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Abstract SiO2 may have been expelled from the core directly following core formation in the early
stages of Earth’s accretion and onward through the present day. On account of SiO2’s low density with
respect to both the core and the lowermost mantle, we examine the process of SiO2 accumulation at
the core-mantle boundary (CMB) and its incorporation into the mantle by buoyant rise. Today, if SiO2 is
100–10,000 times more viscous than lower mantle material, the dimensions of SiO2 diapirs formed by the
viscous Rayleigh-Taylor instability at the CMB would cause them to be swept into the mantle as inclusions
of 100 m–10 km diameter. Under early Earth conditions of rapid heat loss after core formation, SiO2 diapirs
of ∼1 km diameter could have risen independently of mantle flow to their level of neutral buoyancy in
the mantle, trapping them there due to a combination of intrinsically high viscosity and neutral buoyancy.
We examine the SiO2 yield by assuming Si + O saturation at the conditions found at the base of a magma
ocean and find that for a range of conditions, dispersed bodies could reach as high as 8.5 vol % in parts
of the lower mantle. At such low concentration, their effect on aggregate seismic wave speeds is within
observational seismology uncertainty. However, their presence can account for small-scale scattering
in the lower mantle due to the bodies’ large-velocity contrast. We conclude that the shallow lower mantle
(700–1,500 km depth) could harbor SiO2 released in early Earth times.

Plain Language Summary Seismologists who study the deep Earth noticed for many years that
in addition to the waves that travel directly from the earthquake to the seismic station, there are also much
smaller, later-arriving waves that reflect off of very small objects embedded in the lower mantle. A plausible
explanation for these objects is that they are a high-pressure form of quartz carried from surface rocks into
the deep mantle by plate tectonic processes. However, when the Earth originally formed, the metal that
makes up the Earth’s core now absorbed both silicon and oxygen in higher concentrations that the core now
can retain. Hence, the bodies might instead be high-pressure quartz that was expelled from the core and
swept up in the flow of the deep mantle that cools it. The article examines this possibility and concludes that
the bodies expelled this way would be about a kilometer in size, could have collected in the first few tens
of million years of Earth’s existence, and would be kept in the lower mantle because they are significantly
denser than the shallow Earth’s mantle.

1. Introduction

The Earth formed via an accretion process that mixed approximately chondritic materials together and dif-
ferentiated them into a metallic core and a silicate crust and mantle. In the course of its development, the
Earth could have been substantially or entirely melted by a variety of processes: radiogenic heating (Hevey &
Sanders, 2006), gravitational segregation (Monteux et al., 2009), heating by small impacts (Kaula, 1979), or the
Moon-forming giant impact (Canup & Asphaug, 2001). Melting is the main way a solid body’s composition
homogenizes (Hofmann & Hart, 1978), so the likelihood of past melting events in the Earth’s history implies a
corresponding likelihood of internal homogeneity within its constituent parts: crust, mantle, and core. But the
crust and mantle are plainly heterogeneous, as many geologists (and even geochemists and geophysicists)
will attest (Allègre & Turcotte, 1986). Homogeneity is, nevertheless, a powerful way to characterize the prop-
erties of a complex system and forms the first-order view of the Earth’s internal structure. The deviations from
uniformity—the second-order features—then become the primary source of information from which the
details of the evolutionary path may be inferred.

One source of information is the seismic structure of the mantle. It is broadly peridotitic in composition,
one approximation to which is pyrolite (Ringwood, 1975), which explains the melting relations of mid-ocean
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ridge basalt. However, the calculated wave speeds arising from an equilibrium assemblage of minerals com-
prising a pyrolitic bulk composition do not explain the mantle’s seismic wave speeds very well (Xu et al., 2008),
instead favoring an inhomogeneous mechanical mixture of a basaltic and a harzburgitic composition.

In addition to the theoretical evidence for heterogeneity in the mantle, observations also support the
inference. The well-known discrepancy between shear wave travel times calculated from low-frequency
(normal mode) seismic data and higher-frequency body wave data (Dziewonski & Anderson, 1981; Nolet
& Moser, 1993) caused the later authors to propose that small-scale structure at wavelengths shorter than
200 km dispersed in the upper and lower mantle, but with stronger heterogeneity in the upper mantle, could
explain it. Gudmundsson et al. (1990) also found evidence in body wave travel times for a less intense het-
erogeneity in the lower mantle, as did Masters et al. (2000) for 3-D tomographic heterogeneity. Tibuleac et al.
(2003) reported that the 20–40% variation in amplitudes of broadband P waves recorded across a seismic
array required focusing and defocusing of the wavefield by mantle velocity anomalies in excess of 1%, far
larger than those of the then extant tomographic models.

At scale lengths much smaller than the hundreds of kilometers described above, Hedlin et al. (1997) found evi-
dence for heterogenity distributed in the lower mantle from randomly distributed 1% heterogenties of∼8 km
size present throughout the mantle. Subsequent investigation narrowed the extent of the heterogeneity to
the lowermost lower mantle extending 1,000 km upward from the core-mantle boundary (CMB) (Hedlin &
Shearer, 2000), and reducing the level of heterogeneity required by an order of magnitude (Mancinelli &
Shearer, 2013; Margerin & Nolet, 2003). Braña and Helffrich (2004) also found a restricted region near the CMB
(a cube of side 700 km) where the small-scale heterogeneity (600 m radius) is particularly intense, suggesting
a local source.

