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ABSTRACT
Detecting and understanding implicit signals of user satisfaction
are essential for experimentation aimed at predicting searcher sat-
isfaction. As retrieval systems have advanced, search tasks have
steadily emerged as accurate units not only to capture searcher’s
goals but also in understanding how well a system is able to help
the user achieve that goal. However, a major portion of existing
work on modeling searcher satisfaction has focused on query level
satisfaction. �e few existing approaches for task satisfaction pre-
diction have narrowly focused on simple tasks aimed at solving
atomic information needs.

In this work we go beyond such atomic tasks and consider the
problem of predicting user’s satisfaction when engaged in complex
search tasks composed of many di�erent queries and subtasks. We
begin by considering holistic view of user interactions with the
search engine result page (SERP) and extract detailed interaction
sequences of their activity. We then look at query level abstraction
and propose a novel deep sequential architecture which leverages
the extracted interaction sequences to predict query level satisfac-
tion. Further, we enrich this model with auxiliary features which
have been traditionally used for satisfaction prediction and propose
a uni�ed multi-view model which combines the bene�t of user
interaction sequences with auxiliary features.

Finally, we go beyond query level abstraction and consider query
sequences issued by the user in order to complete a complex task,
to make task level satisfaction predictions. We propose a num-
ber of functional composition techniques which take into account
query level satisfaction estimates along with the query sequence to
predict task level satisfaction. �rough rigorous experiments, we
demonstrate that the proposed deep sequential models signi�cantly
outperform established baselines at both query and task satisfaction
prediction. Our �ndings have implications on metric development
for gauging user satisfaction and on designing systems which help
users accomplish complex search tasks.
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1 INTRODUCTION
As search systems have advanced, an increasingly larger propor-
tions of users are relying on search engine to satisfy their informa-
tion needs. Developing be�er understanding of how users interact
with search engines is becoming important for gauging user sat-
isfaction and improving user’s search experience. Since obtaining
explicit feedback from users is o�en prohibitively expensive and
challenging to implement in real-world systems, commercial search
engines have exploited implicit feedback signals derived from user
activity. While users interact with a search engine, they leave be-
hind �ne grained traces of interaction signals. �ese interaction
signals contain valuable information, which could be useful for
predicting user satisfaction as well as developing metrics for search
engine evaluation to assist rapid experimentation.

User initiated search is o�en motivated by a search goal, or a
task. A simple task refers to an atomic information need resulting
in one or more queries [19]. Understanding and evaluating a search
engine’s performance from a task centric view a�ains paramount
importance. Most existing work on gauging user satisfaction have
focused on query level satisfaction [10, 11, 15, 22], with some initial
e�orts aimed at measuring task satisfaction for simple tasks [14].
O�en, independent information needs arise from an overall complex
search task, where a complex search task refers to a multi-aspect or
a multi-step information need consisting of a set of related tasks,
each of which might recursively be complex [2, 19, 32, 33]. While
existing work has primarily focused on measuring user satisfaction
on simple search tasks, work on understanding and measuring user
satisfaction for complex search tasks remains in its infancy.

In this work, we take a comprehensive look at user satisfaction
from di�erent levels of abstractions. We begin by investigating
query level satisfaction, and propose a deep sequential model which
considers holistic view of user’s interaction with the search engine
result page (SERP), constructs detailed interaction sequences of
their activities and leverages such interaction sequences to predict
query level satisfaction. In addition to interaction sequences, we
consider various di�erent behavior signals (e.g. click features, dwell
times) and treat such signals as auxiliary features providing an
alternate view of user interactions. We propose a uni�ed multi-view
deepmodel composed of parallel convolutional and recurrent neural
networks capable of utilizing both the views of user interactions
for predicting query level satisfaction.

Finally, we go beyond query level abstraction and consider the
problem of task satisfaction prediction. We propose a novel func-
tional composition model which takes into account user satisfaction
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at the query level and the subtask level when making task satisfac-
tion predictions. We present rigorous evaluation of the proposed
approach using crowdsourced judgments as well as large scale
pseudo-labeled data and demonstrate that the uni�ed multi-view
deep sequential model signi�cantly outperforms a number of estab-
lished baselines at query satisfaction prediction. We additionally
show that the proposed deep sequential models are also be�er at
predicting task level satisfaction. Our �ndings provide a valuable
tool for gauging task satisfaction and developing next generation
task-aware search engines.

2 RELATEDWORK
�e current research builds upon and advances research in three
directions, which we discuss below:

User Satisfaction:
�e concept of satisfaction was �rst introduced in IR researches
in 1970s according to Su et al. [40]. A recent de�nition states that
”satisfaction can be understood as the ful�llment of a speci�ed de-
sire or goal” [20]. However, search satisfaction itself is a subjective
construct and is di�cult to measure. Some existing studies tried to
collect satisfaction feedback from users directly. For example, Guo
et al. ’s work [10] on predicting Web search success and Feild et
al.’s work [5] on predicting searcher frustration were both based
on searchers’ self-reported explicit judgments. Di�erently, other
researchers employed external assessors to restore the users’ search
experience and make annotations according to their own opinions
[11]. Recently, simplistic user feedback signals have been used to
gauge user satisfaction. For instance, it has previously been shown
that clicks followed by long dwell times are correlated with satis-
faction [7]. Hassan et al. [15] propose to use query reformulation
as a negative indicator of search success and thus satisfaction. Kim
et al. [21] consider three measures of dwell time and evaluate their
use in detecting search satisfaction. Lagun et al.[27] consider scroll
and viewport features for predicting satisfaction in mobile search.

