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The rs12594956 polymorphism in the NRF-2 gene is associated with top-level 2 

Spanish athlete's performance status 3 
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Abstract 1 

Objectives: To determine the association between the nuclear respiratory factor 2 (NRF-2 

2) polymorphisms and elite athletic performance. Design: We compared the genotype 3 

and allele frequencies of the NRF-2 A/C (rs12594956), NRF-2 A/G (rs7181866), and 4 

NRF-2 C/T (rs8031031) polymorphisms between world-class endurance athletes (n=89), 5 

elite power-oriented athletes (n=38), and non-athletic controls (n=110) of the same 6 

Caucasian (Spanish) origin. Methods: Genomic DNA was extracted from peripheral 7 

EDTA-treated, anti-coagulated blood using a standard protocol. Genotyping was 8 

performed using polymerase chain reaction (PCR). Results: The frequency of the AA 9 

genotype of the NRF-2 A/C (rs12594956) polymorphism was significantly higher in 10 

endurance athletes compared with power athletes (P<0.01) and controls (P<0.01) (48% 11 

versus 13% and 21%, respectively). The likelihood of having the AA (rs12594956) 12 

genotype was higher in elite endurance athletes compared with controls [odds ratio (OR): 13 

3.536, 95% confidence interval (CI): 1.903-6.571] and elite power athletes (OR: 6.170, 14 

95%CI: 2.206-17.253).  15 

Conclusions: Our results suggest that the NRF-2 A/C polymorphism might belong to a 16 

growing group of polymorphisms associated with endurance performance at the elite 17 

level. However, it is important to replicate these findings in other groups of elite athletes 18 

using larger sample sizes. 19 

 20 
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1. Introduction 1 

A key component of skeletal muscles is the mitochondrion, which provides the energy 2 

required for muscle contraction via oxidative phosphorylation, especially during 3 

endurance exercise. Not surprisingly, this type of exercise also stimulates mitochondrial 4 

biogenesis, which improves the ability of mitochondria to convert biochemical energy 5 

from nutrients into ATP.
1
 In this regard, the nuclear respiratory factor (NRF-2) plays a 6 

key role in regulating mitochondrial biogenesis.
2
 Recently researchers have investigated 7 

the possible contribution of mitochondrial-related genes, such as the nuclear respiratory 8 

factor 2 (NRF-2) gene, in attaining elite endurance status.
3-5

 9 

The NRF-2 protein is a transcription factor that was discovered as the human homolog of 10 

the mouse GA-binding protein (GABP). A structural analysis of NRF-2 revealed a high 11 

degree of sequence identity with the mouse GABP subunits.
6, 7

 The NRF-2 gene has been 12 

linked to the transcriptional control of many genes involved in mitochondrial function 13 

and biogenesis suggestively through nucleo-mitochondrial interactions which enhance 14 

mitochondrial DNA (mtDNA) levels and the activity of oxidative phosphorylation.
2, 7, 8

  15 

Several lines of evidence imply that the NRF-2 gene, or its product (NRF-2), plays a 16 

functional role within skeletal muscles during exercise. The mRNA levels of nuclear 17 

respiratory factor 1 (NRF-1) and NRF-2 are significantly induced as part of the adaptation 18 

of skeletal muscles to exercise training.
9, 10

 Furthermore, a previous study suggested that 19 

the β1-subunit of the NRF2 gene, located on chromosome 15q21.2, might be linked with 20 

elevated maximal oxygen consumption (VO2max) in response to a 20-week endurance 21 

training program.
11

  22 

In a recent study with elite Israeli athletes, we observed an association between the NRF2 23 

A/G (rs7181866), NRF-2 A/C (rs12594956) and NRF-2 C/T (rs8031031) polymorphisms 24 

and elite endurance status. Endurance athletes presented a higher frequency of AG, AA 25 
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and CT genotypes (as well as higher frequency of G, A and T alleles) in the NRF-2 A/G 1 

(rs7181866), NRF2 A/C (rs12594956) and NRF2 C/T (rs8031031) polymorphisms 2 

respectively, compared with ethnically-matched sprinters and non-athletic controls.
3, 4

 3 

Further comparisons between the sub-groups of elite and national-level endurance 4 

athletes revealed that the theoretically endurance-favorable genotypes, NRF-2 AG 5 