In contrast to the statistically distributed heterogeneities described in these studies, Kaneshima and Helffrich
(1998, 1999) found small-scale heterogeneities that deterministically scatter seismic waves from nearby
earthquakes. These objects are about the thickness of subducted oceanic crust and seem to be organized in
planar geometries suggestive of subducted lithospheric fragments. Speculation on the source of the strong
velocity anomalies (> 8%) required to explain the intensity of the scattered waves led to the idea that the
reduction in the shear modulus associated with a second-order phase transition in SiO2 (stishovite to CaC l2
structure) (Asahara et al., 2013; Bina, 2010; Carpenter et al., 2000; Xu et al., 2017) may lower the shear modulus
in a wide depth range above and below the phase transition pressure. Subsequently, a larger-scale search of
scattering intensity around circum-Pacific subduction zones (Kaneshima & Helffrich, 2009) showed that the
inferred scatterer distribution varied with region and depth, peaking between 1,200 and 1,500 km, a range
that includes the pressure where the phase transition would occur. However, there appears to be a uniform
drop in scattering intensity deeper than around 1,600 km despite the method used being sensitive to struc-
ture at those depths. This implies that there are fewer scatterers in the lowermost 1,200 km of the lower mantle
relative to shallower levels.

On account of the implication that SiO2 might be the generative agent for the heterogeneity’s seismic
visibility, we consider how it might be injected into the mantle. Subduction is an obvious way: various workers
showed that mid-ocean ridge basalts can contain up to 10–20 vol % free silica (Hirose et al., 2005; Ono et al.,
2001). Deterministic scatterers strong enough for waveform analysis suggest that the scattered waves
emanate from objects with the dimensions of subducted crust (Kaneshima & Helffrich, 1999, 2003). Other
methods for observing scattering found strong sources both close to sites of present subduction and far
from it, with some in common to the two methods (Bentham & Rost, 2014). Hence, whether deterministic scat-
terers are observable is related to their being close to seismic sources, reflecting a particular methodological
bias. In contrast, the background scattering potential seems not to have a similar association with subduction.
The scattering potential decays with depth, even though the mantle’s depth is equally well illuminated by
subduction zone earthquakes as are the deterministic scatterers (Kaneshima & Helffrich, 2009). Consequently,
we can distinguish at least two distinct scattering sources in the mantle: one related to subduction remnants,
and another to an as-yet unidentified process.

This process might have been the exsolution of SiO2 from the core and its expulsion into the mantle. Recent
experiments show significant Si solubility in liquid metal (Hirose et al., 2017) at the pressures and temperatures
associated with accretion at the base of a magma ocean (O’Neill et al., 1998; Wood et al., 2006) and in the core.
As the early core cools, it becomes supersaturated in Si, which takes up dissolved O in the metal and exsolves
it as SiO2 (Hirose et al., 2017). Due to its low density compared to liquid metal (Hirose et al., 2017), SiO2 would
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Figure 1. Sketch of mathematical model geometry. Growing layer below
CMB (radius r) has thickness b ( b ≪ r) and lies below a denser layer
of thickness z. The material comprising the less dense layer ascends
diapirically into the upper layer. The growth time for the diapiric
Rayleigh-Taylor instability, 𝜏RT, controls b.

accumulate at the CMB, which presents a buoyancy discontinuity and a rheo-
logical barrier. SiO2’s density is actually lower than that of the seismologically
determined present-day mantle (Hirose et al., 2005), so after a pause for the
growth of a diapiric instability, it will further ascend through the mantle until
it reaches neutral buoyancy at around 1,500–1,600 km depth (Wang et al.,
2012). Along with convective stirring in the mantle, this could establish a
radial profile for heterogeneity in the mantle that could explain the lower
mantle’s seismic heterogeneity.

In this study, we therefore use geophysical fluid dynamical theory of viscous
instability in boundary layers to investigate the dispersal in the mantle of
SiO2 released from the core. We employ an equation of state (EOS) for SiO2

to obtain the buoyancy forces that drive the instability and the subsequent
incorporation of SiO2 into the mantle. We also consider how the combination
of relative density and viscosity contrast serves to isolate SiO2 to the lower

mantle and show that dispersed SiO2 has a minimal effect on aggregate wave speeds but presents enough of
an elastic property contrast with respect to ambient mantle that it scatters seismic waves. The lower mantle’s
observed small-scale scattering profiles suggest SiO2 aggregation and isolation in the lower mantle.

2. Methods
2.1. Layer Thickness
SiO2 exsolving from the core would accumulate at the CMB in a layer due to the rheological contrast with
the solid silicate. The layer thickness is governed by the time that it takes for the layer to become buoyantly
unstable. To determine the time scale for the rate of growth of a Rayleigh-Taylor instability at the CMB, we use
a modified form of the theory of Ballmer et al. (2017). In it, the critical layer thickness, bcrit is given by

bcrit = 𝜏RTvg, (1)

where vg is the rate at which a layer of thickness b at the CMB grows by addition of material expelled by the core
(Figure 1), and 𝜏RT is a characteristic time scale for the onset of the Rayleigh-Taylor instability. 𝜏RT is generally
some function of the medium’s material parameters and the boundary geometry divided by the critical layer
thickness, bcrit, that we represent as f (⋅)∕bcrit. Hence,

bcrit
2 = f (⋅)vg. (2)

Leaving aside for a moment the specific form of f (⋅), we focus first on vg. If the concentration by mass of a
substance in the core is denoted by c, its total mass M in the core is

