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A B S T R A C T

Clustering superparamagnetic iron oxide nanoparticles (SPIONs) is one method of providing the biomedical
benefits of larger SPIONs [e.g. superior T2 weighted magnetic resonance imaging (MRI) contrast] without in-
creasing particle size. The work presented herein, describes the facile synthesis of clustered SPIONs that are
suitable for MRI applications, by using a chitosan based polymer: N-palmitoyl-N-monomethyl-N-N-dimethyl-N-
N-N-trimethyl-6-O-glycolchitosan (GCPQ) and aqueous nanoprecipitation followed by probe sonication, in the
absence of organic solvents or elevated temperatures. The resulting clustered SPIONs consist of individual 8 nm
iron oxide nanoparticles clustered into a 150 nm particle with a positive zeta potential (+23 mV) at neutral pH.
X-ray diffraction confirms the presence of crystalline magnetic iron oxide, while magnetometer experiments
show the clustered SPIONs are superparamagnetic giving an overall Ms of 63.5 ± 1.3 emu g−1. Relaxometry
analyses revealed that the clustered SPIONs (inclusive of coatings) had a high r2 value of 294.8 mM−1 s−1 and an
r2/r1 of 21.1 making the clustered SPIONs suitable for T2 weighted (negative) MRI contrast imaging applica-
tions. The resulting clustered SPIONs demonstrate that highly sensitive T2 contrast agents may be produced in
mild room temperature conditions, without the need for organic solvents or low molecular weight surfactants.
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1. Introduction

Superparamagnetic iron oxide nanoparticles (SPIONs) and other
iron oxide nanoparticles are widely considered for biomedical appli-
cations due to their good biocompatibility and attractive therapeutic
and diagnostic properties [1,2]. SPIONs have thus been used to gen-
erate therapeutic hyperthermia in the clinic [3], treat anaemia [4],
accomplish magnetic targeting of therapeutics [5,6] or as magnetic
resonance imaging (MRI) T2 weighted (negative) contrast reagents [7].
Despite their advantageous biomedical properties, a number of clini-
cally approved iron oxide imaging agents have recently been with-
drawn [8–11]. While the precise reasons for product withdrawal is
never stated, clinical uptake was obviously a factor, due presumably to
the poor MRI image contrast obtained with these agents, when com-
pared to gadolinium based agents [12]. However gadolinium contrast
agents are associated with brain and bone accumulation as well as
kidney toxicity [13], justifying the search for more biocompatible, yet
effective imaging agents.

Clustering SPIONs leads to improved T2 weighted imaging, due to
the significant lowering of the T2 (transverse magnetisation or spin -
spin) relaxation time; improving image resolution in the liver vascu-
lature for example [14], making clustering a viable method of achieving
efficient imaging with SPIONs. Clustering of sub 10 nm nanoparticles
will ensure improvements in T2 weighted imaging while ensuring
eventual excretion of the SPIONs [15]. Non-covalently clustered
SPIONs are usually prepared by clustering hydrophobically coated iron
oxide nanoparticles [16]. Hydrophobically coated iron oxide nano-
particles are prepared at high temperature (> 200 °C) and in organic
solvents [17]. These nanoparticles with a hydrophobic coating (usually
oleic acid) are then encapsulated within either polymeric [16] or low
molecular weight [18] amphiphiles to produce the clusters; with the
clustering achieved by mixing the non-aqueous phase containing the
hydrophobically coated iron oxide nanoparticles with the amphiphile in
the aqueous phase, followed by evaporation of the organic solvent
layer. Hydrophobic polymers, such as poly(lactide-co-glycolide) [19] or
hydrophilic polymers such as poly(ethylene glycol) [20] may also be
used to encapsulate the hydrophobic iron oxide nanoparticles within a
larger cluster. Others have reported the preparation of hydrophobized
iron oxide particles using lower temperatures of 90 °C followed by se-
paration of the colloidal fraction by centrifugation and then mixing of
the colloidal fraction with phospholipid amphiphiles [21]. High tem-
peratures (95–260 °C) are routinely used in the clustering techniques
[17,22]. Another form of clustering uses colloidal iron oxide coated
with ferritin by using high temperatures (60 °C) to make magneto-
ferritin [23] followed by clustering using a cationic amphiphilic
polymer to bind to the anionic ferritin coating [24]. All the methods
thus far reported [25–30] require both above ambient temperatures to
at least 60 °C and/ or organic solvents, making them resource intensive
and encumbering these formulations with the need to demonstrate the
absence of residual organic solvents. Where lower temperatures are
used and organic solvents excluded for clustering the resulting clustered
SPIONs exhibit relatively low r2 relaxivities (< 200mM s-1 when
measured at 1.5 T) [31–33]. We hypothesised that clustering would be
achieved by simply mixing the nanoprecipitated iron oxide crystals,
precipitated at ambient temperature, with an amphiphilic polymer,
thus avoiding the need for organic solvents and above ambient tem-
peratures. Here we report a facile method of clustering SPIONs invol-
ving the ambient alkaline nanoprecipitation of the SPIONs followed by
clustering at room temperature by using use an amphiphilic chitosan:
N-palmitoyl-N-monomethyl-N-N-dimethyl-N-N-N-trimethyl-6-O-gly-
colchitosan (GCPQ) [34] and probe sonication to yield a highly sensi-
tive negative contrast agent. GCPQ consists of a glucosamine sugar
backbone where, a fraction of the amine groups have been functiona-
lised with either a long chained hydrophobic pendant group or a qua-
ternary ammonium cation. Functionalisation in this way creates an
amphiphilic polymer which self assembles into nanoparticles [35] and

