
Genetics and Genomics of Pulmonary Arterial Hypertension 

 

Florent Soubrier, MD, PhD∗, , , Wendy K. Chung, MD, PhD†, Rajiv Machado, PhD‡, Ekkehard Grünig, 
MD§, Micheala Aldred, PhD‖, Mark Geraci, MD¶, James E. Loyd, MD#, C. Gregory Elliott, MD∗∗, 
Richard C. Trembath, MD††, John H. Newman, MD#, Marc Humbert, MD, PhD‡‡ 

∗ Genetics Department, Hospital Pitié-Salpêtrière, Assistance Publique Hôpitaux de Paris (APHP), 
Unité Mixte de Recherche en Sante (UMRS) 956 Institut National de la Sante et de la Recherche 
Medicale INSERM, Université Pierre et Marie Curie Paris 06 (UPMC), and Institute of 
Cardiometabolism and Nutrition (ICAN), Paris, France 

† Departments of Pediatrics and Medicine, Columbia University Medical Center, New York, New York 

‡ University of Lincoln, School of Life Sciences, Lincoln, United Kingdom 

§ Centre for Pulmonary Hypertension at University Hospital Heidelberg, Heidelberg, Germany 

‖ Genomic Medicine Institute, Cleveland Clinic, Cleveland, Ohio 

¶ Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado Denver, Aurora, 
Colorado 

# Pulmonary Hypertension Center, Division of Allergy, Pulmonary and Critical Care Medicine, 
Vanderbilt University Medical Center North, Nashville, Tennessee 

∗∗ Departments of Medicine at Intermountain Medical Center and the University of Utah, Salt Lake 
City, Utah 

†† Division of Genetics and Molecular Medicine, Kings College, London, United Kingdom 

‡‡ Centre de Référence de l'Hypertension Pulmonaire Sévère, Service de Pneumologie, Hôpital de 
Bicêtre, APHP, Le Kremlin Bicêtre, Université Paris-Sud, Faculté de Médecine, Le Kremlin Bicêtre; 
Département Hospitalo-Universitaire (DHU) thorax Innovation, AP-HP, Le Kremlin Bicêtre; UMR_S 
999, INSERM and Université Paris-Sud, LabEx LERMIT, Centre Chirurgical Marie Lannelongue, Le 
Plessis Robinson, France 

Received 15 October 2013, Accepted 22 October 2013, Available online 16 December 2013 

Under an Elsevier user license 

 

Major discoveries have been obtained within the last decade in the field of hereditary predisposition 
to pulmonary arterial hypertension (PAH). Among them, the identification of bone morphogenetic 
protein receptor type 2 (BMPR2) as the major predisposing gene and activin A receptor type II-like 
kinase-1 (ACVRL1, also known as ALK1) as the major gene when PAH is associated with hereditary 
hemorrhagic telangiectasia. The mutation detection rate for the known genes is approximately 75% 
in familial PAH, but the mutation shortfall remains unexplained even after careful molecular 
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investigation of these genes. To identify additional genetic variants predisposing to PAH, 
investigators harnessed the power of next-generation sequencing to successfully identify additional 
genes that will be described in this report. Furthermore, common genetic predisposing factors for 
PAH can be identified by genome-wide association studies and are detailed in this paper. The careful 
study of families and routine genetic diagnosis facilitated natural history studies based on large 
registries of PAH patients to be set up in different countries. These longitudinal or cross-sectional 
studies permitted the clinical characterization of PAH in mutation carriers to be accurately 
described. The availability of molecular genetic diagnosis has opened up a new field for patient care, 
including genetic counseling for a severe disease, taking into account that the major predisposing 
gene has a highly variable penetrance between families. Molecular information can be drawn from 
the genomic study of affected tissues in PAH, in particular, pulmonary vascular tissues and cells, to 
gain insight into the mechanisms leading to the development of the disease. High-throughput 
genomic techniques, on the basis of next-generation sequencing, now allow the accurate 
quantification and analysis of ribonucleic acid, species, including micro-ribonucleic acids, and allow 
for a genome-wide investigation of epigenetic or regulatory mechanisms, which include 
deoxyribonucleic acid methylation, histone methylation, and acetylation, or transcription factor 
binding. 
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Genetics of Pulmonary Hypertension 

Hereditary predisposition to pulmonary arterial hypertension: from major genes to associated single 
nucleotide polymorphisms 