M = Mc × c, (3)

where Mc is the core’s mass. If it is expelled at a rate dM/dt, then

dM
dt

= Mc
dc
dt

= 4
3
𝜋r3�̄�

dc
dt

(4)

if the core has radius r and mean density �̄�. From the definition of the density 𝜌, the change of mass dM is

dM = 𝜌dV = 𝜌4𝜋r2db (5)

for a spherical body like the core. If the mass accumulates at the core’s surface, the layer thickens at a rate

vg = db
dt

= dM
dt

1
4𝜋r2𝜌

=
4
3
𝜋r3�̄�

dc
dt

4𝜋r2𝜌
= r

3
�̄�

𝜌

dc
dt

. (6)

On account of c’s dependence on temperature T rather than time t, vg may be expressed in terms of the core’s
cooling rate dT/dt:

vg = r
3
�̄�

𝜌

dc
dT

dT
dt

. (7)
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In their earlier analysis, Ballmer et al. (2017) used a 2-D Cartesian geometry (Turcotte & Schubert, 2002), but
here we use a 3-D treatment to account for the two-dimensionality of the CMB. Ribe (1998) developed a theory
of the Rayleigh-Taylor instability that describes the rate of growth of diapirs forming on a 2-D surface when
denser material overlies less dense material. In this case,

𝜏RT = 𝛼(k, z∕b − 1, 𝛾)
𝜇m

𝛾

1
(𝜌m − 𝜌)gb

, (8)

where 𝛼(k, z∕b − 1, 𝛾) is the dimensionless growth rate for dimensionless horizontal wave number k, z∕b − 1
is the medium’s scaled excess depth (the medium depth z scaled by the layer thickness b), 𝛾 is the ratio of
the viscosity of the overlying mantle to the viscosity of the layer forming under it, 𝜇m is the viscosity of the
overlying mantle and 𝜌m is its density, and g is the gravitational acceleration at radius r. See Ribe (1998) for the
definition of 𝛼() (equations (A2) and (A3)). k is chosen by an optimization scheme that maximizes the growth
rate given the geometric and physical factors. Combining (7) and (8), we have, then, an implicit equation
for bcrit,

bcrit
2 = 𝛼(k, z∕bcrit − 1, 𝛾)

𝜇m

𝛾

1
(𝜌m − 𝜌)g

r
3
�̄�

𝜌

dc
dT

dT
dt

. (9)

which is solved iteratively initially assuming bcrit = 0 and calculating successive bcrit values until they converge
self-consistently.

An alternative mechanism may govern the rate of release of viscous material from a boundary layer. The
Rayleigh-Bénard instability (RB) develops when the material in a thermal boundary layer is heated from below
and expands until it can buoyantly rise into the overlying convective layer. This instability’s time scale is related
to thermal diffusion. Following Turcotte and Schubert (2002), the combination of the critical Rayleigh number
Racr for this case (657.5 for a free surface and 867.8 for free slip) and the critical thermal boundary layer
thickness as described by its similarity variable value 𝜁cr =erfc−1(0.01) leads to a time scale

𝜏RB =
[

Racr𝜇𝜅

g(𝜌m − 𝜌 + 𝜌𝛼ΔT)

]2∕3 (
4𝜅𝜁2

cr

)−1
. (10)

Comparing 𝜏RT with 𝜏RB, it appears that 𝜏RB is 10–1,000 times longer than 𝜏RT for any plausible layer growth
rate dT/dt, viscosity ratio 𝛾 , or intrinsic buoyancy difference (𝜌m − 𝜌) in present or early Earth times. Hence,
the RT instability will develop faster than the RB instability, so we may ignore this effect. Thermal instability
may contribute to drive and advance the RT instability, but we ignore this effect due to the large difference
between 𝜏RT and 𝜏RB for any reasonable gamma.

2.2. Diapir Ascent Rate
The diameter of the diapir is taken to be the thickness of the SiO2 layer when it detaches (Ballmer et al., 2017).
Bina (2010) showed that due to the reaction of SiO2 with (Mg,Fe)O ferropericlase in the lower mantle, the diapir
will become armored with (Mg, Fe)SiO3 bridgmanite that will prevent further reaction. The armoring layer will
be 5–10 cm, so we neglect it and the small density change that it causes. We assume that the detached diapir
adopts a spherical shape of diameter bcrit. The effect of entrainment of some ambient mantle with the diapir
is small (less than a 15% change in ascent rates for 50% entrained mass) and neglected. The spherical shape
assumption is justified experimentally through observed shapes of viscous drops buoyantly moving through
a viscous medium. The diapir’s position in a Reynolds number-Eötvös number regime diagram indicates it
will adopt a spherical shape (Ohta et al., 2010), and initially perturbed shapes with low capillary numbers
tend to evolve to sphericity with time (Koh & Leal, 1989). (See the supporting information for the method
for estimating surface tension involved with these dimensionless groups.) The density difference relative to
the mantle Δ𝜌 = 𝜌 − 𝜌m will provide the driving force for the rising speed v under Stokes law (Turcotte &
Schubert, 2002):

v = 2
9
Δ𝜌g

r2

𝜇m
. (11)

There is an implicit assumption of a significant viscosity contrast in (11), but the condition is satisfied given
the expected material properties (Table 1). Because in (9) r∼bcrit∼𝜇1∕2 and the ratio r2∕𝜇m appears in (11),
v is independent of 𝜇m and depends on the viscosity ratio 𝛾 rather than any absolute viscosity.
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Table 1
Thermophysical Properties for Mantle and Si O2

Property Symbol Value Scale and units Source

SiO2 yield dc/dT 4.1 ×10−5 K−1 Hirose et al. (2017)