which enables drugs to cross biological barriers to produce formula-
tions with a number of differentiating features [36–38]. The cationic
polymer binds to the anionic surface of the precipitated SPIONs to form
stable nano-sized clusters.

2. Experimental

2.1. Materials

All chemicals were obtained from Sigma Aldrich (UK), unless spe-
cifically stated and were used without further purification.

2.2. Methods

2.2.1. Synthesis of N-palmitoyl-N-monomethyl-N,N-dimethyl-N,N,N-
trimethyl-6-O-glycolchitosan (GCPQ)

GCPQ was synthesised as described previously [34]. Briefly, glycol
chitosan (5 g, Mw ˜120 kDa, WAKO, Japan) was dissolved in 4M HCl
(380mL). The solution was heated to 50 °C and stirred for 24 h. The
resulting solution was dialysed exhaustively against water [molecular
weight cut off (MWCO)= 3.5 kDa, 5 L, and 6 changes over 24 h] and
then lyophilised to obtain degraded glycol chitosan (dGC) as a white
fibrous solid. The molecular weight of dGC was measured using gel
permeation chromatography with multi-angle laser light scattering
(GPC-MALLS) as previously reported [34]. Yield= 46%, Mw=7081
Da, Mw/ Mn=1.011, dn/dc= 0.142mL g−1.

The degraded glycol chitosan (1 g) and NaHCO3 (0.75 g) were dis-
solved in a mixture of ethanol and water (24mL: 76mL). Palmitic acid
N-hydrosuccinimide (1.58 g, Toronto Research Chemicals, Canada) was
dissolved in ethanol (300mL) and was added drop wise to the glycol
chitosan solution. The reaction was left to stir for 72 h protected from
light. Ethanol was removed under vacuo and the aqueous phase ex-
tracted using diethyl ether (3×100mL). The aqueous phase was dia-
lysed exhaustively against water as described above and then lyophi-
lised to obtain palmitoylated glycol chitosan (PGC) as a white fibrous
solid. The palmitoylated glycol chitosan (300mg) was dispersed in N-
methyl-2-pyrrolidone (25mL) and stirred vigorously overnight. Sodium
hydroxide (40mg) dissolved in ethanol (2mL) and sodium iodide
(45mg) dissolved in ethanol (2mL) were added to the solution and the
mixture was heated to 36 OC. Methyl iodide (0.45mL) was added and
the reaction was stirred under a N2 environment for 3 h. The product
was precipitated using diethyl ether and left over night. The resulting
precipitate was washed three times with diethyl ether (50mL), dis-
persed in water (100mL) and dialysed exhaustively against water, as
described above. The dialysate was passed through an Amberlite IRA-
96 column to remove iodide and then lyophilised to obtain GCPQ as a
white fibrous solid. The molecular weight of GCPQ was measured using
gel permeation chromatography with multi-angle laser light scattering
(GPC-MALLS) as previously reported [34]. The synthesis had a total
synthetic yield of 30%, Mw=10,250, Mw/ Mn=1.032, dn/dc=
0.156mL g−1.