 

Over 300 independent BMPR2 mutations (coding for a type II receptor member of the transforming 
growth factor [TGF]-β family) have been identified that account for approximately 75% of patients 
with a known family history of pulmonary arterial hypertension (PAH), and up to 25% of apparently 
sporadic cases have now unequivocally established defects in this gene as the major genetic 
determinant underlying PAH (1). Pathogenic mutations in the type I receptor ACVRL1 and, at a 
significantly lower frequency, the type III receptor endoglin in multiple kindreds cause PAH 
associated with hereditary hemorrhagic telangiectasia (HHT) (2). Together, these observations 



support a prominent role for TGF-β family members in the development of PAH. Consequently, a 
series of studies have adopted a candidate gene approach to delineate novel genetic variants by 
examining TGF-β receptors and effectors in patient cohorts without mutations in the known PAH 
genes. With conventional analytical techniques, Shintani et al. (3) identified a truncating mutation in 
the bone morphogenetic protein (BMP)-responsive gene SMAD9 (p.C202X) in a panel of 23 Japanese 
cases. A second truncating mutation (p.R294X) has since been identified in another patient of Asian 
descent (4). A similar screen of the BMP-specific SMADs and SMAD4 described a series of 4 variants 
in 198 idiopathic pulmonary arterial hypertension (IPAH) patients. These variants in SMAD1 (p.V3A), 
SMAD4 (p.N13S; c.1448-6T>C), and SMAD9 (p.K43E) were described as being of unknown 
significance due to their moderate effects on canonical downstream BMP-mediated signaling 
outcomes (5). The SMAD9 variants are more compelling, because these data are supported by the 
development of clinical and histopathological features of pulmonary hypertension in a Smad9 knock-
out mouse model (6). More recently, 2 missense mutations of the type I receptor BMPR1B (p.S160N 
and p.F392L) were reported in a cohort of 43 IPAH patients. Subsequent functional and reporter 
assays suggested that these variants generated an induction of SMAD9 and augmentation of 
transcriptional activity indicative of a gain-of-function mechanism. Because the preceding studies, in 
conjunction with the Smad9 mutant mouse model, suggest a molecular mechanism of 
haploinsufficiency for this gene, the observations described by Chida et al. (7) would seem to be 
contradictory and require further investigation on the functional level. Austin et al. (8) used whole 
exome sequencing to study a 3-generation family with multiple affected family members with PAH 
but no identifiable mutation in the known heritable pulmonary arterial hypertension (HPAH) genes 
and identified a novel gene for HPAH: Caveolin-1 (CAV1). They also identified a de novo frameshift 
mutation in a child with IPAH. CAV1 encodes a membrane protein of caveolae abundant in the 
endothelium and other cells of the lung. Caveolae are rich in cell surface receptors critical to 
initiation of a cellular signaling cascade such as the TGFβ superfamily, nitric oxide pathway, and G-
protein coupled receptors. Aberrant signaling at the plasma membrane might be the mechanism for 
PAH pathogenesis. Their study demonstrates that mutations in CAV1 are associated in rare cases 
with familial PAH and IPAH, and it could provide new insight into the pathogenesis of PAH. 

 

Exome sequencing in another family with multiple affected family members without identifiable 
HPAH mutations was found to have a heterozygous novel missense variant in the potassium channel 
KCNK3 (9). Analysis for additional familial PAH cases and IPAH cases identified 5 additional 
heterozygous novel missense variants. All 6 variants are located in highly conserved amino acids and 
are predicted to be damaging by in silico analysis. With transient transfection in COS-7 cells, whole 
patch clamp procedures demonstrated that each of the 6 mutations resulted in loss of function. 
Some, but not all, mutations were rescued by the phospholipase inhibitor, ONO RS-082. KCNK3 
encodes a pH-sensitive potassium channel in the 2-pore domain superfamily (10). It has been 
reported that this potassium channel is sensitive to hypoxia and plays a role in the regulation of 
resting membrane potential and pulmonary vascular tone 11, 12 and 13. Identification of this gene 
as a cause of HPAH and IPAH and the possibility of rescuing specific mutations might provide a new 
target for PAH treatment. 