Core cooling rate dT/dt 100 K Gyr−1 Nominal rate from Hirose et al. (2017)

Thermal diffusivity 𝜅 1 ×10−6 m2 s−1 Turcotte and Schubert (2002)

Mantle viscosity 𝜇m 1 ×1022 Pa s (max) Lau et al. (2016)

1 ×1017 Pa s (min) Zimmerman and Kohlstedt (2004)

Mantle density 𝜌m 5,560 kg m−3 PREMc

SiO2 density 𝜌 5,460 kg m−3 (CMB)

�̂� 4,985 kg m−3 (mean) SiO2 equation of state

SiO2 viscosity ratio 𝛾 1 ×10−4 (min) Xu et al. (2017)

1 ×100 (max) = 𝜇m

Mean core density �̄� 10,987 kg m−3 PREMc

CMB radius rCMB 3,480 km PREMc

CMB temperature TCMB 3800 K Nomura et al. (2014) upper bound

Gravitational acceleration g 10.68 m s−2 PREMc

SiO2 equation of state parametersb

Reference temperature Tr 298.15 K

Reference volume V0 14.014 cc mol−1 Hirose et al. (2017)

Thermal expansion 𝛼1 2.5 ×10−3 K−1

coefficientsa 𝛼5 −2.5 ×10−2 K−1∕2

Bulk modulus K0 316 GPa

Bulk modulus pressure derivative K′ 4

Anderson-Grüneisen parameter 𝛿T = K′ (Helffrich & Connolly, 2009)

Shear modulus G 220 GPa Stixrude and Lithgow-Bertelloni (2005)

Shear modulus pressure derivative G′ 1.8

Phase transition ref. pressure P0 50.2 GPa

Phase transition ref. temperature T0 300 K

Clapeyron slope s 11.1 ×10−3 GPa K−1 Nomura et al. (2010)

Shear modulus softening A0 −145.553 GPa
Fit to Carpenter et al. (2000).

Phase transition width w 15.93 GPa

aThermal expansion function 𝛼(T) = 𝛼1 + 𝛼5∕T1∕2. bPolythermal third-order Birch-Murnaghan equation of state used.
See Helffrich and Connolly (2009) for full description. cPREM (Dziewonski & Anderson, 1981).

2.3. The Stishovite Phase Transformation
The stishovite-CaC l2 structured SiO2 is a second-order polymorphic phase transformation that lacks a discon-
tinuity in elastic properties. There is, however, a discontinuity in the pressure and temperature gradient when
the transition is crossed. Carpenter et al. (2000) modeled the stishovite-CaC l2 structured SiO2 phase trans-
formation using a Landau model and showed that it affects the shear modulus only. They worked with the
individual components of the stiffness tensor Cij and assumed a linear dependence on pressure. Moreover,
they analyzed the transformation under isothermal, room temperature conditions. In view of these limitations,
here we outline a treatment for the transformation that is both polythermal and amenable to a finite-strain
approach.

Nomura et al. (2010) experiments provide the pressure-temperature dependence of the reaction. We param-
eterize the transition pressure, Ptr as being linearly dependent on temperature:

Ptr(T) = P0 + s × (T − T0), (12)

with parameters listed in Table 1. The shape of the shear modulus decrease is modeled with a simple functional
form that reproduces the cusped transition shown in Carpenter et al. (2000) quite well:

ΔG(P, T) = A0

[
1 − 2

𝜋
||tan−1([P − Ptr(T)]∕w)||]2

. (13)
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Figure 2. SiO2 density difference with respect to the PREM in the
lower mantle. Δ𝜌 = 𝜌 − 𝜌m calculated using SiO2 equation of state
information (Table 1) along various adiabats initiated above the CMB.
CMB temperature is assumed to be 3800 K with a 1050±50 K thermal
boundary layer above it to project adiabatic temperatures to ∼1950 K
at 660 km depth (Katsura et al., 2010) using a variety of lower mantle
Grüneisen parameters 𝛾 with 1.3≤𝛾≤1.5 (Helffrich, 2017). SiO2 becomes
neutrally buoyant at a depth of ∼1,600 km.

ΔG is added to the finite-strain calculated stishovite shear modulus to model
its softening through the transition. See Table 1 for the parameters.

2.4. Precipitation of SiO2 From the Core
We use the SiO2 saturation model of Hirose et al. (2017) to calculate the Si + O
content of the metal equilibrated at the bottom of a magma ocean during
accretion. Various studies of partitioning of moderately siderophile elements
at high pressures defined an effective equilibration pressure which, coupled
with an equation for the peridotite solidus, gives the equilibration P and T
that explains the present concentration in the mantle and of the core. To allow
for a range of models, we use two peridotite solidus equations from Wade
and Wood (2005) and from Fiquet et al. (2010). Different experimental studies
report a range of effective equilibration pressures (Fischer et al., 2015; Siebert
et al., 2013; Wade & Wood, 2005; Wood et al., 2006) so we take their range,
30–55 GPa, as bounds on the Si + O saturation level. We then calculate how
much SiO2 would be precipitated from the core to saturate it at the present
CMB conditions, 3800 K and 135 GPa (Table 1). Depending on the initial Si+ O
content, a range of SiO2 yields is possible even at the same magma ocean P
and T conditions. Hence, we track the low, high, and mean values of SiO2 yield.