2.2.2. Synthesis of clustered iron oxide nanoparticles
SPIONs (Fe3O4) were made via co-precipitation using ferrous and

ferric chloride salts and NH4OH as the base. Briefly, solutions of
FeCl3.6H2O (2 g, 7.4 mmoles) and FeCl2.4H2O (0.734 g, 3.7 mmoles)
[Fe3+: Fe2+= 2:1] were made using deoxygenated water (200mL) and
mixed in a round bottom flask under a N2 atmosphere. NH4OH (25% v/
v, 10mL) was added rapidly, resulting in a dark black precipitate
forming. The reaction was allowed to proceed for 30min. whilst vig-
orously stirring. The black precipitate was isolated with a strong
magnet and washed with de-oxygenated water until a neutral pH was
obtained. De-oxygenated water was obtained by purging distilled H2O
with a stream of N2 for several hours. The particles were stored wet
under deoxygenated conditions. Clustering was achieved by simply
adding a dispersion of the SPIONs (10mgmL−1, 1mL) to a dispersion
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of GCPQ (0.1–5mgmL−1, 4mL) followed by mixing using probe soni-
cation for 10min (2×5min., 7 μm amplitude, Soniprep 150, Fisher
Scientific, UK.) to yield a black formulation.

2.2.3. Transmission electron microscopy
Images were collected using a FEI CM120 BioTwin Transmission

Electron Microscope (Ex. Philips, The Netherlands). Digital images were
captured using an AMT digital camera. A drop of the sample was placed
on Formvar©/ Carbon Coated Grid (F196/100 3.05mm, mesh 300, Tab
Labs Ltd, UK). Samples were stained with 1% aqueous uranyl acetate,
where indicated.

2.2.4. Dynamic light scattering
Particle size was determined by dynamic light scattering (DLS) on a

Malvern Zetasizer 3000HS (Malvern Instruments, UK) using a laser
wavelength of 633 nm. Samples were inverted several times and then
left to equilibrate for 10 s before particle sizing was carried out. The
accuracy of the instrument was assessed periodically using latex beads
(polystyrene, mean size: 0.2 μm) in a 50mM sodium chloride disperse
phase.

2.2.5. Zeta potential measurements
Particle zeta potential was measured using a Malvern Zetasizer

3000HS (Malvern Instruments, UK). Nanoparticles were manually ti-
trated to various pH values using 0.1M HCl and 0.1M NaOH.
Measurements were carried out in gold plated disposable capillary cells
(Malvern Instruments, UK). The accuracy of the instrument was as-
sessed periodically using a polystyrene zeta standard (Malvern
Instruments, UK).

2.2.6. Magnetic properties
Magnetization curves were determined in a Quantum Design hybrid

Superconducting Quantum Interference Device-Vibrating Sample
Magnetometer (SQUID-VSM) at 300 K, with applied fields up to 7 T.
Samples were lyophilised to obtain a dry product. Weighed samples of
the dry product were placed into plastic capsules and measurements
carried out in a straw sample holder.

2.2.7. X-ray diffraction
X-ray diffraction patterns were collected on an X-ray diffractometer

(PanAlytical, UK) using CoKα radiation (λ=1.79 Å). Samples were
prepared by pressing dried powders on a zero background silicon wafer
and diffraction patterns were collected within 20–100 2θ (degrees)
range.

