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Abstract 

Using simulation, this study compares a critical mass of adopters with a critical mass of those who discontinue 

their adoption of social media. A network of reflex agents is simulated where each agent has an unchanging 

threshold and will adopt social media if the number of their friends who have adopted is greater than it. In the first 

study, the size of the critical mass that adopts is varied, and in the second, the size of the critical mass that 

discontinues use is varied. The studies show that a critical mass of leavers can cause a community to fail and 

that this mass can potentially be as small as that needed to influence a community to succeed; although given a 

certain critical mass, their leaving is less likely to cause failure than their adoption is success. This influence of 

the critical mass is facilitated by network structure. Copyright © 2013 John Wiley & Sons, Ltd 

Critical Mass and Technology Adoption 

In a social network, the position of each actor can alone influence others in the network (Tang, 2011). In this 

paper, we model and explore using simulation, the effect of users joining and leaving a social network, to 

understand how a critical mass affects both the success and failure of a social media platform. Social networks 

are of increasing importance to social science (Willer, 2007; Centola, 2009; Roca et al., 2012) and to electronic 

commerce research in particular (Cortizo et al., 2011; Liang and Turban, 2011) as services such as Facebook 

and Twitter have opened avenues for new business models (Liang et al., 2011) something referred to as social 

commerce (Stephen and Toubia, 2010). According to a recent special issue on the topic, social commerce raises 

a variety of new questions for e-commerce researchers and the field could become one of the most challenging 

research arenas in the coming decade (Liang and Turban, 2011). 

Social commerce is powerful because of the speed and distance that information spreads through social 

networks, which can generate considerable economic value (Stephen and Toubia, 2010) (for example, Amblee 

and Bui, 2011 on the effect of ‘electronic word of mouth’ marketing). The adoption of social networking 

technology then becomes an important research question. Research into technology adoption is well established 
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(Benbasat and Barki, 2007) but research into why users discontinue their use of technology is also critical, and 

work here has begun (Prins et al., 2009). In fact, users' postadoption behavior has now emerged as a key 

information systems research theme (Venkatesh et al., 2011) and an interesting subtheme of this work is why 

once successful technologies fail, which is where this paper makes its contribution. 

Discontinuation of use is a real threat for social media service providers, and by extension, it is also a risk for 

commercial organisations that wish to build business models on social networks. Recent developments in online 

social media have seen some services' popularity—in terms of numbers of users—wane whilst others continue to 

gain new users. The online social network Facebook remains the dominant online social media service in English 

speaking countries having overtaken services such as MySpace in terms of everyday usage and uptake. Newer 

services such as Google Buzz and Google+ attempted—but failed—to take market share away from Facebook. 

For several decades, researchers have been interested in the question of why people adopt information 

technologies (for instance, Hirschheim,2007). One prominent part of this work is critical mass theory (Marwell and 

Oliver, 1993). A critical mass is a small group of early adopters who are highly motivated to use the technology. 

Critical mass theory provides one explanation of how technologies ‘catch on’ where the critical mass influences 

other potential users to adopt. The typical adoption curve is shown in Figure 1. The curve starts as the critical 

mass slowly influences others until a tipping point is reached, after which rapid adoption occurs until a plateau 

where there are few new adopters (Markus, 1987). 

 

Figure 1. The S-curve of technology adoption 

Critical mass theory also suggests a potential explanation of why initially successful technologies eventually fail: 

a critical mass stops using the technology and influence others to do the same. 

Social media services such as Facebook, Twitter and Yammer rely on word of mouth marketing. In other words, 

they rely on a network of individuals where small groups of users (the critical mass) adopt and influence others to 

follow suit, and these new adopters influence others and so on. The common phrase to describe this is that the 

phenomenon has gone viral. For example, the popular microblogging service Twitter only used word of mouth 

marketing, encouraging it with the strategic positioning of public Twitter feeds where potential early adopters 

might have seen them (Levy, 2007). Social media services allow friends to connect with each other. The services 

are meaningless without these connections. This makes a user's continued use dependent on the continued use 

of others. 

