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SUMMARY

Models of face, object, and scene recognition tradi-
tionally focus on massively parallel processing of
low-level features, with higher-order representations
emerging at later processing stages. However, visual
perception is tightly coupled to eye movements,
which are necessarily sequential. Recently, neurons
in entorhinal cortex have been reported with grid
cell-like firing in response to eye movements, i.e., in
visual space. Following the presumed role of grid
cells in vector navigation, we propose a model of
recognition memory for familiar faces, objects, and
scenes, in which grid cells encode translation vec-
tors between salient stimulus features. A sequence
of saccadic eye-movement vectors, moving from
one salient feature to the expected location of the
next, potentially confirms an initial hypothesis (accu-
mulating evidence toward a threshold) about stim-
ulus identity, based on the relative feature layout
(i.e., going beyond recognition of individual features).
The model provides an explicit neural mechanism
for the long-held view that directed saccades
support hypothesis-driven, constructive perception
and recognition; is compatible with holistic face pro-
cessing; and constitutes the first quantitative pro-
posal for a role of grid cells in visual recognition.
The variance of grid cell activity along saccade tra-
jectories exhibits 6-fold symmetry across 360 de-
grees akin to recently reported fMRI data. The model
suggests that disconnecting grid cells from occipito-
temporal inputs may yield prosopagnosia-like symp-
toms. The mechanism is robust with regard to partial
visual occlusion, can accommodate size and posi-
tion invariance, and suggests a functional explana-
tion for medial temporal lobe involvement in visual
memory for relational information and memory-
guided attention.

INTRODUCTION

How the brain implements recognition of familiar faces, objects,

and scenes at the neural level is a complex problem that has
Current Biology 29, 1–12,
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engendered a multitude of different approaches. Both unsuper-

vised and supervised learning systems have been proposed for

the classification of visual stimuli into categories, and for recog-

nition of specific familiar stimuli within a category [1–3]. These

approaches often focus on the parallel processing of low-level

visual features, inspired by the landmark findings of Hubel and

Wiesel [4], and on how higher-level representations emerge at

later processing stages.

However, since the pioneering studies of eye movements

by Yarbus [5], perception has been known to also depend on

motor acts, which are necessarily sequential. The notion that

sequences of saccades (rapid target-driven eye movements)

might underlie complex pattern recognition and constructive,

hypothesis-driven perception is an idea with a long history in

neuroscience (e.g., focal attention and figural synthesis [6];

Scanpath theory [7, 8]), and has been taken up repeatedly since

(e.g., [9]). It is also supported by rare pathologies in which pa-

tients incapable of performing eye movements emulate sac-

cades with head movements [10]. According to this account,

the currently attended part of a stimulus is foveated and used

to calculate a saccade to where the next feature of the stimulus

should lie according to the hypothesized stimulus identity. For

example, on foveating the nose of a familiar face, the facial

identity is confirmed by generating a saccade to where that

person’s left eye should be and, if detected, thence on to where

their mouth should be, and so on. This implies consistency

of saccade targets (though not necessarily order) between

encoding and retrieval conditions, which is supported by behav-

ioral data [11, 12], in particular, by memory-guided saccades,

which depend on the return of gaze to previously encoded (i.e.,

fixated) locations [13, 14].

Decoupling depth perception (i.e., ocular focus) from yaw and

pitch movements of the eye, a sequence of saccades can be

viewed as a complex trajectory on a 2-dimensional plane

(the field of view). This allows us to exploit analogies to

studies of spatial navigation in which experimental animals

move freely on a 2D plane while neuronal activity is recorded.

These paradigms have revealed neuronal responses in and

near the hippocampus that are well suited to represent locations

and trajectories in two dimensions. In fact, so-called place

cells, which exhibit firing specific to a single location in an

environment [15], and grid cells, which exhibit multiple regularly

arranged firing fields [16], have become cornerstones of our

growing understanding of spatial cognition.

Several recent studies have suggested that entorhinal cortex

cells can exhibit grid cell-like responses in visual space

[17–20]. Here, we propose that these visually driven grid cells
March 18, 2019 ª 2019 The Author(s). Published by Elsevier Ltd. 1
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Figure 1. Grid Cell-Based Vector Computa-

tions and Visual Recognition Memory

(A) Grid cells in medial entorhinal cortex (MEC)

exhibit periodic, hexagonally arranged firing fields,

originally characterized as spatially selective cells

in rodent experiments. Right: Spiking locations

(red dots) superimposed on a rodent’s trajectory

during foraging; Bottom left: A stereotypical,

smoothed firing rate map.

(B) Vectorial coding in one dimension. 1D grid cells

with appropriate phases across modules (top: 4

cells with different scales S1–4) project to distance

cells. Distance cell arrays (2 for each direction

along the 1D axis) project with monotonically

increasing weights (W) to two readout cells (for up

and down, respectively). The difference in output

between readout cells is ameasure of the distance

and direction between start (blue) and goal (green)

locations.

(C) Replicating distance cells and readout cells for

a second, non-co-linear axis allows computation

of 2D vectors in the stimulus (e.g., between facial

features, to guide eye movements, e.g., in D).

(D) A face with superimposed saccade trajectories.

(E) Model schematic: Grayscale images are

sampled by a square fovea (blue square). Feature

detectors drive feature label cells, each coding for

a particular salient feature. During training each

feature label cell has been associated with a grid

cell population vector (current position grid cells,

blue cell and dashed arrows). All feature label cells

of a given stimulus are bi-directionally connected

to a single cell coding for the identity of the at-

tended stimulus. Upon firing of an identity cell the

currently active feature label cell is inhibited and

identity cells select the next feature label cell to be

active (short green arrow and cell), which is

associated with its own grid cell population

vector (target grid cells). Current and target posi-

tion grid cell representations yield the next

saccade vector (red arrow on image). Note, the

selection of the feature label cell corresponds to a

prediction of the next sensory discrimination (see

also Figure S1). Image credit: Mr. Spock: public

domain image; Grid cell rate map and rodent

trajectory adapted from Barry and Bush Neural

Systems & Circuits 2012 2:6, Attribution 2.0

Generic Creative Commons CC-BY 3.0; Saccade

trajectories reproduces from Wikimedia Com-

mons; Attribution 2.0 Generic Creative Commons

CC-BY 3.0).
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support recognition memory by encoding inter-feature move-

ment vectors, capturing the layout of compound stimuli in a stim-

ulus-specific coordinate system. This model might also account

for medial temporal lobe interactions with the visual system dur-

ing visual recognition of relational information or object-location

binding [21–24] and memory-guided attention [14, 15], and en-

coding of saccade direction within entorhinal cortex [25].
2 Current Biology 29, 1–12, March 18, 2019
Grid cells have been suggested to pro-

vide a spatial metric that supports path

integration (by integrating self-motion in-

puts [26]) and vector navigation [27–29].

Located in medial entorhinal cortex, grid
cells form modules of different spatial scales (Figure 1A). Within

a module, different offsets (or phases) are present and the firing

fields of relatively few grid cells evenly cover an environment.