 



Childhood-onset PAH shows some clinical and genetic differences from adult-onset PAH. The 
frequency of BMPR2 mutations found in sporadic cases is far lower than in adult-onset PAH 14, 15 
and 16. Pulmonary hypertension is an uncommon complication in many genetic disorders, although 
in certain syndromes such as Down syndrome, PAH is more common (17). The increased risk for PAH 
with Down syndrome is due to left-to-right cardiac shunts; in addition, upper airway obstruction 
associated with obstructive sleep apnea might promote non-PAH pulmonary hypertension (18). 
Genetic syndromes more commonly but not necessarily associated with congenital heart disease 
(CHD) and pulmonary hypertension include DiGeorge syndrome, VACTERL syndrome, CHARGE 
syndrome, Scimitar syndrome (19), Noonan syndrome (20), and chromosomal anomalies associated 
with congenital diaphragmatic hernia. Genetic syndromes associated with pulmonary hypertension 
usually not associated with CHD include Adams-Oliver syndrome 21 and 22, neurofibromatosis type 
1 23 and 24, long QT syndrome, hypertrophic cardiomyopathy, Cantu syndrome (25), autoimmune 
polyendocrine syndrome (26), mitochondrial disorders including mitochondrial encephalopathy 
lactic acidosis and stroke-like episodes (27), Gaucher disease (28), and glycogen storage diseases 
(GSDI and GSDIII) (29). The mechanism for development of pulmonary hypertension has not been 
definitely demonstrated for most genetic syndromes but could involve increased pulmonary blood 
flow with left-to-right shunts with CHD, upper airway obstruction, dysfunctional vascular smooth 
muscle cells with hyperproliferation leading to pulmonary vessel stenosis and remodeling (Adams 
Oliver syndrome 21 and 22 and neurofibromatosis type 1) 24 and 30, pulmonary venous obstruction 
(Cantu syndrome) (25), or production of diffusible hepatic factors increasing the pulmonary 
pressures (Gaucher disease and GSD) (29). Notably, pulmonary hypertension in patients with 
Gaucher disease has been reported to respond well to treatment of the primary metabolic disorders 
with enzyme replacement therapy (28). 

 

Nimmakayalu et al. (31) reported a microdeletion encompassing TBX2 and TBX4 in a case of 
syndromic pulmonary hypertension associated with microcephaly thyroid and sensorineural 
abnormalities. Recently, Kerstjens-Frederikse et al. (32) studied 3 children with idiopathic or familial 
PAH associated with mental retardation and dysmorphic features by comparative genomic 
hybridization to identify deletions encompassing the same locus. They found 3 overlapping deletions 
at 17q23.2 involving also the TBX2 and TBX4 genes. These genes were subsequently sequenced in 
the 20 children, and 3 additional mutations were found in the TBX4 gene, which is responsible for 
the small patella syndrome. All patients with the TBX4 mutations present with signs of small patella 
syndrome. Inversely, careful investigation of patients known to have small patella syndrome did not 
reveal pulmonary hypertension. 

 

Another approach for identifying genes predisposing for PAH is to perform association studies using 
polymorphic markers (single nucleotide polymorphisms [SNPs]) distributed throughout the whole 
genome. This approach requires a large number of patients and control subjects to compare the 
genotype frequencies in the 2 groups and look for a significant difference that can indicate 
association between the disease and the marker. With such an approach, Germain et al. (33) 
identified an SNP associated with IPAH and the familial form of PAH not caused by BMPR2 



mutations. The risk allele of the SNP is associated with an odds ratio for PAH of 1.97 (95% confidence 
interval: 1.59 to 2.45; p = 7.47 × 10−10) and is close to the Cerebellin 2 (CBLN2) gene on Chr 18q22.3. 

 