The current study makes use of both of these facts—the necessity of connections to facilitate uptake and the 

necessity of connections to facilitate continued use—to simulate data to model how early adopters affect take-up 

across the community of potential users and how the same community—once successful—is affected by users 

leaving. 
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Influence and Online Social Networks 

Following (Granovetter, 1978) who—drawing on the work of (Schelling, 1971)—uses a threshold to illustrate how 

two almost identical crowds can arrive at vastly different group behavior, influence is often modelled by a 

threshold rule (Watts and Dodds, 2007; Centola, 2010). Watts and Dodds (2007) describe a threshold rule as one 

where ‘individuals will switch from A to B only when sufficiently many others have adopted B in order for the 

perceived benefits of adopting a new innovation to outweigh the perceived cost’. In the language of social media, 

the probability,p(adopt), of a user i adopting a service is 1 whenever the number of their friends m (their network 

neighbours) who have adopted is greater than their threshold ϕ: 

  

Easley and Kleinberg (2010, p.500) give a good summary of how a threshold rule arises by considering a 

coordination game where individuals must choose between two choices A and B where an incentive exists for 

any two connected individuals to match their choice. If two connected individuals both choose A, they obtain a 

benefit or payoff of a. If both adopt B, they obtain a payoff of b, and if their choices do not match, they obtain a 

pay-off of 0. To see how the threshold arises, consider what one of them should do to maximise their payoff if 

some of their neighbours adopt A and some adopt B. If a fraction, p of d neighbours adopt A then (1 − p)d adopt 

B. If an individual chooses A, they obtain a pay-off of pda, and (1 − p)db if they choose B. A is therefore the better 

choice when 

  

This is the threshold rule: if b/(a + b) of an individual's neighbours choose A, then they should too. 

In a review of technology adoption literature, Poe (2011) discusses how new communication technologies both 

arise and are adopted. Focusing on the work of Harold Innis (Innis, 1950; Innis, 1951), Poe argues that 

communication technologies are pulled into our lives, and he distills how this happens into seven rules. One of 

these rules is that only organised interests can produce the demand necessary to pull a new technology into 

mass use. Organised interests overcome adoption barriers. Such a barrier exists for the first person to adopt a 

new communication technology. For instance, if only one person owns a telephone, it is useless to them, but if 

two people organise themselves to each own a phone, then they can now be used to talk to each other. As every 

new person adopts, the usefulness of the device increases for everyone. Thus, the ultimate success of a 

communication technology is dependent on a small group of early adopters, the critical mass. One way it is 

believed that a critical mass pulls a new technology into adoption is by social influence. 

Social influence appears as a construct in many theories of technology adoption although often different 

terminology is used to label it. The term social influence is the one used in the Unified Theory of Acceptance and 

Use of Technology model (Venkatesh et al., 2003), but the same construct has appeared as ‘subject norm’ in the 

theory of reasoned action (Ajzen and Fishbein, 1973) and the theory of planned behavior (Ajzen, 1991), as ‘social 

factors’ in the model of PC utilisation (Thompson et al., 1991), and as ‘image’ in innovation diffusion theory 

(Rogers,1995). Each of these constructs measures how much an individual perceives their behavior is influenced 
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by the way in which they believe others will view them as a result of using the technology. In the Unified Theory 

of Acceptance and Use of Technology model, social influence is measured by the following items, which users 

indicate agreement with on a Likert scale: 

1. People who influence my behavior think that I should use the system. 

2. People who are important to me think that I should use the system. 

3. The senior management of this business has been helpful in the use of the system. 

4. In general, the organisation has supported the use of the system. 

Under the threshold rule social influence ‘builds up’ with each friend who has adopted adding to it until the 

threshold is breached. A threshold rule has proven a convenient and realistic tool for modelling human behavior 

(Schelling, 1973; Valente, 1996; Morris, 2000), and in a recent study, Centola, (2011) found that a threshold rule 

is used by members of online social networks in their decision to adopt certain behaviors. 

 

Network Simulation 

Adoption/discontinued use is examined here by simulation. Social science has been slow to adopt simulation as 

a research method (Bainbridge,2010). Philosophers of science have started to consider it, with (Winsberg, 2010) 

giving a review, devoting much of the book to examining the question of where simulation sits between theorising 

and experimenting. Although certainly not a position beyond criticism, the current work views its simulations as 

objects that are experimentally manipulated, with the computer being a physical stand in for a community of 

microbloggers. An alternative way of examining the current research question would be to incentivise a number 

of human subjects to form a Twitter-like microblogging community and manipulate a critical mass of them to start 

sending posts. Although many might argue that a fundamental difference exists between these two methods, 

both in fact are simulations (Winsberg, 2010). Following the arguments of, for example, Simon (1969) and Guala 

(2002), it might be claimed that the difference is that the latter shares a deep, material similarity with the 

phenomena of interest (they both involve humans making decisions), whereas the former does not. However, 

even this position is not beyond criticism with some concluding from it that it makes the distinction between 

simulation and experiment even more unclear by forcing a decision on when a difference becomes deep and 

material (Winsberg, 2010). 

