
Frightening small children and disconcerting grown-ups:
Concurrency in the Linux kernel

Jade Alglave
University College London

Microsoft Research
j.alglave@ucl.ac.uk

Luc Maranget
Inria — Paris

luc.maranget@inria.fr

Paul E. McKenney
IBM Corporation

Oregon State University
paulmck@linux.vnet.ibm.com

Andrea Parri
Scuola Superiore Sant’Anna
andrea.parri@sssup.it

Alan Stern
Harvard University

stern@rowland.harvard.edu

Abstract
Concurrency in the Linux kernel can be a contentious topic.
The Linux kernel mailing list features numerous discussions
related to consistency models, including those of the more
than 30 CPU architectures supported by the kernel and that
of the kernel itself. How are Linux programs supposed to
behave? Do they behave correctly on exotic hardware?

A formal model can help address such questions. Better
yet, an executable model allows programmers to experiment
with the model to develop their intuition. Thus we offer
a model written in the cat language, making it not only
formal, but also executable by the herd simulator. We tested
our model against hardware and refined it in consultation
with maintainers. Finally, we formalised the fundamental
law of the Read-Copy-Update synchronisation mechanism,
and proved that one of its implementations satisfies this law.

1. Introduction
Concurrency in Linux may frighten small children [35]; it
also appears to be disconcerting to grown-ups.

1.1 “Still confusion situation all round” [sic] [89]

The Linux kernel (LK) targets more than 30 CPU ar-
chitectures, amongst which Alpha [18], ARM [14], IBM
Power [38], Intel [40], Itanium [40] and MIPS [39] imple-
ment weak consistency models. Consistency models deter-
mine what values a read can take; weak models allow more
behaviours than Sequential Consistency (SC) [45].

These architectures implement distinct models and thus
disagree on the values that a read can return. This leads to
a plethora of discussions on the Linux Kernel mailing list
(LKML), some of which are listed in Table 1; their frequency
has increased as multicore systems have gone mainstream.

Model URL
SPARC [51, 76]
LK [84]
LK [56, 4]
LK [19]
LK [73]
LK [36]
LK/Itanium [16, 70]
LK [20]
Itanium [57, 48, 49, 88]
Intel [53, 41]
LK/C11 [22, 23]
LK [21]
Alpha [79]
LK [31]
ARM64 [26]
LK [27]
MIPS [85, 86, 87, 81]
Power [32, 33, 30]
ARM64 [28]
LK/C11 [24]
LK [72]

Table 1: Selection of LKML discussions

LK developers must understand not only the kernel’s con-
currency primitives, but also those of the underlying hard-
ware. Several documents make laudable efforts in this di-
rection: [37] lists what orderings are guaranteed; [69] sum-
marises semantics of read-modify-write operations, and [55]
documents ways of avoiding counterproductive optimisa-
tions. Sadly these documents are in prose, subject to am-
biguities and misinterpretations. As a candid disclaimer puts
it [37]:This document is not a specification; it is intentionally (for the
sake of brevity) and unintentionally (due to being human) incom-
plete. [. . .] in case of any doubt (and there are many) please ask.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by UCL Discovery

https://core.ac.uk/display/195317441?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

This quote suggests that a specification might dispel all
doubts. However, as Linus Torvalds writes [78]:
With specs, there really *are* people who spend years discussing
what the meaning of the word ”access” is or similar [the authors
of this paper plead guilty]. Combine that with a big spec that is
500+ pages in size and then try to apply that all to a project that
is 15 million lines of code and sometimes *knowingly* has to do
things that it simply knows are outside the spec [...]”

This highlights the need for an object beyond a prose
specification: unambiguous, concise, amenable to vast code
projects, and complete. We offer a formal executable model
for the LK, written in the cat language [12].

Writing a memory consistency model in cat gives it a for-
mal meaning, since cat has a formal semantics [3]. More-
over, a cat model can be executed within the herd tool [5],
allowing users to experiment with the model to develop their
intuition.

1.2 “[I]t is your kernel, so what is your preference?” [54]

Architects and standard committees are often seen as ulti-
mate authorities on consistency matters. In our case, we rely
on Linus Torvalds’s and his maintainers’ posts to LKML and
the gcc mailing list. We cite and discuss these posts below.

A common denominator of hardware models seems to
align with Torvalds’ view [80]:
Weak memory ordering is [. . .] hard to think about [. . .] So the
memory ordering rules should [. . .] absolutely be as tight as at
all humanly possible, given real hardware constraints.

To this end, we axiomatised models of IBM Power [75,
74] in cat. We modified this formalisation to handle Al-
pha [18] and incorporate ideas from academic ARM mod-
els [34]. ARM then released their official memory model [47,
Chap. B2.3] (including a cat file distributed within the
diy+herd toolsuite [5]), making those models obsolete; we
thus modified our LK model accordingly. This experience
shows that our model will change over time as existing hard-
ware evolves, or new hardware arises.

Yet the LK cannot simply be an envelope for the architec-
tures it supports. As Ingo Molnar writes [71]:

it’s not true that Linux has to offer a barrier and locking model
that panders to the weakest (and craziest!) memory ordering
model amongst all the possible Linux platforms—theoretical or
real metal. Instead what we want to do is to consciously, intelli-
gently pick a sane, maintainable memory model and offer primi-
tives for that—at least as far as generic code is concerned. Each
architecture can map those primitives to the best of its abilities.

This seems much like defining a language-level model: it
might appear that the C11 model could be used as the LK
model. Indeed, converging with C11 is the topic of several
LKML discussions [22, 24]. Unfortunately the C11 model is
an imperfect fit [78]:
I do not believe for a second that we can actually use the C11
memory model in the kernel [. . .] We will continue to have to do
things that are “outside the specs” [. . .] with models that C11
simply doesn’t cover.

In short, the LK should have a model of its own.

1.3 “[P]ick a sane, maintainable memory model”
[71]

Our LK model is a first attempt at fulfilling this wish. Of
course, concerns like sanity or maintainability are to an
extent in the eye of the beholder. But we believe that the
LK community will help achieve these goals. Indeed, our
work is based on interactions with the community, along
with documentation and posts to mailing lists. This has been
necessary for understanding the semantics of certain pieces
of code.

LK issue URL
locking on ARM64 [26]
ambiguities in [37] [59]
ambiguities in RCU documentation [58]
CPU hotplug [90]
assumption about lock-unlock [64]
semantics of spin unlock wait [83]

Table 2: LK issues that our work helped address

Moreover, our model has already resolved ambiguities
and helped fix bugs (see Table 2). The RCU documentation
now uses our definitions [58] and memory-barriers.txt [37]
was updated to distinguish between transitivity and cumu-
lativity [59]. Our work informed fixes to code incorrectly
relying on fully ordered lock-unlock pairs [64], code where
ARM64 needed stronger ordering from combinations of
locking and fences [26], and discussions about the semantics
of locking primitives [83]. Finally, our model was directly
used by a maintainer to justify his patch [90]; this highlights
the practical applicability of our model.

Seven maintainers agreed to sponsor our model, which
has received positive feedback on LKML [60].

1.4 Correctness of concurrent code
Our model is also a stepping stone towards assessing the cor-
rectness of LK code. We focus here on Read-Copy-Update
(RCU) [52].

CBMC [17] has been used to verify LK Tree RCU over
SC, TSO, and PSO [46]; others used Nidhugg over SC and
TSO [42]. Userspace RCU has been examined with respect
to C11 [77, 43]. These works provided valuable insights, but
only relative to the models available to them. We examine
RCU in the light of our LK model, the first to provide a
formal semantics for RCU. Moreover, our results provide
two alternative ways to integrate a semantics of RCU in a
software analysis tool.

1.5 Overview of the paper and contributions
Section 2 introduces LK programs and their executions, and
the cat language. Section 3 describes and illustrates our
model. Section 4 formalises RCU. Section 5 gives our ex-
perimental results. Section 6 examines the correctness of an
RCU implementation. In summary, this paper presents:

1. a formal core LK memory model, in the form of a spec-
ification of the model in cat (Figure 8) and precise con-
straints under which executions are allowed or forbidden
by the LK model (Figure 3);

2. examples illustrating how forbidden executions violate
the constraints (Figures 2, 4, 5, 6, and 7);

3. a formalisation of RCU as an axiom (Figure 12);

4. a formalisation of the fundamental law of RCU [62],
equivalent to the axiom (Theorem 1);

5. experiments showing that our model is sound with re-
spect to hardware, and a comparison with C11 (Table 5);

6. the correctness of an RCU implementation (Theorem 2);

7. a discussion of required future work (Section 7).
The cat model, test results and proofs are online [7].

2. Programs and Candidate Executions
LK programs communicate via shared locations (e.g., x, y,
z), use private locations (e.g., r1, r2) for logic or arithmetic,
and control their execution flow with conditionals and loops.
Use of shared accesses may result in weak behaviours.

int x=0, y=0;

void T0() {

WRITE_ONCE(x,1);

smp_wmb ();

WRITE_ONCE(y,1);

}

void T1() {

int r1 = READ_ONCE(y);

smp_rmb ();

int r2 = READ_ONCE(x);

}

Figure 1: An LK program

Figure 1 shows an LK
program where two threads
communicate via shared
locations x and y, ini-
tialised to 0. T0 updates x,
calls smp wmb, and sets y

to 1. T1 reads y, calls
smp rmb, and reads x. This
is a message passing id-
iom: with enough synchro-
nisation, after T1 sees that
the flag y is set, it must see
the updated data. Here smp wmb and smp rmb are enough.

Below we partially describe the LK primitives in Table 3,
formalised in Figure 8. Table 4 details RCU primitives.

ONCE primitives are special reads and writes which restrict
compiler optimisations (vide infra).

Acquire and release primitives are synchronising: a re-
lease read by an acquire ensures that writes before the re-
lease are seen by the acquire’s thread.

Fences prevent reorderings: smp rmb for reads, smp wmb for
writes, smp mb for all accesses, and smp read barrier -

depends for dependent reads on architectures that do not
respect such dependencies, viz, Alpha.

Read-modify-writes (xchg and siblings) consist of a read
paired with a write. Depending on the primitive, these reads
and writes can be ONCE (for xchg relaxed), acquire,
release, or surrounded by full fences (for xchg).

LK coding conventions restrict compiler optimisations, e.g.:

LK/C primitive Event

READ ONCE() R[once]
WRITE ONCE() W[once]
smp load acquire() R[acquire]
smp store release() W[release]
smp rmb() F[rmb]
smp wmb() F[wmb]
smp mb() F[mb]
smp read barrier depends() F[rb-dep]
xchg relaxed() R[once],W[once]
xchg acquire() R[acquire],W[once]
xchg release() R[once],W[release]
xchg() F[mb],R[once],W[once],F[mb]

Table 3: LK primitives and corresponding events

• ONCE primitives prevent tearing (compiling a large access
as a group of smaller accesses), fusing (compiling a series
of accesses to a single location as just one access), and
splitting (compiling a single access as multiple full-sized
accesses, e.g., repeating a load to avoid a register spill);
• dependencies are crafted to prevent the compiler from

breaking them [37, 55];
• the LK relies on inline assembly: for example, archi-

tectures with write memory barriers can implement
smp wmb, despite lack of C11 support for this notion.

In addition, we only model architectures that the LK
actually supports. Thus we need not consider (for example)
difficulties such as 8-bit architectures with 16-bit pointers.
All in all, our LK model specifies the cumulative effect of
a language-level model (the subset of C specific to the LK)
and the hardware models targeted by the LK.

A consistency model determines which values can be re-
turned by read primitives. An axiomatic model—the style
we chose here—does so by determining whether candi-
date executions of a program are allowed. Candidate exe-
cutions are graphs: nodes are events modeling instructions,
and edges form relations over events, representing, e.g., the
program order in which instructions appear on a thread, or
where a read takes its value from. Figure 2 shows a candidate
execution (with initial writes and thread labels omitted).

a: W[once]x=1

g: F[wmb]

b: W[once]y=1

c: R[once]y=1

i: F[rmb]

d: R[once]x=0

po

wmb

po

rf

po

rmb

po

fr

Figure 2: Forbidden execution for the program in Figure 1

Events model primitives. Reads (R) from a shared location
place the value read in a private location, writes (W) to
a shared location update said location with a given value,

and fences (F) may prevent undesirable behaviours. Read-
modify-writes give rise to a read and a write for the same
shared location. Events bear annotations reflecting the cor-
responding primitives: once or acquire (for reads); once
or release (for writes); and rmb, wmb, mb or rb-dep (for
fences). For example, smp load acquire is represented by
a read annotated acquire, WRITE ONCE by a write annotated
once, and smp wmb by a fence annotated wmb. Table 3 lists
the events for each primitive, omitting locations for brevity.

Candidate executions consist of abstract executions, rep-
resenting the semantics of each thread, and execution wit-
nesses, representing communications between threads. Ab-
stract executions (E, po, addr, data, ctrl, rmw) contain:

• E, the set of events;
• po, the program order, specifies instruction order in a

thread after evaluating conditionals and unrolling loops;
• addr, data, and ctrl are the address, data, and control

dependency relations in po, always starting from a read.
• rmw links the read of a read-modify-write to its write.

Execution witnesses (rf, co) contain:

• the reads-from relation rf, which determines where reads
take their value from. For each read r there is a unique
write w to the same location s.t. r takes its value from w.
• the coherence order relation co, representing the history

of writes to each location. It is a total order over writes to
the same location, starting with the initialising write.

The cat language [3] formalises consistency models as
sets of constraints over candidate executions. We wrote our
model in cat so that it can be executed by the herd simula-
tor [12]. The language provides the user with predefined sets
of events (W contains all write events, R all reads, and all
events) and the relations forming candidate executions (po,
addr, data, ctrl, rmw, rf, and co), as well as the iden-
tity relation id, the loc relation, which contains all pairs
of events that access the same shared location, and the int

relation, which contains all pairs of events that belong to the
same thread.

Users can build new relations via union (∪), intersection
(∩), difference (\), complement (∼ r), inverse (r−1), re-
flexive closure (r?), transitive closure (r+), reflexive tran-
sitive closure (r∗), sequence (r1 ; r2, defined as {(x, z) |
∃y[(x, y) ∈ r1 ∧ (y, z) ∈ r2]}), and direct product of sets of
events (X × Y). One can thus build the following relations,
which often appear in cat models (and in our LK model):

• the from-reads relation consists of one step of reads-from
backwards, then one step of coherence: fr := rf−1; co;
• the communication relation gathers reads-from, coher-

ence and from-reads: com := rf ∪ co ∪ fr;
• the dependency relation gathers address and data (but not

control) dependencies: dep := addr ∪ data;

• the program order relation restricted to accesses of the
same location: po-loc := po ∩ loc;
• the internal reads-from relation, i.e., the reads-from

which take place within a thread: rfi := rf ∩ int;
• the external relation ext, containing pairs of events that

belong to different threads: ext := ∼ int;
• the external reads-from, coherence and from-reads: rfe
:= rf ∩ ext, coe := co ∩ ext, and fre := fr ∩ ext.

A cat model can constrain a relation r to be irreflexive,
acyclic, or empty.

In Figure 2, read c takes its value from write b, hence
the reads-from (rf) arrow between them. Read d takes the
initial value, which is overwritten by write a, hence the from-
reads (fr) arrow between them. This candidate execution is
forbidden by our LK model: the synchronisation ensures that
the updated data x is visible to T1 when it reads the flag y.

