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Aqueous two-phase systems (ATPS) have been reported as an attractive biocompatible

extraction system for recovery and purification of biological products. In this work,

the implementation, characterization, and optimization (operational and economic) of

invertase extraction from spent brewery yeast in a semi-automatized pilot plant using

ATPS is reported. Gentian violet was used as tracer for the selection of phase

composition through phase entrainment minimization. Yeast suspension was chosen as

a complex cell matrix model for the recovery of the industrial relevant enzyme invertase.

Flow rates of phases did not have an effect, given that a bottom continuous phase is

given, while load of sample and number of agitators improved the recovery of the enzyme.

The best combination of factors reached a recovery of 129.35± 2.76% and a purification

factor of 4.98 ± 1.10 in the bottom phase of a PEG-Phosphate system, also resulting

in the removal of inhibitor molecules increasing invertase activity as reported by several

other authors. Then, an economic analysis was performed to study the production cost

of invertase analyzing only the significant parameters for production. Results indicate

that the parameters being analyzed only affect the production cost per enzymatic unit,

while variations in the cost per batch are not significant. Moreover, only the sample load is

significant, which, combined with operational optimization results, gives the same optimal

result for operation, maximizing recovery yield (15% of sample load and 1 static mixer).

Overall res ults of these case studies show continuous pilot-scale ATPS as a viable and

reproducible extraction/purification system for high added-value biological compounds.

Keywords: aqueous two-phase system, biosolve, invertase, operational parameters, pilot plant, spent yeast

INTRODUCTION

With the improvement in recombinant technologies, great progress has been taking place in the
upstream processes of bioproducts manufacturing. However, with the increasing of cell culture
titers the downstream processing capacity arises as a bioprocessing bottleneck (Lowe, 2001;
Rosa et al., 2010; Langer, 2011; Straathof, 2011; Dizon-Maspat et al., 2012; Sabalza et al., 2014).
The currently available purification technology typically include unit operations with limited
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operational windows or scaling up drawbacks, besides the use
of high cost equipment (Xu et al., 2003; Aguilar et al., 2010;
Rosa et al., 2011; Goja et al., 2013). This has promoted the
development and implementation of alternative, easily scalable
extraction procedures and purification systems that allow higher
throughputs.

During the last decades, several research groups have
consistently reported the advantages that aqueous two-phase
systems (ATPS) possess as an extraction/purification technique:
they show biological compatibility, high load capacity, scale-up
easiness and continuous operation, among others (Raghavarao
et al., 2003; Benavides and Rito-Palomares, 2008; Rosa et al., 2010;
Asenjo and Andrews, 2012)]. There are some works on semi-
continuous/pilot plant ATPS (Minuth et al., 1997; Huenupi et al.,
1999; Kepka et al., 2003; Igarashi et al., 2004; Rosa et al., 2009;
Sutherland et al., 2011), however, most of the practical attempts
to apply ATPS have been carried out in batch mode or at bench
scale. This makes continuous operation at pilot scale an open
research area for the implementation of ATPS processes (Rosa
et al., 2010; Benavides et al., 2011; Espitia-Saloma et al., 2014).
Continous operation is acknowledged for its positive impact in
processing time, costs and yields, having the potential to make
bioproducts economically competitive at larger scales (Igarashi
et al., 2004; Benavides et al., 2011). Conventional equipment used
by the chemical industry for organic-aqueous extraction, such as
column contactors, has been mostly employed for large-scale and
continuous ATPS applications (Cuhna and Aires-Barros, 2002).
However, the study of alternative equipment configurations
such as mixer settlers and the development of novel separators
for different ATPS variants, bioproducts and physicochemical
characteristics could increase the interest toward the industrial
implementation of continuous ATPS-based processes (Cuhna
and Aires-Barros, 2002; Benavides and Rito-Palomares, 2008;
Torres-Acosta et al., 2016). Recently, Vázquez-Villegas et al.
(2011), proposed a novel mixer-settler device for continuous
ATPS operation at bench scale. It is based on a tubular reactor
approach with a large and adjustable length/diameter ratio to
control settling time and separation of phases (Vázquez-Villegas
et al., 2011).