The molecular basis of the variation in penetrance observed for BMPR2 mutations has been 
addressed by several studies. The question is made difficult by the limited number of patients who 
can be included in this type of study, which requires large series of patients to reach statistical 
significance. Different approaches have been used. Philips et al. (34) studied a functional 
polymorphism of the TGF-β1 gene to investigate a possible disequilibrium between the BMPs and 
TGF signaling pathways that might influence the penetrance of the BMPR2 mutations. They 
proposed that the TGF-β1 polymorphism modulates the age at diagnosis and penetrance of the 
BMPR2 mutations. West et al. (35) used another approach by studying gene expression in 
immortalized B-lymphocyte cell lines of BMPR2 mutation carriers, either affected or unaffected. The 
most striking expression difference was observed for the CYP1B1 gene, with nearly 10-fold lower 
expression, but only in female patients (36). CYP1B1 is in the synthetic pathway of 2-OH estradiol 
metabolites that have anti-proliferative effects on pulmonary vascular smooth muscle cells and 
attenuate pulmonary hypertension in animal models 37 and 38. In contrast, when CYP1B1 is 
inhibited, 16β-OH-estradiol and -estrone are synthesized, which have proinflammatory, 
proangiogenic, and promitogenic effects (reviewed in Paulin and Michelakis [39]). However, mice 
with a disrupted Cyp1b1 gene do not exhibit differences in the development of experimental 
pulmonary hypertension, indicating an environmental context for the gene-effect (40). These results 
show the complexity of hormonal influences that might explain female predominance of PAH, which 
is observed in HPAH as well as in IPAH (41). With the same type of approach in cultured cells from 
patients carrying BMPR2 mutations leading to destruction of the mutated messenger ribonucleic 
acid (mRNA) by nonsense mediated ribonucleic acid (RNA) decay, Flynn et al. (42) have proposed a 
PAH penetrance signature on the basis of expression profiling of mRNAs in lymphocytes, and this 
profile suggests that reactive oxygen species formation would play an important role in the 
development of the disease. Concurrent inflammation can modify pathologic effects of the mutated 
BMPR2 gene 43 and 44. 

 

Clinical presentation of HPAH 

 

In approximately 75% of patients with a family history of PAH, a mutation in known PAH-causing 
genes has been identified 1, 15, 45 and 46 corresponding mostly with BMPR2 mutations. In patients 
without known family history (sporadic or idiopathic cases), approximately 20% harbor a germ-line 
mutation. In patients with a personal or familial history of HHT, ACVRL1 mutations were the major 
cause identified. Similar proportions of mutation carriers were observed in anorexigen-induced PAH. 
By contrast, BMPR2 mutations are not found in associated PAH (scleroderma and connective tissue 
diseases, portal hypertension, human immunodeficiency virus infection), with the exception of some 
reports in CHDs. Of note, familial cases of pulmonary veno-occlusive diseases are rarely associated 
with a BMPR2 mutation 47, 48 and 49. 



 

Retrospective analysis from registries 1, 15, 45 and 46 and 1 prospective study (50) revealed that 
HPAH patients carrying a BMPR2 mutation, irrespective of the family history, develop PAH at a 
younger age than mutation-negative IPAH patients. Furthermore, HPAH patients have a more severe 
clinical and hemodynamic phenotype at diagnosis (less response to acute vasodilator challenge, 
lower cardiac index, and higher pulmonary vascular resistance), and they are more likely to progress 
to death or lung transplantation (at a younger age than noncarriers) 46, 50, 51, 52 and 53. However, 
the number of analyzed gene-carriers is so far relatively low. Further studies are needed to evaluate 
whether genetic testing might be helpful for risk stratification and clinical management. Similar 
findings are observed with ACVRL1 mutations with a significant number of pediatric cases and a 
dismal prognosis (50). Of note, ACVRL1 mutation carriers might develop both PAH and HHT. Because 
HHT has nearly complete penetrance at the age of 60 years, some ACVRL1 mutation carriers might 
not have clinical evidence of HHT at very young ages. Collecting information of personal and familial 
history of HHT, including “forme fruste,” seems important, especially in pediatric cases. 

 

A more extensive evaluation of the Vanderbilt Pulmonary Hypertension Registry casts doubt on the 
likelihood of genetic anticipation in BMPR2-related familial PAH (54). Analysis of families with 
sibships that have lived at least 57 years from first family diagnosis allows >85% of mutation carriers 
to express disease. In these families, the apparent effect of lower age of onset in earlier generations 
disappears, because the time it takes for penetrance to occur in this illness can be up to 75 years of 
age in an apparently unaffected carrier. Thus, genetic anticipation is no longer supported by current 
data. 

 

The penetrance of disease in the Vanderbilt Pulmonary Hypertension Registry has been re-evaluated 
(54): of a total number of 1,683 siblings, assuming a 50% carriage rate of the mutation, there were 
232 affected individuals of 842 carriers (one-half of 1,683 siblings), or a 27% overall penetrance. 
There were 177 female subjects and 59 male subjects. The female/male ratio of PAH was 3:1, which 
was similar to previous estimates. The female penetrance was approximately 42%, and the male 
penetrance was approximately 14%. These sex differences should have an impact on disease and 
genetic counseling in families. 