3. The LK model’s core
A candidate execution is allowed by the core LK model iff it
satisfies the constraints of Figure 3; it is forbidden otherwise.

acyclic(po-loc ∪ com) (Scpv)

empty(rmw ∩ (fre ; coe)) (At)

acyclic(hb) (Hb)

acyclic(pb) (Pb)
Figure 3: Core of our LK model

Scpv (sequential consistency per variable) forces the val-
ues of a single variable to be the ones it would have in SC:
weak consistency arises from interactions among variables.
At (atomicity) ensures that there cannot be an intervening
write to the same location between the read and the write of
a read-modify-write. Hb (happens-before) provides the intu-
itive causality notion. Pb (propagates-before) constrains the
propagation of writes and fences among concurrent threads.
Both Scpv and At appear in the literature [12, Sect. 4.2]. In
this section, we present Hb and Pb.

These axioms constrain the hb and pb relations (defined
later) to be partial orders, because they require the relations
to be acyclic. Below we illustrate these orders using exam-
ples from the LK 4.12 source code [82].

Auxiliary relations in the figures include the following: The
acq-po relation contains pairs of events in program order
such that the first is an acquire. Similarly, po-rel pairs
events where the second is a release. rfi-rel-acq is an
internal reads-from communication between a release and
an acquire. The rmb relation pairs reads with an smp rmb

fence between them. Similarly, wmb pairs writes with an
smp wmb fence between them, mb pairs any events with an
smp mb fence between them, and rb-dep pairs reads with a
smp read barrier depends between them.

3.1 Examples
LB+ctrl+mb, in Figure 4, appears in the ring-buffer interface
from kernel to userspace (see perf output put handle()

in [82, kernel/events/ring buffer.c]). T0 reads from x

(event a) and writes to y (b), imposing a control depen-
dency (depicted by the ctrl arrow) in between. Similarly,
T1 reads from y (c) and writes to x (d), with an smp mb

fence between them (mb arrow). If the dependency or the
fence is removed, the execution is allowed by the model and
observed on ARMv7 [50, Sect. 7.1].

a: R[once]x=1

b: W[once]y=1

c: R[once]y=1

m: F[mb]

d: W[once]x=1

ctrl rf po

mb

po
rf

Figure 4: LB+ctrl+mb: Forbidden.

WRC+po-rel+rmb, in Figure 5, is a sibling of Figure 1. This
pattern appears in LKML discussions [61]. T0 writes to x (a),
and T1 writes to y (c) after reading x (b). The release in T1

(po-rel arrow) forces a to happen before c, even though a
and c are not in the same thread. The fence in T2 (rmb arrow)
ensures that d and e stay in order.

a: W[once]x=1 b: R[once]x=1

c: W[release]y=1

d: R[once]y=1

j: F[rmb]

e: R[once]x=0

rf

po-rel
rf po

rmb

po

fr

Figure 5: WRC+po-rel+rmb: Forbidden.
SB+mbs (a store buffering idiom), in Figure 6, is used in LK
wait-event/wakeup code. It is documented in waitqueue-

active() [82, include/linux/wait.h]; wait woken()

and woken wake function() [82, kernel/sched/wait.c];
and wake q add(), wake up q(), and try to wake up() [82,
kernel/sched/core.c]. Without the fences it is observed
on x86.

a: W[once]x=1

g: F[mb]

b: R[once]y=0

c: W[once]y=1

i: F[mb]

d: R[once]x=0

po
mb

po
fr

po
mb

po
fr

Figure 6: SB+mbs: Forbidden.

PeterZ, in Figure 7, is used to resolve races between perfor-
mance monitoring and CPU hotplug operations [90]. As in
the previous example, two strong fences forbid the pattern,
which otherwise is observed on Power machines.

3.2 Formal definitions
We now dive into the formal definitions of our model, given
in Figure 8, which we justify in the light of the LK design.

a: W[once]x=1

k: F[mb]

b: R[once]y=0

c: W[once]y=1

d: W[release]z=1

e: R[acquire]z=1

r: F[mb]

f: R[once]x=0

po

mb

po fr
po-rel

rf
po

mb

po

fr

Figure 7: PeterZ: Forbidden.

dep := addr ∪ data
rwdep := (dep ∪ ctrl) ∩ (R× W)
overwrite := co ∪ fr
to-w := rwdep ∪ (overwrite ∩ int)
rrdep := addr ∪ (dep ; rfi)
strong-rrdep := rrdep+ ∩ rb-dep
to-r := strong-rrdep ∪ rfi-rel-acq
strong-fence := mb

fence := strong-fence ∪ po-rel ∪ wmb ∪ rmb ∪ acq-po
ppo := rrdep∗ ; (to-r ∪ to-w ∪ fence)
cumul-fence := A-cumul(strong-fence ∪ po-rel) ∪ wmb
prop := (overwrite ∩ ext)? ; cumul-fence∗ ; rfe?

hb := ((prop \ id) ∩ int) ∪ ppo ∪ rfe
pb := prop ; strong-fence ; hb∗

Figure 8: LK definitions

3.2.1 “[I]f some [. . .] architecture gets its memory ordering
wrong [. . .], [it] should pay the price” [80]

Some architectures do not provide sufficient ordering for the
LK. The LK compensates in architecture-specific ways, and
our LK model reflects only the ordering provided by the
hardware. A notable example is Itanium, which can reorder
loads from the same address. To work around this, Itanium’s
gcc compiler emits special load instructions, which provide
suitable ordering guarantees, for READ ONCE. Accordingly,
even though all other architectures’ compilers need only
emit a plain load, our LK model requires memory accesses
to be annotated by once or something stronger (see Table 3).

3.2.2 The preserved program order relation ppo

ppo relates events in program order as described below:

Local orderings to writes are modeled by to-w. The rwdep

(read-write dependency) relation orders a read and a write
with an address, data, or control dependency between them
(dep ∪ ctrl) (see [37, l. 879]). In Figure 4, there is a
control dependency between a and b ((a, b) ∈ ctrl); thus
(a, b) ∈ ppo.

The overwrite relation orders events where the second
overwrites the first. Among the local orderings to writes, we
consider only the instances of overwrite that are internal
to a thread; hence the intersection with the int relation.

Local orderings to reads are modeled by the to-r rela-
tion. Read-read dependencies (formalised by rrdep) con-
sist of addr, or dep followed by rfi (internal reads-

from) (see [37, l. 393]). Unfortunately, Alpha does not re-
spect read-read address dependencies [18]. The LK com-
pensates via smp read barrier depends (modeled by
rb-dep), which emits a memory barrier on Alpha and is
a no-op on other architectures. Our model therefore re-
spects read-read dependencies only given an intervening
smp read barrier depends (see [37, l. 429, l. 550]), as
modeled by strong-rrdep (strong read-read dependency).

An internal reads-from between a write release and a read
acquire also provides ordering.

Local ordering due to fences is modeled by the fence re-
lation (see [37, l. 1801]). The strong-fence relation orders
events separated by smp mb; we will update it in the next sec-
tion to account for RCU. The fence relation orders events
separated by a fence (mb [37, l. 446], smp wmb [37, l. 1801]
or smp rmb [37, l. 1801]), or such that the first event is an
acquire (acq-po) [37, l. 461] or the second is a release

(po-rel) [37, l. 477]. In Figure 5, d and e are separated by an
smp rmb fence (i.e., (d, e) ∈ rmb); thus (d, e) ∈ fence. In
Figure 7, d is a write release; thus (c, d) ∈ po-rel ⊆ fence.

ARMv7 implements smp load acquire with a full
fence for lack of better means. In contrast, Power uses the
lightweight lwsync, and ARMv8 a special load-acquire.
Our model represents smp load acquire with the weaker
orderings of ARMv8 [47] and Power [12], not the stronger
ordering of ARMv7 [12]. The situation for smp store release

is the same.

All in all, ppo pairs events linked by one of the relations
above, optionally preceded by a read-read dependency (in
the sense of rrdep). The LK uses this prefix (as documented
in task rq lock [82, kernel/sched/core.c]) to forbid
Figure 9: d is address-dependent (addr arrow) on c, thus
(c, d) ∈ rrdep; and d is an acquire, thus (d, e) ∈ acq-po,
which entails (d, e) ∈ strong-rrdep ⊆ to-r. Therefore
(c, e) ∈ ppo.

a: W[once]x=1

i: F[wmb]

b: W[once]y=1

c: R[once]y=1

d: R[acquire]z=0

e: R[once]x=0

po

wmb

po

rf

addr

ppo
acq-po ,ppofr

Figure 9: MP+wmb+addr-acq: Forbidden.

3.2.3 The propagation relation prop

This relation corresponds to the informal notion of transi-
tivity presented in [37, l. 1349]. It pairs events possibly in
different threads ordered as follows.

Cumulative fences are modeled by cumul-fence, which
pairs events in program order that are separated by an
smp wmb or smp mb fence, or where the second is a release.

Strong fences (smp mb) and releases are A-cumulative,
as formalised by the cat function A-cumul(r) := rfe? ; r.
The ordering provided by these fences extends to external

writes that are read by an event preceding the fence. In
Figure 5, c in T1 is a write release, thus (b, c) ∈ po-rel.
Since b reads the write a in T0, (a, b) ∈ rfe and thus
(a, c) ∈ A-cumul(po-rel); hence (a, c) ∈ cumul-fence.

The relation prop generalises cumulativity: it ensures that
guarantees made by cumul-fence for a thread T spread to
other threads that access the same variables as T . When e1
and e2 are related by a sequence of cumul-fence links:

• (e1, e2) ∈ prop. In Figure 2, a and b are separated by an
smp wmb fence; thus they are related by prop.
• Any external event overwritten by e1 links by prop to e2.

In Figure 2, d is overwritten by a; thus (d, b) ∈ prop.
• e1 (or an external event it overwrites) is related by prop

to events that read from e2. In Figure 7, b is overwritten
by c and the release d is read by e; thus (b, e) ∈ prop.
• These facts hold when e1 = e2. In Figure 6, d is overwrit-

ten by a; thus (d, a) ∈ prop. Idem f and a in Figure 7.

3.2.4 The happens-before relation hb

hb is the union of the ppo and rfe relations, together with
prop restricted to distinct events in the same thread. The Hb
axiom requires hb to be acyclic, ensuring that reads-from is
consistent with local orderings due to ppo and fences.

In Figure 4, we have (a, b) ∈ ctrl; thus (a, b) ∈ ppo

(as ctrl ⊆ to-w ⊆ ppo). We also have (c, d) ∈ mb; thus
(c, d) ∈ ppo (as mb ⊆ fence ⊆ ppo). Overall, we have
a

ppo−−→ b
rfe−−→ c

ppo−−→ d
rfe−−→ a, a cycle in the hb relation.

In Figure 5, we have (a, c) ∈ cumul-fence, as men-
tioned above. Moreover, a overwrites e and d reads from c;
thus (e, d) ∈ prop. Since e and d are different events in
the same thread, we have (e, d) ∈ (prop \ id) ∩ int. And
since d and e are separated by an rmb fence, we also have

(d, e) ∈ ppo. Thus d
ppo−−→ e

(prop\id)∩int−−−−−−−−−→ d, a cycle in hb.

3.2.5 The propagates-before relation pb

pb contains events related by prop followed by a strong
fence and an arbitrary number of hb links. The Pb axiom
requires pb to be acyclic, so that events are overwritten in a
manner consistent with the orderings due to strong fences.

In Figure 6, (d, a) ∈ prop, as mentioned above. Since a
and b are separated by a strong fence, we have (d, b) ∈ pb.
By symmetry we also have (b, d) ∈ pb, hence a cycle in pb.

In Figure 7, (b, e) ∈ prop, as mentioned above. Since e
and f are separated by a strong fence, we have (b, f) ∈ pb.
Similarly, since (f, a) ∈ prop and (a, b) ∈ strong-fence,
we also have (f, b) ∈ pb, thus creating a cycle in pb.

3.3 Summary
This section presented the core of our formal LK model.

3.3.1 Our core LK model (Figure 3)
We exclude executions exhibiting any of following cycles:

• Scpv cycles, which involve only one shared variable,
made of program order and communications edges;
• At cycles, which involve read-modify-writes;
• Hb cycles, which involve local orderings due to depen-

dencies and fences, and reads-from communications;
• Pb cycles, which involve at least one strong fence.

3.3.2 The relations constrained by the model
These are formally defined in Figure 8. The crucial ones are:

• preserved program order ppo, which models local order-
ings due to dependencies (to-r and to-w) and fences;
• the propagation relation prop, which models the effect

of fences (cumul-fence) on the propagation of writes to
different variables with respect to one another;
• the happens-before relation hb, which models the effect

of local orderings due to ppo and fences on reads-from;
• the propagates-before relation pb, modeling strong fences.

4. Modeling Read-Copy-Update
Read-copy update (RCU) is a synchronisation mechanism in
which writers do not block readers: readers can be fast and
scalable and writers can make forward progress concurrently
with readers. Readers call the primitives rcu read lock

and rcu read unlock to delimit a read-side critical section
(RSCS). Updaters are writers that call the synchronize rcu

primitive; calling it starts a grace period (GP). Table 4 lists
RCU primitives and their corresponding events.

LK/C primitive Event

rcu dereference() R[once],F[rb-dep]
rcu assign pointer() W[release]
rcu read lock() F[rcu-lock]
rcu read unlock() F[rcu-unlock]
synchronize rcu() F[sync-rcu]

Table 4: RCU primitives and corresponding events
In Figure 10, T0 contains an RSCS accessing variables x

and y, and T1 updates the same variables.
g: F[rcu-lock]

a: R[once]y=1

b: R[once]x=0

j: F[rcu-unlock]

c: W[once]x=1

k: F[sync-rcu]

d: W[once]y=1

po

po

po

fr
po

porf

Figure 10: RCU-MP: Forbidden.
We present here two different ways of formalising RCU:

the fundamental law in Section 4.1 and the RCU axiom in
Section 4.2. We show the equivalence of the law and the
axiom in Theorem 1. This result has practical significance

because it enables tools to embed RCU semantics in either of
two ways: by determining if a critical section spans a grace
period (as per the law), or by counting the number of grace
periods and critical sections in a cycle (as per the axiom).

4.1 Formalising the fundamental law of RCU
In [62], “an informal, high-level specification for RCU”, the
reader is warned thus:
RCU’s specification is primarily empirical in nature

We would like to formalise the requirement of [62], i.e.,
the fundamental law of RCU (aka grace period guaran-
tee) [66]:

Read-side critical sections cannot span grace periods.

Intuitively, for any GP and RSCS, the law has two aspects:

• RSCS precedes GP: if any access in the RSCS precedes
the GP, then no access in the RSCS can follow the GP.
• GP precedes RSCS: if any access in the RSCS follows

the GP, then no access in the RSCS can precede the GP.

We illustrate each aspect below, referring to Figure 10.

RSCS precedes GP: we take the fr arrow to indicate that b
precedes c, hence b precedes the synchronize rcu event k.
Thus an access in the RSCS precedes the GP. By the funda-
mental law, no access in the RSCS can follow the GP. Thus
a cannot read from d, which forbids the pattern.

GP precedes RSCS: we take the rf arrow to indicate that
a follows d, i.e., a executes after synchronize rcu returns.
The law says that no access in the RSCS can precede the GP.
Thus b cannot precede c, which again forbids the pattern.