(rs7181866), NRF-2 AA (rs12594956) and NRF-2 CT (rs8031031), were more frequent 6 

in the group of elite level athletes than in the national-level group.
3, 4

 Support for an 7 

influential role of the aforementioned NRF-2 polymorphisms on endurance phenotypes 8 

was also provided in a previous study in healthy Han Chinese men, in whom both VO2max 9 

and running economy were associated with the aforementioned gene variants.
12

   10 

Notwithstanding the above findings in Israeli athletes, it is important to replicate 11 

genotype:phenotype associations in the field of sports genetics as the ethnic/geographic 12 

background of the cohorts may influence the results.
13, 14

 For instance, the association that 13 

our group found between elite power athletic status and the 174 G/C polymorphism of the 14 

interleiukin-6 (IL6) gene in a Caucasian (Spanish) cohort
15

 was not corroborated in Israeli 15 

Caucasians.
16

 The aim of the present study was therefore to compare the genotype and 16 

allele frequencies of the NRF-2 A/C (rs12594956), NRF-2 A/G (rs7181866) and NRF-2 17 

C/T (rs8031031) polymorphisms between elite endurance athletes, elite power-oriented 18 

athletes, and non-athletic controls of Spanish ancestry.  19 

 20 

2. Methods 21 

Written consent was obtained from each participant. The study was approved by the 22 

ethics committee of Universidad Europea de Madrid, Spain. The study followed the 23 

recommendations for replicating genotype-phenotype association studies.
17, 18

 The study 24 
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population was all of the same Caucasian (Spanish) descent for ≥3 generations and was 1 

comprised of: 2 

i. 89 unrelated male world-class endurance athletes aged 20-39 (19 endurance 3 

runners, 32 professional road cyclists, and 38 rowers). All of the endurance runners 4 

(mostly specialists in the 5,000 m, 10,000 m and marathon) had participated in at least 5 

one Olympiad, and some were Olympic finalists or European/World Champions; the 6 

cyclists were all Tour de France participants; all the rowers were world-class as they had 7 

won at least one bronze, silver or gold medal in the lightweight category in the World 8 

Championships held during 1997-2006. Their mean±SD maximal oxygen uptake 9 

(VO2max) was 77.9±6.9 ml·kg
-1

·min
-1

 (range: 62-87) (runners), 74.5±6.9 ml·kg
-1

·min
-1

 10 

(62-86) (cyclists), and 71.7±5.5 ml·kg
-1

·min
-1 

(58-87) (rowers). 11 

ii. 38 unrelated elite male power athletes aged 20-33 years (jumpers, throwers and 12 

sprinters), including the best Spanish jumpers and sprinters in recent years. Thirteen of 13 

them were Olympians during the period 2000-2008. Their VO2max averaged 60.1±5.0 14 

ml·kg
-1

·min
-1 

(range: 50- 69). 15 

iii. 110 unrelated healthy male non-athletic controls aged 19-32 years. All were 16 

students from the same university (Universidad Europea de Madrid, Spain). Inclusion 17 

and exclusion criteria for this group were to be free of any diagnosed cardiorespiratory 18 

disease and not to be engaged in competitive sports or in formal, supervised exercise 19 

training (i.e., performing less than 3 structured weekly sessions of strenuous exercise such 20 

as running, swimming, bicycling, and weight lifting). Their VO2max averaged 45.6±2.8 21 

ml·kg
-1

·min
-1 

(range: 45-60).  22 

The VO2max values of the athletes was obtained using a breath-by-breath system 23 

(Oxycon Pro System, Jaeger, Wuerzburg, Germany) during laboratory treadmill gas-24 

analysis, cycle-ergometer or rower-ergometer tests performed until volitional exhaustion. 25 
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The VO2max of the controls was estimated from the time to complete a 2,000-m running 1 

test. The tests were performed on a 400-m outdoor track under similar environmental 2 

conditions (temperature, ~ 23-24º C; relative humidity, 45-55%; barometric pressure, ~ 3 

720 mmHg). None of the VO2max values were determined specifically for the present 4 

study (i.e., we retrieved them from our database). 5 

Genomic DNA was extracted from peripheral EDTA-treated, anti-coagulated blood using 6 

a standard protocol. Genotyping was performed using polymerase chain reaction (PCR). 7 