 

Genetic counseling and testing 

 

Two consensus guidelines recommend that physicians offer professional genetic counseling and 
genetic testing to patients with a history that suggests HPAH 55 and 56. In addition, the authors of 
these guidelines have recommended that patients with IPAH be advised about the availability of 
genetic testing and counseling, because of the strong possibility that they carry a disease-causing 
mutation. The guidelines recommend that professionals offer counseling and testing to the affected 
IPAH patient before approaching other family members. The identification of a disease-causing 



mutation in an affected family member allows less expensive testing of other family members, if 
they want such testing. 

 

Affected individuals and “at risk” family members might want to know their mutation status for 
family planning purposes. Pre-natal screening or pre-implantation diagnosis and management are 
possible. Reproductive medicine allows several options for preventing transmission of HPAH to the 
next generation. Indeed, current reproductive options for couples with a BMPR2 mutation carrier 
are to remain childless, to have no genetic pre-natal testing (reproductive chance), to undergo pre-
natal or pre-implantation genetic diagnosis, to use gamete donation, or to adopt. Pre-natal diagnosis 
allows the detection of an in utero fetus carrying a mutation predisposing to PAH. Pre-natal 
diagnosis requires that the familial mutation has been identified molecularly. If the familial mutation 
is identified, a medical abortion is an option. 

 

Another option is pre-implantation genetic diagnosis, medically-assisted reproduction with selection 
and implantation of embryos that do not carry the familial mutation, thus avoiding the distress of a 
medical abortion. Pre-implantation genetic diagnosis requires in vitro fertilization and might require 
multiple cycles before leading to successful delivery of a baby. Pre-implantation genetic diagnosis is 
not available in all countries and is not a covered insurance benefit in all countries or by all insurers. 
These methods are used in many other diseases but are controversial in conditions in which 
penetrance is incomplete, such as HPAH. Due to the psychological impact of abortion on prospective 
parents, especially in the setting of an incompletely penetrant genetic disease, many patients prefer 
pre-implantation genetic diagnosis in selected HPAH families after multidisciplinary discussion when 
it is financially feasible and medically available. In France, pre-implantation genetic diagnosis is 
currently offered to selected families with highly-penetrant BMPR2 mutations causing HPAH 57 and 
58. Because pregnancy is a risk factor of PAH, pre-implantation genetic diagnosis is currently 
proposed in couples where the future father carries the causal mutation. 

 

Genetic testing allows identification of pre-symptomatic carriers of PAH-causing mutations who are 
at high risk of developing PAH. However, because of incomplete penetrance of mutations in PAH-
predisposing genes, it is currently not possible to identify which carriers of a mutation will develop 
PAH. There are currently no proven effective interventions or medications available to prevent 
disease in mutation carriers. Associated genetic or environmental factors modifying penetrance of 
PAH in these mutation carriers to improve risk stratification are still unknown. Thus, genetic testing 
in relatives will effectively identify mutation noncarriers who have no increased risk of the heritable 
disease and potentially provide significant relief; however, mutation carriers currently face many 
uncertainties, because physicians cannot determine which patients will develop the disease or 
when. Such patients are currently offered yearly screening echocardiography with Doppler as well as 
immediate evaluation for symptoms such as exercise dyspnea. Because of the psychological impact 
of the positive or negative genetic results in asymptomatic relatives, pre-symptomatic genetic 
testing should be provided in the setting of a multidisciplinary team with availability of pulmonary 
hypertension specialists, genetic counselors, geneticists, psychologists, and nurses. 



 

In France, up to 200 relatives of mutation carriers have volunteered for pre-symptomatic genetic 
testing. This led to the identification of dozens of asymptomatic BMPR2 mutation carriers. An 
ongoing study is currently evaluating the efficacy of pre-symptomatic screening and follow-up in this 
cohort. In this study, all carriers have yearly complete evaluation, including exercise testing, Doppler 
echocardiography, and measurement of circulating biomarkers (and rest and exercise right heart 
catheterization) (NCT01600898). Long-term follow-up might allow investigators to identify 
predictors of progression to PAH in pre-symptomatic BMPR2 mutation carriers. This active screening 
approach remains investigational and should help to refine future guidelines. 