Gestures for Relevance & Satisfaction:
A number of di�erent interaction behaviors have been taken into
consideration in the prediction of search user satisfactions includ-
ing both coarse-grained features (e.g. clickthrough based features
in [11]) and �ne-grained ones (e.g. cursor position and scrolling
speed in [10]). Mouse movement information like scroll and hover
have proven to be valuable signals in inferring user behavior and
preferences [8, 16, 37], search intent [9], search examination [30]
and predicting result relevance [17]. However, none of these stud-
ies tried to extract mouse movement pa�erns and adopt them to
predict search satisfaction. Arapakis et al. [3] extracted mouse
gestures to measure within-content engagement. Lagun et al. [26]
introduced the concept of frequent cursor subsequences (namely
motifs) in the estimation of result relevance. User action sequences
have been used to predict user satisfaction [14], graded satisfaction
[18] and to study search engine switching behavior [38, 42].

Search Tasks:
While a major share of prior work has considered search sessions
as the focal unit of analysis for seeking behavioral insights, search

tasks are emerging as a competing perspective in this space. �ere
have been a�empts to extract in-session tasks [19, 31], and cross-
session tasks [25, 41] from query sequences based on classi�cation
and clustering methods. Kotov et al [25] and Agichtein et al. [1]
studied the problem of cross-session task extraction via binary
same-task classi�cation, and found that di�erent types of tasks
demonstrate di�erent life spans. More recently, Mehrotra et al. [32]
presented a nonparametric clustering model for subtask extraction
but ignored task speci�c as well as coherence based insights.

Our work is di�erent from existing work not only in measuring
query level satisfaction but also in measuring task satisfaction. We
propose novel ways of combining di�erent views of user interac-
tions in a uni�ed model for predicting query satisfaction. Further,
unlike past work which considers simple tasks composed of query
reformulations for measuring task satisfaction, we go beyond such
simpler tasks and also consider complex tasks composed of many
di�erent queries and subtasks.

3 PROBLEM FORMULATION
Our goal in this work is to extract and leverage user interaction data
to predict query and task level satisfaction. We begin by de�ning
the key concepts used throughout the paper.
Sequence: Given a search impression and a list of possible user
actions, a sequence is de�ned as a time-ordered list of actions per-
formed by the user when interacting with the search result page.
Search Task: A search task is an atomic information need result-
ing in one or more queries [19]
Complex Task: A complex search task is a multi-aspect or a multi-
step information need consisting of a set of related tasks, each of
which might recursively be complex [33].
With this background, we formally de�ne the problem of satisfac-
tion prediction:
�ery Satisfaction (QSAT): Given user interaction information,
predict whether the user was satis�ed with the search results.
Task Satisfaction: Given a sequence of queries issued by the user
to accomplish a complex task along with user interaction informa-
tion for each query, predict user’s satisfaction in completing the
overall complex task.

In order to make task satisfaction predictions, we leverage query
level satisfaction estimates as well as subtask level satisfaction es-
timates. While few e�cient approaches exist for automatically
identifying subtasks [32, 33], we assume access to subtask demar-
cation information (obtained via crowdsourced labeling) for the
scope of this work.

We �rst describe the technique used to extract meaningful action
sequences from user interactions with SERP (Section 4) . We then
present in Section 5 our proposed deep sequential model for query
level satisfaction prediction. Finally, in Section 6 we present dif-
ferent techniques for functional composition of query satisfaction
estimates to make task satisfaction predictions.

4 EXTRACTING USER INTERACTION DATA
�e richness of the result page rendered in response to a user query
allows users to interact with SERPs in myriad ways, including
clicking results, scrolling, expanding task panels, hovering over



Action Description
Click algoX Click on the X-th algorithmic result
Click Ans Click on any answer (non-image) result
Click IMG Click on any image result

MouseRead horizontal line across a result snippet of length > 50px and duration > 100 ms that goes from
le� to right which starts and ends inside an algo-result, or advertisement or an answer result

Scroll page scroll recorded on the search engine result page
Move any cursor movement of length > 10px and duration greater than > 50 ms

pause

smallPause: no cursor movement on the SERP for time < 5 seconds
mediumPause: no cursor movement on the SERP for 5s < time < 20s
longPause: no cursor movement on the SERP for 20s < time < 40s
veryLongPause: no cursor movement on the SERP for time > 40s

Resize change in the size of the window/screen encompassing the result page
Issue�ery user movement to the Search Box on the SERP and typing of text in the query box

dwellTime
smallDwellTime: dwell time on a clicked result URL with time spent < 10s
mediumDwellTime: dwell time on a clicked result URL with 10s < time < 40s
longDwellTime: dwell time on a clicked result URL with time spent > 40s

�ickBack click on a SERP URL followed by returning back to the SERP within 5s
Table 1: Examples of actions considered along with their description used to create the user interaction sequence.

Example Sequence
Scroll→ smallPause→Move-algo-1→ smallPause→Move-
algo-2→ smallPause→ Click-algo-2

Table 2: Example of sequences extracted.

images, pausing to read and absorb content among others. Follow-
ing Mehrotra et al. [34], we extract interaction sequence from user
interaction with the SERP. To do so, we construct a universal action
sequence timeline from the following three di�erent timelines:

(1) Viewport Timeline: Viewport is de�ned as the position
of the webpage that is visible at any given time to the
user. Viewport timeline allows us to consider user actions
concerning the viewport, for example, scroll on the result
page and resize of the screen.

(2) Cursor Timeline: �e cursor timeline provides us with
all the cursor related user activity. Backend search logs
record detailed user mouse activity which helps us to track
the mouse movement and link the corresponding cursor
activity to the di�erent elements on the SERP.

(3) Keyboard Timeline: �e keyboard timeline records all
keyboard related user activity (for example, text enter).

For each search impression, we log the three timelines with corre-
sponding user actions along with the timestamp. Based on these
three timelines, we generate one holistic universal action sequence
timeline describing all user activity on the SERP by temporal sorting
of individual timelines followed by stacking up the three timelines,
and then interleaving them based on timestamps of the recorded
actions. �is provides us with a universal sequence of user interac-
tion, examples of which are shown in Table 2. We next take a more
detailed look at the actions considered to construct the timelines.