The spatial periodicity of grid cells at different scales suggests

that they provide a compact code for location. A set of phases

of grid cells across multiple spatial scales can uniquely encode

locations within a space much larger than the largest grid scale
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Figure 2. Feature Detection and Ambiguity

(A) The first (randomly chosen) stimulus feature is

assumed to attract attention in a bottom-up

manner.

(B) The foveated feature is compared to imprecise

reference values by banks of sensory cells (hexa-

gons). Each pixel drives a given set of sensory

cells maximally (filled hexagons). Here, the re-

sponses for 3 pixels are illustrated (red Gaussians

and pixels). During training, a blurred version of the

stimulus is presented (purple pixels and bars

[preferred values] under Gaussians), resulting in

feature ambiguity. Connections between sensory

cells and feature label cells are learned (black

arrows, only one set of connections shown for

clarity).

(C) Feature ambiguity could lead to a feature label

cell from an incorrect stimulus identity being the

most active, or multiple feature label cells from an

incorrect stimulus being partially active (red).

(D) In either case, the corresponding (incorrect,

red) stimulus identity cell will receive more input

than the correct one (Spock, blue), and the system

starts with an incorrect hypothesis.

(E) Thus, the incorrect stimulus identity cell (red)

determines the next saccade(s), which cannot

bring the memorized features of the stimulus into

foveal focus. Image credit: Mr. Spock: public

domain image.
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[29] (see also STAR Methods). Several potential neural network

architectures can be built to compute the direct vector between

any two locations in 2D space. Here, we suggest that visually

driven grid cells encode vectors between salient stimulus fea-

tures in visual space to drive saccades in the service of visual

recognition. Intriguingly, the known properties of grid cells can

confer size and position invariance onto the model and help it

deal with occlusions. The model suggests clear predictions,

and the proposed recognition mechanism conforms to a large

body of literature on visual recognition (in particular holistic

face processing).

For a detailed description of the model, see the STAR

Methods. Briefly, a population vector across the grid cell

ensemble uniquely defines a position in the visual field (Figures

1A and 1B). Any two such positions can be used as inputs to a

distance cell model [29], which yields the displacement vector

between those two locations (Figures 1B and 1C). This vector

calculation is integrated with visual processing in the following

manner. Grayscale images (4403 440 pixels) represent pre-pro-

cessed visual input to the model. A small square array of cells

represents output from a simplified fovea (61 3 61 cells) with

associated sensory cells (feature detectors). In a training phase,

the model learns Hebbian associations between the following

cell types. First, as an individual component feature (e.g., the

nose, eyes, lips, etc. of a given face) of a stimulus is foveated,

it generates a characteristic response among the feature detec-

tors (i.e., individual features are evaluated; Figure 2). A Hebbian

association between the array of feature detectors and an indi-

vidual (newly recruited) feature label cell (representing the

foveated component feature of a stimulus) is then learned. Sec-

ond, a connection between feature label cells and the locations
of those features in the visual field (represented by grid cell pop-

ulation vectors) is learned. Finally, all feature label cells belonging

to a stimulus are associated—bi-directionally—to a stimulus

identity cell, representing the abstract identity of a stimulus.

That is, each stimulus identity cell receives connections from a

small number of feature label cells representing the component

features of that stimulus and has a return projection to the

same feature label cells (Figure 1E).

Once the model has learned the necessary associations, its

recognition memory is tested by presenting stimuli from the

training set. An action-perception cycle then consists of the

following steps: the foveal array is centered on a given feature

(we assume that the first feature is selected by bottom-up atten-

tional mechanisms, which are not modeled here). Feature detec-

tors (perception) drive the feature label cells, which (partially)

match the attended feature. Thresholding and a subsequent

softmax operation ensure a sparse code among feature label

cells. Active feature label cells drive their associated stimulus

identity cells, generating competing hypotheses about the stim-

ulus identity. The most active identity cell then determines the

computation of the vector for the next saccade (action) in the

following way. The current location of the fovea is represented

by a population vector of grid cell activity, which is updated by

eye movements analogously to how grid cell firing is updated

by self-motion during navigation [26]. This yields the starting

point of the saccade vector. Previously active feature label cells

(including the one for the currently foveated feature) are reset to

zero, and the most active stimulus identity cell (representing the

leading hypothesis) randomly selects the next feature label cell

via its return projection. Randomness is given by weak noise

on the back projection, and winner-take-all dynamics select
Current Biology 29, 1–12, March 18, 2019 3
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the feature label cell, which is in turn associated with its own grid

cell population vector (yielding the end point of the next saccade

vector). Given the starting and end points of the next saccade,

the distance cell system outputs the vector required to update

foveal position (see Figure 1E for an overview; details in STAR

Methods), allowing the system to sample another portion of

the visual field. The cycle then repeats while stimulus identity

cells accumulate firing across cycles until a firing rate ‘‘decision

threshold’’ has been reached (at which point the leading hypoth-

esis about the identity of the stimulus is accepted and identity

cells reset to zero before the next stimulus is presented).

Importantly, in addition to specifying the endpoint of the next

saccade via associated grid cells, the activated feature label

cell that has been selected by the return projection of the leading

stimulus identity neuron also represents a prediction. Once the

fovea relocates, and the next sensory discrimination is carried

out, the maximally active feature label cell should be the pre-

dicted one. This prediction is incorporated as a facilitatory effect,

boosting the firing of the predicted feature label cell in the next

cycle by a factor of two, prior to the application of the softmax

operation across all feature label cells. If the predicted feature la-

bel cell is not the most active one after the next sensory discrim-

ination, a mismatch is registered. At the third mismatch event,

the system resets, beginning with different component feature.

This procedure allows for a fast rejection of false hypotheses,

which will otherwise produce saccades that do not take the

fovea to expected features. Figure S1 details the effect of sen-

sory predictions.

During learning, each feature of a given stimulus is anchored to

the grid cell representation, and the relative locations of features

encoded across all grids are mutually consistent. Paralleling

experimental results [17, 20] we encode all stimuli in the same

grid ensemble (as if anchored to a presentation screen). However,

if connections from the most active feature label cell can re-align

the grid cell ensemble (foveal array 0 feature label cell 0 grid

cells) to the phases specific to a given stimulus, then recognition

irrespectiveof thepositionofa stimulus in thefieldof view (position

invariance) follows from the fact that the grid system encodes the

relative (rather than absolute) locations of the features within a

stimulus. This is consistent with grid cell firing patterns being sta-

ble across visits to the same environment but shifting coherently

across different environments [30]. This predicts that grid cell

phases would follow the position of the stimulus in the visual field,

in the absence of environmental anchor points, e.g., during recog-

nition of illuminated faces in darkness.