The guarantees made by the law may seem similar to the
ones made by fences. Indeed, the pattern of Figure 10 would
also be forbidden with wmb in T1 and rmb in T0 (cf. Figure 1).
However, unlike with fences, if we swap the reads in T0 (cf.
Figure 11) the pattern remains forbidden: if the read of x
obtains 0 and hence executes before the GP, then the read of
y cannot obtain 1.

g: F[rcu-lock]

a: R[once]x=0

b: R[once]y=1

c: W[once]x=1

j: F[rcu-unlock]

k: F[sync-rcu]

d: W[once]y=1

po

po

fr

po

po

po
rf

Figure 11: RCU-deferred-free: Forbidden.
We model the law with a “precedes” function F which,

given a candidate execution, an RSCS, and a GP, selects
which of the RSCS or the GP precedes the other:

F (RSCS,GP) = RSCS or F (RSCS,GP) = GP.

The rcu-fence(F) relation models the interaction of an
RSCS and a GP. Two events, e1 and e2, are related by
rcu-fence(F) iff there are an RSCS (delimited by rcu -

read lock and rcu read unlock events l and u) and a GP
(given by synchronize rcu event s) such that either:

• the RSCS precedes the GP, e1 precedes u in program
order, and e2 is s itself or follows s in program order:

F (RSCS,GP) = RSCS ∧ (e1, u) ∈ po ∧ (s, e2) ∈ po?

• or the GP precedes the RSCS, e1 precedes s in program
order, and e2 is l itself or follows l in program order:

F (RSCS,GP) = GP ∧ (e1, s) ∈ po ∧ (l, e2) ∈ po?

Let us revisit Figure 10 in the light of our new definition.

• If F (RSCS,GP) = RSCS (i.e., the RSCS precedes the
GP), all events preceding the unlock event j in program
order are related by rcu-fence(F) to the GP event k and
all po-subsequent events. In particular, we have (a, d) ∈
rcu-fence(F).
• If F (RSCS,GP) = GP (i.e., the GP precedes the RSCS),

all events preceding the GP event k are related by
rcu-fence(F) to the lock event g and all po-subsequent
events. In particular, we have (c, b) ∈ rcu-fence(F).

The fundamental law makes guarantees similar to fences,
albeit stronger. Thus we treat rcu-fence(F) on a par with
strong-fence and embed it in an enlarged pb(F) relation:

pb(F) := prop; (strong-fence ∪ rcu-fence(F)); hb∗

A candidate execution X satisfies the fundamental law of
RCU iff there is a precedes function F such that X satisfies
the enlarged Pb axiom acyclic(pb(F)). We see that there is
no such function for the execution in Figure 10:

• if F (RSCS,GP) = RSCS then (a, d) ∈ rcu-fence(F).
Moreover we have (d, a) ∈ rfe, thus in hb∗. This creates
a cycle in pb(F).
• if F (RSCS,GP) = GP then (c, b) ∈ rcu-fence(F).

Moreover we have (b, c) ∈ fre, thus in prop. This also
creates a cycle in pb(F).

4.2 The RCU axiom
We augment our model with the relations in Figure 12.

We write gp for the relation between events in program
order separated by a synchronize rcu s, or such that the
second one is s itself. In Figure 10, we have (c, k) and (c, d)
in gp. We add gp to the definition of strong-fence, so that
synchronize rcu can be used instead of smp mb.

We write crit for the relation between an RSCS’s lock l
and its unlock u. The LK allows rcu read lock() and
rcu read unlock() to be nested arbitrarily deeply; crit
connects each outermost rcu read lock() to its matching
rcu read unlock(). We omit its definition for brevity.

gp := (po ∩ (× Sync)) ; po?

strong-fence := mb ∪ gp
rscs := po ; crit−1 ; po?

link := hb∗ ; pb∗ ; prop
gp-link := gp ; link
rscs-link := rscs ; link
rec rcu-path := gp-link ∪ (rcu-path ; rcu-path)

∪ (gp-link ; rscs-link) ∪ (rscs-link ; gp-link)
∪ (gp-link ; rcu-path ; rscs-link)
∪ (rscs-link ; rcu-path ; gp-link)

irreflexive(rcu-path) (RCU)

Figure 12: RCU relations and axiom

The relation rscs pairs events e1 and e2 in the same
thread s.t. e1 is po-before an unlock u and e2 is po-after
the matching lock l or is l itself. In Figure 10, (g, g), (g, a),
(a, b), (b, a), (b, j), (b, g), and many other pairs are in rscs.

The link relation embeds everything that provides order
in our model. Intuitively, if an event in an RSCS appears
before a GP according to our link relation, we model the
first aspect of the fundamental law; if a GP appears before
an event in an RSCS in link, we model the second aspect.

The gp-link and rscs-link relations are gp followed by
link and rscs followed by link, respectively. Roughly
speaking, they pair events where the second occurs after a
GP following, or RSCS containing, the first.

The rcu-path relation is defined recursively, as indicated
by the cat keyword rec. It merely pairs events that are con-
nected by a non-empty sequence of gp-link and rscs-link
edges in which there are at least as many GPs as RSCSes.

The RCU axiom requires rcu-path to be a path, i.e., to be
irreflexive. Strikingly, our work allows us to demonstrate
that this is equivalent to the fundamental law:
Theorem 1 (RCU guarantee). An LK candidate execution
satisfies the Pb and RCU axioms iff it satisfies the fundamen-
tal law.

This theorem formalises a rather simple rule of thumb
[65, slide 42]: the fundamental law of RCU is invalidated iff
there is a cycle in which the number of RSCSes is less than
or equal to the number of GPs.

To establish this result, we show that the irreflexivity of
rcu-path (as per the axiom) is equivalent to the acyclicity
of pb enlarged by rcu-fence(F) (as per the law). We omit
the proof (available online [7]) for brevity.

5. Experiments
We used the diy+herd toolsuite [5] to build a vast library of
litmus tests and run them against our model and as kernel
modules. We also compared our model to the C11 model
of [15].

Litmus tests are small programs that exercise specific fea-
tures of consistency models. Our validation includes classic

Model Power8 ARMv8 ARMv7 X86 C11
LB Allow 0/15G 0/10G 0/3.0G 0/33G Allow
LB+ctrl+mb, Fig. 4 Forbid 0/17G 0/5.1G 0/4.4G 0/18G Allow
WRC Allow 741k/7.7G 13k/5.2G 0/1.6G 0/17G Allow
WRC+wmb+acq, Fig. 14 Allow 0/7.5G 0/4.6G 0/1.6G 0/16G Forbid
WRC+po-rel+rmb, Fig. 5 Forbid 0/7.7G 0/5.3G 0/1.6G 0/17G Forbid
SB Allow 4.4G/15G 2.4G/10G 429M/3.0G 765M/33G Allow
SB+mbs, Fig. 6 Forbid 0/15G 0/10G 0/3.0G 0/33G Forbid
MP Allow 57M/15G 104M/10G 3.0M/3.0G 0/33G Allow
MP+wmb+rmb, Fig. 2 Forbid 0/15G 0/9.4G 0/2.6G 0/33G Forbid
PeterZ-No-Synchro Allow 26M/4.6G 3.6M/900M 10k/380M 351k/7.2G Allow
PeterZ, Fig. 7 Forbid 0/8.7G 0/2.5G 0/2.2G 0/9.1G Allow
RCU-deferred-free, Fig. 11 Forbid 0/256M 0/576M 0/15M 0/25M —
RCU-MP, Fig. 10 Forbid 0/672M 0/336M 0/336M 0/336M —
RWC Allow 88M/11G 94M/4.8G 7.5M/1.6G 5.6M/17G Allow
RWC+mbs, Fig. 13 Forbid 0/8.7G 0/2.5G 0/2.2G 0/9.1G Allow

Table 5: Simulations vs. experimental results.

tests [13, 38, 75, 74, 12, 34], new hand-written tests, and sys-
tematic variations of several tests (see e.g. [50, Sect. 9.1])
with all combinations of fences or dependencies. We used
the diy7 tool [5] to systematically generate thousands of
tests with cycles of edges (e.g., dependencies, reads-from,
coherence) of increasing size. The tests, written in a subset
of C supplemented with LK constructs such as READ_ONCE
or WRITE_ONCE, are online [7].

Running litmus tests against cat models was carried out
with the herd7.43 tool [5]. The herd tool can simulate any
cat model, but initially supported only machine-level models
of CPUs and GPUs [12, 2, 6] and language-level models for
C11 and OPENCL [15]. We extended herd with support for
the LK constructs used in our tests.

Running litmus tests as kernel modules was done using
our new klitmus tool, inspired by the litmus tool [5]. The
new tool differs from litmus in that kernel programming is
different from userspace programming: we had to find LK
equivalents to the userspace libraries used by litmus. E.g.,
launching threads is performed using LK kthreads instead
of userspace pthreads. The test results cannot be sent to
standard output, so we instead read the kernel module’s
output via the /proc filesystem.

5.1 Hardware results
We tested a CHRP IBM pSeries with 8 POWER8E CPUs
at 3.4GHz (Linux v4.4.40), an Amlogic ARMv8 with 4
Cortex-A53 cores at 1.5GHz (Linux v3.14.29), a Rasp-
berry Pi ARMv7 with 4 Cortex-A7 cores at 900Mhz (Linux
v4.9.20), and an HP desktop with 2 (6-core) Intel Xeon E5-
2620 v3 CPUs at 2.40GHz (Linux v3.16.04).

Table 5 summarises our results; the complete set is at [7].
For each test we give the number of times it was observed on
hardware, over the times it was run: k stands for 103, M for
106 and G for 109. E.g., we ran LB+ctrl+mb (Figure 4) 17G

times on Power8, but never observed it. This is expected, as
the model forbids the idiom.

Indeed, a result observed during experiments but forbid-
den by the model indicates a bug. One cannot make definite
conclusions from the absence of observation, but the tool
proved rather discriminating in previous works [10, 11, 12,
2, 75, 74].

For reference, we include tests without synchronisation.
E.g., Figure 4 shows LB+ctrl+mb with a control dependency
and an mb fence; its sibling LB has no dependency and no
fence.

Table 5 shows that all the hardware behaviours we ob-
served are allowed by the model: our model is experimen-
tally sound. Some behaviours allowed by the model have
not been observed in experiments; the machines are stronger
than required by our model. For instance, LB, although al-
lowed by our model, was not observed on any of our sys-
tems. It was observed on other ARMv7 machines, how-
ever [50, Sect. 7.1].

5.2 Comparison to C11
To compare our LK model and C11, we used the cat model
of [15], and the mapping from LK primitives to C11 primi-
tives given in [68]. The complete results are available at [7].
Our experiments quantify the differences between LK and
C11, using this mapping.

a: W[once]x=1 b: R[once]x=1

i: F[mb]

c: R[once]y=0

d: W[once]y=1

k: F[mb]

e: R[once]x=0

rf

po

mb

po

fr

po

mb

po
fr

Figure 13: RWC+mbs: Forbidden.

For example, smp mb “restores SC”, but its C11 coun-
terpart atomic thread fence(memory order seq cst)

does not. Thus the LK model forbids the pattern in Figure 13
(there is a cycle in pb) but C11 allows it.

(In fact, no known production-quality implementation of
C11 fails to forbid Figure 13 [43, 74]. But originally, C11
allowed it so that the seq cst fence could be implemented
with Itanium’s mf instruction. Eventually relaxed loads
were defined to forbid reordering of loads to the same vari-
able, forcing Itanium to generate ld,acq for relaxed loads;
hence mf is now sufficient to forbid Figure 13. The current
consensus is that C11’s fence should be strengthened to re-
store SC (as smp mb does in the LK); there are various ideas
on how to accomplish this [15, 44].)

In addition, the LK respects control dependencies be-
tween a read and a write (ctrl ⊆ to-w ⊆ ppo in Figure 8),
thus forbidding the outcome of Figure 4, which C11 allows.

Table 5 summarises our results on C11. The tests forbid-
den by the LK but allowed by C11 highlight that the mapping
of [68] cannot be used to implement the LK in C11. The test
WRC+wmb+acq (Figure 14), which C11 forbids but the LK
allows, shows that there is no ideal equivalent of smp wmb in
C11 [68].

a: W[once]x=1 b: R[once]x=1

k: F[wmb]

c: W[once]y=1

d: R[acquire]y=1

e: R[once]x=0

rf

po
wmb

po
rf

pofr

Figure 14: WRC+wmb+acq: Allowed.

6. Verifying an RCU implementation
The RCU implementation in Figure 15, used in the Linux
trace tool [1], provides code for rcu read lock (lines 8
to 18), rcu read unlock (lines 20 to 25) and synchronize rcu

(lines 43 to 50). We explain here why it satisfies the funda-
mental law of RCU at a high level, and refer the reader to [7]
for details.

6.1 Description of the implementation
Threads communicate via an array of variables rc[] (line 4)
and a grace-period control variable gc (line 5). The gp lock

mutex (line 6) serialises grace periods. The GP PHASE (line 1)
bit of gc indicates which phase a grace period is in (grace
periods have two phases). The low-order bits of rc[i] se-
lected by CS MASK (line 2) form a 16-bit counter.

The counter in rc[i] records the depth of RSCS nesting
for thread i: initially 0, set to 1 at line 13 in an outermost
rcu read lock call, incremented at line 16 in inner calls,
and decremented at line 24 in rcu read unlock. If RSCSes
are properly nested (no unlock without a earlier matching
lock) and the depth of nesting does not overflow the 16-
bit counter, only an outermost rcu read unlock sets the
counter to 0, indicating that thread i is not in an RSCS.

The GP PHASE bit in gc is 0 before a grace period, viz,
before synchronize rcu is called. That routine sets the
phase to 1 and then 0 again (line 36). Threads starting an
RSCS copy the current phase value into their respective
rc[i] (line 13). Thus synchronize rcu knows which
threads must be waited for. Indeed, after changing the
phase, update counter and wait waits for each thread i

(lines 38–39) until the value computed at lines 29–30 be-
comes false. This happens when:

• rc[i]’s counter is zero (thread i is not in an RSCS), or
• rc[i]’s counter is nonzero and its phase bit is equal to

that of gc (thread i is in an RSCS which started after the
current GP phase).

6.2 Correctness statement
Let P be an LK program, and let P ′ be obtained by replacing
the RCU primitives in P with the routines of Figure 15. For
any execution X ′ of P ′ allowed by our model, let X be the
corresponding execution of P . Each non-RCU event e in X
corresponds directly to an event e′ in X ′. (Consider, e.g., the
execution X in Figure 10, corresponding to X ′ in Figure 16.
Events a, b, c, and d in X match a’, b’, c’, and d’ in X ′.)

Furthermore, since the code in Figure 15 does not access
any of the shared locations in P , and conversely, P does not
access the shared locations gc and rc[], each read in X is
related by rf in X ′ to a write also in X . (For example, a’
in X ′ reads from d’, not from some other write present in X ′

but not in X .) More generally, the non-RCU relations of X
are simply those of X ′ restricted to the events in X .