Actions Considered: A number of actions were considered which
include all types of interactions performed by the users. Table 1 lists
the major actions considered. For details on the actions considered,
the interested is referred to Mehrotra et al. [34].

5 QUERY LEVEL SAT PREDICTION
While implicit feedback measures like mouse clicks, reading and
dwell times, gaze tracking have been extensively used in predicting
search satisfaction, they ignore the sequence information accom-
panying any user interaction. Given the detailed action sequence
extracted from user’s interaction with SERP, we aim at predicting
user satisfaction using the extracted sequence.

Gauging user satisfaction is the problem of predicting satisfac-
tion label given a query q, the search results page rendered, detailed
user interaction actions recorded (Section 4) and aggregate implicit
signals according to a parametric probability measure:

y = arдmaxy∈0,1p(y |q, SERP ,A, I;θ ) (1)

where θ represent a vector of all parameters to learn, q is the query,
A is the user action sequence and I are the implicit signals observed.
In order to predict query level satisfaction, we leverage interaction
sequences and propose a deep sequential model to predict satis-
faction. Further, we augment the sequence model with SERP level
signals which have been traditionally used to propose a coupled
model which combines interaction sequence information with aux-
iliary implicit feedback signals to propose a uni�ed model for query
level satisfaction prediction.

5.1 Sequential Model for SAT
To leverage the entire interaction sequence we make use of recent
advancements in the �eld of deep recurrent network and formulate
our problem as that of sequence classi�cation. Recurrent neural
networks (RNNs) are a powerful family of connectionist models
that capture time dynamics via cycles in the graph, thereby en-
abling them to process sequences of data. A RNN maintains a
memory based on history information, which enables the model to
predict the current output conditioned on long distance features.
An important characteristic of user interactions is that the resulting
sequences are of variable length. Long Short-Term Memory (LSTM)
networks are a special case of Recurrent Neural Networks (RNNs)
which are capable of creating internal cell states of the network



Figure 1: �eBi-directional LSTMmodel for query SAT prediction.

which allow it to exhibit dynamic temporal behavior thereby en-
abling the RNN to process arbitrary sequences of inputs such as
user interaction sequences.

�e action-LSTM takes as input a sequence of user actions x =
(x1,x2, ....,xT ) and computes the hidden sequenceh = (h1,h2, ...,hT )
as well as the output vector y = (y1,y2, ...,yT ) by iterating from
t = 1 to T :

ht = H(Wxhxt +Whhht−1 + bh ) (2)
yt =Whyht + by (3)

where T is the total number of sequences; Wxh are the weight ma-
trices between the input layers a and h and so on; b is a bias vector,
and H is the composite function. �e action-LSTM architecture
is composed of two components: (i) Action Embeddings and (ii)
LSTM sequence model. We next discuss both these components in
detail.

Action Embeddings:
�e input to the action-LSTM is the sequence of user actions on the
rendered SERP. While one-hot vector representations have been
traditionally used as input to the recurrent neural networks, re-
cently embeddings have shown enhanced performance. We learn
action embeddings from the interaction sequence data. Given the
set of action sequences, the �rst layer embeds each action into
a continuous vector space using a skip-gram model [35]. Since
the input sequences are of arbitrary length, we mask the input
sequences with dummy symbol which are ignored during training
phase. �e embedding layer is optimized jointly with the rest of the
model through backpropagation, [12] which results in the model
optimizing the individual actions’ embedding vectors to be more
re�ective of their closeness to other actions.

Sequence LSTM Model:
A�er passing through the embedding layer, the input action se-
quences are input to the LSTM module. �e LSTM composite func-
tion forming the LSTM cell with peephole connections is de�ned

as:

it = σ (Wxixt +Whiht−1) (4)
ft = σ (Wxf xt +Whf ht−1) (5)

ct = ft � ct−1 + it � tanh(Wxcxt +Whcht−1) (6)
ot = σ (Whxxt +Whoht−1 +Wcoct ) (7)

ht = ot � tanh(ct ) (8)

where σ denotes the sigmoid function, σ (z) = (1 + e−z )−1. �e
superscripts (t ) denote the index of the current time step, i, f and
o, are respectively the input, forget and output gates, and c the cell
activation vector with the same size than the hidden vector h. �e
weight matricesW from cell c to gates i, f and o, are diagonal, and
thus, an element e in each gate vector receives only the element e
from the cell vector.

In any action in an interaction sequence, we not only have his-
toric actions, but also have future actions user took on the SERP.
For many sequence labelling tasks it is bene�cial to have access to
both past (le�) and future (right) actions contexts. However, the
LSTM’s hidden state ht takes information only from past, knowing
nothing about the future. To leverage future action information,
we use bi-directional LSTM (BLSTM) wherein the basic idea is to
present each sequence forwards and backwards to two separate
hidden states to capture past and future information, respectively.
It is important to note that our goal is retrospective satisfaction
prediction, i.e., o�ine prediction of user satisfaction based on the
observed interaction signals. While future action sequences will
not be available in an online se�ing, this restriction does not apply
in our o�ine se�ing, as a result, bi-directional LSTMs can be used
in retrospective o�ine satisfaction prediction. �is type of RNN
feeds to a same output layer fed forwarded inputs through the
two hidden layers. �erefore, the BLSTM computes both forward
hidden sequence ®h and backward sequence

←−
h as well as the output

vector y, by iterating ®h from t = 1 to T , and
←−
h from t = T to 1:

®ht = H(Wx ®hxt +W®h ®h
®ht−1 + b ®h ) (9)

←−
ht = H(Wx

←−
h
xt +W←−h←−h

←−
h t−1 + b←−h

) (10)

yt =W®hy
®ht +W←−hy

←−
h t + by (11)

whereH is the composite function. �e BLSTM allows to exhibit
long range context dependencies and takes advantage from the two
directions structure. �e output vector y is processed by evaluating
simultaneously the two directions hidden sequences by computing
the composite function H in the forward and backward directions.