 

In the United States, physicians, PAH patients, and their family members have rarely embraced pre-
symptomatic genetic testing for several reasons. First, genetic testing is relatively expensive. Second, 
the psychological impact of either a positive test (anxiety and depression) or a negative test (survivor 
guilt) is important for some individuals. These effects might have unintended consequences for 
other family members who do not wish to know their mutational state. Third, in the United States, 
concerns about discrimination remain, in spite of the passage of the Genetic Information Non-
Discrimination Act (GINA) (HR 493). Although GINA protects against discrimination by insurers and 
employers, there are gaps in GINA protections (e.g., when applying for life, disability, or long-term 
insurance). In contrast, the French Network of Pulmonary Hypertension has launched a genetic 
counseling clinic with more than 1,000 subjects volunteering for “free” genetic counseling in the last 
10 years (M. Humbert, personal communication, June 2013). 

 

In a German proof of concept approach (59) and a subsequent larger study in the European Union, 
screening of family members with echocardiography at rest and during exercise and hypoxia 
revealed a significantly higher frequency of an elevated tricuspid regurgitation velocity response to 
exercise and to prolonged hypoxia than in control subjects, especially in those relatives who shared a 
BMPR2 mutation with the index patients (60). This suggests that elevated estimated pulmonary 
artery pressure response to exercise and hypoxia might be genetically determined with a familial 
clustering. Further studies are needed to analyze the clinical value of noninvasive screening 
assessments in relatives of IPAH and HPAH patients and to develop an algorithm for early diagnosis 
in this cohort. 

 

Genomics of PAH 

Besides the investigation of constitutional genetic variations or mutations underlying PAH, molecular 
investigation of lung tissue or specific cell types when possible or surrogate blood cells can provide 
important information concerning the mechanisms of the disease. 

 

Somatic genetic changes in PAH lungs 



 

Considerable evidence has accumulated over the past decade to advance the hypothesis that the 
pathogenesis of PAH is a neoplastic-like process 61, 62 and 63. Microdissection of plexiform lesions 
from the lungs of idiopathic and anorexigen-induced PAH cases showed that endothelial cells have a 
monoclonal pattern of X-inactivation 62 and 64. Some lesions also showed microsatellite instability, 
a hallmark of hereditary non-polyposis colon cancer, and mutations of the apoptosis regulator BAX 
(65). Many of the abnormal properties observed in pulmonary artery endothelial cells (PAECs) and 
pulmonary artery smooth muscle cells (PASMCs) are analogous to cancer, including increased 
proliferation, decreased apoptosis, activation of hypoxia-inducible factor-1-alpha, mitochondrial 
abnormalities, and a shift from oxidative to glycolytic metabolism 66, 67, 68, 69, 70, 71 and 72. 

 

Use of SNP arrays or comparative genomic hybridization array data to assess copy number variations 
can provide important information in PAH. Analysis of hyperproliferative PAECs and PASMCs from 
patients with PAH identified large-scale genomic alterations in the endothelial cells, which were 
confirmed in patient lung tissue by fluorescent in-situ hybridization (73). Abnormalities were 
detected across heritable, idiopathic, and associated cases of PAH, providing the first evidence for a 
second genetic hit in patients with germline BMPR2 mutations and also suggesting that somatic 
changes might represent a shared feature across different types of the disease. However, there is no 
evidence for direct loss of heterozygosity at the BMPR2 locus (74). In some cases, PAECs seem to be 
clonal even before the acquisition of the cytogenetically abnormal sub-clone (73). This suggests that 
another underlying genetic mutation or other population bottleneck precedes the chromosome 
rearrangement, a finding that fits well with the hypothesis that endothelial apoptosis in the early 
stages of PAH leads to subsequent selection of proliferative, apoptosis-resistant endothelial cells 
(75). 

 

The PASMC proliferation is also a critical component of vascular remodeling in PAH, yet the 
incidence of chromosome abnormalities seems to be much lower than in PAECs. PASMCs are also 
usually polyclonal (62). The reasons for these differences are presently unclear. 