We set up a similar correspondence for the RCU events
(in Figure 16, appended to these events’ labels are the line
numbers from Figure 15 for the events and their call chains):

g’[13]: W[once] rc[i]=1

h’[14]: F[mb]

a’: R[once] y=1

b’: R[once] x=0

j’[24]: W[once] rc[i]=0

i’[23]: F[mb]

c’: W[once] x=1

· · ·

m’[27,last loop of 38,47]: R[once] rc[i]=0

· · ·

k’[36,46]: W[once] gc=0x10001

· · ·

n’[49]: F[mb]

d’: W[once] y=1

po

po

po

mb

po

fr

po

po

rf

po

po

po

po

po

mb
po

rf

Figure 16: RCU-MP, with RCU as implemented in Figure 15

1 #define GP_PHASE 0x10000

2 #define CS_MASK 0x0ffff

3
4 static unsigned long rc[MAX_THREADS] = {0};

5 static unsigned long gc = 1;

6 static DEFINE_MUTEX(gp_lock);

7
8 void rcu_read_lock(void) {

9 unsigned int i = get_my_tid ();

10 unsigned long tmp = READ_ONCE(rc[i]);

11
12 if (!(tmp & CS_MASK)) {

13 WRITE_ONCE(rc[i], READ_ONCE(gc));

14 smp_mb ();

15 } else {

16 WRITE_ONCE(rc[i], tmp + 1);

17 }

18 }

19
20 void rcu_read_unlock(void) {

21 unsigned int i = get_my_tid ();

22
23 smp_mb ();

24 WRITE_ONCE(rc[i], READ_ONCE(rc[i]) - 1);

25 }

26 static int gp_ongoing(unsigned int i) {

27 unsigned long val = READ_ONCE(rc[i]);

28
29 return (val & CS_MASK)

30 && ((val ^ READ_ONCE(gc)) & GP_PHASE);

31 }

32
33 static void update_counter_and_wait(void) {

34 unsigned int i;

35
36 WRITE_ONCE(gc, READ_ONCE(gc) ^ GP_PHASE);

37 for (i = 0; i < MAX_THREADS; i++) {

38 while (gp_ongoing(i))

39 msleep (10);

40 }

41 }

42
43 void synchronize_rcu(void) {

44 smp_mb ();

45 mutex_lock (& gp_lock);

46 update_counter_and_wait ();

47 update_counter_and_wait ();

48 mutex_unlock (& gp_lock);

49 smp_mb ();

50 }

Figure 15: RCU implementation from [29].

• For each F[rcu lock] event l in X (g in Figure 10), let l′

be the write of rc[i] at line 13 (or 16 for inner nesting
levels). In Figure 16, this is g’.
• For each F[rcu unlock] event u in X (j in Figure 10),

let u′ be the write of rc[i] at line 24 (j’ in Figure 16).
• For each F[sync-rcu] event s in X (k in Figure 10),

let s′ be the write to gc at line 36, from the call to
update counter and wait at line 46 (k’ in Figure 16).

We can now state our correctness result:

Theorem 2 (Correctness of RCU implementation). If X ′ is
allowed in our LK model and has properly nested RSCSes
that do not overflow the counters in rc[], then X is allowed.

6.3 Proof sketch
For brevity, we only list critical points of our proof; detailed
proofs are in [7].

All non-RCU relations R in X hold in X ′: when (e1, e2) ∈
R holds in X , the corresponding fact (e′1, e

′
2) ∈ R holds

in X ′. Recall that we defined X to differ from X ′ only for
RCU events and relations. Hence this result is immediate
except when R is strong-fence, which contains the RCU
relation gp. Fortunately it is true in this case as well.

To see why, consider (e1, e2) ∈ gp in X (e.g., the
writes c and d in Figure 10). There is an F[sync-rcu]

event between them in program order; hence the F[mb]

event arising from line 44 lies between the correspond-
ing events e′1 and e′2 in X ′. Thus (e′1, e

′
2) ∈ mb, implying

that (e′1, e
′
2) ∈ strong-fence. (Between c’ and d’ in Fig-

ure 16 are all the events from Figure 15’s implementation of
synchronize rcu; the F[mb] event for line 44 is elided.)

Since X ′ is allowed, X thus obeys all the core constraints
of our model, leaving only the RCU constraint to consider.

Using our RCU guarantee theorem (Section 4.2), we show
that X does obey the RCU constraint by showing that X
satisfies the fundamental law of RCU. This requires finding
a precedes function F for X such that pb(F) is acyclic.

Our precedes function F is derived from the execution X ′.
Given a GP in X and an outermost RSCS in thread i, let l
and u be the lock and unlock of the RSCS. The correspond-
ing events l′ and u′ in X ′ were defined in Section 6.2. We
consider two distinguished read events, r1 and r2, where:

• r1 is the read of rc[i] executed by line 27 of Figure 15,
• in the call to gp ongoing(i) from the last iteration of

the while loop at line 38,
• in the first call to update counter and wait (line 46)

within the GP,

and r2 is the equivalent read from within the second call to
update counter and wait (line 47). In Figure 16, r2 =
m’ and r1 is not shown.

At least one of the following two facts must hold in X ′:

1. the RSCS’s rcu read lock was not visible at the start
of the GP: (r1, l′) ∈ fr;

2. the RSCS’s rcu read unlock or a later write to rc[i]

was visible at the end of the GP: (u′, r2) ∈ (coi? ; rf).

We take F (RSCS,GP) to be GP if (1) holds and RSCS
otherwise. In Figure 16, (2) holds since u′ is j’, r2 is m’,
and (j’, m’) ∈ rf. Thus F (RSCS,GP) = RSCS.

A cycle in pb(F) for X would give rise to a cycle in pb

for X ′. We omit the full demonstration (given in [7]) but
illustrate it with our example. We know from Section 4.1
that X in Figure 10 violates the fundamental law of RCU
and every pb(F) relation for X contains a cycle. We are
now claiming this means that X ′ in Figure 16 has a cycle in
pb. And so it does: d’ rfe−−→ a’

mb−→ j’, hence d’
pb−→ j’,

and similarly, j’
pb−→ d’ via m’.

Returning to the general proof of Theorem 2: The the-
orem assumed that X ′ is allowed in our model and hence
obeys the Pb constraint. This requires the pb relation in X ′

to be acyclic, from which we now deduce that the pb(F) re-
lation in X must also be acyclic. By our earlier remark, this
suffices to conclude the proof sketch.

7. Discussion
The process that led to our LK model was iterative, and
both social and technical. We reviewed [37] and wrote an
initial cat file formalising our understanding. We used the
litmus tests of [37, 66, 67] to refine this model, and asked
questions to hardware designers and LK maintainers [8, 9,
25, 65]. Later we modified the tools of the diy+herd tool-
suite [5] to generate more tests, and run them as kernel
modules. We referred to published models when available,
e.g., ARMv8 [47], and architectural definitions of LK prim-
itives [37, 69].

The need to account for all the architectures that the LK
targets can make the model seem complex and arbitrary. For
example, smp read barrier depends exists exclusively
for the sake of Alpha. Otherwise, in the definition of ppo,
the relations strong-rrdep and rrdep would be the same.

We do think that our LK model is, perhaps surprisingly,
less subtle than C11 and OpenCL [15], as it is inspired
by hardware: thus our model does not have out-of-thin-air
values, because it respects dependencies as hardware does;
and the LK’s full fence restores SC, unlike that of C11.

All in all, the model is as complex and arbitrary as the
LK is. Consequently it is as stable as the LK is; we expect
it to change as often as [37] does, i.e., a handful of times
per year. The LK model will adapt as architectures change
(or become better defined), as workloads change, and as
kernel developers become more aggressive in their pursuit
of performance and scalability.

To support existing non-buggy LK code, an LK model
must account for the LK’s primitives, including fences,
RCU, read-modify-writes, and locking. Our work models all
these primitives, except for locks. This is due to the current
lack of consensus on the semantics of certain locking primi-
tives [83] within the LK community, which our preliminary
work on the topic helped uncover.

Locking may, however, be emulated with the constructs
that we already have [63]. For example, we model a spin-
lock as a shared location. The spin lock primitive behaves
like xchg acquire for this location. In Table 3, this is mod-
eled as a read with annotation acquire and a write with
annotation once, governed by the At axiom of Figure 3 and
the constraints on acquire in Figure 8. The spin unlock

primitive behaves like a smp store release for the shared
location, governed by the constraints on release in Fig-
ure 8.

Other features not currently supported by our model are:

• compiler optimizations (however, the LK’s READ ONCE

and WRITE ONCE rule out many optimizations [20, 21],
so this limitation is less of a problem than it might seem);
• any kind of arithmetic;
• multiple access sizes and partially overlapping accesses;
• non-trivial data, including arrays and structures;
• dynamic memory allocation;
• exceptions, interrupts, self-modifying code, and I/O;
• asynchronous RCU grace period primitives, including
call rcu and rcu barrier.

We do hope to address these limitations over time. But
even in its current form, our model provides a reference for
making decisions about concurrency in the LK, as witnessed
by the issues that our work helped discuss or settle (Table 2).

Acknowledgements We thank H. Peter Anvin, Will Dea-
con, Andy Glew, Derek Williams, Leonid Yegoshin, and Pe-
ter Zijlstra for their patient explanations of their respective
systems’ models; Boqun Feng and Mark Rutland for their
keen interest and suggestions; Sylvan Clebsch, Will Dea-
con and Daryl Stewart for comments on a draft; and Jessica
Murillo and Mark Figley for their support of this effort. Fi-
nally, we thank our reviewers, especially our shepherd Dan
Lustig, for their helpful and enthusiastic reviews.

References
[1] Linux Trace Tool (LTTng). http://lttng.org/, 2017.

[2] ALGLAVE, J., BATTY, M., DONALDSON, A. F., GOPALAKR-
ISHNAN, G., KETEMA, J., POETZL, D., SORENSEN, T.,
AND WICKERSON, J. GPU Concurrency: Weak Behaviours
and Programming Assumptions. In ASPLOS 2015 (2015).

[3] ALGLAVE, J., COUSOT, P., AND MARANGET, L. Syntax
and semantics of the weak consistency model specification
language cat. CoRR abs/1608.07531 (2016).

[4] ALGLAVE, J., KROENING, D., AND TAUTSCHNIG, M. Par-
tial orders for efficient Bounded Model Checking of concur-
rent software. In Computer Aided Verification (CAV) (2013),
vol. 8044 of LNCS, Springer, pp. 141–157.

[5] ALGLAVE, J., AND MARANGET, L. The diy7 tool suite.
http://diy.inria.fr/, 2011–2017.

http://lttng.org/
http://diy.inria.fr/

[6] ALGLAVE, J., AND MARANGET, L. Towards a formalisation
of the HSA memory model in the cat language. http:

//www.hsafoundation.com/?ddownload=5381, 2015.

[7] ALGLAVE, J., MARANGET, L., MCKENNEY, P. E., PARRI,
A., AND STERN, A. A formal model of Linux-kernel mem-
ory ordering – companion webpage. http://diy.inria.

fr/linux/, 2017. [Online; accessed 25-December-2017].

[8] ALGLAVE, J., MARANGET, L., MCKENNEY, P. E., PARRI,
A., AND STERN, A. A formal kernel memory-ordering
model (part 1). https://lwn.net/Articles/718628/,
April 2017.

[9] ALGLAVE, J., MARANGET, L., MCKENNEY, P. E., PARRI,
A., AND STERN, A. A formal kernel memory-ordering
model (part 2). https://lwn.net/Articles/720550/,
April 2017.

[10] ALGLAVE, J., MARANGET, L., SARKAR, S., AND SEWELL,
P. Fences in weak memory models. In Computer Aided
Verification, 22nd International Conference, CAV 2010, Ed-
inburgh, UK, July 15-19, 2010. Proceedings (2010), pp. 258–
272.

[11] ALGLAVE, J., MARANGET, L., SARKAR, S., AND SEWELL,
P. Fences in weak memory models (extended version). For-
mal Methods in System Design 40, 2 (2012), 170–205.

[12] ALGLAVE, J., MARANGET, L., AND TAUTSCHNIG, M.
Herding cats: Modelling, simulation, testing, and data mining
for weak memory. ACM Trans. Program. Lang. Syst. 36, 2
(July 2014), 7:1–7:74.

[13] ARM. ARM Barrier Litmus Tests and Cookbook. ARM Ltd.,
2009.

[14] ARM. ARM Architecture Reference Manual (ARMv8, for
ARMv8-A architecture profile). ARM Ltd., 2014.

[15] BATTY, M., DONALDSON, A. F., AND WICKERSON, J.
Overhauling SC atomics in C11 and OpenCL. In Proceed-
ings of the 43rd Annual ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languages (New York, NY,
USA, 2016), POPL ’16, ACM, pp. 634–648.

[16] BLANCHARD, A. RE: [PATCH] smp call function many
SMP race. https://lkml.org/lkml/2011/1/11/489,
January 2011.

[17] CLARKE, E., KROENING, D., AND LERDA, F. A tool for
checking ANSI-C programs. In In Tools and Algorithms for
the Construction and Analysis of Systems (2004), Springer,
pp. 168–176.

[18] COMPAQ. Alpha Architecture Reference Manual. Compaq
Computer Corporation, 2002.

[19] CORBET, J. The lockless page cache. https://lwn.net/

Articles/291826/, July 2008.

[20] CORBET, J. ACCESS ONCE(). https://lwn.net/Articles/
508991/, August 2012.

[21] CORBET, J. ACCESS ONCE() and compiler bugs. https:

//lwn.net/Articles/624126/, December 2014.

[22] CORBET, J. C11 atomic variables and the kernel. https:

//lwn.net/Articles/586838/, February 2014.

[23] CORBET, J. C11 atomics part 2: “consume” semantics.
https://lwn.net/Articles/588300/, February 2014.

[24] CORBET, J. Time to move to C11 atomics? https://lwn.

net/Articles/691128/, June 2016.

[25] CREE, M. Re: Question about dec alpha memory ordering.
lkml.kernel.org/r/20170214192646.m6ydg27nwnh7bg7o@

tower, 2017.

[26] DEACON, W. [PATCH] arm64: spinlock: serialise spin unlock wait
against concurrent lockers. https://marc.info/?l=linux-arm-kernel&
m=144862480822027, 2015.

[27] DEACON, W. Re: [PATCH] arm64: spinlock: serialise
spin unlock wait against concurrent lockers. https://

marc.info/?l=linux-arm-kernel&m=144898777124295,
2015.

[28] DEACON, W. [PATCH v2 1/3] arm64: spinlock: order
spin {is locked, unlock wait} against local locks. http://

lists.infradead.org/pipermail/linux-arm-kernel/

2016-June/434765.html, 2016.

[29] DESNOYERS, M., MCKENNEY, P. E., STERN, A. S., DA-
GENAIS, M. R., AND WALPOLE, J. User-level implemen-
tations of Read-Copy Update. IEEE Trans. Parallel Distrib.
Syst. 23, 2 (Feb. 2012), 375–382.

[30] ELLERMAN, M. [PATCH v3] powerpc: spinlock: Fix spin unlock wait().
https://marc.info/?l=linux-kernel&m=146521336230748&

w=2, 2016.

[31] FENG, B. Re: [PATCH 4/4] locking: Introduce smp cond acquire().
https://marc.info/?l=linux-kernel&m=144723482232285,
2015.

[32] FENG, B. [PATCH v2] powerpc: spinlock: Fix spin unlock wait().
https://marc.info/?l=linux-kernel&m=146492558531292&

w=2, 2016.

[33] FENG, B. [PATCH v4] powerpc: spinlock: Fix spin unlock wait().
https://marc.info/?l=linuxppc-embedded&m=146553051027169&

w=2, 2016.

[34] FLUR, S., GRAY, K. E., PULTE, C., SARKAR, S., SEZ-
GIN, A., MARANGET, L., DEACON, W., AND SEWELL, P.
Modelling the ARMv8 architecture, operationally: Concur-
rency and ISA. In Proceedings of the 43rd Annual ACM
SIGPLAN-SIGACT Symposium on Principles of Program-
ming Languages (New York, NY, USA, 2016), POPL ’16,
ACM, pp. 608–621.

[35] GORMAN, M. LWN Quotes of the week, 2013-12-11. http:
//lwn.net/Articles/575835/, 2013.

[36] HEO, T. [PATCH 3/4] scheduler: replace migration thread
with cpuhog. https://marc.info/?l=linux-kernel&m=
126806371630498, March 2010.