5.2 Uni�ed Multi-View Interaction Model
Although sequence based approaches to satisfaction prediction are
an e�ective way of capturing user interactions, we hypothesize
that be�er, richer representation of user activity can be obtained by
incorporating other interaction signals in the model architecture.
�e traditionally used static features and implicit signals provide a
di�erent view of the user interactions. Our primary contribution
here is a novel neural architecture that is designed to jointly lever-
age sequence information with such static implicit feedback signals
to predict search satisfaction.



Figure 2: Neural architecture of the proposed deep Uni�ed Multi-view CNN-LSTM model.
Feature Set Feature List

Temporal Signals

Page dwell time
Reading time per pixel
Viewport time per instance
Time to �rst pointer event
Time to �rst scroll event

Click based Signals
Total click count
Algo click count
Answer click count

Scroll & Pointer Signals

Total scroll count
Pointer horizontal distance
Pointer vertical distance
Pointer event count
Scroll Up count
Scroll down count
Viewport direction changes

Table 3: List of auxiliary signals used as side information.
To illustrate, consider the example of a user action sequence:

Pause – Scroll – Click. While sequence information is informative,
aggregate metrics such as dwell times etc provide useful cooked
information and are helpful in capturing domain information about
user behavior with SERP.

5.2.1 Auxiliary Signals. A number of di�erent interaction be-
haviors have been taken into consideration in the prediction of
search user satisfactions including both coarse-grained features
(e.g. clickthrough based features [11]) and �ne-grained ones (e.g.
cursor position and scrolling speed [10]). We use a number of such
traditionally used signals as auxiliary side-information which pro-
vides an alternative view of user interaction. We categorize these
signals into three groups: (i) Temporal signals, (ii) Click based sig-
nals and (iii) Scroll & pointer signals. Table 3 presents the di�erent
types of signals captured under each of these groups which provide
us an alternative view of the user interaction. We next describe
our model which jointly encodes these auxiliary features with the
sequential action-LSTM model.

5.2.2 Unified Multi-View Interaction Model. �e auxiliary sig-
nals described above provide us with an alternate view of user
interaction. We use these auxiliary signals to enrich our sequential
model to create a uni�ed multi-view model of user interactions. We
propose a coupled architecture composed of deep convolutional
network and dense layers for modelling auxiliary features and cou-
ple it with the action-LSTM architecture described before. Its main
building blocks are (i) action-LSTM which use the action sequences

and (ii) the auxiliary feature module based on convolutaional neu-
ral networks (ConvNets), both of which work in parallel mapping
details of user interactions to their distributional vectors which are
then used to predict user satisfaction for each query.

�e architecture of our ConvNet for mapping implicit signals to
features is mainly inspired by the various CNN architectures used
for performing di�erent classi�cation tasks. However, di�erent
from previous work the goal of our distributional auxiliary signals
model is to learn good intermediate representations of such signals,
which are then coupled together with the output representation
of the sequential action-LSTM model and used for satisfaction
prediction. �e input to the ConvNet module are the three set of
implicit feedback signals (as shown in Table 3) that are processed
by intermediate convolutional layers. �e aim of the convolutional
layers is to extract pa�erns, i.e., discriminative signal sequences
found within the input signals that are common throughout the
training instances.

More speci�cally, the convolution operator operates on sliding
windows of signals, and the convolutions in deeper layers are de-
�ned in a similar way. Suppose we have a discrete input function
д(x) ∈ [1, l] → R and a discrete kernel function f (x) ∈ [1,k] → R.
�e convolution h(y) ∈ [1, b(l − k)/dc + 1] → R between f(x) and
g(x) with stride d is de�ned as:

h(y) =
k∑

x=1
f (x) · д(y · d − x + c) (12)

where c = k - d + 1 is an o�set constant. �emodule is parameterized
by a set of such kernel functions fi j (x)(i = 1, 2, ...,m and j =
1, 2, ...,n)whichwe call weights, on a set of inputsдi (x) and outputs
hj (y). �e output from the convolutional layer (passed through the
activation function) are then passed to the pooling layer, whose
goal is to aggregate the information from the previous layer. Given
a discrete input function д(x) ∈ [1, l] → R, we employ a 1-D spatial
max-pooling function h(y) ∈ [1, b(l −k)/dc+1] → R of g(x) de�ned
as:

h(y) =maxkx=1д(y · d − x + c) (13)
where c = k - d + 1 is an o�set constant. To allow the network learn
non-linear decision boundaries, each convolutional layer is typically
followed by a non-linear activation function applied element-wise
to the output of the preceding layer. �e non-linearity used in our



model is the recti�er or thresholding function

h(x) =max{0,x} (14)

which makes our convolutional layers similar to recti�ed linear
units (ReLUs) [36] acting as a non-linear feature extractor. Finally,
we combine the ConvNet feature extractor with the output of the
action-LSTM and pass it through two dense layers. and a so�max
layer at the end.

Interaction Layers:
Our model includes an additional hidden layer right before the
so�max layer (described next) to allow for modelling interactions
between the components of the intermediate representation, i.e.,
the di�erent views of user interactions. �e hidden layer computes
the following transformation: α(wh · x +b) wherewh is the weight
vector of the hidden layer and α() is the ReLU non-linearity func-
tion.