2.2.8. In vitro relaxivity measurements
Relaxivity measurements for the clustered iron oxide nanoparticles

were performed at the ICPMS (Campus de Cronenbourg, Strasbourg,
France) on a contrast agent analyser (minispec mq 60, Bruker,
Germany) at 1.5 T at 37 OC. T2 values were collected using a spin-echo
sequence. T1 values were obtained using an inversion recovery se-
quence. The relaxivities were plotted against the iron concentration and
the relaxivities per concentration were determined from the gradient of
the slope. Iron concentration was measured using the 1,10-phenan-
throline iron quantification assay [39].

3. Results and discussion

3.1. Formulation and nanoparticle morphology

SPIONs were prepared via a room temperature alkaline chemical
precipitation method and to minimise oxidation of the resulting nano-
particles the reaction was carried out in oxygen free conditions by
purging all aqueous reagents with N2 gas for several hours before use.
After the addition of NH4OH a black precipitate was immediately
formed which could be isolated with a strong magnet and washed with

de-oxygenated water until a neutral pH was obtained (Fig. 1a). Trans-
mission electron microscopy imaging confirmed the presence of sphe-
rical nanoparticles with an average diameter of 8.4 ± 2.1 nm (Fig. 2a
and b). These SPIONs aggregated to form non-colloidal aggregates
which sedimented in the disperse phase (Fig. 1a). The high interfacial
energy between the iron surface and the aqueous disperse phase led to
this uncontrolled aggregation [40]. On addition of GCPQ to the aqueous
dispersion of the SPIONs and probe sonication, controlled clustering
and a colloidal formulation was observed (Figs. 1b, 2 c–f). The method
yielded clustered SPIONs which were observed to have improved col-
loidal properties compared to the nanoprecipitated SPIONs alone
(Fig. 1a and b). Uranyl acetate stained electron microscopy images
provided evidence that the polymer encapsulated a number of nano-
particles within irregular shaped, but colloidal clusters (Fig. 2c–d).
Probe sonication disaggregated the original nanoprecipitated ag-
gregates (Fig. 1a) enabling the amphiphilic GCPQ to stabilise the sur-
face of a cluster of SPIONs.

3.2. Nanoparticle size, stability and surface charge

Several aqueous clustered SPION formulations, containing different
weight ratios of SPION, GCPQ (1: 2, 1: 0.4, 1: 0.2 and 1: 0.04) were
formulated and sized via dynamic light scattering (DLS) over a 30-day
period. Clustered SPION formulations made with polymer levels of less
than a SPION, GCPQ ratio of 1: 0.04 were not stable and sedimented on
Day 1 (data not shown). The various SPION formulations had initial
sizes (and polydispersity indices in parenthesis) of 148 nm (0.19),
183 nm (0.22), 141 nm (0.19) and 152 nm (0.22), for SPION, GCPQ
ratios of 1: 2, 1: 0.4, 1: 0.2 and 1: 0.04 respectively (Fig. 3a). The
formulations remained colloidally stable and did not display any sig-
nificant change in size over the time period (p > 0.05). This data
suggests that a SPION, GCPQ ratio of at least 1:0.04 is needed to create
a colloidally stable formulation and that higher levels of GCPQ did not
lead to more stable clusters over the time period studied. These clus-
tered SPIONs had a SPION content of up to 95% w/w (Fig. 3a); sig-
nificantly higher than other clustered SPIONs reported. The latter of
which contained a maximum SPION content of 54–57% w/w [16,41].
The surface charge of a nanoparticle is a driving factor of colloidal
stability with a charged surface giving rise to colloidally stable dis-
persions due to charge repulsion [42]. The zeta potential or charge at
the slipping plane is usually measured using electrophoresis. The slipping
plane is a term used to describe the point at which counter ions strongly