[37] HOWELLS, D., MCKENNEY, P. E., DEACON, W., AND ZI-
JLSTRA, P. Linux kernel memory barriers. https://www.

kernel.org/doc/Documentation/memory-barriers.

txt, 2017.

[38] IBM. Power ISA Version 2.06. IBM Corporation, 2009.

[39] IMAGINATION. MIPS R©Architecture For Programmers, Vol-
ume II-A: The MIPS64 R©Instruction, Set Reference Manual.

http://www.hsafoundation.com/?ddownload=5381
http://www.hsafoundation.com/?ddownload=5381
http://diy.inria.fr/linux/
http://diy.inria.fr/linux/
https://lwn.net/Articles/718628/
https://lwn.net/Articles/720550/
https://lkml.org/lkml/2011/1/11/489
https://lwn.net/Articles/291826/
https://lwn.net/Articles/291826/
https://lwn.net/Articles/508991/
https://lwn.net/Articles/508991/
https://lwn.net/Articles/624126/
https://lwn.net/Articles/624126/
https://lwn.net/Articles/586838/
https://lwn.net/Articles/586838/
https://lwn.net/Articles/588300/
https://lwn.net/Articles/691128/
https://lwn.net/Articles/691128/
lkml.kernel.org/r/20170214192646.m6ydg27nwnh7bg7o@tower
lkml.kernel.org/r/20170214192646.m6ydg27nwnh7bg7o@tower
https://marc.info/?l=linux-arm-kernel&m=144862480822027
https://marc.info/?l=linux-arm-kernel&m=144862480822027
https://marc.info/?l=linux-arm-kernel&m=144898777124295
https://marc.info/?l=linux-arm-kernel&m=144898777124295
http://lists.infradead.org/pipermail/linux-arm-kernel/2016-June/434765.html
http://lists.infradead.org/pipermail/linux-arm-kernel/2016-June/434765.html
http://lists.infradead.org/pipermail/linux-arm-kernel/2016-June/434765.html
https://marc.info/?l=linux-kernel&m=146521336230748&w=2
https://marc.info/?l=linux-kernel&m=146521336230748&w=2
https://marc.info/?l=linux-kernel&m=144723482232285
https://marc.info/?l=linux-kernel&m=146492558531292&w=2
https://marc.info/?l=linux-kernel&m=146492558531292&w=2
https://marc.info/?l=linuxppc-embedded&m=146553051027169&w=2
https://marc.info/?l=linuxppc-embedded&m=146553051027169&w=2
http://lwn.net/Articles/575835/
http://lwn.net/Articles/575835/
https://marc.info/?l=linux-kernel&m=126806371630498
https://marc.info/?l=linux-kernel&m=126806371630498
https://www.kernel.org/doc/Documentation/memory-barriers.txt
https://www.kernel.org/doc/Documentation/memory-barriers.txt
https://www.kernel.org/doc/Documentation/memory-barriers.txt

Imagination Technologies, LTD., 2015. https://imgtec.

com/?do-download=4302.

[40] INTEL. A Formal Specification of Intel Itanium Processor
Family Memory Ordering. Intel Corporation, 2002.

[41] KLEEN, A. Re: [patch v6 4/5] MCS lock: Barrier corrections.
https://marc.info/?l=linux-mm&m=138619237606428, 2013.

[42] KOKOLOGIANNAKIS, M., AND SAGONAS, K. Stateless
model checking of the Linux kernel’s hierarchical Read-Copy
Update (Tree RCU). Tech. rep., National Technical Uni-
versity of Athens, January 2017. https://github.com/

michalis-/rcu/blob/master/rcupaper.pdf.

[43] LAHAV, O., GIANNARAKIS, N., AND VAFEIADIS, V. Tam-
ing release-acquire consistency. In Proceedings of the 43rd
Annual ACM SIGPLAN-SIGACT Symposium on Principles
of Programming Languages (New York, NY, USA, 2016),
POPL ’16, ACM, pp. 649–662.

[44] LAHAV, O., VAFEIADIS, V., KANG, J., HUR, C.-K., AND

DREYER, D. Repairing sequential consistency in C/C++11.
In Proceedings of the 38th ACM SIGPLAN Conference on
Programming Language Design and Implementation (New
York, NY, USA, 2017), PLDI 2017, ACM, pp. 618–632.

[45] LAMPORT, L. How to make a multiprocessor computer
that correctly executes multiprocess programs. IEEE Trans.
Computers 28, 9 (1979), 690–691.

[46] LIANG, L., MCKENNEY, P. E., KROENING, D., AND MEL-
HAM, T. Verification of the tree-based hierarchical Read-
Copy Update in the Linux kernel. CoRR abs/1610.03052
(2016).

[47] LTD., A., Ed. ARM Architecture Reference Manual (ARMv8,
for ARMv8-A architecture profile). ARM Limited, 2017.

[48] LUCK, T. RE: Does Itanium permit speculative stores?
https://marc.info/?l=linux-kernel&m=138427925823852,
November 2013.

[49] LUCK, T. RE: Does Itanium permit speculative stores?
https://marc.info/?l=linux-kernel&m=138428203211477,
November 2013.

[50] MARANGET, L., SARKAR, S., AND SEWELL., P. A tutorial
introduction to the ARM and POWER relaxed memory mod-
els. http://www.cl.cam.ac.uk/~pes20/ppc-supplemental/
test7.pdf, Oct. 2012. Draft.

[51] MCKENNEY, P. RFC: patch to allow lock-free traversal
of lists with insertion. https://lists.gt.net/linux/

kernel/223665#223508, 2001.

[52] MCKENNEY, P. What is RCU, fundamentally? https:

//lwn.net/Articles/262464/, 2007.

[53] MCKENNEY, P. Re: [patch v6 4/5] MCS lock: Barrier correc-
tions. https://marc.info/?l=linux-mm&m=138540258209368,
2013.

[54] MCKENNEY, P. Re: [RFC][PATCH] mips: Fix arch spin unlock().
http://lkml.kernel.org/r/20160202120252.GI6719@

linux.vnet.ibm.com, 2016.

[55] MCKENNEY, P. PROPER CARE AND FEEDING OF RE-
TURN VALUES FROM rcu dereference(). https://www.

kernel.org/doc/Documentation/RCU/rcu_dereference.

txt, 2017.

[56] MCKENNEY, P. E. QRCU with lockless fastpath. https:

//lwn.net/Articles/223752/, February 2007.

[57] MCKENNEY, P. E. Does Itanium permit speculative stores?
https://marc.info/?l=linux-kernel&m=138419150923282,
November 2013.

[58] MCKENNEY, P. E. documentation: Present updated RCU
guarantee. https://patchwork.kernel.org/patch/

9428001/, 2016.

[59] MCKENNEY, P. E. documentation: Transitivity is not cumu-
lativity. http://www.spinics.net/lists/linux-tip-commits/
msg32905.html, 2016.

[60] MCKENNEY, P. E. Prototype patch for linux-kernel memory
model. http://lkml.kernel.org/r/20171113184031.

GA26302@linux.vnet.ibm.com, 2016.

[61] MCKENNEY, P. E. [v3,11/41] mips: reuse asm-generic/barrier.h.
https://patchwork.kernel.org/patch/8036201/, Jan-
uary 2016.

[62] MCKENNEY, P. E. A tour through RCU’s requirements.
https://www.kernel.org/doc/Documentation/RCU/

Design/Requirements/Requirements.html, 2017.

[63] MCKENNEY, P. E. Re: [PATCH RFC 01/26] netfilter: Re-
place spin unlock wait() with lock/unlock pair. https://

lkml.org/lkml/2017/6/27/1052, 2017.

[64] MCKENNEY, P. E. srcu: Force full grace-period ordering.
https://patchwork.kernel.org/patch/9535987/, 2017.

[65] MCKENNEY, P. E., ALGLAVE, J., MARANGET, L., PARRI,
A., AND STERN, A. Linux-kernel memory ordering: Help
arrives at last! In LinuxCon Europe (2016). http://

www.rdrop.com/users/paulmck/scalability/paper/

LinuxMM.2016.10.04c.LCE.pdf.

[66] MCKENNEY, P. E., DESNOYERS, M., JIANGSHAN, L., AND

TRIPLETT, J. The RCU-barrier menagerie. https://lwn.

net/Articles/573497/, 2013.

[67] MCKENNEY, P. E., DESNOYERS, M., JIANGSHAN, L., AND

TRIPLETT, J. User-space rcu: Memory-barrier menagerie.
https://lwn.net/Articles/573436/, 2013.

[68] MCKENNEY, P. E., WEIGAND, U., PARRI, A., AND FENG,
B. Linux-kernel memory model. http://open-std.org/

JTC1/SC22/WG21/docs/papers/2016/p0124r2.html, June
2016.

[69] MILLER, D. S. Semantics and behavior of atomic and bit-
mask operations. https://www.kernel.org/doc/core-api/
atomic_ops.rst, 2017.

[70] MILLER, M. [PATCH 0/4 v3] smp call function many issues
from review. https://marc.info/?l=linux-kernel&m=
130021726530804, March 2011.

[71] MOLNAR, I. Re: [patch v6 4/5] MCS lock: Barrier correc-
tions. https://marc.info/?l=linux-mm&m=138513336717990&
w=2, 2013.

[72] MOLNAR, I. Re: [PATCH v2 0/9] remove spin unlock wait().
https://marc.info/?l=linux-kernel&m=149942365927828&

https://imgtec.com/?do-download=4302
https://imgtec.com/?do-download=4302
https://github.com/michalis-/rcu/blob/master/rcupaper.pdf
https://github.com/michalis-/rcu/blob/master/rcupaper.pdf
https://marc.info/?l=linux-kernel&m=138427925823852
https://marc.info/?l=linux-kernel&m=138428203211477
http://www.cl.cam.ac.uk/~pes20/ppc-supplemental/test7.pdf
http://www.cl.cam.ac.uk/~pes20/ppc-supplemental/test7.pdf
https://lists.gt.net/linux/kernel/223665#223508
https://lists.gt.net/linux/kernel/223665#223508
https://lwn.net/Articles/262464/
https://lwn.net/Articles/262464/
https://marc.info/?l=linux-mm&m=138540258209368
http://lkml.kernel.org/r/20160202120252.GI6719@linux.vnet.ibm.com
http://lkml.kernel.org/r/20160202120252.GI6719@linux.vnet.ibm.com
https://www.kernel.org/doc/Documentation/RCU/rcu_dereference.txt
https://www.kernel.org/doc/Documentation/RCU/rcu_dereference.txt
https://www.kernel.org/doc/Documentation/RCU/rcu_dereference.txt
https://lwn.net/Articles/223752/
https://lwn.net/Articles/223752/
https://marc.info/?l=linux-kernel&m=138419150923282
https://patchwork.kernel.org/patch/9428001/
https://patchwork.kernel.org/patch/9428001/
http://www.spinics.net/lists/linux-tip-commits/msg32905.html
http://www.spinics.net/lists/linux-tip-commits/msg32905.html
http://lkml.kernel.org/r/20171113184031.GA26302@linux.vnet.ibm.com
http://lkml.kernel.org/r/20171113184031.GA26302@linux.vnet.ibm.com
https://patchwork.kernel.org/patch/8036201/
https://www.kernel.org/doc/Documentation/RCU/Design/Requirements/Requirements.html
https://www.kernel.org/doc/Documentation/RCU/Design/Requirements/Requirements.html
https://lkml.org/lkml/2017/6/27/1052
https://lkml.org/lkml/2017/6/27/1052
https://patchwork.kernel.org/patch/9535987/
http://www.rdrop.com/users/paulmck/scalability/paper/LinuxMM.2016.10.04c.LCE.pdf
http://www.rdrop.com/users/paulmck/scalability/paper/LinuxMM.2016.10.04c.LCE.pdf
http://www.rdrop.com/users/paulmck/scalability/paper/LinuxMM.2016.10.04c.LCE.pdf
https://lwn.net/Articles/573497/
https://lwn.net/Articles/573497/
https://lwn.net/Articles/573436/
http://open-std.org/JTC1/SC22/WG21/docs/papers/2016/p0124r2.html
http://open-std.org/JTC1/SC22/WG21/docs/papers/2016/p0124r2.html
https://www.kernel.org/doc/core-api/atomic_ops.rst
https://www.kernel.org/doc/core-api/atomic_ops.rst
https://marc.info/?l=linux-kernel&m=130021726530804
https://marc.info/?l=linux-kernel&m=130021726530804
https://marc.info/?l=linux-mm&m=138513336717990&w=2
https://marc.info/?l=linux-mm&m=138513336717990&w=2
https://marc.info/?l=linux-kernel&m=149942365927828&w=2

w=2, 2017.

[73] OLSA, J. [PATCHv5 2/2] memory barrier: adding smp mb after lock.
https://marc.info/?l=linux-netdev&m=124839648220382&

w=2, July 2009.

[74] SARKAR, S., MEMARIAN, K., OWENS, S., BATTY, M.,
SEWELL, P., MARANGET, L., ALGLAVE, J., AND WILLIAMS,
D. Synchronising C/C++ and POWER. In Proceedings of the
33rd ACM SIGPLAN Conference on Programming Language
Design and Implementation (New York, NY, USA, 2012),
PLDI ’12, ACM, pp. 311–322.

[75] SARKAR, S., SEWELL, P., ALGLAVE, J., MARANGET, L.,
AND WILLIAMS, D. Understanding POWER multiproces-
sors. In Proceedings of the 32Nd ACM SIGPLAN Confer-
ence on Programming Language Design and Implementation
(New York, NY, USA, 2011), PLDI ’11, ACM, pp. 175–186.

[76] SPRAUL, M. Re: RFC: patch to allow lock-free traversal
of lists with insertion. http://lkml.iu.edu/hypermail/
linux/kernel/0110.1/0410.html, 2001.

[77] TASSAROTTI, J., DREYER, D., AND VAFEIADIS, V. Ver-
ifying Read-Copy-Update in a logic for weak memory. In
Proceedings of the 36th ACM SIGPLAN Conference on Pro-
gramming Language Design and Implementation (New York,
NY, USA, 2015), PLDI ’15, ACM, pp. 110–120.

[78] TORVALDS, L. Re: Memory corruption due to word sharing.
https://gcc.gnu.org/ml/gcc/2012-02/msg00013.html,
2012.

[79] TORVALDS, L. Re: [patch 4/4] locking: Introduce smp cond acquire().
http://lkml.kernel.org/r/CA+55aFyXu5iFJfdm7o-RKUm_

9a850iSzeM+whmtUAotkY0EvTw@mail.gmail.com, 2015.

[80] TORVALDS, L. Re: [rfc][patch] mips: Fix arch spin unlock().
https://lkml.org/lkml/2016/2/2/80, 2016.

[81] TORVALDS, L. Re: [v3,11/41] mips: reuse asm-generic/barrier.h.
https://marc.info/?l=linux-kernel&m=145384764324700&

w=2, January 2016.

[82] TORVALDS, L. Linux kernel v4.12 (Fearless Coyote).
https://www.kernel.org/pub/linux/kernel/v4.x/

linux-4.12.tar.xz, July 2017.

[83] TORVALDS, L. Re: [GIT PULL rcu/next] RCU commits for
4.13. https://lkml.org/lkml/2017/6/27/1052, 2017.

[84] VADDAGIRI, S. [PATCH] Fix RCU race in access of
nohz cpu mask. http://lkml.iu.edu/hypermail/linux/
kernel/0512.0/0976.html, December 2005.

[85] YEGOSHIN, L. Re: [v3,11/41] mips: reuse asm-generic/barrier.h.
https://marc.info/?l=linux-kernel&m=145263153305591&

w=2, January 2016.