So�max Layer:
�e output of the penultimate convolutional and pooling layers is
�a�ened to a dense vector x, which is passed to a fully connected
so�max layer. It computes the probability distribution over the
labels:

p(y = j |x) = ex
T θ j∑K

k=1 e
xT θk

(15)

where θk is a weight vector of the k-th class. x can be thought of
as a �nal abstract representation of the input example obtained by
a series of transformations from the input layer through a series of
convolutional and pooling operations.

5.3 Training
�e parallel multi-view CNN-LSTM model is trained to minimize
the RMSE error on satisfaction prediction accuracies. We use the
ADAM optimization algorithm for training [23], with a batch size
of 64. �e learning rate is initially chosen as 0.01, and dropped to
0.003 in the middle of training before convergence. We useed the
standard default values for other parameters of the optimizer: β1
= 0.9, β2 = 0.999, ϵ = 10−8. While neural networks have a large
capacity to learn complex decision functions they tend to easily
over�t especially on small and medium sized datasets. To mitigate
the over��ing issue we insert 2 dropout modules in between the
fully-connected layers to regularize. �ey have dropout probability
of 0.2. Dropout prevents feature co-adaptation by se�ing to zero
(dropping out) a portion of hidden units during the forward phase
when computing the activations at the so�max output layer and
also acts as an approximate model averaging [39].

6 FUNCTIONAL COMPOSITION FOR TASK
SATISFACTION

Given details of user interactions at the query level and the corre-
sponding query level satisfaction prediction architecture proposed
in the previous section, our overall goal is to make task satisfaction
predictions. In this section, we enumerate di�erent ways of using
query satisfaction predictions to make task level satisfaction pre-
dictions. Speci�cally, given a sequence of queries Q = q1,q2, ...,qt
belonging to a search task t ∈ T , where T is the set of all tasks, the

Multi-view CNN-LSTM architecture provides us with estimates of
query level satisfaction Yqi = φq (qi ,aqi ) where Yqi ∈ {0, 1} is the
query level satisfaction estimate, aq is the set of action sequence
observed for the search impression for query q and φq is the query
level satisfaction prediction function. Our goal is to make task level
satisfaction prediction:

yt = F

({
q1,φq (q1)

}
,
{
q2,φq (q2)

}
,
{
q3,φq (q3)

}
, ...,

{
qi ,φq (qt )

})
(16)

where F: {q1,φq (q1)} → Yt ∈ 0, 1 represents the functional trans-
formationwhichmaps query-satisfaction estimate tuple {qi ,φq (qi )}
to a task satisfaction label. Based on known insights on task satis-
faction, we present a number of di�erent functional compositions
techniques at two levels of abstract: (i) query level aggregation and
(ii) subtask level aggregation.

6.1 �ery level composition
To make task level satisfaction predictions, we aggregate satisfac-
tion signals at the query level. We consider four distinct functional
forms of aggregation, ranging from extremely strict to lenient eval-
uation of task satisfaction.

(1) Maximum: �is functional composition method assumes
that the user is satis�ed in completing their task if they are
satis�ed in any of the queries they issued while completing
the task. Speci�cally:

yt =max
(
φq (q1),φq (q2),φq (q3), ...,φq (qt )

)
(17)

where φq (qi ) gives the query level satisfaction estimate
based on the Multi-View CNN-LSTM architecture. It is to
be noted that such a functional composition is the most
lenient way of evaluating search engine performance.

(2) Average: �is functional composition techniques consid-
ers equal contribution from each query in predicting task

satisfaction. Speci�cally, yt =
∑|Qt |
i=1 φq (qi )
|Qt | where |Qt | is

the number of queries associated with the task t .
(3) Di�erential Weighting: O�en users reformulate their

information needs and issue a series of queries as they
complete their task. We hypothesize that queries towards
the end of the task are more important than the ones at the
start, based on which we over emphasize queries towards
the end of the task when considering their contribution
towards task satisfaction. Speci�cally:

yt =

∑ |Qt |
i=1 wiφq (qi )
|Qt |

(18)

wherewi is the weight associated with query qi .
(4) Minimum: �is functional composition assumes that a

user is satis�ed is completing their task if they are satis�ed
in each of the queries they issued to accomplish the task.
Speci�cally:

yt =min
(
φq (q1),φq (q2),φq (q3), ...,φq (qt )

)
(19)

Such an computation of task satisfaction is the most strict
estimate of task satisfaction since if any SERP rendered for



query is unsatisfying to the user, the whole task is rendered
unsatisfying.

6.2 Subtask based composition
O�en search tasks involve many distinct, but related aspects which
warrant the need for issuing di�erent sets of queries over time in or-
der to ful�ll the multi-aspect information needs. A complex search
task could be broken down into smaller multi-step or multi-aspect
sub-tasks that represent atomic informational needs, for which
it is trivial for users to issue satisfying queries. We hypothesize
that task-level satisfaction could be estimated based on user’s sat-
isfaction levels when a�empting di�erent subtasks. An ideal task
completion engine would help the user satisfactorily accomplish
each of the associated subtasks. We utilize this insight to estimate
task satisfaction from the associated subtask satisfaction estimates.

Given a task t composed of |St | subtasks, we consider a nested
functional composition of satisfaction estimates at two levels: (i) ag-
gregating query satisfaction estimates to compute subtask satisfac-
tion and (ii) aggregating subtask satisfaction estimates to compute
task satisfaction. Speci�cally,

yt = f

(
д
(
{φq (qi )}∀qi ∈ S1

)
,д

(
{φq (qi )}∀qi ∈ S2

)
,

...,д
(
{φq (qi )}∀qi ∈ St

))
where Si represents the subtask j and St represents the total number
of subtasks in the task t . �e functions f(.) and g(.) could be either of
the four query level aggregate functions de�ned before. While there
exist automated subtask extraction approaches [32], for the scope
of this work, we assume access to subtask demarcation information
obtained via crowdsourced labeling.