The mass of SiO2 expelled by the core is then turned into a volume fraction
in the lower mantle. We use a linear increase in volume fraction with height
above the CMB that reaches a plateau at rm, above which it stays constant, or
a peak at rm after which it returns to zero at rl . (The reasons for this choice will
become clear in section 4.) Hence, the volume fraction f is

f (r) = fmax × min(1, (r − rCMB)∕(rm − rCMB)) (plateau)

f (r) = fmax ×

{
(r − rCMB)∕(rm − rCMB) , r < rm

max(0, 1 − (r − rm)∕(rl − rm)) , r ≥ rm

(peak)
. (14)

If the mass fraction of SiO2 crystallized is ΔmSiO2
, then the mass of SiO2 is Mcore ×ΔmSiO2

. Dispersing this in the
lower mantle, the volume VSiO2

= McoreΔmSiO2
∕�̂� and so the lower mantle volume fraction is

fSiO2
= VSiO2

∕VLM =
Mcore × ΔmSiO2

�̂�VLM
, (15)

where �̂� is the mean density of SiO2 along the adiabats calculated in the lower mantle. We want the fmax from
(14) that yields the calculated fSiO2

which is the volume weighted integral of f (r) through the lower mantle.
Sparing the reader some algebra, the scaling factors are numerically

fmax = fSiO2
×

{
1

0.773
(plateau)

1
0.515

(peak)
. (16)

3. Results

The EOS for SiO2 (Table 1) provides its density in the lower mantle and may be compared with PREM’s density
(Dziewonski & Anderson, 1981). At present-day CMB conditions, the contrast is about 100 kg m−3 (∼2%) less
dense than the mantle. This is the origin of the buoyancy force that gives rise to the diapiric instability. Figure 2
shows the density contrast with respect to PREM’s mantle, which lessens with height above the CMB. At depths
shallower than 1,600 km, SiO2 becomes denser than ambient mantle and the buoyancy force changes sign.
In the upper mantle, the density contrast increases by a factor of 5, enhancing the tendency of SiO2 to sink.

Using the critical layer thickness calculated with equation (9), one can examine its dependence upon mantle
and layer viscosity. SiO2’s viscosity may be bracketed on one hand by assuming that it is the same as the lower
mantle’s viscosity, 1022 Pa s (Table 1), and on the other hand through viscosity-diffusivity systematics applied
to stishovite (Jaoul, 1990; Xu et al., 2017) that indicate it is possibly 104 times more viscous (Table 1). Large
viscosity ratios lead to larger SiO2 bodies ascending from the CMB through the mantle, whereas ratios closer
to 1 yield meter-to-kilometer sized SiO2 bodies. Figure 3 shows this dependence for present-day Earth-like
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Figure 3. (a) Critical SiO2 layer thickness for present and early Earth CMB conditions. 𝛾 is the ratio 𝜇m / 𝜇 of the mantle’s
viscosity to the SiO2 layer’s. Vertical shaded band brackets probable range of SiO2 viscosity ratio, while horizontal bands
indicate likely 𝜇m range. Layer thickness might grow to as much as 0.08–30 km at present-day lower mantle viscosities
and 100 K/Gyr cooling rate if the layer is 1–104 times more viscous ( −4≤ log10(𝛾)≤0), and 10 m–2 km in early Earth
conditions at 1000 K/Gyr cooling rate. (b) Stokes ascent speed (solid lines) for diapirs detaching from layers of various
thicknesses at various 𝜇m values (Pa s). Descent speeds of dense SiO2 bodies in the upper mantle (dashed lines) shown
for same ranges of 𝜇m. Shaded band shows maximum vertical convection speed estimates. Present-day viscosities
require layer thicknesses > 20 km to rise independently of convective speeds. In the early Earth epoch when viscosities
were lower, bodies > ∼ 800 m could detach and rise independently, and the high sinking rates for dense bodies as
small as 300 m would confine them to the lower mantle. At present, bodies >2–3 km would also be confined to the
lower mantle.

values (Table 1). Depending on the viscosity ratio values, the critical layer thickness may range from 80 m
to up to 30 km, though 1–30 km is more probable. These would be unable to rise through the convective
mantle. Using Dumoulin et al. (2005) parameterization to estimate viscosities in early Earth conditions, we
conservatively take a mantle temperature 500 K hotter than present (see Lebrun et al., 2013, for a variety of
estimates), which leads to viscosities ≥103 lower than now and 10 m–2 km size diapirs.

A comparison with present-day mantle convection is warranted because according to conventional scaling
laws, convection speeds scale as Ra2∕3 (Turcotte & Schubert, 2002), where Ra is the thermal convection
Rayleigh number. Since Ra∼𝜇−1, mantle convection speeds scale as 𝜇−2∕3. In contrast, the Stokes speed
scales as 𝜇−1, so even in early Earth conditions when the mantle was hotter (higher Rayleigh number) and less
viscous, the Stokes speed increases faster with decreasing 𝜇 than convection speeds. Characteristic convec-
tion speeds in the mantle are ∼1.5 cm y r−1 at present (Becker et al., 1999), and maximum rates correspond
to the descent rates of subducted lithospheric slabs, ∼5 cm y r−1 (Bina, 2010). For bodies of SiO2 to buoy-
antly rise through and segregate in the mantle, a combination of entrainment factors and diapir sizes to yield
v in excess of the convection speed is needed. Figure 4 examines this tradeoff. It depicts the viable combina-
tions given the present conditions at the Earth’s CMB (Table 1) in terms of 𝛾 . Given present-day cooling rates
of 50–100 K/Gyr (Herzberg et al., 2010; Hirose et al., 2017) and expected viscosity ratios, rising speeds are
10–1000 times slower than mantle convection speeds. Hence, the bodies would be drawn passively through
the mantle, initially entrained by the flow in the mantle at the CMB and not ascend through it.