[86] YEGOSHIN, L. Re: [v3,11/41] mips: reuse asm-generic/barrier.h.
https://marc.info/?l=linux-kernel&m=145280444229608&

w=2, January 2016.

[87] YEGOSHIN, L. Re: [v3,11/41] mips: reuse asm-generic/barrier.h.
https://marc.info/?l=linux-kernel&m=145280241129008&

w=2, January 2016.

[88] ZIJLSTRA, P. Re: Does Itanium permit speculative stores?
https://marc.info/?l=linux-kernel&m=138428080207125,

November 2013.

[89] ZIJLSTRA, P. Re: [patch v6 4/5] MCS lock: Barrier correc-
tions. https://marc.info/?l=linux-mm&m=138514629508662&w=2,
2013.

[90] ZIJLSTRA, P. [tip:perf/urgent] perf/core: Fix sys perf event open()
vs. hotplug. https://www.spinics.net/lists/kernel/
msg2421883.html, January 2016.

https://marc.info/?l=linux-kernel&m=149942365927828&w=2
https://marc.info/?l=linux-netdev&m=124839648220382&w=2
https://marc.info/?l=linux-netdev&m=124839648220382&w=2
http://lkml.iu.edu/hypermail/linux/kernel/0110.1/0410.html
http://lkml.iu.edu/hypermail/linux/kernel/0110.1/0410.html
https://gcc.gnu.org/ml/gcc/2012-02/msg00013.html
http://lkml.kernel.org/r/CA+55aFyXu5iFJfdm7o-RKUm_9a850iSzeM+whmtUAotkY0EvTw@mail.gmail.com
http://lkml.kernel.org/r/CA+55aFyXu5iFJfdm7o-RKUm_9a850iSzeM+whmtUAotkY0EvTw@mail.gmail.com
https://lkml.org/lkml/2016/2/2/80
https://marc.info/?l=linux-kernel&m=145384764324700&w=2
https://marc.info/?l=linux-kernel&m=145384764324700&w=2
https://www.kernel.org/pub/linux/kernel/v4.x/linux-4.12.tar.xz
https://www.kernel.org/pub/linux/kernel/v4.x/linux-4.12.tar.xz
https://lkml.org/lkml/2017/6/27/1052
http://lkml.iu.edu/hypermail/linux/kernel/0512.0/0976.html
http://lkml.iu.edu/hypermail/linux/kernel/0512.0/0976.html
https://marc.info/?l=linux-kernel&m=145263153305591&w=2
https://marc.info/?l=linux-kernel&m=145263153305591&w=2
https://marc.info/?l=linux-kernel&m=145280444229608&w=2
https://marc.info/?l=linux-kernel&m=145280444229608&w=2
https://marc.info/?l=linux-kernel&m=145280241129008&w=2
https://marc.info/?l=linux-kernel&m=145280241129008&w=2
https://marc.info/?l=linux-kernel&m=138428080207125
https://www.spinics.net/lists/kernel/msg2421883.html
https://www.spinics.net/lists/kernel/msg2421883.html

A. Model files
This appendix contains listings of the files that constitute our executable formalisation of the Linux kernel consistency model.
See the companion page [7] to download the files and for directions on using them.

A.1 Basic definitions (bell file)
This first file defines some basic relations. In particular, we define the annotations corresponding to instructions, as listed in
Tables 3 and 4. We also define auxiliary functions related to RCU, as presented in Section 4. In addition, the file checks for
valid read-side critical section nesting—see the definition of the match relation and the emptiness checks at the end of file.

"Linux kernel memory model"

enum Accesses = ’once (*READ_ONCE,WRITE_ONCE,ACCESS_ONCE*) ||

’release (*smp_store_release*) ||

’acquire (*smp_load_acquire*) ||

’noreturn (* R of non-return RMW *)

|| ’assign || ’deref || ’lderef (* Legacy *)

instructions R[{’once,’acquire,’noreturn,’deref,’lderef}]

instructions W[{’once,’release,’assign}]

instructions RMW[{’once,’acquire,’release}]

enum Barriers = ’wmb (*smp_wmb*) ||

’rmb (*smp_rmb*) ||

’mb (*smp_mb*) ||

’rb_dep (*smp_read_barrier_depends*) ||

’rcu_read_lock (*rcu_read_lock*) ||

’rcu_read_unlock (*rcu_read_unlock*) ||

’sync (*synchronize_rcu*) ||

’before_atomic (*smp_mb__before_atomic*) ||

’after_atomic (*smp_mb__after_atomic*) ||

’after_spinlock (*smp_mb__after_spinlock*)

instructions F[Barriers]

(* Compute matching pairs of nested Rcu_read_lock and Rcu_read_unlock *)

let matched = let rec

unmatched-locks = Rcu_read_lock \ domain(matched)

and unmatched-unlocks = Rcu_read_unlock \ range(matched)

and unmatched = unmatched-locks | unmatched-unlocks

and unmatched-po = (unmatched * unmatched) & po

and unmatched-locks-to-unlocks = (unmatched-locks *

unmatched-unlocks) & po

and matched = matched | (unmatched-locks-to-unlocks \

(unmatched-po ; unmatched-po))

in matched

(* Validate nesting *)

flag ~empty Rcu_read_lock \ domain(matched) as unbalanced-rcu-locking

flag ~empty Rcu_read_unlock \ range(matched) as unbalanced-rcu-locking

(* Outermost level of nesting only *)

let crit = matched \ (po^-1 ; matched ; po^-1)

A.2 Formal definitions and axioms (cat files)
This second file is the cat executable model. It contains all the remaining definitions, including the derived relations of Figure 8
and the RCU relations of Figure 12, and the model’s constraints.

"Linux kernel memory model"

include "cos.cat"

(*******************)

(* Basic relations *)

(*******************)

(* Fences *)

let rb-dep = [R] ; fencerel(Rb_dep) ; [R]

let rmb = [R \ Noreturn] ; fencerel(Rmb) ; [R \ Noreturn]

let wmb = [W] ; fencerel(Wmb) ; [W]

let mb = ([M] ; fencerel(Mb) ; [M]) |

([M] ; fencerel(Before_atomic) ; [RMW] ; po? ; [M]) |

([M] ; po? ; [RMW] ; fencerel(After_atomic) ; [M]) |

([M] ; po? ; [LKW] ; fencerel(After_spinlock) ; [M])

let gp = po ; [Sync] ; po?

let strong-fence = mb | gp

(* Release Acquire *)

let acq-po = [Acquire] ; po ; [M]

let po-rel = [M] ; po ; [Release]

let rfi-rel-acq = [Release] ; rfi ; [Acquire]

(**********************************)

(* Fundamental coherence ordering *)

(**********************************)

(* Sequential Consistency Per Variable *)

let com = rf | co | fr

acyclic po-loc | com as coherence

(* Atomic Read-Modify-Write *)

empty rmw & (fre ; coe) as atomic

(**********************************)

(* Instruction execution ordering *)

(**********************************)

(* Preserved Program Order *)

let dep = addr | data

let rwdep = (dep | ctrl) ; [W]

let overwrite = co | fr

let to-w = rwdep | (overwrite & int)

let rrdep = addr | (dep ; rfi)

let strong-rrdep = rrdep+ & rb-dep

let to-r = strong-rrdep | rfi-rel-acq

let fence = strong-fence | wmb | po-rel | rmb | acq-po

let ppo = rrdep* ; (to-r | to-w | fence)

(* Propagation: Ordering from release operations and strong fences. *)

let A-cumul(r) = rfe? ; r

let cumul-fence = A-cumul(strong-fence | po-rel) | wmb

let prop = (overwrite & ext)? ; cumul-fence* ; rfe?

(*

* Happens Before: Ordering from the passage of time.

* No fences needed here for prop because relation confined to one process.

*)

let hb = ppo | rfe | ((prop \ id) & int)

acyclic hb as happens-before

(**)

(* Write and fence propagation ordering *)

(**)

(* Propagation: Each non-rf link needs a strong fence. *)

let pb = prop ; strong-fence ; hb*

acyclic pb as propagation

(*******)

(* RCU *)

(*******)

(*

* Effect of read-side critical section proceeds from the rcu_read_lock()

* onward on the one hand and from the rcu_read_unlock() backwards on the

* other hand.

*)

let rscs = po ; crit^-1 ; po?

(*

* The synchronize_rcu() strong fence is special in that it can order not

* one but two non-rf relations, but only in conjunction with an RCU

* read-side critical section.

*)

let link = hb* ; pb* ; prop

(* Chains that affect the RCU grace-period guarantee *)

let gp-link = gp ; link

let rscs-link = rscs ; link

(*

* A cycle containing at least as many grace periods as RCU read-side

* critical sections is forbidden.

*)

let rec rcu-path =

gp-link |

(gp-link ; rscs-link) |

(rscs-link ; gp-link) |

(rcu-path ; rcu-path) |

(gp-link ; rcu-path ; rscs-link) |

(rscs-link ; rcu-path ; gp-link)

irreflexive rcu-path as rcu

B. Proof of RCU guarantee (Theorem 1)
We recall the statement of the RCU guarantee theorem:

An LK candidate execution satisfies the Pb and RCU constraints iff it satisfies the fundamental law of RCU.

Below, we will use the words “constraint” and “axiom” interchangeably. Thus, we aim to prove that for a given candidate
execution X:

• the law implies the axioms (Theorem 1a): if X satisfies the law, i.e., there exists a precedes function F for X such that
pb(F) is acyclic, then X satisfies the Pb and RCU axioms, i.e., pb is acyclic and rcu-path is irreflexive.
• the axioms imply the law (Theorem 1b): if X satisfies the Pb and RCU axioms, i.e., pb is acyclic and rcu-path is irreflexive,

then X satisfies the law, i.e., there exists a precedes function F for X such that pb(F) is acyclic.

rcu-fence(F) is the relation derived from the function F as described in section 4.1: Two events, e1 and e2, are related by
rcu-fence(F) iff there are an RSCS (delimited by rcu read lock and rcu read unlock events l and u) and a GP (given
by synchronize rcu event s) such that either:

• the RSCS precedes the GP, e1 precedes u in program order, and e2 is s itself or follows s in program order:

F (RSCS,GP) = RSCS ∧ (e1, u) ∈ po ∧ (s, e2) ∈ po?

• or the GP precedes the RSCS, e1 precedes s in program order, and e2 is l itself or follows l in program order:

F (RSCS,GP) = GP ∧ (e1, s) ∈ po ∧ (l, e2) ∈ po?

We define the other relations augmented by F (including pb(F)) as shown in Figure 17 (cf. Figures 8 and 12).

strong-fence(F) := strong-fence ∪ rcu-fence(F)
pb(F) := prop ; strong-fence(F) ; hb∗

link(F) := hb∗ ; pb(F)∗ ; prop
gp-link(F) := gp ; link(F)
rscs-link(F) := rscs ; link(F)
rec rcu-path(F) := gp-link(F)
∪ (rcu-path(F) ; rcu-path(F))
∪ (gp-link(F) ; rscs-link(F))
∪ (rscs-link(F) ; gp-link(F))
∪ (gp-link(F) ; rcu-path(F) ; rscs-link(F))
∪ (rscs-link(F) ; rcu-path(F) ; gp-link(F))

Figure 17: Relations augmented by the precedes function F

We now prove Theorems 1a and 1b in turn.

B.1 The law implies the axiom
We begin with two lemmas.

Lemma 1. Let X be a candidate execution and let F be a precedes function for X . Then the following properties hold:

(i): a
link(F)−−−−−→ b

strong-fence(F)−−−−−−−−−−→ c
link(F)−−−−−→ d implies a

link(F)−−−−−→ d;

(ii): a
link(F)−−−−−→ b

strong-fence(F)−−−−−−−−−−→ a implies the existence of a cycle in pb(F).

Proof. These properties follow directly from the definitions of link(F) and pb(F). For (i), expanding out the definitions
yields:

(a, d) ∈ (hb∗ ; pb(F)∗ ; prop) ; strong-fence(F) ; (hb∗ ; pb(F)∗ ; prop)

= hb∗ ; pb(F)∗ ; (prop ; strong-fence(F) ; hb∗) ; pb(F)∗ ; prop

= hb∗ ; pb(F)∗ ; pb(F) ; pb(F)∗ ; prop

⊆ hb∗ ; pb(F)∗ ; prop

= link(F).

For (ii), we obtain:
(a, a) ∈ (hb∗ ; pb(F)∗ ; prop) ; strong-fence(F),

which means that for some x:

(x, x) ∈ pb(F)∗ ; (prop ; strong-fence(F) ; hb∗)
= pb(F)∗ ; pb(F),

which demonstrates the existence of a cycle.

Lemma 2. We have a
rcu-path−−−−−→ b iff there are e0, e1, . . . , eN ∈ E (with N > 0) such that

a = e0
r0−→ e1

r1−→ · · · rN−1−−−→ eN = b,

where each relation ri is either gp-link or rscs-link, and there are at least as many instances of gp-link as rscs-link
among the ri’s. The same is true of rcu-path(F), gp-link(F), and rscs-link(F), for any precedes function F .

Proof. The forward implication follows immediately from the recursive definition of rcu-path. For the reverse direction,
assume we have e0, e1, . . . , eN and r0, . . . , rN−1 as above. The proof proceeds by induction on N . If N = 1 then r0 must be
gp-link, and so (a, b) ∈ rcu-path.

For N > 1, first suppose r0 and rN−1 are not the same relation, i.e., one is gp-link and the other is rscs-link. If N = 2
then we have

a
gp-link−−−−→ e1

rscs-link−−−−−−→ b or a
rscs-link−−−−−−→ e1

gp-link−−−−→ b.

Either way, (a, b) ∈ rcu-path. If N > 2 then there must be at least as many instances of gp-link as rscs-link among
r1, . . . , rN−2; therefore by induction we have

a
gp-link−−−−→ e1

rcu-path−−−−−→ eN−1
rscs-link−−−−−−→ b or a

rscs-link−−−−−−→ e1
rcu-path−−−−−→ eN−1

gp-link−−−−→ b.

Again, either way (a, b) ∈ rcu-path.
Now suppose r0 and rN−1 are the same relation. For each i = 0, . . . , N , let ti be the total number of gp-link instances

among r0, . . . , ri−1 minus the number of rscs-link instances. In other words, define

t0 := 0,

ti+1 :=

{
ti + 1 if ri is gp-link,
ti − 1 if ri is rscs-link.

By assumption, tN ≥ 0.
It suffices to find some i between 1 and N − 1 such that ti = 0; then there will be equally many gp-link and rscs-link

instances among r0, . . . , ri−1 and at least as many gp-link instances as rscs-link instances among ri, . . . , rN−1. By
induction we will have

a
rcu-path−−−−−→ ei

rcu-path−−−−−→ b

and therefore (a, b) ∈ rcu-path.
If r0 and rN−1 are both rscs-link then t1 = −1 and tN−1 ≥ 1. Since each ti and ti+1 differ by one, there must be

an intermediate i where ti = 0. If r0 and rN−1 are both gp-link then t1 = 1, so if tN−1 < 0, the same argument applies.
Otherwise there are at least as many instances of gp-link as rscs-link among r0, . . . , rN−2, so by induction we have

a
rcu-path−−−−−→ eN−1

gp-link−−−−→ b

and once again, (a, b) ∈ rcu-path.
The analysis for rcu-path(F), gp-link(F), and rscs-link(F) is analogous.

We can now prove one direction of the RCU guarantee theorem from Section 4:

Theorem 1a (The law implies the axioms). Let X be a candidate execution, and let F be a precedes function for X . Then
acyclic(pb(F)) implies acyclic(pb) and irreflexive(rcu-path).