7 EXPERIMENTAL EVALUATION
In this section, we demonstrate how our satisfaction prediction
models perform for predicting both query and task level satisfac-
tion. We conduct a number of experiments using crowdsourced
judgments as well as real world search engine tra�c. We make use
of labels obtained via crowdsourced judgments studies as ground
truth labels for all evaluations considered; however, we leverage
large scale pseudo-labeled data with weak supervision signals to
train our deep models.

7.1 Dataset
Our data consists of a random sample of user sessions from a major
US commercial search engine engine during a week in June 2016.
We randomly sampled user sessions with substantial user activity,
and included all queries, search result page impressions on all
results on the search result page from that user in the timeframe.
Additionally, detailed user activity on the result page was logged for
model development. In total, our sample contained No of sessions
over 14670 search sessions, resulting in about 148561 search queries.

7.1.1 Large Scale Pseudo-Labelled Data. While we collect crowd-
sourced labels for creating ground truth labels, owing to the limited
scale of experimentation possible with crowd-sourced judgments
as well as the di�erences in opinion of crowdsourced judges and
actual users, we may have insu�cient data and labels to reliably

train deep parameter-rich models. To resolve this problem, we build
a pseudo-labeled dataset comprised of the entire large-scale query
log described in Section 7.1. To assign pseudo satisfaction labels
to search interactions, we assume that a click followed by a query
reformulation is a dissatis�ed click, while a click with a dwell time
of ≥ 30 seconds not followed by a query reformulation is a satis�ed
click. Post-click query reformulation is considered a strong DSAT
predictor and has been used as a predictor of search satisfaction in
previous work [15, 22]. To identify query reformulations we use a
method similar to that described in Boldi et al.[4], where features
of query similarity (e.g. edit distance, word overlap, etc.) and time
between queries are used to identify query reformulations.

7.2 Collecting Task SAT Judgements
Crowdsourced judgments have commonly been used to obtain la-
beled data [43, 44]. To gauge user satisfaction at both query level
and task level, we collect judgement labels at both levels. For each
search impression as well as the overall task, we obtained human
labeled judgments on whether the user interaction was satisfying
(labelled SAT) or not (labelled DSAT). �e labelling was conducted
using an in-house microtasking platform that outsources crowd
work to vendors, similar to CrowdFlower, and provides access to
judges who regularly perform relevance judgment tasks. Workers
were under NDA and all data containing personal identi�able infor-
mation (PII), such as names, phone numbers, addresses, or social
security numbers, were removed.

Detailed guidelines were issued to the judges to describe the task
and a number of examples were shown de�ning what constitutes a
query, a subtask and a task and explaining how to judge for query as
well as task level satisfaction. To ensure the quality of the judging
results, we apply a series of quality control methods. One of the
methods is creating ’gold hits’ that you already know the answer
of, then measure the judges by comparing how far o� their answers
are from the gold hits answers. We also measure the quality of the
judgments with the amount of consensus reached which required
overlap on the hits.

�e data presented to the judges come from previously annotated
data where another group of judges de�ned the task boundaries
within a session. In other words, each session was divided into one
of more coherent tasks. A sequence of queries are considered part
of a coherent task if they collectively try to achieve a certain goal.
�e output of the task boundary annotation is given to our group of
judges where each is represented as a series of queries along with
the corresponding user interaction information. In order to provide
relevant information to the judges, we provided a detailed summary
of user interaction with the SERP. �e judges were provided a link
to the SERP shown to the user alongside details like number of
clicks, time spent on the SERP and scroll information. Additionally,
for all the clicked documents, we provided URL level details which
included the exact URL, the position on the SERP where it was
shown and the total dwell time on each URL. Each judge was asked
to consider the user interaction summary and provide labels for
query and task satisfaction.

We randomly sampled over 2100 user tasks and over 450 judges
provided judgments for about 6820 search impressions, resulting in
over 20460 judgments. Among the �rst two judgments collected for



Method Type Method Accuracy Precision Recall FMeasure Log-Loss

Feature based baselines

Baseline 1(Clicks+Dwell Time) 0.561 0.86 0.58 0.6927 13.88
Baseline 2 (Click based actions) 0.593 0.78 0.61 0.6846 13.67
Baseline 3 (Mouse Movement) 0.606 0.72 0.66 0.6886 13.32
Baseline 4 (Scroll & Viewport)) 0.586 0.71 0.67 0.6894 13.73
Baseline 5 (Reading Pa�ern Signals) 0.596 0.72 0.69 0.7046 13.61

Sequential baselines
Generative Probabilistic 0.631 0.81 0.67 0.7333 13.04
CRF-Actions 0.593 0.77 0.6 0.6744 14.74
CRF-�eries 0.582 0.75 0.62 0.6788 14.89

Proposed/Variants

SimpleRNN 0.654 0.72 0.85 0.7796 11.36
action-Embedding + LSTM 0.668 0.71 0.88 0.7859 11.08
action-Embedding + Bi-LSTM 0.677∗& 0.73 0.89∗& 0.8020∗& 10.98∗&

Table 4: �ery level SAT prediction. * and & indicate statistical signi�cant (p ≤ 0.05) using paired t-tests compared to the best performing feature based baseline and the best performing
sequential baseline respectively.