Regarding size invariance, pre-processing of visual inputs

could generate a size invariant representation prior to input to

the system described here. However, the present model could

accommodate size invariance. All circuit level models of grid

cells require velocity inputs to update their firing (locomotor ve-

locity during spatial navigation or eye-velocity in visual para-

digms). The coupling between ‘‘neural space’’ (i.e., distance on

the grid pattern) and self-motion has been shown to be plastic

in spatial navigation paradigms [31]. Hence, we assume a given

saccade length is subject to gain-modulation to give an appro-

priately scaled distance on the grid cell ensemble, and,

conversely, a given distance on the grid cell ensemble can be

scaled to yield a saccade of appropriate length. This requires a

change in gain with the estimated size (distance) of the stimulus.
4 Current Biology 29, 1–12, March 18, 2019
The estimation of stimulus size during recognition could reflect

the size of the segmented retinal image or ocular focus

(compared to a memorized baseline), which is related to the dis-

tance and hence size of the stimulus.

RESULTS

Following one-shot learning trials (where the stimulus identity,

feature label, and grid cell associations have been encoded;

see Figure 3A), the model is tested on the stimuli it has learned.

Once a starting feature has been selected (at random, in the

absence of a model for bottom-up attention), grid cell-driven

recognition memory takes over, calculating saccade vectors to

predicted locations of other stimulus features. The firing of iden-

tity cells in response to the first perceived feature signifies the

generation of hypotheses about the stimulus being observed,

and the leading hypothesis (i.e., the most active identity neuron)

determines successive saccades to confirm that hypothesis (Fig-

ures 3B–3D). Each saccade represents an attempt to move a

different part of the stimulus into foveal focus, based on the lead-

ing hypothesis (e.g., attending the eyebrow ofMr. Spock, moving

the eyes in a certain direction and distance, should bring his nose

into focus). Once a stimulus identity cell reaches the threshold

for recognition, the next stimulus is presented. Figures 3B–3D

show examples of successfully recognized stimuli. In Figure 3B,

panel 3 (Earhart), the system started off with a wrong hypothesis

(black arrows in line plot) but subsequently recovered. Because

the relative arrangement of features can be similar between the

competing stimuli, successive saccades (relative displacement

vectors) eventually let the correct stimulus identity accumulate

more evidence because of partial matches with encoded fea-

tures. That is, the model does not rely exclusively on resets if

the initial hypothesis is wrong. The correct hypothesis can over-

take an initially leading, incorrect hypothesis. A reset on the other

hand is illustrated in Figure 3C, panel 2 (Dido Building Carthage)

where the initially incorrect hypothesis led to more than two mis-

matches between the expected and actual outcome of feature

discrimination and hence triggered an early reset. On the second

try, starting with a different feature the system recognizes the

stimulus within 5 fixations. Figures 3B–3D show examples for

face, scene, and object stimuli, respectively. A total of 99 stimuli

were tested (33 faces, 33 scenes, 33 objects; see Table S1).

Most stimuli are recognized within 4–6 saccades (from last

reset; Figure 3E), and 98 out of 99 stimuli were successfully

recognized (see Figure 5G for summary statistics). These

numbers reflect the amount of thresholding among feature label

cells, and the strength of the connection between feature label

cells and stimulus identity cells (which could be variable for var-

iable numbers of features per stimulus; see STAR Methods). A

high threshold for feature label cell firing means fewer co-active

feature label cells at a given time (and hence fewer competing

hypotheses), with the consequence that the leading feature label

cell accounts for a higher fraction of overall firing after the soft-

max operation, leading to fewer saccades on average. Scaling

down the strengths (i.e., gain) of connections from feature label

cells to stimulus identity neurons increases the average number

of saccades.

The activity of grid cells along each saccade vector (or just at

the start and end locations) can be recorded and binned
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Figure 3. Recognition of Stimuli

(A) Salient features are associated with locations in the visual field via grid cells, and each location (red crosses in black circles) is encoded by the phases across

the entire grid cell ensemble (4 out of 9 scales shown) as a population vector (i.e., a given pixel value across all grid cell rate maps).

(B) Saccade sequences (red arrows) superimposed on face stimuli (left). Cyan circles indicate the centers of all encoded local features. With each sampled

feature, a firing rate of the corresponding identity cell is incremented (right). The dashed line indicates the decision threshold. Note, in panel 3, an initially wrong

hypothesis (black arrows) is overtaken by the correct one.

(C) Saccades superimposed on scene stimuli. In panel 2, an initially wrong hypothesis yieldsmisdirected saccades (relative to the true stimulus), which leads to an

early reset (black arrow) because the predicted and actual outcome of the feature discrimination differ persistently. Starting from different initial features

eventually leads to recognition.

(D) Recognition of object stimuli.

(E) Histogram of the number of saccades necessary for recognition across all stimuli.

(F) Variance of the activity across grid cells along each saccade vector (red bars) or just at the start and end locations (dark gray bars), binned according to the

direction of the saccade (10-degree bins). 6-fold symmetry akin to fMRI data arises from the underlying symmetry of grid cells.

(G) All saccade vectors used for the analysis in (F). Image credit: Mr. Spock, Amelia Earhart, Dido Building Carthage: public domain images; Nelson Mandela,

Schloss Charlottenburg, Brain, Perseus: Creative Commons Attribution.
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according to the direction of the saccade. Plotting the firing rate

variance across cells (normalized and baseline corrected, using

10o bins; Figure 3F) reveals a 6-fold symmetry (a few cells fire a

lot if saccades align to grid axes, whereas many cells fire at a

lower rate if they misalign), a direct consequence of the use of

grid cells. Hence, the model is consistent with 6-fold modulation

of the fMRI signal by eye-movement direction [18–20] if genera-

tion of the signal includes history-dependent factors such as

seen in ‘‘fMRI adaptation’’ [32, 33]. The present model thus sug-

gests a functional explanation for the 6-fold symmetry in fMRI

signal amplitude in visual experimental paradigms, following

those seen during navigation in virtual and cognitive spaces

[34–36]. Figure 3G shows all saccade vectors used for the

analysis.

Further advantages of coupling internally generated hypothe-

ses to eye-movement vectors via grid cells become apparent

when partially occluded stimuli are considered. The model is

able to generate a meaningful succession of eye movements,

even if the stimulus is partially occluded. Two types of simula-

tions were conducted. In the first simulation, occlusions are

modeled as regions of random intensity that weakly and indis-

criminately drive feature label cells. In the second simulation,

real-world occlusions were used. We randomly selected the

occlusion from a set of 33 stimuli that consisted of approxi-

mately equal proportions of faces, scenes, objects, and generic

textures (e.g., a brick wall, tree bark, etc.). Figure 4 shows ex-

amples of successful recognition of partially occluded stimuli.

Starting with an un-occluded feature, the model generates sac-

cades. If a saccade lands on the occlusion, the output of

feature label cells is often weak and/or noisy (due to partial

matches with many features) and does not necessarily pass

the first threshold, which would allow it to contribute toward ev-

idence accumulation (firing 2.8 SD above the mean, see Model

Description), so the firing of the associated identity neuron

does not increase (see step patterns in Figure 4). Thus, when

the next saccade is performed, it is based on the currently

most active stimulus identity cell (which is likely the previously

most active one) without refinement of the hypothesis. The next

target is simply selected by the return projection from the iden-

tity cell to its associated feature label cells, and the starting

point of the saccade is given by current eye position (given

by eye-motion updating of grid cells). Thus, saccades to and

from expected but occluded features can still be performed.