In order to overcome the viscous drag resisting ascent, SiO2 accumulating at the CMB needs to detach either
as large bodies caused by rapid cooling rates (upper left in Figure 3a) or due to reduced mantle viscosities
caused by higher mantle T . In the early Earth, heat flows from the core were probably much higher. Simulations
of convection in a crystallizing magma ocean suggest cooling rates of 300 K/Gyr when heating is moderated
by the development of an atmosphere that thermally blankets the surface (Lebrun et al., 2013). In contrast,
simulations of the initial phases of magma ocean development before an atmosphere outgasses (or is
removed by continuing impacts during accretion) lead to cooling rates of 2000 K/Gyr (Solomatov & Stevenson,
1993). An extreme case is heating of the core by gravitational potential energy liberated by descending dikes
or diapirs of metal segregating from a shallower magma ocean or impact-formed magma lake (Monteux
et al., 2009; Stevenson, 2003), which could leave the growing outer core hottest at the CMB and, potentially,
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Figure 4. (a) Ascent rate of SiO2 in the mantle as a function of the viscosity ratio 𝛾 for a suite of representative core
cooling rates (labels; present day is ∼102 K/Gyr). In order to exceed the background convective speed of the mantle,
1–5 cm/yr (horizontal gray band), SiO2 viscosities would need to exceed the highest expected contrasts ( >𝜇m × 104),
or rapid cooling due to early Earth conditions would be required. (b) SiO2 diapir diameter for different viscosity ratios
𝛾 and different cooling rates. Present-day cooling rates lead to bodies unable to rise through background mantle
convection, whereas early Earth rates >1000 K/Gyr lead to independent rise of somewhat smaller bodies. Present-day
and early Earth 𝜇m used in the calculation are 1020.5 and 1017.5 Pa s, respectively. Vertical gray band in each panel
shows likely SiO2 viscosity contrast range.

thermally stratified (Lasbleis et al., 2016). The solution to the one-dimensional heat equation (Turcotte &
Schubert, 2002) leads to a cooling rate of

dT
dt

= −ΔTz

2t
√
𝜋𝜅t

exp
[
− z2

4𝜅t

]
, (17)

where ΔT is the initial temperature difference between the core and the mantle and z is distance from the
CMB. For an initial temperature difference of 4000 K and characteristic distance of 1 km from the CMB, cooling
rates at 0.1 Gyr, 0.01 Gyr, and 0.001 Gyr are 200 K/Gyr, 6300 K/Gyr, and 20000 K/Gyr. We choose a cooling rate
<1000 K/Gyr to show the consequences of earlier, more rapid cooling and a higher temperature mantle.
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Figure 5. Scattering potential as a function of depth in five circum-
Pacific subduction zones. Semblance, the ratio of coherently stacked
power to incoherently stacked power, is a proxy for the scatterer
distribution. Except for the Kuril subduction zone, the profiles show
either a peak or a dropoff of scattering potential at 1,500–1,700 km
depth. See Kaneshima and Helffrich (2009) for details.

Under these conditions, SiO2 bodies are likely to be small, certainly <10 km
in size and more probably ∼1 km (Figure 4b). Though small, the low man-
tle viscosity permits a sufficiently rapid rise given SiO2’s expected viscosity
contrast.

Due to the large negative density contrast in the upper mantle (Figure 2),
the bottom of the transition zone acts as a strong filter against SiO2 entry.
Bodies 2–3 km in radius would sink in background convective flows of
1–5 cm/yr (Figure 3b) if upper mantle viscosity is 1019 Pa s, a plausible
upper mantle viscosity even now (Table 1). In early Earth times, mantle
temperatures 100–200 K warmer than present would reduce viscosities
by factors of 100, again using Dumoulin et al. (2005) viscosity scaling. The vis-
cosity would probably be significantly lower than this (Figure 3a), ensuring
SiO2’s initial confinement to the lower mantle and arguably maintaining it to
the present.

4. Discussion

The scattering potential in five circum-Pacific subduction zones estimated by
Kaneshima and Helffrich (2009) may be compared with the SiO2 dispersal
characteristics that were derived earlier. They exhibit two prominent features
(Figure 5): a dropoff in scattering power below 1,500 km depth; and a peak
or knee in their profiles at 1,500–1,800 km depth. Figure 2 shows that SiO2 is
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Figure 6. Behavior of a conjectured scatterer density profile through the
lower mantle. (a) The two models of scatterer volume fraction through
the lower mantle inspired by the profiles shown in Figure 5. Volumetric
scatterer fraction grows from zero at the CMB to a plateau value, fmax,
at 1,500 km depth (solid), or reaches a maximum of fmax and returns
to zero at the top of the lower mantle (dashed). (b) The Bullen’s
homogeneity index (Dziewonski & Anderson, 1981) as a function of
depth for plateau model when fmax = 0.2. A value of 1 indicates uniform
self-compression. Error bar shows PREM variation in homogeneity index
in the lower mantle, showing that for volume fractions fmax ≤ 0.2
the index is indistinguishable from PREM; oscillations in trace
represent numerical noise in fit. (c) The bulk ( K) and shear modulus (G)
dependence in the lower mantle for PREM (solid lines) and mixtures
(dashed lines) of PREM and SiO2 along a lower mantle adiabat for
plateau models with fmax = 0.1 and 0.2. Depression in G around 1,500 km
depth is due to SiO2 phase transition. Error bars at tops and bases of
profiles are 95% confidence level for the moduli.

neutrally buoyant at ∼1,600 km. However, Figure 4a shows that SiO2 evolved
at the CMB at present would lack sufficient buoyancy to rise independently
of ambient mantle flow. Rather, it would be a tracer of flow in the mantle that
was once in contact with the CMB.