The reaction and the resulting restriction fragment length polymorphism (RFLP) analysis 8 

were scored by two experienced and independent investigators who were blind to the 9 

participants’ data. This method was verified using direct sequencing analysis. Information 10 

on the primers, PCR annealing temperature, restriction enzyme, and fragments obtained 11 

for each allele, respectively, for NRF-2 A/C (rs12594956) and NRF-2 C/T (rs8031031), 12 

and NRF-2 A/G (rs7181866) polymorphisms is shown in Table 1.  13 

Genotyping of NRF-2 A/C (rs12594956), C/T (rs8031031), and A/G were performed 14 

with polymerase chain reaction (PCR). PCR for the NRF-2 A/C was performed by 15 

denaturation at 94°C for 5 min, 34 cycles of denaturation at 94°C for 1 min, annealing at 16 

53°C for 1 min, and extension at 72°C for 1 min, and a final extension step of 10 min at 17 

72°C. The amplified fragment subsequently underwent digestion by MfeI (New England 18 

Biolabs, Beverly, MA) in a condition recommended by the supplier. The digested 19 

products were then electrophoresed in a 2% agarose gel. PCR for the NRF-2 C/T 20 

(rs8031031) was performed by denaturation at 94°C for 5 min, 34 cycles of denaturation 21 

at 94°C for 1 min, annealing at 57°C for 1 min, and extension at 72°C for 1 min, and a 22 

final extension step of 10 min at 72°C. The amplified fragment subsequently underwent 23 

digestion by RsaI (New England Biolabs). PCR for the NRF-2 A/G was performed by 24 

denaturation at 94°C for 5 min, 35 cycles of denaturation at 94°C for 1 min, annealing at 25 
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50°C for 1 min, extension at 72°C for 1 min, and a final extension step of 10 min at 72°C. 1 

The amplified fragment subsequently underwent digestion by Rsa1 (New England 2 

Biolabs, Beverly, MA) in a condition recommended by the supplier. The digested 3 

products were then electrophoresed in a 2.5% agarose gel. 4 

To ensure proper internal control, for each genotype analysis we used positive and 5 

negative controls from different DNA aliquots that were previously genotyped with the 6 

same method, according to recent recommendations for replicating genotype-phenotype 7 

association studies.
18

 The restriction fragment length polymorphism (RFLP) results were 8 

scored by two experienced and independent investigators who were blind to the 9 

participants' data. 10 

We assessed deviations of genotype distributions from the Hardy-Weinberg equilibrium 11 

(HWE, using the chi-squared (χ2) test) in controls only (not in cases); indeed, in genetic 12 

associations studies (as the present one) that follow a case:control design (instead of a 13 

single-cohort design), deviation from the HWE should only be tested in controls because 14 

they are supposedly representative of the general population. 
17

 We used the χ2, Yates 15 

corrected χ2 test, or Fischer exact test to compare the genotype and allele frequency of 16 

the NRF-2 A/C (rs12594956), NRF-2 A/G (rs7181866) and NRF2 C/T (rs8031031) 17 

polymorphisms in the three study groups. We conducted binary logistic regression 18 

analysis to determine the association between alleles and sports performance. All 19 

analyses were corrected (by genotype) for multiple comparisons (i.e. 0.05/3, P≤0.016). 20 

All statistical analyses were performed using the PASW (v. 18.0 for WINDOWS, 21 

Chicago). 22 

 23 

 24 

 25 
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3. Results 1 

Genotype distribution of the rs7181866 and rs8031031 polymorphisms were in HWE in 2 

the control group (P>0.01), yet that of the rs12594956 polymorphism was not (P<0.05). 3 

The results on genotype and allele frequencies of the NRF2 A/G (rs7181866), NRF2 A/C 4 