Pilot plant studies, are of noteworthy value in the development
of new processes, since they allow the study, in an efficient and
relatively economic way, of different technical aspects (operation
conditions, design parameters, construction materials, corrosion,
and operational procedures) essential for any industrial process.
The objective of this work is to present a continuous ATPS-
based process at pilot plant level, and evaluate its operational and
economic performance for the extraction of invertase from spent
brewery yeast.

MATERIALS AND METHODS

Chemicals and Biological Material
Polyethylene glycol with molecular weight of 1,000 Da
(PEG1000) was purchased from Avizor Química (Monterrey,
Mexico). Gentian violet (GV) and bovine serum albumin
(BSA) were obtained from Sigma Aldrich (St. Louis, MO, USA).
Monobasic and dibasic potassium phosphate and other analytical

grade reagents were purchased fromDesarrollo de Especialidades
Químicas (DEQ, Monterrey, Mexico). Spent brewery yeast was
kindly donated by Cervecería Cuauhtémoc-Moctezuma, S.A. de
C.V (Nuevo León, México).

Spent Brewer’s Yeast Preparation

Spent brewer’s yeast, directly obtained from brewery, was
centrifuged at 4,300 rpm at 4◦C for 10min (Thermo Scientific
IEC CL40R, WaltHam, USA). The supernatant was discarded.
The biomass was resuspended (40% w/v) in 50mM phosphate
buffer at pH 7. Cell disruption was accomplished in a bead
mill with 0.5mm glass beads (Dyno Mill-Multi Lab, Muttenz,
Switzerland). The grinding chamber was initially filled with a
50% v/v bead load and the biomass was fed with a peristaltic
pump (Watson–Marlow 323 S/D) at 5 mL/min and recirculated
for 15min. Temperature was kept constant at 4◦C. The disrupted
cell suspension was directly loaded into the ATPS.

Preparation of ATPS
Two basic ATPS compositions were studied for their influence
in performance of the pilot plant based on previous experiences,
System 1: 17% w/w PEG 1000 and 15.2% w/w potassium
phosphates and System 2: 14% w/w PEG 1000 and 18% w/w
potassium phosphates. In all the cases the potassium phosphates
mixture was composed of a 1.82:1 dibasic and monobasic
potassium phosphates ratio to obtain a pH of 7. For the stock
solutions, potassium phosphate and PEG 1000 were weighed
separately and mixed with the appropriate amount of distilled
water until complete dissolution.

Batch ATPS
In order to compare the performance of the continuous system,
ATPS batch systems were prepared with the same volume and
composition as the total processed volume in the pilot plant
continuous system (9 L of bottom phase and 3 L of top phase).
The sample was pre-dissolved in the total initial bottom phase at
the same concentration as the one employed in the continuous
system. Afterwards, the top phase was added and the system
was stirred for 10min. At the end of the mixing stage samples
from the top and bottom phases of the batch system were taken
manually from the middle of each phase bulk every minute.

Pilot Plant Configuration and Operating
Procedure
The pilot plant prototype was manufactured in stainless steel
by Patmon Automatización (Nuevo León, México). As shown
in Figures 1A,B it consists of 5 main stages: ATPS formulation
and storage of feeding stocks, a series of in-line static mixers
(adaptable from 1 to 4 static mixers), an adaptable length
polyurethane tubular coalescer (6.5m long), a liquid-liquid
gravity separator with three outlets for recollecting top, bottom
phase and interface and three final phase storage tanks. Phases
and sample are fed with three digital solenoid dosing metering
pumps with maximum capacity of 1.5 L/min (Tekna Evo, Seko
GmbH, Kastel, Germany). The static mixers are conformed
of acrylic cylindrical columns with a stainless steel screw and
nut packing. The gravity separator consists of a rectangular
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FIGURE 1 | Front view of the pilot plant configuration (A). Top view diagram

(B) showing the main elements: Feeding tanks (T1, T2, T3, T4), Pumps (P1,

P2, P3), Static mixers (M), Tubular Coalescer (TC), Gravity Separator (S),

Recollecting tanks (T5, T6, T7).

container (round shaped inner corners) with one inlet and three
vertical aligned outlets. Additional information about the pilot
plant dimensions can be found in Table 1. Pilot plant operation
was semi-automatized using a programmable logic controller
(PLC) (IFM Efector, Nuevo León, México) allowing independent
control of the flows.