 

One limitation of these studies is their reliance on explant or autopsy lung tissue, which by definition 
represents end-stage disease. However, it is not feasible to obtain tissue by lung biopsy in the earlier 
stages of PAH. Another important consideration is to demonstrate that these abnormalities are not 
simply artifacts of in vitro cell culture. Several lines of evidence argue against this, including 
confirmation of 2 chromosome deletions in uncultured lung tissue by fluorescent in-situ 
hybridization and the absence of any detectable abnormalities in multiple control subjects or cells 
from explant lungs of patients with cystic fibrosis or chronic obstructive pulmonary disease (73). 

 

mRNA expression studies 



 

Early expression studies on lung tissue were limited by small sample sizes. Alternative strategies with 
surrogate tissue (peripheral blood) have suggested the utility of transcriptional profiling (76). The 
effectiveness of expanding cohort sizes and using well-defined phenotypes for array-based 
classification was demonstrated with blood and examining markers that differentiate “scleroderma 
only” from “systemic sclerosis-associated PAH” patients (77). There is a clear benefit to using large, 
well-characterized cohorts when examining lung tissue gene expression profiles. Several newer 
efforts have focused on this approach. A larger sample of lung tissue array analysis demonstrates 
similar pathway disruption between pulmonary hypertension and pulmonary fibrosis (78). Perhaps 
the largest study to date using lung tissue microarray profiling demonstrated that, in patients with 
pulmonary fibrosis, the presence of pulmonary hypertension is characterized by a specific gene 
expression profile in both a training and testing algorithm (79). 

 

Cell-based expression studies have been useful in characterizing selected pathways as well as 
determining differences in selected cell populations. For systemic sclerosis-associated PAH, 
pulmonary fibroblasts and lung tissue from patients with PAH and those from systemic sclerosis 
patients without PAH demonstrate characteristic gene expression signatures (80). Several studies 
have used global gene expression signatures to determine a more robust pathway analysis, including 
the effects of BMPR2 deficiency (81). The novel role of interleukin (IL)-13 in PAH pathobiology has 
been investigated, on the basis of array-generated data (82) and mouse model studies (83). Potential 
new therapeutic targets, such as apelin and peroxisome proliferator-activated receptor-gamma, 
have been extensively studied with array-based platforms 84 and 85. 

 

One significant challenge to all genomic approaches is leveraging data into novel systems-based 
analysis approaches. Putting all of the relevant information into a systems model of pulmonary 
vascular disease might provide unique insights (86). 

 

Role of miRNAs in PAH 

 

Microribonucleic acids (miRNAs) are small non-coding sequences of RNA that have the capacity to 
regulate many genes, pathways, and complex biological networks within cells, acting either alone or 
in concert with one another (87). In diseases such as cancer and cardiac disease, the role of miRNAs 
in disease pathogenesis has been well-documented (88). The application of miRNA technologies and 
their therapeutic potential in cardiovascular diseases is most elegantly summarized by Small and 
Olson (89). The most extensive global investigation, leading to mechanistic studies and potential 
therapeutic implications for miRNAs in PAH centers, was performed on miR-204 (90). In this study, 
the investigators provided a comprehensive model linking abnormal miRNA expression to already 
known pathophysiologic processes in PAH, including nuclear factor of activated T cells activation, 
BMPR-II down-regulation, IL-6 production, the Rho pathway, PASMC proliferation, and resistance to 



apoptosis. This study not only demonstrates the importance of miRNAs in PAH but also suggests that 
re-establishing normal miR-204 levels might represent a novel therapeutic approach for human PAH 
(90). Brock et al. (91) showed that BMPR2 is directly targeted by miR-17-5p and miR-20a and that IL-
6 induces miR-17/92 through STAT3 induction. A highly conserved and functional STAT3-binding site 
in the promoter region of miR17/92 was found, and persistent activation of STAT3 leads to 
repressed protein expression of BMPR2 (91). 

 

The BMP/TGF-β signaling itself regulates multiple different miRNAs through an interaction between 
Smads and the primary miRNA transcript, which leads to up-regulation of mature miRNAs in 
response to BMP ligand (92). This response was lost in lung vascular cells from patients with BMPR2 
or SMAD9 mutations, suggesting that abnormal miRNA regulation plays an important role in HPAH 
(4). A systems biology approach supports a central role for miR-21, 1 of the miRNAs regulated by this 
BMP-mediated pathway (93). Abnormalities of miRNA processing in HPAH cells can be corrected by 
increasing the amount of BMPR-II protein at the cell surface or by promoting readthrough of 
nonsense mutations in BMPR2 or SMAD9 94 and 95. These approaches have the advantage of 
correcting the levels of multiple different miRNAs as well as other aspects of BMP signaling and, 
therefore, could represent promising therapeutic approaches in HPAH. Other studies in human 
tissues and animal models of pulmonary hypertension have implicated additional miRNAs, including 
the miR-17-92 cluster and miR-145 91, 96 and 97. 

