at

c = 1/3, for which ∂x[Q[x]] ∼ 1/
√
x.
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