Pilot plant runs were carried out at room temperature (25◦C).
The corresponding ATPS were mixed and equilibrated in tank
T1. Afterwards top and bottom phases were separated through
solenoid valves into T2 and T3 respectively. Starting in T4, the
disrupted cell suspension was fed independently. Knowing its
density as well of that of both phases, the feeding flow was setted
up. Samples were taken every minute from the outlets to the final
recollecting tanks during 30min runs.

Evaluation of Operational Performance
Phase entrainment profile (defined as the amount of carry-over
of one phase into the other) was first studied with the two
different system compositions, using a dye (gentian violet) as
tracer (Giraldo-Zuniga et al., 2006). Entrainment behavior was
compared with a batch system to choose the appropriate system
composition. Dye concentration in top phase was also measured
(580 nm, Bio-Tek Instruments, VT, U.S.A.). After the selection
of the system that generated lower entrainment in the bottom
phase, a duplicate full 24 factorial design augmented with 6
center points was carried out (Table 2). This experimental design
was implemented in order to study the effect of phases flow

TABLE 1 | Dimensions of the scaled-up prototype components.

Pilot plant component Dimension

Feeding tanks TP tank (T2) volume: 16 L

BP tank (T3) volume: 16 L

Sample tank (T4) volume: 5.5 L

Static mixers Length: 23.5 cm

Internal diameter: 2 cm

Void volume: 43.8 cm3

Phase coalescer Internal diameter: 1 cm

Length: adaptable (3-6m)

Separator Inlet diameter: 1.27 cm

Outlets diameter: 0.64 cm

Length: 43 cm

Width: 7.7 cm

Height: 7.7 cm

Internal volume: 800mL

Final recollecting tank TP tank (T5) volume: 23 L

IP tank (T6) volume: 23 L

BP tank (T7) volume: 23 L

TABLE 2 | Variables and levels of the central composite design (CCD) carried out

for enzyme recovery from spent brewer’s yeast using the pilot plant prototype.

Studied variables Levels

-1 1

x1 Top phase feed flow (mL/min) 100 300

x2 Bottom phase feed flow (mL/min) 200 400

x3 Sample load percentage 5 15

x4 Number of static mixers 1 3

rates, number of static mixers and load of sample over invertase
purification factor (PFBP) and activity recovery (RBP) in bottom
phase as well as entrainment in that phase (EBP), calculated as:

PFBP =

(

EA
Total protein

)

BP
(

EA
Total protein

)

0

(1)

RBP =
EABP

EA0
(2)

EBP =
VTP

VTP + VBP
(3)

Where EA0 represents the enzymatic activity on the disrupted
yeast supernatant, while VBP represents the bottom phase volume
and VTP represents the top phase volume measured in the
final recollecting tanks of the pilot plant. All experiments and
replicates were modeled and analyzed with JMP 14.1.0 data
software (SAS Institute, Cary, NC, USA) and response surface
using Minitab 18 software (Minitab Inc.).

Evaluation of Economic Performance
To perform an economic analysis, the commercial software
platform Biosolve Process (Biopharm Services, Chesham,
Buckinghamshire, UK) was used. For this, the methodology
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presented before was followed (Torres-Acosta et al., 2016).
Briefly, a model was created with which a determinisitic analysis
was done to obtain the production cost per batch (CoG/batch)
and cost per enzymatic unit (CoG/EU). Then production
parameters were varied only in the selected ATPS from the
previous section to analyze from an economic perspective the
significant results from the factorial design experiments.

To create a model for the production of invertase, the process
was simplified into a single unit operation which processed the
total amount of sample andmateriales required for the operation,
then it was calculated the production cost per batch (CoG/batch)
and per enzymatic unit (CoG/EU). To set up the model, the data
presented in Table 3 was used. Briefly, to fully construct a model,
four main datasets should be completed: (1) capital, (2) materials,
(3) consumables, and (4) labor.

Capital was calculated only taking into account equipment
cost, as this process is performed in an already equipped space
and only the acquisition of the main device and its static mixers
for the performance of continuous ATPS were required. To
obtain the capital charge per batch or per enzymatic unit, the
cost of the equipment required was treated as a loan with 12%
interest rate with a 10 years duration. Then it was divided by the
year duration and by batches calculated per year (2.5 h per ATPS
run−30min runs plus setup and cleaning time).