We justify the use of a computer being a physical stand in for an online community by our desire to have a 

community with identical and known social network structure and identical and well-understood decision rules, all 

of which can be presented with a variable critical mass of adopters and leavers. The simulated communities are 

populated by agents whose network structure and decision rules are based on theory. By manipulating the 

number of early adopters or leavers, how a community performs over a period can be measured. The first of the 

two elements of the model, network structure, is now examined. The second, the decision rule, is described in the 

next section. 

Social networks (including online social networks and in fact many other types of network) are characterised by 

highly connected clusters within a population, with short paths between any two randomly selected people (Watts 

and Strogatz, 1998). This fact was famously demonstrated by Milgram's six degrees of separation experiment 
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(Milgram, 1967). Imagine two groups of friends on opposite sides of the planet. If two of them to meet on a plane 

then suddenly there is at most three jumps between any two of them (A knows B, B met C on the plane and C 

knows D). This is known as the small world phenomena. For instance, Twitter and Facebook are known to be a 

small world network (Java et al., 2007; BBC, 2011). 

The algorithm used in this study for creating a small world network was presented by Watts and Strogatz (1998) 

and described in detail by Watts (1999). It results in a community that has high clustering and short path lengths 

(Newman, 2010). Clustering can be informally explained as ‘the friend of my friend is also my friend’ and can be 

defined as: if node A is related to node B and B is related to C, then—if the network exhibits high clustering—it 

follows that A tends to also be related to C. Path length is the number of edges, or relationships, between any 

two nodes in the network and in a social network is a measure of the shortest number of acquaintances needed 

to link two people (refer to Table 1for examples). 

Network Path length 

Film actors 3.65 Watts and Strogatz, 1998 

Coauthorship in mathematics ≈ 4.7 Newman, 2001 

Facebook 4.74 BBC, 2011 

Company directors ≈ 3.5 Davis et al., 2003 

Table 1. Average path lengths of several social networks with sources 

The small world model does not capture all characteristics of real social networks (for instance, preferential 

attachment Barabási and Albert,1999), but it does give a stable social network structure that provides a platform 

for robust experimentation and is well supported in the literature (for example, Opuszko and Ruhland, 2013). It 

also demonstrates the strength of weak ties. 

Strong ties (Granovetter, 1973) refer to close acquaintances, those that are close to us physically and/or 

emotionally. Conversely, a weak tie is a relationship with someone we exchange with rarely. The Watts/Strogatz 

model shows that a few weak ties between strongly tied groups drastically changes the dynamics of a network 

and gives short path length between any two members in it. 

Centola and Macy (2007) examine the implications of this fact in a comparison of simple and complex 

contagions. A simple contagion exists when contact with one carrier is enough to pass it on. This could be an 

infectious disease but applies equally to information. Complex contagions require reinforcement, that is, contact 

with more than one carrier. Social influence is an example: for instance, belief in a myth probably requires more 

than one person to retell a story before it becomes convincing. Centola and Macy (2007) find that while a small 

world network structure allows the spread of simple contagions, this cannot be generalised to collective 

behaviors. This is because a single weak tie allows flow from one strongly tied group to another, but for complex 

contagion, what is required is multiple signals from one strongly tied group to another. A comparison of this work 

with the current study is offered in the Discussion Section. 

 

Procedure 
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All-machine simulations (Jaccard and Jacoby, 2010) of two social network structures were developed in the 

statistical programming language R. Each node in the networks was created to be a reflex agent 

(Bermudez, 2010) that would act according to a decision rule and react to the actions of other agents. The 

decision rule was the threshold rule described earlier: each agent had an unchanging threshold and would adopt 

social media if the number of their friends (network neighbours) who had adopted is greater than it. The networks 

were set up using the igraph package (Csárdi and Nepusz, 2006) with visualisation routines for the network 

images in this paper taken from the network package (Butts et al., 2007). 