Moreover, the system can make use of the encoded stimulus

layout by visiting non-occluded features from different

(occluded or un-occluded) starting locations, though resets

may be triggered more often, reflected in an increase number

of total fixations (Figure 4G). With white noise occlusions, 97

out 99 stimuli were recognized. This number dropped to 86

with real-world occlusions. However, restricting the number of

consecutive fixations on the occlusion to 1 improves perfor-

mance to 92 recognized stimuli (see Figure 5G for summary

statistics). We hypothesize that saccades to occlusions should

be rare because they cannot be expected to contribute to ev-

idence accumulation. In fact, such saccades may occur only

if subjects are explicitly instructed to infer the location of hidden

features. To the best of our knowledge, this ability has not been

tested in the literature, although memory-guided saccades do

provide indirect evidence. Lucas et al. [14] show that subjects
6 Current Biology 29, 1–12, March 18, 2019
can correctly place features (previously encountered as an

array) on an empty screen, accompanied by fixations of the

target areas; i.e., the locations of the features are somehow in-

ferred. Importantly, re-running the same simulations with a new

random seed does not lead to failed recognition in the same

stimuli. In other words, a recognition failure is specific to a

given order of saccade targets, and most possible orders of

saccades produces correct recognition.

As outlined in the model overview, size invariance can be

achieved by allowing a variable gain factor relating the magni-

tude of grid cell displacement vectors and the magnitude of

oculo-motor output. Correctly estimating this gain depends on

a size estimate of the stimulus relative to somememorized base-

line value. This allows the model to recognize a previously en-

coded stimulus at different distances (i.e., a downscaled image;

Figure 5A). In analogy to the effect of environmental change on

grid cells in spatial memory [30], the first (foveal) sensory input

is assumed to align the grid cell ensemble (accounting for posi-

tional variation). Between full-size and half-size versions of the

same stimulus, no changes to the vector computation performed

by the grid cell ensemble or the distance cell model are needed.

Only the extent of the foveal array is downscaled to match the

smaller image (e.g., corresponding to an attentional modulation

determining the extent of the retinal image used). Simply scaling

the gain of the magnitude of all saccade vectors by the same

amount suffices to generate a successful sequence of saccades

(Figures 5A and 5B). 98 out 99 stimuli were recognized when

downscaled (Figure 5G), with a similar median number of fixa-

tions (Figure 5B) compared to default size stimuli.

Finally, disconnecting the grid system from the rest of the

model leads to a sharp drop in recognition performance. We con-

ducted two simulations, assuming that in the absence of grid cell-

guided saccades bottom-up attention will select fixation targets

randomly among all available targets. As a consequence, sensory

predictions rarely match the outcome of feature discriminations,

leading to poor evidence accumulation and/or a sharp increase

in the number of resets. We define 10 resets without recognition

as a failure to recognize the stimulus. Under these conditions,

recognition performance drops to 40 recognized stimuli. Since it

is unlikely that all potential targets for bottom-up attention are

memorized, we conducted a second simulation where we

included 5 additional targets that can attract attention (i.e., dis-

tractors) in each image. Attention can then select the next fixation

target among 14 targets (9 memorized + 5 distractors). This re-

duces recognition performance further to 16 out of 99 items.

Thus, lesions to the grid system may produce prosopagnosia-

like symptoms (see Discussion).

DISCUSSION

We have presented a simple model of how the brain may calcu-

late saccade vectors during recognition memory. The model is

the first to suggest a specific role for grid cells in visual recogni-

tion and consistent with recent evidence of grid cells driven by

eye movements [17–20]. The core predictions are that visual

recognition memory will engage grid cells whenever the relative

layout of multiple features must be taken into account, that le-

sions to the grid cell systemwill preclude this relational (i.e., con-

figural) processing, and that the system allows an agent to infer
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Figure 4. Occlusions

The (expected) locations of occluded features can still serve as start and end points of saccades, however, occluded features rarely increment the output of the

associated identity cells (stair patterns in line plots).

(A) Face stimuli with white noise occlusions. Saccades sequences (red arrows) superimposed on face stimuli (left). Cyan circles indicate the centers of all encoded

local features. With each sampled feature, a firing rate of the corresponding identity cell is incremented (right).

(B) Same as (A) with real-world occlusions.

(C and D) Scene stimuli with white noise (C) and real-world (D) occlusions.

(E and F) Object stimuli with white noise (E) and real-world (F) occlusions.

(G) The total number of fixations (including resets) for white noise (left) and real-world occlusions.

Image credit: F.S., S.B.P., M.E.F.M.: used with permission; Boat, La Pelosa Beach: supplied by author, with permission; Shuttle: public domain image; Carl

Sagan, Nina Simone, Orion, Sigourney Weaver, Angela Merkel, brick wall, Picasso, Emmy Noether plaque: Creative Commons Attribution.
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Figure 5. Size Invariance and Grid Cell Le-

sions

(A) Top: Illustration of the relationship between

distances in ‘‘neural space’’ (on grid patterns) and

visual space. Panels 2–4: Scaled down (50%)

stimuli within the presentation frame of default

size. Scaling the gain between the displacement

vector on the grid pattern and the oculo-motor

output uniformly for all saccades allows the model

to sample all features of downscaled stimuli,

leading to successful recognition irrespective of

size. Saccade sequences (red arrows) are super-

imposed on stimuli (left). Cyan circles indicate the

centers of all encoded local features. With each

sampled feature, a firing rate of the corresponding

identity cell is incremented (right).

(B) Histogram of the number of saccades (from last

reset) necessary for recognition across all stimuli.

(C) Upon disconnecting grid cells from themodel, it

is assumed bottom-up attention will select among

possible targets randomly. Panel 1: The next pre-

dicted feature (red circle) and the foveated feature

rarely match, leading to poor evidence accumula-

tion. Panel 2: By chance the next predicted feature

(red circle) can be selected for foveation. Panel 3:

The absence of confirmatory predictions (and thus

facilitation among feature label cells) increases the

number of false hypotheses of stimulus identity,

leading to predicted features that are not present in

the stimulus being viewed (purple circle). The

behavior in panels 1 and 3 reduces recognition

performance, while that in panel 2 contributes to

residual recognition ability.

(D) Cyan circles indicate memorized features.

Adding additional potential targets for bottom-up

attention (i.e., distractors, filled green circles) ex-

acerbates the performance drop.

(E–G) The average number of fixations from the last

reset across conditions (E). The average number of

fixations including resets (F). Recognition and fail-

ure rates (no recognitionwithin 10 resets, ‘‘not rec.’’)

for all tested conditions (G). Default condition, blue;

white noise and real-world occlusions, red and

yellow, respectively; real-world occlussions limited

to one consecutive saccade towards the occlusion,

purple; 50% shrunken stimuli, green; grid cell lesion

with andwithout distractors, light blue and dark red,

respectively.