Fig. 1. (a) The nanoprecipitated SPIONs, (b) the clustered SPIONs after probe
sonication with GCPQ (SPION, GCPQ ratio= 1: 0.04). The nanoprecipitated
SPIONs form a sediment on the bottom of the vial, while the clustered SPIONs
form a stable colloidal dispersion.
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adsorbed to the nanoparticles’ surface meet with loosely bound counter
ions in the bulk phase [42]. The zeta potential is influenced profoundly
by pH as surface molecules are ionised [43] and hence the pH should
always be stated with zeta potential measurements. Distinctive sig-
moidal curves are observed for both nanoparticle systems (Fig. 3b),
with the clustered SPIONs displaying a strong positive zeta potential of
(+22.5 ± 6.1mV) at neutral pH (pH=7.1) and the naked SPIONs
have a weak negative (−4.3 ± 5.2mV) zeta potential at neutral pH.
The positive zeta potential is maintained even at alkaline pH, albeit
weakening as the pH is increased and this is due to GCPQ’s quaternary
ammonium cationic functional group, as GCPQ has an apparent pKa of
5.99 ± 0.15 [34]. The zeta potential data provide further evidence of
GCPQ clustering the SPIONs by coating them.

The current SPIONs, unusually have a hydrophilic coating prior to

clustering with GCPQ and a weak negative surface charge (Fig. 3b) and
hence GCPQ stabilises the cluster by an electrostatic attraction between
the quaternary ammonium group on GCPQ and the negative charge on
the surface of the nanoprecipitated SPIONs. Interactions between the
hydroxyl groups of GCPQ and the hydroxyl groups on the surface of the
SPIONs cannot be ruled out. While GCPQ stabilises the nanoprecipi-
tated SPIONs from forming large aggregates, the controlled clustering
of the SPIONs is facilitated by the hydrophobic interactions between the
hydrophobic groups on GCPQ (N-palmitoyl). The hydrophobic parts of
the cluster are shown by the areas devoid of stain on the negative
stained image (Fig. 2f). While an amphiphilic polymer is utilised to
effect clustering, it is clear from this work that a hydrophobically
modified SPION surface is not essential for clustering as has been re-
ported by others [16]. No additional separation steps were required for

Fig. 2. (a) Transmission electron microscopy
(TEM) image of the nanoprecipitated SPIONs -
the high surface energy causes the nano-
particles to form large aggregates which settle
on standing (Fig. 1a), (b) size distribution of the
SPIONs with an average size of (8.4 ± 2.1) nm
(mean ± s.d., n> 300), (c) TEM image of the
clustered SPIONs (SPION, GCPQ ratio= 1:
0.04) - nano sized clustered SPIONs with var-
ious morphologies are observed, (d) TEM image
of the clustered SPIONs (SPION, GCPQ
ratio=1: 0.04) stained with a 1% uranyl
acetate, (e) TEM image of the clustered SPIONs
(SPION, GCPQ ratio= 1: 0.04) at a higher
magnification, (f) TEM image of the clustered
SPIONs (SPION, GCPQ ratio=1: 0.04) at a
higher magnification stained with 1% uranyl
acetate.
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the SPIONs once prepared by nanoprecipitation and they were used as
collected.

3.3. X-ray diffraction

We first decided to determine the crystal state of the clustered
SPIONs in order to confirm the presence of magnetic iron oxide in the
clusters. X-ray diffraction patterns were collected on the clustered and
naked SPIONs and the presence of magnetic iron oxide (magnetite and/
or maghemite) was confirmed in both samples (Fig. 4). The addition of

polymer to the formulation has little effect on the crystallinity of the
SPIONs. The average crystal size of the SPIONs calculated by the
Scherrer equation was (8.8 ± 0.2) nm which is a very similar to the
value obtained from TEM (8.4 ± 2.1) nm.