The first network was called fnet, for follower network. The fnet was created using the watts.strogatz.game 

function in igraph, which is designed to simulate a small world according to the (Watts and Strogatz, 1998) 

procedure which can be summarised as follows. A set number of agents are conceptually arranged in a circle 

and linked to their x nearest neighbours, where x is a variable parameter. The links are then rewired randomly. 

What this means is that an existing link is removed (between agent A and B say) and replaced with a link to 

another randomly chosen agent (so now, agent A is linked to agent K). The probability of this happening for each 

link is another variable parameter. 

The following parameters (included in full to allow replication) were used with the watts.strogatz.game function 

and were set after preliminary experimentation: 

 The dimension of the starting lattice = 1 (as the network records only one type of connection intended to 

represent Twitter's following feature where A can follow B but B does not necessarily—although could—

follow A). 

 The number of agents = 200. 

 The neighbourhood within which the agents will be connected = 5. 

 the rewiring probability = 0.1. 

 Multiple edges and loops (Newman, 2010) were not allowed. 

The value for the rewiring probability was taken from Bruggeman (2008) who states that a probability of 

approximating this value gives short path lengths and high local clustering similarity to a real social network. The 

removal of multiple edges and loops means that agent A and B can only be connected once in the same direction 

(multiple edge), and A cannot be connected to itself (loop). 

As hinted in the preceding description, the simulated networks were directed, which means that links between 

agents run from one agent to the other and this direction has meaning. This can be nicely illustrated by 

considering the two most popular social networking services Facebook and Twitter. Relationships on Facebook 

are undirected: if person A is friends with person B, then person B is friends with person A. On Twitter 

relationships are directed: person A can follow person B without person B following person A. 

The second network was a configuration model network that was created as a control, as suggested by Newman 

and Park (2003). A configuration model is a network that has a given degree sequence but in all other respects is 

random (Newman, 2010). This means that the number of agents each agent is connected to is specified, but 

those agents are chosen randomly. The number of agents in the configuration model was 200, and the degree 

sequence was identical to that of fnet, with—as before—the removal of multiple edges and loops. (This was 

achieved using the igraph degree.sqeuence.game and simplify functions.) The result is that agents in the 
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configuration model had the same number of followers as those in fnet. Both networks are shown in Figure 2. The 

clustering coefficients of fnet (0.680) and the configuration model (0.087) were in line with what would be 

expected (Newman and Park, 2003) giving confidence that the models are created as intended.1 

 

Figure 2. The fnet (left) and the configuration model (right) 

Each agent was assigned a threshold. The values were normally distributed with parameters taken from a normal 

distribution, N(4,1), and assigned randomly to agents. An identical set of threshold values was used for both 

communities (the fnet and the configuration model). How a threshold rule was derived was shown earlier in the 

Influence and Online Social Networks Section. Lacking empirical data for setting the payoffs (which were also 

described in the Influence and Online Social Networks Section), using a normal distribution of threshold values 

seems appropriate intuitively, and the parameters used were chosen after experimentation. It should be noted 

however that our conclusions are independent of these threshold values, and we would not expect our 

observations to change had alternative thresholds been used. 

The following procedure was then performed on both communities: a random x agent was chosen as the critical 

mass and forced to adopt and signal this adoption to each of their network neighbours. The entire community of 

agents then responded to this according to their decision rule. This adopting and responding lasted for 40 

discrete periods. The value of x was varied from 1 to 40, and for each, the procedure was repeated 50 times. 

Then, to simulate a successful community from which a critical mass would leave, all agents were forced to 

adopt. A random x agent was made to discontinue use, then other agents reacted to this according to their 

decision rule. As before titx was varied from 1 to 40, and for each value of x, the procedure was repeated 50 

times. 

The choice of running the simulation for 40 periods was taken after experimentation as this was found to be 

enough to determine whether the community would succeed or fail. 

The ‘Outsiders’ 

Given the procedure used to set up the community of agents, some agents (termed ‘outsiders’) by chance had a 

higher threshold than number of people they are following, and therefore, they would never adopt in the adoption 

study and would leave the community immediately in the discontinued use study. The fnet had four such agents; 

the configuration model had 43. These outsiders put a limit on how successful each community could ever be. 