Another inference that may be drawn from the profiles is from the scattering
power dropoff below 1,500–1,800 km. If this were due to dispersal of small
bodies created at the CMB, their concentration would be highest at the CMB
and would decrease upwards. Because the scattering intensity increases with
distance from the CMB, it is not likely to be created by this process. Moreover,
due to the passive entrainment of any SiO2 emerging through the CMB,
the profiles also do not seem to be generated by a process acting at the
present day.

The rough coincidence in four of five cases of the knee in the scattering poten-
tial curve with the neutral buoyancy level of SiO2 suggests that the bodies
must be able to raise themselves to that level. Yet if they were large enough
to do this (30–200 km in diameter given present mantle conditions; Figure 3),
they would probably be seismically visible either as tomographic anoma-
lies or as deterministic scatterers. Because deterministic scattering can detect
objects as small as 8 km (Kaneshima & Helffrich, 1999), we think this unlikely
and rather appeal to early Earth conditions when the mantle was partially
or wholly molten but SiO2 was not (see melting curves of mantle minerals
investigated by Shen and Lazor (1995), for example), which would lead to
a large viscosity contrast with respect to the mantle. Then (Figure 3), even
small, kilometer-sized objects could rise rapidly through the mantle due to the
large viscosity contrast between a partially molten mantle and a solid, inviscid
SiO2 body. The objects must remain at that level through to the present day,
however, for this to be a viable mechanism. Their intrinsic density contrast
prevents them from entering the upper mantle due to the increase of the den-
sity contrast by a factor of 5 and a decrease of the viscosity by a factor of 10,
leading to a factor of 50 increase in settling rate (equation (12) and Figure 3b).
This effectively prevents SiO2 bodies from being homogenized by melting in
the mid-ocean ridge basalt source region. Manga (1996, 2010) showed that
viscous bodies dispersed in a convecting medium tend to aggregate, forming
grouped heterogeneities from smaller ones. The bodies, though neutrally
buoyant, do not merge due to their higher viscosity’s diversion of flow around
them, inhibiting coalescence. Becker et al. (1999) further investigated the way
that viscous materials could survive in the mantle for long times. They showed
how viscous bodies with an intrinsic density contrast resist stirring and disper-
sal in the mantle. This is presumably the mechanism by which the SiO2 bodies
stay in the lower mantle at present near their neutral density level. Hence
we investigate whether scatterer concentrations that peak in the mid-lower
mantle are compatible with the lower mantle’s seismic profile.

There are two main ways to examine the homogeneity of the lower mantle directly. The obvious way is to cal-
culate the density, bulk (K), and shear (G) moduli of an aggregate of PREM-like material and SiO2 and compare
them to the PREM uncertainties associated with those quantities (Masters & Gubbins, 2003). A more sub-
tle way is to apply Birch’s homogeneity index (Birch, 1952) to the aggregate composite profile. We use both
approaches in the following.

To calculate aggregate properties of PREM and SiO2, we calculate K and G from PREM and the SiO2 EOS aug-
mented with the shear modulus softening due to the stishovite to CaC l2-structured SiO2 phase transition
(see section 2). The mean of the Hashin-Shtrikman (HS) bounds on the aggregate K and G (Watt et al., 1976) is
used to represent the bulk properties. (For these materials the HS bounds are quite close, so the use of their
mean is justified.)
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Birch’s homogeneity index (also called the Bullen parameter 𝜂B by Dziewonski
& Anderson, 1981) derives from the relationship he found between the pres-
sure derivative of the bulk modulus and squared bulk sound speed Φ = K∕𝜌.
In Dziewonski and Anderson (1981) notation,

𝜂B = dK
dP

+ 1
g

dΦ
dr

. (18)

𝜂B≈1 signifies uniform self-compression. It is worthy of note that 𝜂B does not
depend on G and hence is unaffected by the phase transition in SiO2. The
aggregate’s properties yield values for K and Φ, and P and g are calculated
from PREM’s radial density profile.

We use a simple parameterization of the scattering profiles shown in Figure 5
that assumes that the scattering potential is linearly related to the volume
fraction f of SiO2 in the mantle and that f = 0 at the CMB. The volume
fraction increases linearly with radius until 1,500 km depth, whence it attains
a constant value fmax in the rest of the lower mantle (the plateau model) or
peaks at fmax and returns to zero at the top of the lower mantle (the peak
model). Figure 6 presents a sketch of this relation.

The aggregate properties are calculated from PREM and the SiO2 EOS (Table 1)
along the adiabat used for the SiO2 density calculation (Figure 2). Figure 6
shows the results of a direct K and G comparison and the application of the
homogeneity test. For plateau model values of fmax ≤ 0.2, both the moduli
and 𝜂B are within PREM’s uncertainties. Hence, comparison with PREM limits
volumetric heterogeneity in the mantle to less than 20%.