Proof. In fact, we will prove irreflexive(rcu-path(F)). By comparing the definitions in Figures 8 and 12 with those in
Figure 17, it is easy to check that rcu-path ⊆ rcu-path(F). Likewise, pb ⊆ pb(F), so acyclic(pb) is immediate.

We prove the contrapositive. Assume that X has a reflexive edge (a, a) in rcu-path(F). Let a = e0, . . . , eN = a and
r0, . . . , rN−1 form the cyclic path given by Lemma 2. The proof is by induction on N .

For N = 1, we must have r0 = gp-link(F). Then for some x,

a
gp−→ x

link(F)−−−−−→ a,

which implies that pb(F) is cyclic by Lemma 1(ii).
For N > 1, first suppose that all the ri relations are gp-link(F). Then for some x and y we have

a
gp−→ x

link(F)−−−−−→ e1
gp−→ y

link(F)−−−−−→ e2,

and so by Lemma 1(i),

a
gp−→ x

link(F)−−−−−→ e2.

which implies a
gp-link(F)−−−−−−−→ e2. Thus we have reduced the length of the cyclic path by one, and the conclusion follows by

induction.
Now suppose at least one of the ri relations is rscs-link(F). Since there must also be at least one instance of gp-link(F)

among the ri’s, there is a place where a gp-link(F)-edge is followed by an rscs-link(F)-edge. By cyclically permuting the
path, we can assume that r0 is gp-link(F) and r1 is rscs-link(F). Then for some x, y, and z we have

x
link(F)−−−−−→ eN = e0

gp−→ y
link(F)−−−−−→ e1

rscs−−−→ z
link(F)−−−−−→ e2.

Let RSCS and GP be the read-side critical section and the grace period associated with the rscs and gp edges in this formula.
We consider the two possible sub-cases:

1. F (RSCS,GP) = RSCS. From the definitions of gp, rscs, and strong-fence(F), we have (e1, y) ∈ rcu-fence(F), and
therefore

y
link(F)−−−−−→ e1

strong-fence(F)−−−−−−−−−−→ y,

which by Lemma 1(ii) implies that pb(F) is cyclic.
2. F (RSCS,GP) = GP. As above, we have (e0, z) ∈ rcu-fence(F), and therefore

x
link(F)−−−−−→ e0

strong-fence(F)−−−−−−−−−−→ z
link(F)−−−−−→ e2.

If N = 2 then e0 = e2, and so Lemma 1(ii) implies that pb(F) is cyclic. Otherwise, Lemma 1(i) implies

x
link(F)−−−−−→ e2,

which allows us to remove the first two edges from the cyclic path. Since there are still at least as many instances of
gp-link(F) as rscs-link(F) among r2, . . . , rN−1, the conclusion follows by induction.

B.2 The axioms imply the law
The other half of the theorem requires a separate proof. The proof relies on the concept of partial precedes functions (i.e., ones
whose domain need not contain all RSCS and GP pairs), and on the following related notion:

Definition 1. For any execution X , we will say that a partial precedes function F is feasible iff pb(F) is acyclic and
rcu-path(F) is irreflexive.

Our current goal (to prove that the axiom implies the law) is a consequence of the following result:

Proposition 1. Let X be a candidate execution satisfying the Pb and RCU axioms. Then there is a feasible total precedes
function F for X .

The proof uses the following extension lemma.

Lemma 3. Let F be a feasible partial precedes function for X such that (C, s) is not in the domain of F , for some RSCS
C = (l, u) and GP s. Let FC and Fs be the two partial precedes functions obtained by extending F to (C, s) with FC(C, s) = C
and Fs(C, s) = s.

1. If FC is not feasible then there are a, b, x ∈ E such that (a, u) ∈ po, (s, b) ∈ po?, and

b
link(F)−−−−−→ x

rcu-path(F)?−−−−−−−−→ a.

2. If Fs is not feasible then there are c, d, y ∈ E such that (c, s) ∈ po, (l, d) ∈ po?, and

d
link(F)−−−−−→ y

rcu-path(F)?−−−−−−−−→ c.

Proof. We begin with part (1). Suppose that pb(FC) contains a cycle. Then there are e0, . . . , eN ∈ E such that

e0
pb(FC)−−−−→ e1

pb(FC)−−−−→ · · · pb(FC)−−−−→ eN = e0.

If all these pb(FC)-edges were in pb(F) then pb(F) would be cyclic and so F would not be feasible. Hence there is some j
such that the edge from ej to ej+1 is in pb(FC) \ pb(F). This means there are events v and b such that

ej
prop−−−→ v

rcu-fence(FC)−−−−−−−−−→ b
hb∗−−→ ej+1.

Since (v, b) is not in rcu-fence(F), we must have (s, b) ∈ po?.

Let ek
pb(FC)−−−−→ ek+1 be the next edge in the cycle that is not in pb(F). (If there are no others then set k = j.) As above,

there are events a and w such that
ek

prop−−−→ a
rcu-fence(FC)−−−−−−−−−→ w

hb∗−−→ ek+1

and (a, u) ∈ po. Since we now have

b
hb∗−−→ ej+1

pb(F)∗−−−−→ ek
prop−−−→ a,

it follows that b
link(F)−−−−−→ a. Taking x = a, this is the conclusion of case (1).

Now suppose that rcu-path(FC) contains a reflexive edge. By Lemma 2, there are e0, . . . , eN ∈ E such that

e0
r0−→ e1

r1−→ · · · rN−1−−−→ eN = e0,

where each ri is either gp-link(FC) or rscs-link(FC), and there are at least as many instances of gp-link(FC) as
rscs-link(FC) among the rk’s. The edge from ei to ei+1 can be written as

ei
qi−→ fi

link(FC)−−−−−−→ ei+1,

where qi is either gp or rscs, according to the identity of ri. The link(FC)-edge from fi to ei+1 can in turn be written as

fi
hb∗−−→ gi,0

pb(FC)−−−−→ gi,1
pb(FC)−−−−→ · · · pb(FC)−−−−→ gi,Ni

prop−−−→ ei+1.

There must be at least one value of i for which at least one of the pb(FC)-edges between the gi,j’s is not in pb(F), as
otherwise the cycle above would demonstrate that rcu-path(F) contains the edge (e0, e0), contradicting the assumption that
F is feasible.

If, for some fixed i, more than one of these pb(FC)-edges was not in pb(F) (say, the edges starting from gi,j and gi,k, for
some j < k) then we could use the same argument as in the first section of this proof (with gi,j and gi,k in place of ej and ek
above). Therefore we may assume that for each i, at most one of the pb(FC)-edges between the gi,j events does not belong to
pb(F). Let these edges be the ones starting from gi0,j0 , . . . , giM ,jM (M ≥ 0).

The in values partition the cyclic indices 0, 1, . . . , N − 1. Hence there must be a value of n such that there are at least
as many gp-link(FC) instances as rscs-link(FC) instances among rin+1, . . . , ri(n+1)

. To avoid falling into a morass of
subscripts, let us write i, j for in, jn and i′, j′ for in+1, jn+1. (If M = 0 then we will have i, j = i′, j′.) Each of the rk-edges
running from ei+1 to ei′ must belong to gp-link(F) or rscs-link(F), because all of the pb(FC)-edges in between are in
pb(F).

By contrast, the edges starting from gi,j and gi′,j′ are in pb(FC) \ pb(F), and as before, this means there are a, b, w, and v
such that

gi,j
prop−−−→ v

rcu-fence(FC)−−−−−−−−−→ b
hb∗−−→ gi,j+1

and

gi′,j′
prop−−−→ a

rcu-fence(FC)−−−−−−−−−→ w
hb∗−−→ gi′,j′+1,

with (a, u) ∈ po and (s, b) ∈ po?. From the first formula we obtain b
link(F)−−−−−→ ei+1, and from the second we obtain

fi′
link(F)−−−−−→ a and hence ei′

ri′−−→ a, with this last edge belonging either to gp-link(F) or rscs-link(F).
Putting these together yields

b
link(F)−−−−−→ ei+1

ri+1−−−→ · · · ri′−−→ a,

where all of the rk-edges belong to gp-link(F) or rscs-link(F). Furthermore, by the choice of i = in, there are at least as
many instances of gp-link(F) as rscs-link(F) among them, so by Lemma 2 we have

b
link(F)−−−−−→ ei+1

rcu-path(F)−−−−−−−→ a,

which is the conclusion of part (1) (taking x to be ei+1).
Part (2) is proved in exactly the same way as part (1), simply by changing the variable names and using Fs in place of

FC .

We can now give the proof of Proposition 1:

Proof. There is at least one feasible partial precedes function for X , namely, the function F0 with empty domain. pb(F0) is
equal to pb and rcu-path(F0) is equal to rcu-path, and these are respectively acyclic and irreflexive by hypothesis.

Let F be a feasible partial precedes functions for X with maximal domain, and assume for a contradiction that F is not
total. Let C and s be an RSCS and a GP such that (C, s) is outside the domain of F , and let FC and Fs be the two possible
extensions of F defined on (C, s). Since F ’s domain is maximal, neither FC nor Fs is feasible, so let a, b, x, c, d, y ∈ E be as
given by Lemma 3. Then we have a

rscs−−−→ d and c
gp−→ b, which yield

a
rscs-link(F)−−−−−−−−→ y

rcu-path(F)?−−−−−−−−→ c
gp-link(F)−−−−−−−→ x

rcu-path(F)?−−−−−−−−→ a.

(a, a) ∈ rcu-path(F) follows, contradicting the fact that F is feasible. Thus F must be a total precedes function for X .

The second direction of the RCU guarantee from Section 4 is an immediate consequence.

Theorem 1b (The axioms imply the law). A candidate execution satisfies the fundamental law of RCU if it satisfies the Pb and
RCU axioms.

Proof. By Proposition 1, there is a feasible precedes function F for the candidate execution. Since F is feasible, pb(F) is
acyclic, which demonstrates that the execution satisfies the fundamental law of RCU.

C. Proof of correctness of the RCU implementation of [29] (Theorem 2)
This appendix examines the RCU implementation in Figure 15 (used, for example, in the Linux trace tool [1]). For complete-
ness, we include the description of the implementation (Section C.1) and the correctness statement (Section C.2). We then
present a complete version of the correctness proof (Section C.3).

C.1 Description of the implementation
Threads communicate via an array of variables rc[] (line 5) and a grace-period control variable gc (line 4). The gp lock

mutex (line 6) serialises grace periods. The GP PHASE (line 1) bit of gc indicates which phase a grace period is in (grace
periods have two phases). The low-order bits of rc[i] selected by CS MASK (line 2) form a 16-bit counter. The low-order bits
in gc similarly contain a 16-bit counter permanently equal to 1, thus allowing a single write (line 13) to set rc[i]’s counter
to 1 while copying the phase-bit value from gc.

The counter in rc[i] records the depth of RSCS nesting for thread i: initially 0, set to 1 at line 13 in an outermost
rcu read lock call, incremented at line 16 in inner calls, and decremented at line 24 in rcu read unlock. If RSCSes are
properly nested (no unlock without an earlier matching lock) and depth of nesting does not overflow the 16-bit counter, only
an outermost rcu read unlock sets the counter to 0, indicating that thread i is not in an RSCS.

1 #define GP_PHASE 0x10000

2 #define CS_MASK 0x0ffff

3
4 static unsigned long gc = 1;

5 static unsigned long rc[MAX_THREADS] = {0};

6 static DEFINE_MUTEX(gp_lock);

7
8 void rcu_read_lock(void) {

9 unsigned int i = get_my_tid ();

10 unsigned long tmp = READ_ONCE(rc[i]);

11
12 if (!(tmp & CS_MASK)) {

13 WRITE_ONCE(rc[i], READ_ONCE(gc));

14 smp_mb ();

15 } else {

16 WRITE_ONCE(rc[i], tmp + 1);

17 }

18 }

19
20 void rcu_read_unlock(void) {

21 unsigned int i = get_my_tid ();

22
23 smp_mb ();

24 WRITE_ONCE(rc[i], READ_ONCE(rc[i]) - 1);

25 }

26 static int gp_ongoing(unsigned int i) {

27 unsigned long val = READ_ONCE(rc[i]);

28
29 return (val & CS_MASK)

30 && ((val ^ READ_ONCE(gc)) & GP_PHASE);

31 }

32
33 static void update_counter_and_wait(void) {

34 unsigned int i;

35
36 WRITE_ONCE(gc, READ_ONCE(gc) ^ GP_PHASE);

37 for (i = 0; i < MAX_THREADS; i++) {

38 while (gp_ongoing(i))

39 msleep (10);

40 }

41 }

42
43 void synchronize_rcu(void) {

44 smp_mb ();

45 mutex_lock (& gp_lock);

46 update_counter_and_wait ();

47 update_counter_and_wait ();

48 mutex_unlock (& gp_lock);

49 smp_mb ();

50 }

Figure 18: RCU implementation from [29].

The GP PHASE bit in gc is 0 before a grace period, viz, before synchronize rcu is called. That routine sets the phase to 1 and
then 0 again (line 36). Threads starting an outermost RSCS copy the current phase value into their respective rc[i] (line 13).
Thus synchronize rcu knows which threads must be waited for. Indeed, after changing the phase, update counter and -

wait waits for each thread i (line 38–39) until the value computed at lines 29–30 becomes false. This happens when:

• rc[i]’s counter is zero (thread i is not in an RSCS), or
• rc[i]’s counter is nonzero and its phase bit is equal to that of gc (thread i is in an RSCS which started after the current

GP phase).

C.2 Correctness statement
Let P be a LK program, and let P ′ be obtained by replacing the RCU primitives in P with the routines of Figure 18. For any
execution X ′ of P ′ allowed by our model, let X be the corresponding execution of P . Each non-RCU event e in X corresponds
directly to an event e′ in X ′. (Consider, e.g., the execution X in Figure 19, corresponding to X ′ in Figure 20. Events a, b, c,
and d in X match a’, b’, c’, and d’ in X ′.)

Furthermore, since the code in Figure 18 does not access any of the shared locations in P , and conversely, P does not access
the shared locations gc and rc[], each read in X is related by rf in X ′ to a write also in X . (For example, a’ in X ′ reads
from d’, not from some other write present in X ′ but not in X .) More generally, the non-RCU relations of X are simply those
of X ′ restricted to the events in X .

We set up a similar correspondence for the RCU events (in Figure 20, appended to these events’ labels are the line numbers
from Figure 18 for the events and their call chains):

• For each F[rcu lock] event l in X (g in Figure 19), let l′ be the write of rc[i] at line 13 (or 16 for inner nesting levels).
In Figure 20, this is g’.
• For each F[rcu unlock] event u in X (j in Figure 19), let u′ be the write of rc[i] at line 24 (j’ in Figure 20).
• For each F[sync-rcu] event s in X (k in Figure 19), let s′ be the write to gc at line 36, from the call to update counter -

and wait at line 46 (k’ in Figure 20).

We can now state our correctness result: If X ′ is allowed in our LK model and has properly nested RSCSes that do not overflow
the counters in rc[], then X is allowed.

g: F[rcu-lock]

a: R[once]y=1

b: R[once]x=0

j: F[rcu-unlock]

c: W[once]x=1

k: F[sync-rcu]

d: W[once]y=1

po

po

po

fr
po

porf

Figure 19: RCU-MP: Forbidden.

g’[13]: W[once] rc[i]=1

h’[14]: F[mb]

a’: R[once] y=1

b’: R[once] x=0

j’[24]: W[once] rc[i]=0

i’[23]: F[mb]

c’: W[once] x=1

· · ·

m’[27,last loop of 38,47]: R[once] rc[i]=0

· · ·

k’[36,46]: W[once] gc=0x10001

· · ·

n’[49]: F[mb]

d’: W[once] y=1

po

po

po

mb

po

fr

po

po

rf

po

po

po

po

po

mb
po

rf

Figure 20: RCU-MP, with RCU as implemented in Figure 18.