Materials for this model only include those involved in the
construction of the systems employed here (Polyethylene
glycol 1,000 Da and monobasic and dibasic potassium
phosphate). This particular process has the advantage of
not requiring consumables, contrasted to other unit operations,
like chromatography or different filtration types. Lastly, labor
was calculated using the salary of a PhD student, as production
was done like this in the pilot plant. Additionally, Biosolve is
able to integrate a fifth area called “Others,” in which maintance,
waste disposal and utilities costs are automatically calculated.
For this model it was calculated to be approximately 4.5% of the
CoG/EU.

Analytical Techniques
Invertase enzymatic activity was determined by the 3,5-
dinitrosalycilic acid method (DNS, 98%, Sigma Aldrich) (Miller,
1959). Absorbance was read at 570 nm in a microplate
spectrophotometer (Biotek, Vermont, USA). One unit of
enzymatic activity (U) was defined as the amount of enzyme
necessary to produce 1 µmol of glucose per minute in the
assay reaction conditions. Total protein was calculated using the
Bradford method and a calibration curve using BSA as protein
standard (Bradford, 1976).

RESULTS AND DISCUSSION

The knowledge of the system hydrodynamics is essential
in extraction processes. Usually, the performance of liquid-
liquid extraction systems can be affected for unwanted side
effects related to hydrodynamic parameters (Asadollahzadeh
et al., 2017). As an example, while low phase entrainment
results in higher yields, some works, have demonstrated that
mass transfer is improved in simplified equipments where the

operating range is increased (Glyck et al., 2015). In recent years,
the hydrodynamic parameters of different kinds of extraction
columns have been investigated by several researchers but not for
ATPS systems in pilot plant scale. In the present work, the design
of a pilot plant ATPS continuous process has been simplified and
optimized in terms of separation efficiency, load capacity, and
economic suitability for downstream processing of spent brewery
yeast as a model system.

Considering two ATPS compositions previously explored for
the recovery of enzymes (Vázquez-Villegas et al., 2011, 2015),
phase entrainments were compared. Top phase fed (TP) at
100 mL/min and bottom phase fed (BP) at 300 mL/min were
employed. The stabilization time was defined as the time in
which entrainment (EBP) of bottom phase (or top phase) in
the opposite phase does not change significantly for a period
of 5min. Entrainment was defined constant when the change
is no more than 10% of the previous value. For System 1
the stabilization time was ca. 20min, while for System 2 the
time for complete separation of phases was almost immediate
(Figures 2A,B). In this case, a larger difference between the
composition of the two phases (typically expressed as the tie-
line length value, TLL) benefits the equilibrium and separation
of the ATPS yielding shorter processing times. This increment in
the demixing rate as consequence of a higher TLL agrees with
previous observations (Salamanca et al., 1998; Aguilar and Rito-
Palomares, 2008; Narayan et al., 2011). Just for comparison, the
concentration of GV in top phase was monitored. While the dye
concentration was the same at the end of the sampling, a faster
equilibrium was observed also in the System 2 (Figure 2C). So,
this system was selected for the next experiments. The influence
of physicochemical parameters on the separation efficiency
when using mixer settler devices has been previously studied
(Salamanca et al., 1998; Vázquez-Villegas et al., 2011). In these
cases, as in this pilot plant, the operating volume ratio of the
phases (defined as the ratio of top phase between bottom phase
feeding flows) defines which of the phases acts as the continues
or the dispersed phase, where the viscosities play a determinant
factor for phase separation. A continuous salt phase, being much
less viscous than the polymer phase, favors shorter separation
times by lowering the friction between drops and the phase
(Asenjo and Andrews, 2012).

Spent brewer’s yeast was used as model of complex
cellular matrix to challenge the recovery of invertase with
the continuous pilot-scale device. Anticipating an altered
hydrodynamic behavior of the effluents, due to the complex
matrix addition, a full 24 factorial experimental design with six
central points was performed (Table 2). The experimental design
allowed the analysis of the partitioning behavior patterns due to
changes in the operation parameters. The ideal scenario for any
enzyme will be having the optimal conditions for maximizing
purity and recovery. In the case of invertase, when the results
of different factor combinations were analyzed, an average of
110.98 ± 28.44 % for recovery and 4.47 ± 2.46 for purification
fold in the bottom phase were obtained as a total average from
the full factorial runs. The high variability observed is explained
by the difference in response obtained at different factor levels.
Enzyme activity recoveries above 100% have been extensively
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TABLE 3 | Dataset used for model construction in Biosolve Process.