Method Accuracy Precision Recall FMeasure Log-Loss
CRF-Actions 0.593 0.77 0.6 0.6744 14.74
CRF-Actions + All Signals 0.603 0.78 0.61 0.6848 14.29
Generative Probabilistic 0.631 0.81 0.67 0.7333 13.04
Generative Probabilistic + All Signals 0.651 0.823 0.681 0.744 12.97
action-Embedding+ LSTM 0.677 0.73 0.89 0.8020 10.98
action-Embedding+ LSTM + Click based Signals 0.678 0.744 0.825 0.783 11.11
action-Embedding+ LSTM + Temporal Signals 0.699 0.714 0.954∗& 0.817∗& 10.36
action-Embedding+ LSTM + Scroll/Viewport Signals 0.689 0.728∗& 0.89 0.801 10.72
Uni�ed Multi-View Model (action-LSTM + All Signals) 0.703∗& 0.717 0.944 0.815 10.25∗&

Table 5: Evaluating the uni�ed model for �ery SAT prediction. * and & indicate statistical signi�cant (p ≤ 0.05) using paired t-tests compared to the CRF all signals and Generative
Probabilistic - All Signals baselines respectively.

each query, the judges agreed on the label 74% of the time. We mea-
sured inter-rater agreement using Fleiss’ Kappa [6], which allows
for any number of raters and for di�erent raters rating di�erent
items. �is makes it an appropriate measure of inter-rater agree-
ment in our study since di�erent judges provided labels for di�erent
items. A kappa value of 0 implies that any rater agreement is due
to chance, whereas a kappa value of 1 implies perfect agreement.
In our data, κ = 0.64, which, according to Landis and Locke [28],
represents substantial agreement.

7.3 Baselines
We consider a number of baselines from recent published liter-
ature, including both non-neural and neural models, as well as
non-sequential and sequence based models.

• Baseline 1 (click with dwell time): Spending a mini-
mum amount of time on a webpage is known as a long
dwell click and has been shown to be correlated with satis-
faction [22]. In this study, we set t = 30 seconds.

• Baseline 2 (click based actions): �is baseline is based
on predicting satisfaction based on clickthrough based fea-
tures [10].

• Baseline 3 (Mousemovement): �is baseline is based on
recent work aimed at predicting satisfaction using mouse
movement pa�erns [29].

• Baseline 4 (Scroll & Viewport): �is baseline is based
on the recently proposed scrolling and viewport features
[26, 44]

• Baseline 5 (Reading pattern signals): �is baseline is
based on the reading pa�ern signals fromKiseleva et al.[24]

Additionally, we consider a number of sequence based models to
compare the performance of the proposed approach.

• Generative ProbabilisticModel:[13]A semi-supervised
generative model wherein every action sequence is gen-
erated using a probability distribution speci�ed by a 2-
component mixture model.

• CRF Models: Conditional random �eld models are popu-
larly used for many di�erent sequence labeling tasks. We
consider two variants of CRF models:
– action-CRF: this CRF makes use of only the action

information for constructing CRF features.
– query-CRF Model: in addition to action co-occurrence

features, this CRF model takes into account query
level features during training.

We also consider variants of the proposed model: (i) simple RNNs,
(ii) action-embedding LSTM and (iii) action-Embedding Bi-LSTM.
7.4 �ery Level SAT Prediction
As our �rst experiment, we consider predicting user satisfaction
for each search impression. We compare the proposed sequential
action embedding + LSTM model with traditionally used features
as well as other popular feature based and sequential models. For
each query, we extract the set of features needed by the di�erent
baselines as well as the detailed user interaction action sequence
and consider the judgment labels obtained from the crowdsourced
study as the ground truth. We randomly split the data into training
and test set in 60/40 ratio. We use the pseudo-labelled data described
in Section 7.1.1 to pre-train the neural models.

Table 4 presents the prediction results comparing the proposed
approach with established baselines. We observe that sequence
based baselines perform be�er than feature based baselines in gen-
eral, with the generative probabilistic baseline performing partic-
ularly be�er with over 7% improvement in accuracy scores. A
satisfying click, i.e., click followed by a long dwell time, has tradi-
tionally been used to gauge user satisfaction. We re-con�rm such



Functional Composition Type Method Accuracy Precision Recall FMeasure Log-Loss

Maximum

CRF 0.639 0.914 0.629 0.7454 12.46
Generative Probabilistic 0.811 0.917 0.852 0.883 6.49
action-Embedding Bi-LSTM 0.823 0.841 0.974 0.902 6.08
Uni�ed Multi-View 0.8309∗& 0.838 0.988∗& 0.907∗& 5.83∗&

Minimum

CRF 0.5259 0.785 0.589 0.679 16.37
Generative Probabilistic 0.826 0.838 0.983 0.904 6.003
action-Embedding Bi-LSTM 0.618 0.94∗& 0.356 0.517 19.32
Uni�ed Multi-View 0.5952 0.882 0.597 0.712 13.98

Average

CRF 0.57 0.906 0.544 0.6807 14.82
Generative Probabilistic 0.797 0.918 0.832 0.873 6.99
action-Embedding Bi-LSTM 0.6809 0.847 0.756 0.799 11.
Uni�ed Multi-View 0.801∗& 0.842 0.895∗& 0.868 6.89∗&

Di�erentially Weighted

CRF 0.632 0.913 0.62 0.739 12.7
Generative Probabilistic 0.814 0.917 0.855 0.885 6.41
action-Embedding Bi-LSTM 0.714 0.853 0.781 0.815 8.21
Uni�ed Multi-View 0.824∗& 0.849 0.929∗& 0.887∗ 6.84∗&

Subtask (Max-Average)

CRF 0.591 0.926 0.553 0.6924 13.66
Generative Probabilistic 0.761 0.901 0.812 0.8541 8.89
action-Embedding Bi-LSTM 0.70 0.83 0.79 0.82 10.36
Uni�ed Multi-View 0.77∗& 0.84 0.89∗& 0.86∗ 8.14∗&

Subtask (Average-Max)

CRF 0.621 0.904 0.632 0.7439 12.89
Generative Probabilistic 0.814 0.921 0.841 0.8791 6.41
action-Embedding Bi-LSTM 0.79 0.85 0.92 0.88 7.56
Uni�ed Multi-View 0.838∗& 0.84 0.98∗& 0.91∗& 6.08∗&

Table 6: Task level SAT prediction. * and & indicate statistical signi�cant (p ≤ 0.05) using paired t-tests compared to the CRF and Generative Probabilistic baselines respectively.

known insights since we observe that Click+DwellTime obtain the
best precision; however this method misses out on capturing var-
ious other satisfactory interactions, as is evident from their low
recall scores. Further, we observe that mouse movement informa-
tion (baseline 3) in general is more predictive than just click based
features.