Image credit: B.B., P.A.: used with permission; Mr.

Spock, Ai Wei Wei, Kiwi, bathroom: public domain

images.
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the locations of occluded features. The model suggests how

one-shot learning of exemplars may occur (paralleling one-shot

learning of episodic memories in the hippocampal formation).

Following this analogy, if deliberate recall is viewed as a top-

down reconstruction of a previously experienced sensory repre-

sentation, then the model also shows how relational information

(sensory information tied to an arrangement of locations) could

be made available for reinstatement. The specific visual mecha-

nism presented here may extend to object recognition in other

modalities [37].

In viewing tasks where whole scenes are presented within a

constant border [17, 20], grid cells appear to be anchored to

the borders, as are spatial grids in rodents across multiple ses-
8 Current Biology 29, 1–12, March 18, 2019
sions of navigation within a constant enclosure. In these experi-

ments, the offset of grid cells relative to the enclosure only shifts

in extreme circumstances, in which place cells ‘‘remap,’’ like

moving the entire enclosure to a different experimental room

[30]. We suggest that in the absence of environmental anchor

points, grid-like firing patterns would be anchored to a salient

foreground stimulus that has to be recognized (e.g., when recog-

nizing illuminated faces or objects in darkness). A strong predic-

tion is that the grid patterns shift with the to-be-recognized

object when presented in a new location. Grid cells could be

anchored to the sensory scene by connections from place cells

in the spatial case [38] and similarly by connections from feature

label cells during visual recognition.
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The implementation of the model is deliberately simplistic so

as to focus on the basic mechanism proposed. Grid cells are im-

plemented as a look-up table (firing rate maps). The remaining

components of the model are also fairly conventional (visual

feature detectors, identity or concept cells). The model suggests

a parsimonious encoding of relative locations. The distance cell

and grid cell systems are not stimulus specific. The number of

stimulus identity cells and feature label cells per stimulus is of

the order of the number of identifying (high-level) features,

though the model does not preclude that visual features could

be also encoded in a distributed manner. Despite this simplicity,

tentative anatomical links can be established. The stimulus iden-

tity cells in the model are reminiscent of concept cells found in

the human hippocampus [39]. The use of hippocampal cells in

conjunction with entorhinal grid cells would be consistent with

the involvement of the hippocampal formation in some percep-

tual tasks [14, 40, 41]. It may also account for medial temporal

lobe interactions with the visual system during visual recognition

of relational information and object-location binding [22–24], and

for memory-guided attention [13, 14], as well as during naviga-

tion [42, 43].

The hippocampus and the parahippocampal gyrus also

appear to support retrieval of pre-experimental knowledge about

stimulus location within a scene [13] or pre-experimental knowl-

edge about specific faces [44]. The fact that the hippocampus is

required to recognize familiar faces, but not new, recently seen

faces [45], suggests that the grid cell system may be predomi-

nantly required to support long-term relational memory for

familiar identifiable stimuli.

The presence of object, scene, and face-specific processing

streams in anterior temporal lobe suggests that recognition

memory for all these stimulus categories could benefit from

anatomically close grid cell representations in entorhinal cortex.

Intriguingly, face processing in Macaques engages entorhinal

cortex in addition to homologs of human face-processing areas

[46]. The prominent role of perirhinal cortex in the processing and

memory of objects and faces [47, 48] suggests that neural pop-

ulations akin to feature label cells may reside there. Face-selec-

tive patches have also been identified in the ventral anterior

temporal lobes, adjacent to perirhinal and entorhinal cortices

[49, 50]. Similarly, the anatomical adjacency of the parahippo-

campal areas to entorhinal cortex makes it a candidate structure

for cells that may represent salient parts of a scene, similar to

feature label cells in the model. Supporting this view, anatomical

projections have been reported between entorhinal cortex and

parahippocampal areas TH and TF, as well as IT/TE and perirhi-

nal cortex [51–53]. Intriguingly, Blatt et al. [54] report that these

same areas (TF, TE) are connected to LIP, a structure crucial

for saccade execution, which is directly connected to the supe-

rior colliculus (SC) and the frontal eye fields (FEFs). It has been

suggested that memory-guided saccades rely on SC being sub-

ject to top-down influence via FEF and LIP [55]. A saccade could

then be executed to the location in the visual field indicated by

the SC, which most closely matches the endpoint of a grid

cell-derived saccade vector [25]. Grid cell-based computations

in and near entorhinal cortex for memory-guided saccades

should then precede motor output and thus corollary discharge

mediated by thalamic pathways involving the SC (for review, see

[56, 57],).
We note that categorical object recognition (e.g., distinguish-

ing a car from an elephant) need not make use of the proposed

mechanism (the different categories can be distinguished by

their constituent features irrespective of their layout). However,

when fine within-category judgments of feature layout are

required, relational processing may be necessary, for which

grid cells can provide the neural substrate. Focal lesions to

grid cell systems should then disrupt relational memory process-

ing (with bottom-up attentional saccade guidance preserved),

yielding deficits in the recognition of exemplars with spared cate-

gory recognition. Interestingly, Damasio et al. [58] report that true

prosopagnosics are still able to recognize a face as a face and

name it as such (when the query is presented similarly to objects)

but are unable to report specific identity. Additionally, recog-

nizing object exemplars can also be impaired (e.g., a bird

watcher being unable to recognize individual birds [58]). We

have shown that prosopagnosia-like symptoms may arise from

disconnecting grid cells (and/or stimulus identity cells) from neu-

rons (akin to feature label cells in the model) in upstream areas.

Although sequences of saccades can in principle be solely

driven by bottom-up attention to salient features in the visual

field, the relational content is essential for deliberate recall.

Further support comes from experiments showing that recogni-

tion of multi-featured items is more difficult when stimuli are

scrambled [12, 59]. Moreover, bottom-up attention alone

cannot account for eye movements during acts of visual imagery

[60, 61], i.e., when specific eye-movement patterns are induced

from memory [21, 62, 63].

On a purely behavioral level, an interesting prediction is that

idiosyncratic differences between subjects could transfer be-

tween apparently radically different tasks, if they employ grid

cells. For example, bad navigators could also be bad at recog-

nizing exemplars, with the strongest effect likely occurring for

familiar, non-famous faces and difficulty-matched groups of ob-

ject or scene exemplars [64]. Although configural processing has

mainly been associated with faces [65], studies employing

‘‘greebles’’ show that the hallmarks of holistic, face-like process-

ing can be observed for objects, potentially related to expertise

in distinguishing individual (object) exemplars [66, 67].

Since successful saccades in the model depend on the rela-

tive arrangement of features, the model is compatible with the

notion of holistic processing, as exemplified by the ‘‘composite

face effect’’ [68], the ‘‘part-whole recognition effect’’ [12], and

the difficulty to process and recognize upside-down faces [69],

for which saccades would be guided in the wrong direction.