(rs12594956) and NRF2 C/T (rs8031031) polymorphisms are shown in Table 2 and 5 

Figure 1, respectively. The frequency of the AA genotype for the NRF-2 A/C 6 

(rs12594956) polymorphism was significantly higher in endurance athletes compared 7 

with power athletes (P<0.01) and controls (P<0.01) (48% versus 13% and 21%, 8 

respectively). No other significant between-group difference was found for this 9 

polymorphism. The likelihood of having the AA (rs12594956) genotype was higher in 10 

elite endurance athletes compared with controls [odds ratio (OR): 3.5, 95% confidence 11 

interval (CI): 1.9-6.6] and elite power athletes (OR: 6.2, 95%CI: 2.2-17.2).  12 

 On the other hand, we found no significant between-group differences in the genotype or 13 

allele distributions of the NRF-2 A/G (rs7181866) polymorphism. Finally, the frequency 14 

of the CT genotype and T allele of the NRF-2 C/T (rs8031031) polymorphism were 15 

significantly higher in endurance athletes compared with the control group (P=0.017 and 16 

0.019, respectively). No other between-group difference was found for this 17 

polymorphism.  18 

 19 

4. Discussion 20 

The rationale for performing the current study was based on the putative role of the NRF-21 

2 gene in the process of mitochondrial transcription and regulation, and its potential 22 

influence on endurance performance. While keeping in mind the limitation that stems 23 

from the low sample size of our cohorts, our main finding was the higher frequency of the 24 

AA genotype of the NRF-2 A/C polymorphism (rs12594956) among the endurance 25 
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athletes compared with both a sample of power athletes and a sample of healthy, non-1 

athletic controls. Therefore, it can be assumed that harboring the NRF-2 AA 2 

polymorphism is associated with success in endurance-type sports. This assumption was 3 

strengthened by the fact that we recruited world-class elite-level athletes who were the 4 

best caliber in their competition event.  However, more data are needed to corroborate the 5 

association between the NFR-2 gene and long-term endurance athletic status, and most 6 

importantly, the trainability of endurance phenotype traits.  7 

The NRF-2 protein is involved in the control of basic cellular processes, such as cell 8 

cycle progression
19

, protein synthesis, and mitochondrial biogenesis.
20

 Being a master 9 

coordinator of the expression of all cytochrome C oxidase (COX) subunits, NRF-2 10 

regulates the mechanism that senses upstream energy signals, and possibly controls 11 

oxygen consumption in the cells.
8
 Recently, it was demonstrated that NRF-2 induces 12 

many of the human proteins active in mitochondrial DNA transcription and replication, 13 

such as: transcription termination factor (mTERF), the RNA polymerase POLRMT, the B 14 

subunit of the DNA polymerase γ, and the DNA helicase TWINKLE.
21

 These findings 15 

strengthen the growing evidence regarding the key role of NRF-2 in determining an 16 

endurance-favorable phenotype. There are in fact preliminary data supporting that the 17 

NRF-2 A/C (rs12594956) polymorphism, in particular, belongs to a growing group of 18 

genetic polymorphisms that affect elite endurance performance. We previously showed 19 

that the NRF-2 AA genotype was strongly associated with endurance athletic status in 20 

elite Israeli athletes.
4
 In a following study, using a genotype score model, which 21 

determines the probability of an individual having the ‘optimal’ mitochondrial-22 

biogenesis-related endurance polygenic profile, we compared the endurance polygenic 23 

profile of Israeli (Caucasian) endurance athletes, power athletes, and non-athletes.
5
 The 24 

results indicated that the probability of a given Israeli (Caucasian) individual possessing 25 
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an ‘optimal’ endurance athletic polygenic profile was marginally dependent upon 1 

possessing the AA genotype for the NRF-2 rs12594956 polymorphism. 2 

We believe that the results of our study are overall valid, as all of the following criteria 3 

were met
17

: phenotypes were accurately assessed, participants were ethnically-matched, 4 

genetic assessment was accurate, reliable and unbiased, genotype distributions were in 5 

HWE (except for the rs12594956 polymorphism–see below), we adjusted our statistical 6 

analyses for multiple comparisons, and our results are in line with previous findings.
4
 7 

However, it also must be kept in mind that the genotype distribution of the NRF-2 A/C 8 

(rs12594956) polymorphism was not in HWE in the control group, which limits, at least 9 

partly, the external validity of our findings. Reasons for deviation from HWE in a given 10 

population are the following: genetic drift, migration (i.e. gene flow), mutation, selection, 11 

and non-random mating. It is difficult to determine, without speculating too much, which 12 

of the aforementioned conditions occurred in our control group, given its limited size. On 13 

the other hand, the low sample size of our population samples does also limit the 14 