Although it is important to know this in the adoption study, it is not a concern as they would not artificially inflate 

the adoption figures. However, it is a concern in the discontinued use simulation as these agents greatly increase 

the critical mass of leavers. To deal with this, it was decided that because such an agent could never adopt in the 

adoption study, then they would be made to never leave in the discontinued use study, unless randomly chosen 

as part of the critical mass of leavers. This was achieved by manipulating the threshold values so the outsiders 

would always post—the decision rule did not change, but their threshold value was not randomly assigned. 
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The implication of doing this is a change in the size of the community. The fnet went from being a community of 

200 to being one of 196. The configuration model went to a community of 157. In interpreting our results, we 

have been careful to ensure that—as with other parameter values used—what we are concluding is independent 

of the outsiders. The way we ensured this was by not directly comparing the absolute values of the number of 

adopters in fnet and the configuration model. We compared fnet in the adoption study with fnet in the 

discontinued use study and compared the configuration model in the adoption study with the configuration model 

in the discontinued use study. However, we only compared fnet with the configuration model by comparing the 

likelihood of success or failure in each and not the absolute results obtained in each. 

Defining Success 

For the analysis of results, it is necessary to define what a successful community looks like in terms of the 

number of adopters. The decision on this is arbitrary, and 80% was chosen as the success/failure cut-off point. 

Therefore, if a community achieves an adoption figure of 80% of its community of 200 minus the outsiders, then it 

is considered a success, otherwise it is considered a failure. Note again that although to be a success, the 

configuration model has to achieve fewer posting agents than fnet; the conclusions drawn in the Discussion 

Section are independent of this fact. 

Results 

The pattern of number of adopters across the 40 periods for one of the trials is shown in Figure 3, which has the 

familiar adoption S-curve (Jackson, 2008). Our results are then summarised in Figures 4 and 5. Figure 4 shows 

the maximum number of adopters across all 50 runs of the simulation and the mean number of adopters 

achieved in the 50 runs for both fnet and the configuration model. Figure 5 shows the same for leavers. Three 

elements of the graphs should be noted. The first is the point at which the fnet line flattens out in each of the two 

upper panels. These panels show the maximum number of adopters/leavers and represent what 

is possible rather than what is likely. The point at which the line flattens is remarkably similar in each line. This 

suggests that a similar size of critical mass to one that can make a community successful can also make a 

community fail. In fact, the minimum size of a critical mass of adopters that was found to produce a successful 

community was seven, whereas the minimum critical mass of leavers that was found to destroy a successful 

community was six. 

 

Figure 3. An example of a successful adoption in fnet with x = 7 
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Figure 4. Maximum and mean number of adopters 

 

Figure 5. Maximum and mean numbers of leavers 

The second element to note is the point at which the fnet lines flatten in the two lower panels. This is the mean 

number of adopters/leavers and represents what is likely, not what is possible. For adoption (Figure 4), the line 

starts to flatten at a critical mass of about 30 (the value on the x-axis). The point is not even visible on 

Figure 5 but is certainly greater than 40. This suggests that the likelihood of a given critical mass influencing 

successful adoption is greater than the likelihood of the same critical mass causing a successful community to 

fail.2 In fact, when xreached a value of seven, it created successful communities in four out of the 50 attempts. 

Only one of the successful communities was destroyed by a similar-sized critical mass. When x reached around 

25, successful communities were more common than failed ones. A similar pattern was seen in those 

communities that failed: after a certain point, failed communities were more common than successful ones, 

although the probability of failure was lower than the probability of success. 

The third element to note is the difference between the fnet and configuration model line: in all panels, the 

configuration model lies to the right, meaning that adoption/failure is more likely in fnet than the configuration 

model and that a larger critical mass is required in the configuration model to influence success or failure. This 

suggests that the reason a small critical mass can have a powerful impact on the community either towards 

success or failure lies in the structure of the network. 

Discussion 

Although interesting to see how a community can be affected by a minority of people (just six or seven), this is 

not a key finding as these values stem from the choice of threshold values: higher threshold values would have 

increased the minimum size of the critical mass. The valid finding is that in a community of agents whose 

decisions are dependent on the decisions of others, as soon as the critical mass is able to influence at least one 

agent, then there is a probability that the community will succeed or fail. 