Notably, Tanaka and Sengco [12] have shown that displacement

of one facial feature (e.g., increasing eye separation) reduces the

recognition rate for other features within the same face, a finding

that maps well onto the present account in which individual fea-

tures determine the next saccade vector. The successful recog-

nition of stimuli that are partially occluded is also a consequence

of the vector-based, relational mechanism andmay form the ba-

sis of our ability to infer the locations of occluded features.

If size invariance is accomplished within the grid cell system,

then the present account predicts a rescaling of visual grids

with the size of the stimulus in the visual field (cf. [31].). Regarding

rotations, classic models of object recognition have proposed

that either viewpoint-invariant (3D) representations of objects

are stored [70], or that multiple canonical views of an object
Current Biology 29, 1–12, March 18, 2019 9
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are stored, with intermediate views synthesized by interpolation

[71, 72]. It has been suggested [73] that both view-invariant

(structural) as well as view-based approaches are implemented

in the brain, and that structural-descriptions might support cate-

gory level classification, whereas view-basedmechanisms could

support item-specific recognition. The mechanism we have

proposed here could, for instance, operate on one or several in-

dividual view-based, canonical representations (possibly with

separate feature label cells for each view, but the same identity

neuron(s) across views) in anterior temporal regions, corre-

sponding to different rotation angles, and interpolate saccade

length between the two closest views. Attentional mechanisms

could facilitate small corrective saccades (i.e., microsaccades)

if the calculated saccade lands sufficiently close to the target.

Finally, the present account can accommodate a broader

Bayesian interpretation of perception. For instance, information

about context could be integrated (as prior beliefs), similar to

the facilitatory bias of predictions in the current model, applied

to a subset of stimuli one is expecting to encounter. For example,

at a workplace one would expect to encounter colleagues and

hence firing of cells representing their features and identities

may be preferentially incremented. However, note that individual

memory-dependent saccades must be guided by one and only

one hypothesis at a time in order to move the fovea to the loca-

tion of an expected feature, rather than, e.g., between two

competing locations. Also note, already the first firing of an iden-

tity cell represents the formation of a hypothesis or belief. Inte-

grated with contextual and gist information, a very small number

of saccades may suffice to reach sufficient confidence.

Conclusions
We have presented a mechanistic model of visual recognition

memory via grid cells, better known for their role in spatial navi-

gation. However, grid-like activity in visual paradigms suggests

that the same neural circuit could also contribute to visual pro-

cessing. Vestibular and bodily motor efference signals could

drive grid cells during path integration and large-scale spatial

navigation, and occulomotor inputs could update the same cells

when an agent is engaged in a visual discrimination task. Simi-

larly, by extension grid cells could provide a compact code for

locations in any continuous space, e.g., in conceptual [36] or

auditory [74] spaces. The present model offers an explanation

as to why medial temporal structures are sometimes involved

in recognition memory and supports the emerging notion that

grid cells are part of a universal representational system, where

the inputs determine the exact response properties of grid cells

to amend their neural code to a wide range of tasks.
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EXPERIMENTAL MODEL AND SUBJECT DETAILS

Ten human subjects, personal acquaintances of the author (eight male and two female; ages 30–45) agreed to have their picture used

in the study (as input to the model). Subjects provided informed written consent before donating a picture.

METHOD DETAILS

Model overview
All non-grid cells in the model are simple connectionist neurons with rectified linear output. Since grid cells exist as canonical firing

rate maps (see below for details), their firing rates can be looked up as a function of eye position (for related models of grid cell firing

dynamics see e.g., [75, 76]).

Grayscale images (440x440 pixels) represent pre-processed visual input to the model. In addition to the grid cell and distance cell

components, the model consists of: a small square array of cells, representing pre-processed outputs from a simplified fovea (61x61

cells/pixels) with associated sensory cells (see next paragraph); a small number of ‘feature label cells’ (one for each salient feature

within a familiar stimulus, here 9 per stimulus); and a single stimulus identity cell per image (representing the abstract identity of the

stimulus, see e.g., [39, 77, 78]).

Banks of sensory neurons (playing the role of feature detectors, one bank associated with each foveal pixel) are implemented as

cells with Gaussian tuning curves across possible (grayscale) pixel values. Individual cell exhibit a FWHM (full width at half maximum)

of approximately 10% of the range of possible pixel values [0,255]. Thus, when a given input is presented by the fovea, sensory neu-

rons express a characteristic response, indicative of the attended feature, though subject to noise (see below).

Stimuli (the grayscale images) are first presented in a training phase (see below for details). the model learns Hebbian associations

between the following cell types. First, as an individual component feature (e.g., for the nose, eyes, lips etc. of a given face) of a stim-

ulus is foveated it generates a characteristic response among the feature detectors. A Hebbian association between the array of

feature detectors and an individual (newly recruited) feature label cell (representing the foveated component feature of a stimulus)

is then learned. Second, a connection between feature label cells and the locations of those features in the visual field (represented

by grid cell population vectors) is learned. Finally, all feature label cells belonging to a stimulus are associated – bi-directionally – to a

stimulus identity cell, representing the abstract identity of a stimulus. That is, each stimulus identity cell receives connections from a

small number of feature label cells representing the component features of that stimulus, and has a return projection to the same

feature label cells (Figure 1E). Once themodel has learned the necessary associations, its recognitionmemory is tested by presenting

stimuli from the training set.

Action/Perception cycles
An action-perception cycle consists of the following steps: The foveal array is centered on a given feature (we assume that the first

feature is selected by bottom-up attentional mechanisms, which are not modeled here). Feature detectors (perception) drive the

feature label cells which (partially) match the attended feature. Feature label cells must exceed 2.8 standard deviations with respect

to the firing rates of all feature label cells to be eligible to contribute evidence. After this thresholding a softmax operation is applied to

ensure a sparse code among feature label cells. Active feature label cells drive their associated stimulus identity cells, generating

competing hypotheses about the stimulus identity. The most active identity cell then determines the computation of the vector for

the next saccade (action) in the following way. The current location of the fovea is represented by a population vector of grid cell

activity, which is updated by eye-movements analogously to how grid cell firing is updated by self-motion during navigation

[26, 76]. This yields the starting point of the saccade vector. Previously active feature label cells (including the one for the currently
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foveated feature) are reset to zero and the most active stimulus identity cell (representing the leading hypothesis) randomly selects

the next feature label cell via its return-projection (feature label cells representing already visited features are permanently inhibited).