Cost component Cost (US $) Supplier

Capital (Equipment) Main equipment $ 35,240.90 Patmon Automatizacion

Static mixer $ 836.27 USA Blue Book

Consumables None Required $ – None

Labor Annual Salary (PhD Student in Mexico) $ 8,520.00 Conacyt (Mexican Science Council)

Materials (Prices used

were obtained for

large-laboratory scale

to overestimate

worldwide distribution)

Polyethylene Glycol 1,000 (1 kg) $ 56.20 Sigma-Aldrich

Potassium phosphate monobasic (20 kg) $ 607.70 Sigma-Aldrich

Potassium phosphate dibasic (10 kg) $ 1,020.00 Sigma-Aldrich

FIGURE 2 | Phase entrainment (EBP ) comparison between System 1 (A) and System 2 (B). Concentration of gentian violet used as tracer in top phase of Systems 1

and 2 (C).

documented for invertase and other enzymes when recovered
using ATPS (Cavalcanti et al., 2006; Babu et al., 2008; Porto
et al., 2008; Madhusudhan and Raghavarao, 2011; Nandini and

Rastogi, 2011; Rawdkuen et al., 2011; Karkas and Onal, 2012;
Priyanka et al., 2012; Duque-Jaramillo et al., 2013; Ketnawa et al.,
2014, 2017) and this phenomenon is attributed to the depletion
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FIGURE 3 | Response surface plots for recovery yield (A) and purification factor (B) of invertase from spent brewer’s yeast considering the effect of sample load (X3)

and number of static mixers (X4).

TABLE 4 | Results for the economic analysis. Breakdown and totals for cost of Goods per Enzymatic Unit.

CoG/EU (US$ x 10∧-3)

Sample load Static mixers Recovery yield Capital Materials Consumables Labor Other Total

5% 1 115% $0.34 $15.86 $ – $4.91 $1.01 $22.12

5% 3 80% $0.51 $22.79 $ – $7.06 $1.46 $31.82

15% 1 142% $0.09 $4.28 $ – $1.33 $0.27 $5.97

15% 3 108% $0.13 $5.63 $ – $1.74 $0.36 $7.86

of inhibiting proteins and common enzyme inhibitors by
differential partitioning. Common identified inhibitors include
Cu, Co and Ni salts which become insoluble in the presence of
the high phosphate concentrations in ATPS. Enzyme activation
has also been observed in ATPS due to an increase in the
enzyme flexibility and the structural modification of the active
sites in the presence of polymer chains of PEG (Babu et al., 2008;
Porto et al., 2008; Madhusudhan and Raghavarao, 2011; Nandini
and Rastogi, 2011; Karkas and Onal, 2012). Cavalcanti et al.
(2006) in extraction studies of phospholipase C, used a similar
PEG/phosphate ATPS and reported yields up to 230% attributed
to removal of inhibiting phenoic compounds (Duque-Jaramillo
et al., 2013).

The best combination of factors (1 mixer and 15% sample
load) attained a recovery of 129.35 ± 2.76% and a purification
factor of 4.98 ± 1.10 in the bottom phase of a PEG-phosphate
system; however, only the sample load and the number of static
mixers were significant, thus a surface response analysis was
performed. As observed in Figure 3, higher sample load yielded
major recoveries and slightly minor purity, as it would naturally
occur, while for the number of mixers, the use of one static
mixer yielded higher values for both recovery and purification
factor. This would mean that the higher the mixing rate, for
this particular system, the lower the efficiency of the pilot plant
in terms of recovery and purification. This could be better
explained when considering the amount of other contaminants
also partitioning or dispersing into the bottom phase, promoted
by higher mixing rates. Also, higher mixing promotes lower
coalescence rates that could affect separation efficiency resulting

in the lower purification observed in Figure 3B (Asenjo and
Andrews, 2012). The high statistical variability of purification
factor could also be the result of poor separation efficiency.
For invertase, other studies have shown a tendency to partition
toward the bottom phase in PEG/salt systems (Madhusudhan
and Raghavarao, 2011; Karkas and Onal, 2012; Vázquez-Villegas
et al., 2015), as it was observed in the present work. Taking this
into account, the economic analysis was carried out.