We offer two conclusions. Firstly, a critical mass of leavers can cause an online community to fail. Indeed, this 

mass can potentially be as small as the mass needed to influence a community to succeed; although given a 
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certain critical mass, their leaving is less likely to cause failure than their adopting will cause success. Secondly, 

the likelihood of success/failure is determined by the network structure. 

The first conclusion is based on a comparison of fnet in the two studies, which held network structure, the agents' 

threshold values and the decision rule constant. The second conclusion is based on a relative comparison of fnet 

with the configuration model. Here, the difference is the network structure, with all else held constant. The 

structure in a social network not only makes adoption more likely but also makes it susceptible to discontinued 

use. 

The ‘contagion’ modelled in this paper is complex in that a threshold must be breached for an individual to adopt. 

Centola and Macy (2007) find that a small world network structure can impede the spread of complex contagions 

until a sizeable critical mass exists that can start to breach individuals' thresholds. They also find that for complex 

contagion to spread, the critical mass must also be spread throughout a network: a strongly tied group of any size 

cannot influence another strongly tied group with one weak tie when the contagion is complex; multiple signals 

are required (Figure 6). Therefore, the important factor in leading a community to success (or failure) is whether a 

subset of the x chosen agents are connected to the same agent and although perhaps unable to influence it 

alone, can jointly influence it. 

 

Figure 6. The upper panel shows three strongly tied groups with one weak tie between two of them allowing a 

simple contagion to spread to the group on the right. However, if node A needs two signals to breach its 

threshold, a complex contagion will not spread. A second weak tie is required (bottom panel) 

Centola and Macy (2007) also report that a small world structure tends to inhibit the spread of a complex 

contagion when compared with a simple contagion and that a small world facilitates the spread of all contagions 

(simple and complex) when compared with both a fully regular model and a random model. Our results are in 

agreement with this second finding (our data do not allow us to comment on the first). We find that when the 

critical mass is able to influence at least one person, the small world structure of fnet facilitates the spread of 

contagion, when compared with the random configuration model: social networks are more efficient than random 

ones at allowing the spread of contagions of all levels of complexity, which includes ideas, disease, information 

and social media technologies. 

Limitations 

A limitation of this work is that although these conclusions do not depend on the values of the threshold 

parameters, they do depend on the existence of a threshold decision rule, which may appear too simplistic to 

capture complex human behavior. However, the threshold decision rule has been found to apply in many 

decisions, including as mentioned earlier, adopting certain behaviors in online social networks (Centola,2011), 

http://onlinelibrary.wiley.com/doi/10.1002/sres.2231/full#sres2231-bib-0014
http://onlinelibrary.wiley.com/doi/10.1002/sres.2231/full#sres2231-fig-0006
http://onlinelibrary.wiley.com/doi/10.1002/sres.2231/full#sres2231-bib-0014
http://onlinelibrary.wiley.com/doi/10.1002/sres.2231/full#sres2231-bib-0013
http://onlinelibrary.wiley.com/store/10.1002/sres.2231/asset/image_n/sres2231-fig-0006.png?v=1&t=icdefnq3&s=fd28ae52701e0d8dc56da06568b01f24d2216045


and it is therefore not unrealistic to use it here. Another limitation is that it examines a readymade, fully formed 

community, where the number in the community and the network of links between them is set before the 

simulation is run. In reality, community membership changes over time as do the links between members. Future 

work should look at how this impacts on community success or failure. 

One criticism that has been levelled at similar work (Watts and Dodds, 2007) is that is it based entirely on 

computer simulations (Watts, 2011). However, simulations are useful tools that can generate great insight 

(Watts, 2011). 

Conclusions 

This study compared a critical mass of adopters with a critical mass of those who discontinue their adoption of 

social media. Results showed that a critical mass of leavers can cause a community to fail and that this mass can 

potentially be as small as the mass needed to influence a community to succeed; although given a certain critical 

mass, their leaving is less likely to cause failure than their adopting is success. The influence of the critical mass 

is facilitated by the network structure. 

All the code that was used in this study is available from the authors. 

1. 1 

In line with other studies itepNewman10, when calculating the clustering coefficient, the direction of the network 

edges has been ignored. 

2. 2 

We use here an estimated probability that is actually the observed probability calculated from the sample of 50 

trials of each value of x. 
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