3.4. Magnetic characterisation

The magnetic behaviour of the clustered SPIONs was investigated
by collecting field dependant magnetization plots (M vs H plots) using a
super quantum interference device (SQUID). In its bulk phase magnetic
iron oxide has ferrimagnetic properties, however when the size of an
iron oxide particle is reduced to only a few nanometres (< 30 nm) it
behaves rather differently and is said to be superparamagnetic [40].
Superparamagnetic materials become magnetised in the presence of an
external magnetic field, however, unlike ferromagnetic and ferrimag-
netic materials, superparamagnetic materials do not retain any mag-
netisation when the external magnetic field is removed. The overall
bulk properties resemble that of paramagnetic materials. The key dif-
ferences are that they are highly ordered at the molecular level and
usually have much greater magnetic moments. Superparamagnetic
materials are extremely desirable for biomedical applications as their
magnetism can be manipulated “off/ on” in response to an external
magnetic field. The clustered and naked SPIONs both displayed su-
perparamagnetic behaviour with no observable remnant magnetisation,
i.e. no hysteresis at 300 K (Fig. 5). The magnetic saturation of the
SPIONs and the clustered SPIONs were found to be 73.3 ± 1.1 and
63.5 ± 1.3 emu g−1, respectively. The small reduction in magnetisa-
tion is most likely due to the presence of GCPQ within the sample which
will contribute to the overall mass but not the magnetisation of the
material. These values are similar to those found for clustered SPIONs
prepared using the traditional high temperature – organic solvent fol-
lowed by micellization (63.7 emu g-1) [16], encapsulation by phos-
pholipids (73.7 emu g−1) [21] or encapsulation in poly(L-lactide-co-
glycolide) nanoparticles (˜40 emu g−1) [19] or prepared by nanopre-
cipitation, heated to 110 °C and coated with 2,3-dimercaptosuccinic
acid (65.4 emu g−1) [22].

Fig. 3. (a) The mean size of clustered SPIONs at 5 OC with polydispersity values
appearing above the bars. There were no significant differences observed in the
size data over the time period (means ± s.d., n= 3, p < 0.05, 1-way ANOVA,
Games-Howell post hoc test); (b) Zeta potential vs pH measurements
(mean± s.d., n = 3) on clustered SPIONs (SPION, GCPQ ratio = 1: 0.04). The
clustered SPIONs have a positive zeta potential (+22.5±6.1) mV at neutral
pH (pH 7.1) and the nanoprecipitated SPIONs have a weakly negative charge
(-4.3± 5.2) mV at neutral pH 7.1. Data are means± s.d.

Fig. 4. X-ray diffraction patterns of (a) clustered SPIONs (SPION, GCPQ
ratio= 1: 0.04) (b) nanoprecipitated SPIONs alone (8 nm). Both XRD patterns
indicate the presence of magnetic iron oxide (magnetite or maghemite).

Fig. 5. M vs H plot at 300 K comparing the nanoprecipitated SPIONs alone to
the clustered SPIONs. The nanoprecipitated SPIONs are superparamagnetic and
retain their superparamagnetic behaviour after clustering with GCPQ. The
magnetic saturation of the nanoprecipitated SPIONs and the clustered SPIONs
was found to be 73.3 ± 1.1 emu g−1 and 63.5 ± 1.3 emu g−1, respectively
showing that the clustered SPIONs are less magnetic per gram of material. Data
are means ± s.d., n= 3, (p < 0.05, Student’s t-test).
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3.5. In vitro relaxometry

MRI contrast agents act by altering the spin-lattice (longitudinal)
relaxation time (T1) or longitudinal relaxation rates (relaxivities, 1/T1
= r1) and spin-spin (transverse) relaxation time (T2) or transverse re-
laxation rates (relaxivities 1/T2 = r2) of water protons in their vicinity
[44]. A fundamental property of SPIONs is their ability to shorten the
transverse relaxation time (T2) of water protons in their vicinity [7].
Clustered iron oxide nanoparticles show faster transverse (spin-spin)
relaxivities (r2) than single crystal iron oxide nanoparticles as the
cluster behaves like a giant magnetised entity [45]. To investigate the
MRI contrast ability of the clustered SPIONs, their r1 and r2 values were
measured as a function of iron concentration using a contrast agent
analyser (minispec mq 60, Bruker, Germany) at 1.5 T at 37 °C (Fig. 6).
In vitro relaxivity measurements provide a powerful insight into the
sensitivity and efficiency of a contrast agent in a controlled manner.
The standard method for measuring relaxivity is by measuring the re-
laxation rates over a number of concentrations. The relationship be-
tween relaxation rates and concentration follows zero order kinetics
and therefore, a plot of relaxation rates v concentration will give a
straight line, where the relaxivity (r1 or r2) is the gradient. Overall,
there was good correlation between concentration and relaxivity re-
sulting in an r1 value of 13.9mM−1 s−1 and an r2 value of 294.8mM−1