Overall, we observe that the proposed deep sequential model and
its variants outperform all baselines considered in predicting user
satisfaction and register an improvement in over 11% over the worst
performing baseline and ∼5% over the best performing generative
sequence modelling approach. Among the variants considered, the
simple RNNmodel is outperformed by themore sophisticated LSTM
models which con�rms known bene�ts o�ered by LSTMs over
RNNs. �e bidirectional version of the proposed model outperforms
the LSTM model on all metrics, which con�rms our hypothesis that
including future action signal information helps in modeling user
interaction be�er. Indeed, since most satisfaction detection and
evaluation is performed post-hoc, and historic data logs entire user
interactions, future actions signal information is readily available
and should be used in modeling user interactions. �e proposed
deep sequential models perform signi�cantly be�er in terms of
recall, with obtaining 20% improvement over the best performing
baselines. �is strongly suggests that the rich user interaction
signals used by our deep sequence models are perhaps able to
capture and detect user satisfaction in non-click scenarios, and
abandonment cases.

7.5 Uni�ed View for QSAT
We next evaluate the bene�t of unifying the di�erent interactions
signals, both static features and interaction sequences. We investi-
gate how adding di�erent sets of features to the sequential model
help in be�er predicting user satisfaction. Table 5 presents the re-
sults on query level satisfaction prediction comparing the proposed

Method Accuracy Precision Recall FMeasure Log-Loss
CRF 0.639 0.914 0.629 0.7454 12.46
Generative Probabilistic 0.826 0.838 0.983 0.9045 6.003
action-Embedding Bi-LSTM 0.823 0.841 0.974 0.9022 6.08
Uni�ed Multi-View 0.843∗& 0.851 0.991∗& 0.9156∗& 5.62 ∗&

Table 7: Comparing the performance of di�erent task SAT prediction approaches
across all functional compositional techniques. * and & indicate statistical signi�cant (p
≤ 0.05) using paired t-tests compared to the CRF and Generative Probabilistic baselines
correspondingly.

Uni�ed Multi-View CNN+LSTM model with the best performing
baselines.

We observe that adding the other view of user interaction data al-
ways helps in improving prediction performance across all methods.
Adding click based signal information to the interaction sequence
information improves SAT precision (at the cost of recall), which is
consistent with what was observed before. Adding temporal signals
give a signi�cantly improved performance in terms of recall, with
over 27% improvement in detecting satisfaction cases which may
have otherwise been missed by baseline approaches. Indeed, tem-
poral signals and detailed user interactions go well beyond shallow
methods which assume a very restrictive view of user satisfaction.
Further, the uni�ed multi-view model achieves the best accuracy in
predicting user satisfaction with over 5% improvement in accuracy,
26% improvement in recall and 7% improvement in F-score. �ese
results strongly demonstrate the bene�ts o�ered by the enriched
uni�ed multi-view models by leveraging not only the interaction
sequence information, but also other static implicit signals.

7.6 Task SAT Prediction
One major motivation for the current work is to leverage user in-
teraction signals to predict task level satisfaction of users. To this
end, we consider the problem of task satisfaction prediction and
compare how the di�erent compositional functions perform in pre-
dicting task level satisfaction. Since we collected task satisfaction
judgements alongside query level satisfaction judgements, we make
use of these task level judgements as ground truth information.



Before diving deep into di�erent compositional functions, we
�rst look at how the proposed models perform on the task satisfac-
tion problem. As shown in Table 7, we observe that the proposed
deep sequential model performs be�er than the best performing
baselines in predicting task satisfaction across all �vemetrics. More-
over, the uni�ed multi-view model performs be�er than the deep
sequential model, which demonstrates that the combined infor-
mation from interaction sequences and other auxiliary implicit
feedback signals are not only good for query level satisfaction pre-
diction, but also work best at measuring task satisfaction.

We additionally analyze how the di�erent functional composi-
tion techniques fare. Table 6 presents the task satisfaction predic-
tion results wherein we compare the proposed models with best
performing baselines across the di�erent functional composition
techniques. We considered �ve di�erent functional composition
techniques for aggregating query level satisfaction estimates to
compute task satisfaction. We observe that the most lenient aggre-
gating technique (Maximum) consistently achieves higher accuracy
than the most strict satisfaction criterion (Minimum). We observe
that the di�erential weighting scheme performs be�er than the av-
erage function, which hints at the fact that not all queries contribute
the same towards a task. Finally, considering subtasks information
in the intermediary stage between query and task level abstractions
helps in be�er predicting task satisfaction.

8 CONCLUSION & FUTUREWORK
We considered a holistic view of user interaction and presented
deep sequential models for predicting user satisfaction at various
levels of abstraction. While most exiting approaches focus on query
satisfaction or task satisfaction for simple atomic tasks, we go
beyond such atomic tasks and consider the problem of predicting
user’s satisfaction when engaged in complex search tasks composed
of many di�erent queries and subtasks. �e proposed uni�ed multi-
view model and the functional composition approach performs
be�er than a number of established baselines. We hope that the
�ndings of this work would inspire future research in developing
sophisticated techniques for quantifying the importance of di�erent
queries and subtasks in any given complex task. Further, task
satisfaction prediction could inspire research in developing retrieval
algorithms optimized for task completion. Finally, we contend
that the promising results demonstrated by the uni�ed multi-view
approach would help in improving satisfaction prediction and good
abandonment detection on mobile devices.
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