Actual volume fractions will be substantially lower than this, however. A limit
to the total mass of SiO2 expelled by the core as it cools may be obtained from
the saturation level of Si + O in the metal that accumulated at the bottom of

the early Earth’s magma ocean. Figure 7 shows the maximum volume fraction of SiO2 in the mantle obtained
this way, using a variety of initial Si + O compositions, magma ocean depths, and temperatures at the base
of the magma ocean (see section 2). The limits are expressed in terms of fSiO2

and fmax for the two scatterer
distribution models (see equation (14) and Figure 6). The potential limits range from a minimum of no SiO2

to a maximum of ∼8.5% by volume, with mean amounts between 1 and 3%. Given PREM uncertainties, this
quantity could easily be hidden in the lower mantle.

The actual velocity contrast between the SiO2 and the ambient lower mantle material will still be quite strong,
however. Figure 8 shows the variations in the material properties density and Lamé parameters that affect
scattering (Wu & Aki, 1985). Studies of lower mantle scattering report visible signals from material contrasts
of 0.1–0.2% (Margerin & Nolet, 2003; Mancinelli & Shearer, 2013) to 4–8% (Kaneshima & Helffrich, 1999).
The 𝜆 and 𝜇 variations are larger than any of these values. The 𝛿𝜆 curve, in particular, closely approximates the
shape of the observed scattering potential (Figure 5) and possibly provides a way to characterize the size of
the scattering bodies and their actual material contrasts. This will be investigated in a future study, however.

The increased viscosity of SiO2 relative to bridgmanite and its presence in the lower mantle might also play a
role in the well-known viscosity increase in the lower mantle relative to the upper (Haskell, 1935). Becker et al.
(1999) examined the consequences of a viscosity increase on mantle convection. Using their relation for the
effective viscosity 𝜇e of a medium composed of more viscous spheres dispersed in a viscoelastic medium of
viscosity 𝜇m,

𝜇e

𝜇m
= 1

6

[
(5f − 2)𝛾 + (3 − 5f ) +

[
24𝛾 + ((5f − 3) + (2 − 5f )𝛾)2

]1∕2
]
, (19)

we can estimate the volumetric abundance f of SiO2 from the increase in viscosity of the lower mantle, which
is a factor of 10–100 more viscous than the shallower mantle (Lau et al., 2016). However, volume fractions
between 35 and 40% of material 102 –104 more viscous than the mantle are required to raise the mantle’s
viscosity by factors of 10–100, much higher than the limits found by either PREM’s uncertainty (<20%) or the
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SiO2 yield capacity of the core (<8.5%). Hence, other factors, such as the lower
mantle’s intrinsic mineralogy of (Mg, Fe)O ferropericlase and (Mg, Fe)SiO3

bridgmanite, must be the main agent for the increased viscosity rather than
any excessive concentration of SiO2.

The inferences drawn in the discussion is so far assume that the Rayleigh-
Taylor instability sets the governing time scale for SiO2 dispersal. If other insta-
bility mechanisms come into play, some revisions may be warranted. We also
assume that the higher viscosity of SiO2 allows it to maintain its position near
the neutral buoyancy level today, even though it reached that level during
early Earth conditions, through the bodies’ collective effect on convective
flow in the middle-lower mantle. The models for this are only semiquantita-
tive and, when addressed in greater detail, could lead to firmer predictions
of the radial dispersal patterns of SiO2 in the lower mantle, and whether
SiO2 is able to penetrate the upper mantle density barrier. We also assume
that there is sufficient Si + O uptake by the metal en route to the core to
both power the dynamo and expel significant amounts of SiO2 during the
early Earth era. Geochemical estimates of the core’s composition easily sat-
isfy this requirement, however (Hirose et al., 2017), rendering the assumption
reasonably secure.

5. Conclusions

We examined the ways by which SiO2, expelled from the core as it cools,
could be incorporated into the mantle and be detected today. We developed
a model that relates the rate of expulsion of SiO2 due to core cooling to the
characteristic scale of a growing viscous Rayleigh-Taylor instability at the CMB.

The scale governs the way SiO2 gets dispersed in the mantle. Assuming that SiO2 is 100–10,000 times more
viscous than bridgmanite, justified by recent experimental work on their relative volumetric diffusion rates,
we find that at rates of present-day core cooling any SiO2 evolved would be in bodies unable to ascend inde-
pendently of the ambient mantle flow. Hence, they would act as passive tracers in the mantle and would not
preferentially accumulate due to buoyancy effects. However, early in Earth’s formation history when the core
was cooling more rapidly, SiO2 would have accumulated in bodies of sufficient size, ∼1 km, to move inde-
pendently of mantle flow and seek their level of neutral buoyancy, which is ∼1,600 deep in the middle-lower
mantle. Once segregated near their neutral buoyancy level, they would resist stirring due to their increased
viscosity relative to the surrounding mantle. Whenever they formed, they would be confined to the lower
mantle by their density contrast with the upper mantle.

We also determined the limits to the volumetric proportion of SiO2 bodies in the lower mantle given the
uncertainties in the whole-Earth model PREM and from the saturation level of Si+ O in the core anticipated in
magma ocean conditions. The PREM uncertainties limit the volume fraction of SiO2 heterogeneity to values
less than 20%, while the Si + O contents to even lower values, ∼8.5%. The material property contrast of indi-
vidual SiO2 bodies with respect to the ambient lower mantle is quite large, however, and the shape of the 𝛿𝜆

depth dependence strongly resembles scattering intensity profiles near circum-Pacific subduction zones and
warrants future study to assess whether typical scattering geometries are sensitive to the property variation.
The presence of more viscous lower mantle bodies, however, does not appreciably affect the bulk viscosity of
the lower mantle, contributing at most a factor of two increase to it.
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