s−1 hence, giving an r2/r1 of 21.1. MRI contrast agent materials with
values of r2/r1<10 are generally considered to be applicable as posi-
tive contrast agents, while MRI contrast agent materials with r2/r1> 10
are typically considered to be applicable as negative contrast agents
[46]. The high r2/r1 value recorded here indicates that the clustered
SPIONs would be effective T2 weighted contrast agents. The r2 values
compare favourably with the r2 values of clustered SPIONs prepared
using high temperature methods and measured on a 1.5 T instrument
where values of 165 mM−1 s−1 were recorded for a 200 nm cluster of
8 nm SPIONs [41], 318mM−1 s−1 for 100 nm clusters of 8 nm SPIONS
[16], 294mM−1 s−1 for 100 nm clusters of 7 nm particles [19] and
227mM−1 s−1 for 50 nm clusters of 8 nm particles [47]. The r2 values
seen with the clustered SPIONs are significantly higher than those re-
corded for single SPION crystals (15.1 mM−1 S−1) [18]. Clustering
tends to reduce the longitudinal relaxivities [16,45] and this has been

linked to the reduced access of water molecules to the SPIONs within
the cluster [16]. The current clusters, however produced r1 values that
were larger than those recorded by others (13.9mM−1 s−1, Fig. 6) such
as in the work of Ai et al [16] (1.3 – 3.0mM−1 s−1 recorded at 1.5 T).
We attribute this to the fact that the access of water molecules to
SPIONs in the current clusters is not excessively hindered. When the r2/
r1 ratios of commercially available T2 weighted contrast agents (r2/
r1= 1–9) [48] are considered, the current clustered SPIONs have su-
perior r2/r1 ratios (r2/r1= 21.1, Fig. 6) and so should be effective for
MRI contrast applications.

This is the first report of clustered SPIONs prepared in aqueous
media (in the absence of organic solvents) and at room temperature
from nanoprecipitated SPIONs with high transverse relaxivity
(r2> 200mM−1 s−1). Most of the previous reports of high r2 relaxivity
clusters involve the use of SPIONs prepared by thermal decomposition
in high boiling point organic solvents at high temperatures (> 200 °C)
followed by the use of aqueous based amphiphiles to extract the SPIONs
and cluster the hydrophobically coated SPIONs within amphiphilic
coatings [16,18]. The absence of organic solvents and the use of room
temperature for the nanoprecipitation means that the current SPIONs
will not have to involve further down-stream processing to remove
residual organic solvents and do not require the high temperatures used
in the thermal decomposition reactions. Alternative low temperature
methods of producing clustered SPIONs, which similarly exclude or-
ganic solvents, also show relatively lower transverse relaxivities
(r2< 200mM−1 s−1) [31–33].

4. Conclusions

SPIONs are useful for a number of biomedical applications and
clustered SPIONs have been shown to be effective T2 weighted contrast
agents with relaxivity ratios that are superior to single crystal materials.
However, to achieve relatively high transverse relaxivities
(r2> 200mM−1 S−1), the process of clustering requires organic sol-
vents and high temperatures, limiting the industrial translation of
clustered SPIONs. Here we report the facile room temperature and
aqueous based preparation of clustered SPIONs and show that the re-
sulting 150 nm clustered 8 nm SPIONs are superparamagnetic, have
relaxivity ratios (r2/r1= 21.1) that make them ideal for use as T2
weighted contrast agents and contain as much as 95% w/w iron oxide.
We use nanoprecipitation and then probe sonication in the presence of
an amphiphilic carbohydrate polymer, the chitosan amphiphile –
GCPQ. The resulting clustered SPIONs are colloidally stable for at least
30 days.
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Fig. 6. Relaxivity plots of clustered SPIONs (SPION, GCPQ ratio= 1: 0.04) with
relaxivities measured on a Bruker Mq 60 Minispectrometer (Bruker, Germany)
at 37 °C. Plot of 1/T1 s−1 and 1/T2 s-1 against the concentration of a series of
clustered SPIONs against [Fe]. The relaxivities (r1 and r2) can be determined
from the slope of the plots.
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