Randomness is given byweak noise on the back-projection andwinner-take-all dynamics select the feature label cell, which is in turn

associated with its own grid cell population vector (yielding the end point of the next saccade vector). Given the starting and end

points of the next saccade, the distance cell system outputs the vector required to update foveal position (see below for vector com-

putations), allowing the system to sample another portion of the visual field. The cycle then repeats while stimulus identity cells accu-

mulate firing across cycles until a firing rate ‘decision threshold’ has been reached (at which point the leading hypothesis about the

identity of the stimulus is accepted and identity cells reset to zero before the next stimulus is presented). The increment in firing of a

stimulus identity cell (i.e., the gain onweights from feature label cells to stimulus identity cells; parameter FLC2ID in Table S2), and the

decision threshold are free parameters. They could be adapted in situations where sensory input is more or less reliable, setting a

lower recognition threshold (or a larger increment) would facilitate faster recognition, potentially at the expense of accuracy. It could

also be a function of the number of available component features, thus accounting for variable numbers of available features between

stimuli. If the decision threshold is not reached once all component features have been visited (which happens rarely), all permanently

inhibited feature label cells (i.e., coding for already visited features) are disinhibited and the process continues.

Sensory predictions and resets
In addition to specifying the endpoint of the next saccade via associated grid cells, the feature label cell that has been selected by the

return projection of the leading stimulus identity neuron also represents a prediction. Once the fovea relocates, and the next sensory

discrimination is carried out, the maximally active feature label cell should be the predicted one. This prediction is incorporated as a

facilitatory effect, boosting the firing of the predicted feature label cell in the next cycle by a factor (two), prior to the application of the

softmax operation across all feature label cells. If the predicted feature label cell is not the most active one after the next sensory

discrimination, a mismatch is registered. At the third mismatch event the system resets (i.e., the current hypotheses are all rejected),

beginning with different component feature. This procedure allows for early rejection of false hypotheses, which will otherwise pro-

duce saccades that do not take the fovea to expected features. Figure S1 details the effect of sensory predictions. Note that multiple

failures to reach the decision threshold could also be used to infer that the attended stimulus is unfamiliar.

Grid Cells and Vector Computations
Grid cells have been suggested to provide a spatial metric that supports path integration (by integrating self-motion inputs) and vec-

tor navigation [27–29]. The spatial periodicity of grid cells at different scales suggests that they provide a compact code for location,

and that they can uniquely encode locations within a space much larger than the largest grid scale [29, 79, 80]. Grid cells are imple-

mented as canonical firing rate maps which act as a look-up table. Each map consists of a matrix of the same dimensions as the PC

sheet (440x440 pixels) and is computed as 60 degrees offset, superimposed cosine waves using the following set of equations.

b0 =

�
cosð0Þ
sinð0Þ

�
b1 =

0
B@

cos
�p
3

�

sin
�p
3

�
1
CAb2 =

0
BBB@

cos

�
2p

3

�

sin

�
2p

3

�
1
CCCA (1)
zi =biðF x!+ x!offsetÞ (2)
rGC =maxð0; cosðz0Þ+ cosðz1Þ+ cosðz2ÞÞ (3)

Here b0, b1 and b2 are the normal vectors for the cosine waves. 9 modules with constant orientation are used. F is the spatial fre-

quency of the grids, starting at 0.0028*2p. The scales of successive grids are related by the scaling factor
ffiffiffi
2

p
[81]. The grid patterns of

different cells in a module/scale are offset relative to each other [16], collectively covering the entire visual field evenly. For each grid

scale 100 offsets are sampled uniformly along the principle axes of two adjacent equilateral triangles on the grid (i.e., the rhomboid

made of 4 grid vertices). Thus the grid cell ensemble consists of 9 modules/scales with 100 cells each.

To calculate displacement vectors between locations encoded by grid cell population vectors we employ a distance-cell model,

following Bush et al. [29] and Chen and Verguts [82]. Briefly, a given location on a 2D plane is uniquely represented by a set of grid cell

phases (Figure 1B; [30]). Grid cells with appropriate phases in each module project to a single cell encoding the corresponding dis-

tance in each of four distance cells arrays, two for each of two non-co-linear axes. The two distance cell arrays belonging to the same

axis project to two readout cells. One readout cell receives monotonically increasing weights from one distance cell array andmono-

tonically decreasing weights from the other. For the second readout cell the connections increase/decrease in the opposite direction

along the distance axis. The relative difference in firing rate between the two readout neurons encodes the displacement between

start and goal locations along the given axis (Figure 1B). The connections between grid cells and distance cells are universal (i.e.,

not stimulus specific) and could be set up during development.
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Since the resolution of images and grid maps is restricted to 440x440 pixels we allow for a small tolerance of 1% in pixel coordi-

nates for translation vectors derived from vector computations. This allows for the compensation of small rounding errors for discrete

pixel targets. It has been suggested that microsaccadesmight serve to tweak the alignment of the fovea [83]. Interestingly, Hafed and

co-workers [84, 85] raise the possibility that a mechanism similar to the present model may also inform microsaccades, e.g., for fine

feature discrimination ([83]; reviewed in [86]), or recognition at a distance. However, it remains to be seen if memory-guided micro-

saccades can occur at delays which exclude working memory sources.

Rather than eye-movement vectors, the location of the focus of attention might be calculated [87], although we do not distinguish

the focus of attention from the target of fixation here. However, covert attention may be involved in recognition under restricted

viewing conditions [11], which could have implications for critiques of scan-path theory.

Training phase
We assume that during learning of a new stimulus, salient locations on an image (e.g., regions of high contrast) are foveated via bot-

tom-up attention, without knowledge of the stimulus identity, consistent with the typical eye-movements performed by human sub-

jects as they encounter new faces [11]. This bottom-up processing would also include figure-ground segmentation. For simplicity this

processing stage is not modeled and salient features are selected manually (9 per stimulus). In reality an analysis of the scene sta-

tistics may help select maximally de-correlated inputs [88, 89]. For face stimuli the selected locations include the corners of eyes, the

tip or sides of the nose, corners of the lips, etc. That is, regions of the stimulus that exhibit strong gradients in contrast under most

lighting conditions, and similar criteria are applied for scenes and objects. At each of the locations foveated during the training phase

a cell coding for the attended feature (feature label cell, see Feature detection, below) is associated with the current grid cell popu-

lation vector and with a single stimulus identity cell. Identity cells represent the abstract identity of a stimulus and are recruited on the

fly during the first exposure to a stimulus. They might reside in face-, object- or scene specific neocortical area or the hippocampus

(please see Discussion).