C.3 Proof of correctness
All non-RCU relations R in X hold in X ′: when (e1, e2) ∈ R holds in X , the corresponding fact (e′1, e

′
2) ∈ R holds in X ′.

Recall that we defined X to differ from X ′ only for RCU events and relations. Hence this result is immediate except when R
is strong-fence, which contains the RCU relation gp. Fortunately it is true in this case as well.

To see why, consider (e1, e2) ∈ gp in X (e.g., the writes c and d in Figure 19). There is an F[sync-rcu] event between
them in program order; hence the F[mb] event arising from line 44 lies between the corresponding events e′1 and e′2 in X ′. Thus
(e′1, e

′
2) ∈ mb, implying that (e′1, e

′
2) ∈ strong-fence. (Between c’ and d’ in Figure 20 are all the events from Figure 18’s

implementation of synchronize rcu; the F[mb] event for line 44 is elided.)
Since X ′ is allowed, X thus obeys all the core constraints of our model, leaving only the RCU constraint to consider.

Using our RCU guarantee theorem (Appendix B), we show that X does obey the RCU constraint by showing that X satisfies
the fundamental law of RCU. This requires finding a precedes function F for X such that pb(F) is acyclic.

Our precedes function F is derived from the execution X ′. Given a GP in X and an outermost RSCS in thread i, let l and u
be the lock and unlock events of the RSCS. The corresponding events l′ and u′ in X ′ were defined in Section C.2. We consider
two distinguished read events, r1 and r2, where:

• r1 is the read of rc[i] executed by line 27 of Figure 18,
• in the call to gp ongoing(i) from the last iteration of the while loop at line 38,
• in the first call to update counter and wait (line 46) within the GP,

and r2 is the equivalent read from within the second call to update counter and wait (line 47). In Figure 20, r2 = m’ and
r1 is not shown.

We will show that at least one of the following two statements must hold in X ′:

1. the RSCS’s rcu read lock l′ was not visible at the start of the GP: (r1, l′) ∈ fr;

2. the RSCS’s rcu read unlock u′ or a later write to rc[i] was visible at the end of the GP: (u′, r2) ∈ (coi? ; rf).

To see why, we let w1 and w2 be the writes to rc[i] read by r1 and r2. Since r1 comes before r2 in program order, it follows
from the Scpv axiom that w1 either is equal to w2 or comes before it in the coherence order for rc[i].

Now reason by contradiction. (1) says that r1 reads a value that is overwritten by l′, so if (1) does not hold then r1 reads
from l′ or from a write that comes after l′ in the coherence order. In other words, either l′ = w1 or (l′, w1) ∈ co. Similarly,
(2) says that r2 reads from u′ or from a write that comes after u′ in the coherence order (note that all the writes to rc[i] are
made by thread i; hence two writes to that variable are related by co iff they are related by coi). So if (2) does not hold then
r2 reads a value that is overwritten by u′; in other words, (w2, u

′) ∈ co. And since either w1 = w2 or (w1, w2) ∈ co, it follows
that each of w1 and w2 is either equal to l′ or comes between l′ and u′ in the coherence order. But the only writes to rc[i]

between l′ and u′ are those arising from inner nested calls of rcu read lock or rcu read unlock, and such writes neither
alter the phase bit in rc[i] nor set its counter to zero. Thus w1 and w2 must both write the same value for the phase bit and a
nonzero value for the counter.

However, the phase bit in gc has opposite values during the calls to gp ongoing(i) containing r1 and r2: thanks to the
mutual exclusion ensured by gp lock, only update counter and wait in the GP’s thread changes this bit (line 36) during
that time interval, setting it to 1 before r1 (when called from line 46) and then back to 0 before r2 (when called from line 47).
Thus it is not possible for the calls of gp ongoing(i) containing r1 and r2 both to return false (recall that gp ongoing(i)

returns false when either rc[i]’s counter is zero, or its counter is nonzero and its phase bit is equal to that of gc). This
contradicts the definition of r1 and r2 as being events in the last iterations of their respective while loops. Hence (1) or (2)
must hold.

We take F (RSCS,GP) to be GP if (1) holds and RSCS otherwise. In Figure 20, (2) holds, since u′ is j’, r2 is m’, and
(j’, m’) ∈ rf. Thus for this example, F (RSCS,GP) = RSCS.

Claim 1. If there is a cycle in pb(F) for X then there is a cycle in pb for X ′.

In our example, we know from Section 4.1 that X in Figure 19 violates the fundamental law of RCU, and hence the pb(F)
relation in X contains a cycle (for every precedes function F , including the one chosen above). We are now claiming this
means that X ′ in Figure 20 has a cycle in pb. And so it does: d’ rfe−−→ a’

mb−→ j’, hence d’
pb−→ j’, and similarly, j’

pb−→ d’

via m’.
Returning to the general proof: The correctness statement assumes that X ′ is allowed in our model and hence obeys the

Pb constraint. This requires the pb relation in X ′ to be acyclic, from which we now deduce (using the Claim) that the pb(F)
relation in X must also be acyclic. As a result, X obeys the fundamental law and the RCU axiom.

Thus to conclude the proof, we only need to justify the Claim. Doing so requires the following interpolation lemma.

Lemma 4. Suppose b link−−−→ a, where b 6= a and b is not a memory access, i.e., it is a fence event. Then there is an event x such
that b

po−→ x
link−−−→ a.

Proof. This follows from the form of the definition of link and the relations which make it up. We merely have to consider all
the possible cases.

Start by noticing that rfe, co, fr, and overwrite edges always link two memory accesses, so no edge starting from b can
be of these types. Also, notice that ppo is a subrelation of po, as is fence (which includes strong-fence). Furthermore, the
definition in Figure 8 of cumul-fence expands to

(rfe? ; (strong-fence ∪ po-rel)) ∪ wmb,

so any cumul-fence edge starting from b must be an instance of strong-fence, po-rel, or wmb—hence a po edge—since it
can’t begin with the optional rfe.

Thus, if we have a nontrivial edge b
cumul-fence∗−−−−−−−−→ y for some event y then there is an x with

b
cumul-fence−−−−−−−→ x

cumul-fence∗−−−−−−−−→ y,

from which we conclude
b

po−→ x
cumul-fence∗−−−−−−−−→ y.

Similarly, suppose there is a nontrivial edge b
prop−−−→ y, or equivalently,

b
(overwrite∩ext)?;cumul-fence∗;rfe?−−−−−−−−−−−−−−−−−−−−−−→ y.

The edge cannot begin with overwrite nor with rfe. Hence it must begin with cumul-fence∗, so as above there is an x with

b
po−→ x

cumul-fence∗;rfe?−−−−−−−−−−−→ y.

and thus b
po−→ x

prop−−−→ y.
Now consider what happens with a nontrivial edge b

hb−→ y. The definition expands to

b
((prop\id)∩int)∪ppo∪rfe−−−−−−−−−−−−−−−−→ y.

If the edge is an instance of prop then we have an x with

b
po−→ x

prop−−−→ y.

x is in the same thread as b, so it is in the same thread as y. If x is equal to y then we have b
po−→ y directly; otherwise the prop

edge between x and y is not in the identity relation id, so we have x
hb−→ y. If the edge from b to y is an instance of ppo then

again we get b
po−→ y. Since the edge cannot be rfe, we conclude that

b
po−→ y, or for some x, b

po−→ x
hb−→ y.

We apply these facts to analyze the given situation where b
link−−−→ a. This expands to

b
hb∗;pb∗;prop−−−−−−−−→ a.

Since b 6= a, at least one of these edges must be nontrivial. Consider the possibilities for the first nontrivial edge in this
sequence.

Case 1: The hb∗ edge is nontrivial. Then for some y we have

b
hb−→ y

hb∗;pb∗;prop−−−−−−−−→ a.

As shown above, either b
po−→ y (in which case we can take x to be y), or for some x,

b
po−→ x

hb−→ y
hb∗;pb∗;prop−−−−−−−−→ a.

Either way, we obtain b
po−→ x

link−−−→ a.

Case 2: The hb∗ edge from b is trivial, and the pb∗ edge is the first nontrivial one. Then for some z we have b
pb−→ z

pb∗;prop−−−−−→
a. The pb edge expands to

b
prop;strong-fence;hb∗−−−−−−−−−−−−−→ z,

and a prop edge may be trivial. We divide the possibilities into two subcases.
Case 2A: The prop edge is nontrivial, leading from b to some event y. As shown above, there is x with

b
po−→ x

prop−−−→ y
strong-fence;hb∗−−−−−−−−−−→ z

It follows that x
pb−→ z and hence x

link−−−→ a.
Case 2B: The prop edge is trivial, so the edge starting from b is in strong-fence. Since strong-fence ⊆ po, for some x

we have
b

po−→ x
hb∗−−→ z

pb∗;prop−−−−−→ a,

in other words, b
po−→ x

link−−−→ a.
Case 3: The hb∗ and pb∗ edges from b are trivial, and the prop edge is the first nontrivial one. Then we have b

prop−−−→ a, and
as shown above, there is x with b

po−→ x
prop−−−→ a. It follows that x link−−−→ a, as desired. This exhausts the possibilities.

We can now give the proof of Claim 1: if there is a cycle in pb(F) for X then there is a cycle in pb for X ′.

Proof. Suppose

e0
pb(F)−−−→ e1

pb(F)−−−→ · · · pb(F)−−−→ en = e0

is a cycle in pb(F) for X . By the earlier discussion, if ei
pb−→ ei+1 holds in X then e′i

pb−→ e′i+1 holds in X ′. Consequently, if
all the edges in this cycle happen to belong to pb then the e′i events would form a cycle in pb for X ′.

Otherwise, let j be an index such that the ej
pb(F)−−−→ ej+1 edge is not in pb. Then for some events aj and bj ,

ej
prop−−−→ aj

rcu-fence(F)−−−−−−−−→ bj
hb∗−−→ ej+1.

By the definition of rcu-fence (given in Section 4.1), this means there is an outermost RSCS Cj = (lj , uj) and a GP sj , with

case (i)j : F (Cj , sj) = sj ∧ aj
po−→ sj ∧ lj

po?−−→ bj , or

case (ii)j : F (Cj , sj) = Cj ∧ aj
po−→ uj ∧ sj

po?−−→ bj .

Let k be the next index in the cycle for which the ek −→ ek+1 edge is not in pb. Then there are events ak and bk with
properties like those of aj and bj . Since all the edges from ej+1 to ek are in pb, we have

bj
hb∗−−→ ej+1

pb∗−−→ ek
prop−−−→ ak,

and therefore bj
link−−−→ ak.

The optional po? edges leading to bj in cases (i)j and (ii)j are troublesome. Fortunately we can apply Lemma 4, using the
fact that lj and sj , being F[rcu-lock] and F[sync-rcu] events respectively, are not memory accesses. In case (i)j , if lj = bj

but bj 6= ak then the lemma says there is an event x such that lj
po−→ x

link−−−→ ak. Taking bj to be x rather than its original
value, we obtain lj

po−→ bj ; we will denote this situation as subcase (i)j 6=. The other possibility, denoted as subcase (i)j=, is
that lj = bj = ak. Case (ii)j is similarly subdivided: in subcase (ii)j 6= we have sj

po−→ bj
link−−−→ ak, and in subcase (ii)j=,

sj = bj = ak.
Now consider the corresponding events in X ′. According to the way the precedes function F was defined above, in both

(i)j subcases we have r1j
fr−→ l′j where r1j is a read event within a gp ongoing subroutine call inside the sj grace period. For

these subcases, set vj = r1j ; then a′j
mb−→ vj because aj

po−→ sj and because of the smp mb in line 44 of Figure 18. Similarly,

in both (ii)j subcases we have u′j
coi?;rf−−−−→ r2j , where r2j is another read event inside the sj grace period. For these subcases,

take vj to be the intermediate event for which u′j
coi?−−−→ vj

rf−→ r2j ; then because aj
po−→ uj and coi ⊆ po (since X ′ satisfies

the Scpv axiom) it follows that a′j
mb−→ vj , thanks to the smp mb in line 23. Thus a′j

mb−→ vj in every subcase, and of course the
same will be true for a′k and vk.

Putting all these ingredients together, in subcase (i)j= we have

vj
fr−→ l′j = a′k

mb−→ vk.

If vj and l′j are in the same thread then the fr reduces to po (again because of the Scpv axiom); otherwise the relation is fre.

Either way, this shows that vj
pb−→ vk. In subcase (i)j 6= we have lj

po−→ bj , which implies that l′j
mb−→ b′j thanks to the fact that

Cj is an outermost critical section and to the smp mb in line 14. Thus we get

vj
fr−→ l′j

mb−→ b′j
link−−−→ a′k

mb−→ vk.

As before, it follows that
vj

pb−→ b′j
link−−−→ a′k

strong-fence−−−−−−−−→ vk,

and hence vj
pb+−−→ vk.

The analysis for the (ii)j subcases is similar. In subcase (ii)j= we have vj
rf−→ r2j , and we claim that r2j

mb−→ vk. This claim
will follow from the smp mb in line 49, provided that vk is po-after the end of the sj GP. This is true because in case (i)k,
vk lies within the sk GP which is po-after ak = sj , and in case (ii)k, vk is within or po-after the Ck RSCS which is po-after
ak = sj . As in the previous paragraph, the rf edge from vj resolves either to po or rfe, both of which yield vj

pb−→ vk. Lastly,
in subcase (ii)j 6= we have sj

po−→ bj , which implies that r2j
mb−→ b′j because of the smp mb in line 49. Thus we get

vj
rf−→ r2j

mb−→ b′j
link−−−→ a′k

mb−→ vk.

As before, it follows that
vj

pb−→ b′j
link−−−→ a′k

strong-fence−−−−−−−−→ vk,

and hence vj
pb+−−→ vk.

In each possible subcase we see that vj and vk are linked in X ′ by a sequence of one or more pb edges. Continuing this
construction around the original pb(F) cycle generates a pb cycle passing through the vi events.

	Introduction
	``Still confusion situation all round'' [sic] zil13
	``[I]t is your kernel, so what is your preference?'' mck16
	``[P]ick a sane, maintainable memory model'' mol13
	Correctness of concurrent code
	Overview of the paper and contributions

	Programs and Candidate Executions
	The LK model's core
	Examples
	Formal definitions
	``[I]f some […] architecture gets its memory ordering wrong […], [it] should pay the price'' tor16
	The preserved program order relation ppo
	The propagation relation prop
	The happens-before relation hb
	The propagates-before relation pb

	Summary
	Our core LK model (Figure 3)
	The relations constrained by the model

	Modeling Read-Copy-Update
	Formalising the fundamental law of RCU
	The RCU axiom

	Experiments
	Hardware results
	Comparison to C11

	Verifying an RCU implementation
	Description of the implementation
	Correctness statement
	Proof sketch

	Discussion
	Model files
	Basic definitions (bell file)
	Formal definitions and axioms (cat files)

	Proof of RCU guarantee (Theorem 1)
	The law implies the axiom
	The axioms imply the law

	Proof of correctness of the RCU implementation of desnoyers12 (Theorem 2)
	Description of the implementation
	Correctness statement
	Proof of correctness