 

There are several methods to assess global miRNA expression, and both array-based and polymerase 
chain reaction-based methods represent biased approaches, relying on “known” miRNA sequences. 
Because miRNA processing can result in changes of miRNA sequences, the most unbiased approach 
and one that is increasingly adopted is the use of massively parallel sequencing strategies targeting 
small RNA species. 

 

Epigenetic modifications and pulmonary hypertension 

 

Epigenetic traits are stably heritable phenotypes resulting from changes in a chromosome without 
alterations in deoxyribonucleic acid sequence (98). Epigenetic changes are thought to lead to cellular 
reprogramming, the process by which a differentiated cell type can be induced to adopt an alternate 
cell fate. This idea seems to be consistent with observations in pulmonary hypertension, in which 
PAECs, PASMCs, and adventitial fibroblasts have all been demonstrated to acquire significantly 
altered characteristics, including stable increases in proliferation, resistance to apoptosis, metabolic 
switching, and pro-inflammatory gene expression. Recent studies have documented that 
downregulation of superoxide dismutase-2 in the fawn-hooded rat model of pulmonary 
hypertension results from tissue-specific hypermethylation of just 2 CpG positions in the SOD2 
promoter and an intronic enhancer (99). Another candidate for epigenetic study is BMPR2, with 
significantly down-regulated expression in many PAH lungs, even in the absence of a germline 
mutation 78 and 100. 



 

Histone deacetylases (HDACs) catalyze removal of acetyl groups from lysine residues in a variety of 
proteins. The HDACs have mainly been studied in the context of chromatin, where they regulate 
gene transcription by deacetylating nucleosomal histones. The 18 mammalian HDACs are grouped 
into 4 classes (101). Dysregulation of HDACs is associated with a variety of pathophysiological 
processes, including cancer and inflammatory signaling in rheumatoid arthritis. 

 

Expression of class I HDACs, particularly HDAC1, is dramatically elevated in pulmonary arteries of 
humans with pulmonary hypertension and in lungs and vessels from pulmonary hypertensive 
models. On the basis of these findings, recent studies have begun to address the role of class I 
HDACs in the pathogenesis of pulmonary hypertension. In a 3-week rat model of hypobaric hypoxia, 
the class I HDAC-selective inhibitor, MGCD0103, reduced pulmonary artery pressure through a 
mechanism involving suppression of PASMC proliferation (102). The anti-proliferative effect of 
MGCD0103 was due, in part, to up-regulation of the FoxO3a transcription factor and induction of a 
downstream target gene encoding the p27 cyclin-dependent kinase inhibitor. In addition it has 
become increasingly clear that HDAC inhibitors can be used to reduce cardiac hypertrophy and 
fibrosis (103). 

 

Conclusions 

Pathophysiological changes occurring during the development of PAH are extremely complex and 
probably involve many genetic and epigenetic mechanisms that lead to changes in gene expression 
and proliferative and metabolic changes in cells. Until now, approaches have been fragmentary and 
did not allow a holistic view of disease development. Recent high-throughput techniques, including 
genomics, metabolomics, and proteomics, can be performed simultaneously for a given patient and 
in different cells and biological fluids and can be repeated longitudinally as disease progresses. Such 
an approach was described for 1 subject and generated useful information (104). Such an approach 
would be invaluable for understanding the disease evolution, particularly in BMPR2 mutation 
carriers. 

 

We can also expect that next-generation sequencing in selected families will identify new important 
genes for explaining heritable forms of PAH. Although the identification of novel PAH genes might 
not account for a large percentage of patients, recent findings would suggest that these data have 
potential to elucidate pathogenesis and provide novel targets for therapy. Equally, the analysis of 
common variation in large, well-characterized PAH groups has been demonstrated to yield 
important insights, and the replication and extension of these genome-wide association studies 
should serve to further define the PAH genetic landscape. 
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