Feature detection and ambiguity
Feature detection is accomplished by banks of sensory neurons (with Gaussian tuning with regard to preferred gray-scale values)

responding to the content of each pixel in the foveal array (Figure 2A,B). Preferred pixel values for Gaussian tuning curves of sensory

cells are taken from blurred images during training (Mathworks, MATLAB function integral filter, range 5 pixels). This reflects (to a first

approximation) the fact that a large variance in absolute pixel values would be encountered in reality, and the fact that stimuli of

different identity may contain some similar-looking individual features (feature ambiguity). Depending on the content of the fovea

a different subset of these sensory neurons is maximally active. During the training phase connections from these sensory cells to

a given feature label cell are learned. That is, for a given foveal content the sum of all sensory cells maximally drives a given feature

label cell, thus implementing a simple toy model of feature detection. The ambiguity of feature perception can lead to an incorrect

initial hypothesis regarding the attended stimulus, i.e., an incorrect identity neuron being the most active. Such a hypothesis will pro-

duce saccades which do not take the fovea to expected features (Figure 2). As a consequence, sensory cells can drive many feature

label cells due to incidental partial overlap between their preferred features and the content of the fovea. Those feature label cells

impart some activity onto their associated identity neurons. That is a random subset of identity cells is weakly driven, leading to a

flattening of the distribution of firing rates among stimulus identity cells. By contrast, when the output of the feature detectors primar-

ily drives the correct feature label cells, and successive saccades confirm the initial hypothesis, the distribution of firing rates among

stimulus identity cells becomes progressively more peaked. Alternatively to tracking mismatch events between predictions and sen-

sory discriminations (see above) the absence of convergence to a specific hypothesis could be detected by the increased total

amount of firing among stimulus identity cells.

Position Invariance
During learning, each feature of a given stimulus is anchored to the grid cell representation, and the relative locations of features en-

coded across all grids are mutually consistent. Paralleling experimental results [17, 20] we encode all stimuli in the same grid

ensemble (as if anchored to a presentation screen). However, if connections from the most active feature label cell can re-align

the grid cell ensemble (foveal arrayR feature label cellR grid cells) to the phases specific to a given stimulus, then recognition irre-

spective of the position of a stimulus in the field of view (position invariance) follows from the fact that the grid system encodes the

relative (rather than absolute) locations of the features within a stimulus. This parallels observations from spatial navigation studies

that show grid cell firing patterns are stable across visits to the same environment but shift coherently upon a change to the environ-

ment [30]. This predicts that grid cell phases will follow the position of the stimulus in the visual field, as suggested by recognition of

illuminated faces in darkness (i.e., in the absence of environmental anchor points). Recognition irrespective of the position of a stim-

ulus in the field of view (stimulus position invariance) follows from the fact that the grid system encodes the relative (rather than ab-

solute) locations of the features within a stimulus. Associating each stimulus with a randomly shifted initial distribution of grid cell

phases could reduce interference. However, because of the multitude of individual differences between stimuli (even those with a

stereotypical layout of component features, e.g., in faces all eyes have roughly similar, but usually not identical, distances), all stimuli

can be encoded in the same grid cell ensemble. Individual differences ensure that individual features map onto different grid cell

population vectors.
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Size Invariance
Pre-processing of visual inputs may conceivably generate a size invariant representation of stimuli prior to input to the system

described here. However, the present model could accommodate size invariance. All circuit level models of grid cells require velocity

inputs to update their firing (locomotor velocity during spatial navigation or eye-velocity in visual paradigms). The coupling between

‘‘neural space’’ (i.e., distance on the grid pattern) and self-motion has been shown to be plastic in spatial navigation paradigms

[31, 90]. Hence we assume a given saccade length is subject to gain-modulation to give an appropriately scaled distance on the

grid cell ensemble, and conversely, a given distance on the grid cell ensemble can be scaled to yield a saccade of appropriate length.

This requires a change in gain with the estimated size (distance) of the stimulus. The estimation of stimulus size during recognition

could reflect the size of the retinal image or ocular focus (compared to a memorized baseline), which is related to the distance and

hence size of the stimulus (Thales theorem).

Note that the estimation of stimulus size during recognition does not necessitate prior recognition of a particular exemplar. The gain

could be set dynamically against some baseline reference size (e.g., the size of the segmented retinal image at the time of the first

encounter) to dynamically scale saccades.

QUANTIFICATION AND STATISTICAL ANALYSIS

Recognition rates were computed as the percentage of recognized stimuli. If a stimulus was not recognized within 10 resets (see

Method Details) a fail was registered (labeled ‘not rec.’ in Figure 5).

DATA AND SOFTWARE AVAILABILITY

Code will be made available at https://github.com/bicanski
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Figure S1: Detailed description of the effects of sensory predictions. (Related to Figure 1E) 

A) The constructive nature of confirmed predictions. Top panel: The first foveated feature is 

evaluated by the feature detectors, which drive feature label cells (FLCs). The feature label cell 

representing the right eye of Mr. Spock is the strongest contender (blue bar in left sketch of FLC 

activity after thresholding), and it increments its associated stimulus identity cell (middle-right panel, 

blue arrow). The return projection (green arrow) selects the next saccade target randomly (green cell, 

target given by associated grid cell population vector, not shown). However, the firing of that FLC 

(green) also represents a prediction for the outcome of the next sensory discrimination once the fovea 

has located to the green square (top-left panel). Bottom panels: if there is any activity in the predicted 

FLC post saccade, its activity is boosted, allowing it to overcome interference from FLCs which 

received comparable or lower inputs. I.e. the leading hypothesis is prioritized if the competing inputs 

are of similar magnitude. B) Top panel: the lack of a confirmed prediction made due to an incorrect 
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initial hypothesis (green arrow in right panel) allows a partial feature match (blue bar) to accumulate 

evidence towards the correct hypothesis. C) If the predicted outcome of the feature discrimination 

(green arrow) and the maximally firing FLC (purple) do not match a mismatch event is registered. 

The red square in the left hand side panels indicates fixations to parts of the stimulus that will produce 

a poor sensory match due to being guided by an incorrect hypothesis. At the third registered mismatch 

event the model resets and starts a new recognition attempt, beginning with a different starting 

feature. Image credit; Mr. Spock: public domain image.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



	

Table S1: All stimuli with picture credit (source URL) and license information. (Related to 

Results section and Figures 3,4,5) 

In accordance with CellPress guidelines this table is supplied as a separate Excel file because it cannot 

fit onto three 8.5”x11” pages. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



	

Nstd 2.8 

NReset 10 

FLC2ID 0.4 

DecTH 0.9 

Nfov 61x61/31x31 

NFPC 9*99 

NID 99 

NSC 61x61x256/31x31x256 

NGC 900 (100/module) 

GC spatial frequencies [0.0014 0.0211] 

NDC 440x4 (2 per axis) 

	

Table S2: Main Parameters. (Related to detailed model description in STAR* Methods) 

Nstd sets the amount of initial pruning of feature label cell responses. It indicates the number of 

standard deviations the firing of a feature label cell has to reach above the mean of the entire 

population in order not to be silenced. NReset is the number of resets allowed. FLC2ID is the global 

connection strength of all feature label cells to their respective stimulus identity cells. The value of 0.4 

signifies that if a single feature label cell is active (i.e. when the softmax across feature label cells has 

no effect), the firing of the associated stimulus identity cell is increased by 0.4 towards the decision 

threshold (DecTH). Cell numbers: Number of foveal cells (Nfov, second set of numbers indicates extent 

used for scaled-down stimuli), feature label cells (NFLC), stimulus identity cells (NID), sensory cells 

(NSC), grid cells (NGC) across 9 modules across the interval (spatial frequencies geometrically spaced, 

multiplier √2), and distance cells (NDC).	
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