‘external validity’ (and therefore generalizability) of our results.
17

 Given the unique 15 

phenotype of elite athletes, we believe that the small sample size of our athletic cohorts is 16 

justifiable. Indeed, we have gathered almost all elite Spanish (world-class) athletes with a 17 

‘pure’ power phenotype (weightlifters, sprinters or throwers) and a high proportion of the 18 

best athletes in the country with an endurance phenotype (runners, cyclists, rowers). 19 

 20 

5. Conclusion 21 

In conclusion, our main finding suggests that there is an association between the NRF-2 22 

A/C polymorphism and elite endurance athletics status. Although the limited sample size 23 

of our cohort and its single ethnic/geographic origin does limit the external validity of our 24 

findings, this particular polymorphism might belong to a growing group of 25 



11 
 

polymorphisms associated with endurance performance at the elite level. Further 1 

replication studies involving other cohorts of elite athletes, as well as functional studies, 2 

are needed however needed to clarify just how this polymorphism contributes to elite 3 

endurance performance and trainability. 4 

 5 

Practical implications 6 

 Via a simple blood test talent identification programs will be able to identify those 7 

who carry the NRF-2 AA genotype, and who may have a greater chance of becoming an 8 

elite endurance athlete. 9 

 This information will also assist to identify exactly which genes and gene pathways 10 

are involved in the process of becoming an elite athlete. 11 

 12 
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Table 1. Information on genotyping methods for each polymorphism in the NRF-2 gene.  

Obtained fragment 
Restriction 

enzyme 

Annealing 

temperature 
Primers 5' →3' Reference ID polymorphism 

C allele → 407 bp mfe I 53° F- 5'  TAAAATGAATAAAGGTGGGGGT   '3 rs12594956 NRF2 A/C 

A allele →277 and 130 bp 

  

R- 5' TAAGAGTGGAAGGGTGGAGAA '3 

  

      G allele → 483 bp Rsa I 55° F- 5' AGTTTAGTGTCTCCCAGTGT 3' rs7181866 NRF2 A/G 

A allele →284 and 199 bp 

  

R  5' CTTAGTTTTCTTGTATCCGT 3' 

  

      C allele → 208 bp Rsa I 57° F- 5'  CTAAAATGTGAGGGAAGGAAGA  '3 rs8031031 NRF2 C/T 

T allele →158 and 50 bp 

  

R- 5'  ATAGAGAGATAGGACTAAGGAC '3 
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Table 2. Genotype distribution of the NRF2 A/C, NRF2 A/G and NRF2 C/T polymorphisms in all groups. Data is presented as absolute 

and relative values (within parentheses).  

 

 

  Athlete groups n AA AC CC 

χ2, P value    

    E vs. P  

χ2,P value    

E vs. C  

χ2, P value  

C vs. P  

rs12594956         

NRF-2 A/C Endurance (E) 89 43 (48) 21 (24) 25 (28) 20, <0.01 18.1, <0.01 0.41, 0.52 

 Power (P) 38 5 (13) 25 (66) 8 (21)    

 Controls (C) 110 23 (21) 66 (60) 21 (19)    

         

      AA AG GG       

rs7181866         

NRF-2 A/G Endurance (E) 89 86 (97) 3 (3) 0 (0) 0.11, 0.74 1.78, 0.18 0.16, 0.69 

 Power (P) 38 36 (95) 2 (5) 0 (0)    

 Controls (C) 110 100 (90) 10 (10) 0 (0)    

         

      CC CT TT       

rs8031031         

NRF-2 C/T Endurance (E) 89 81 (90) 8 (10) 0 (0) 2.3, 0.13 5.68, 0.017 0.62, 0.42 

 Power (P) 38 38 (100) 0 (0) 0 (0)    

 Controls (C) 110 109 (99) 1 (1) 0 (0)    
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Figure Legends 

 

Figure 1. Allele frequencies of the NRF-2 A/C (rs12594956), NRF-2 A/G (rs718186), and the NRF-2 C/T (rs8031031) polymorphisms 

in Spanish (Caucasian, all males) elite endurance athletes, elite power athletes and controls. 
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Figure 1A: 
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Figure 1B: 
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Figure 1C: 
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