The economic analysis performed obtained interesting results
that further help to elucidate which parameters are relevant for
the continuous operation of an ATPS pilot plant. With the results
presented here (Table 4), linear regressions were calculated to
summarize the effect of each variable and to determine which are
economically significant. Results show that the only significant
parameter is the sample load, while number of static mixers is
not (Table 5). This can be explained by the fact that increasing
the load of sample directly affects the amount of invertase
being recovered, moreover, an increase in sample load gave as a
result an increased recovery yield. On the other hand, modifying
the amount of static mixers increased the capital charge in
the cost but given the elevated cost of the main equipment,
variations in the cost due to modifying the number of mixers are
diluted.

From an economic perspective, it is relevant to maximize
the sample load in an ATPS. It has been discussed before
(Aguilar and Rito-Palomares, 2008; Torres-Acosta et al., 2015,
2016) that due to low sample input into an ATPS, costs
cannot be further decreased. Sample load increases cannot be
used lightly in bioprocess modeling as the physics underlying
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TABLE 5 | Linear regression results.

Parameters* Coefficient p-value Significant?a

Intercept (β0) 29.71 0.0292 Yes

Sample Load (β1) −1.71 0.0339 Yes

Static Mixers (β2) 1.39 0.2001 No

*Equations of linear regression have the form: CoG/EU [US$ x10-3] = β0 + β1 x Sample

Load [%] + β2 x Static Mixers [Amount of mixers].
aUsing a significance level α = 0.05.

protein separation are too complex to model and it is not
certain the effect that modifying the amount of sample can
have on the recovery yield and purification factor. However,
having a proper analysis of sample input in this work, its
impact in the economic analysis can be determined and
quantified.

Further analysis is required to contrast continuous and batch
operation modes. Still, results for recovery and economics
together are promising, moreover if operational parameters
can be further optimized production costs will drop. Having a
continues ATPS, together with a phase forming chemical removal
operation synchronized can significantly reduce production
times and costs.

Novel strategies for the high throughput design of ATPS-based
processes (microfluidic modeling) as well as different modes of
operations (countercurrent modes) could also be considered in
the process to optimize performance of continuous processes
(Espitia-Saloma et al., 2016; Vázquez-Villegas et al., 2016). This
work highlights the importance of the influence of the system
properties on the hydrodynamics of the bioseparation process.
In some case studies, TLL has little or no influence on the
partition behavior of the desired product (Aguilar and Rito-
Palomares, 2008), allowing the selection of the best system
in terms of the hydrodynamic behavior in the equipment.
It should be emphasized that even in a batch process the
phase separation stage would imply a phase entrapment,
meaning a carry-over of one phase into the other, and
time (or a centrifuge) needed for the physical separation. In
this continuous mode, the physical separation of the phases
is already accounted as part of the stabilization time, the
time in which the evaluated parameter (Ei) begins to be
constant.

CONCLUSIONS

The recovery of products of interest from fermentation broths
and biological feedstock is one of the major bottlenecks in
the bioprocessing industries. This article introduces a first
approach for continuous pilot plant ATPS operation and process
establishment. A robust, large-scale, automated process able to be
managed by simple development strategies such as factorial and
central composite designs was established in this work.

A semi-automatized mixer settler pilot plant with a maximum
capacity of 1.5 L/min was characterized. The use of single
molecule samples allowed to demonstrate some of the recognized
advantages of continuous operation over batch mode. Short
stabilization times inside the coalescer avoid the use of
centrifugation steps, as typically suggested in batch processes,
also contributing to process integration, as evidenced by
processing a complex sample such as non-clarified spent
brewer’s yeast. Different combination of hydrodynamic operation
parameters allowed the high yield recovery and the highest
purification fold of invertase from a complex cell lysate.
Adjustments in phases flows did not altered the extraction
efficiency of the pilot plant. This works serves to boost the
application of ATPS in different operation modes by combining a
techno-economic approach to evaluate and optimize production
parameters that can facilitate ATPS generic and commercial
adoption.
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