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Resting-state networks (RSNs) and functional connectivity (FC) have been increasingly
exploited for mapping brain activity and identifying abnormalities in pathologies,
including epilepsy. The majority of studies currently available are based on blood-
oxygenation-level-dependent (BOLD) contrast in combination with either independent
component analysis (ICA) or pairwise region of interest (ROI) correlations. Despite its
success, this approach has several shortcomings as BOLD is only an indirect and
non-quantitative measure of brain activity. Conversely, promising results have recently
been achieved by arterial spin labeling (ASL) MRI, primarily developed to quantify brain
perfusion. However, the wide application of ASL-based FC has been hampered by
its complexity and relatively low robustness to noise, leaving several aspects of this
approach still largely unexplored. In this study, we firstly aimed at evaluating the effect of
noise reduction on spatio-temporal ASL analyses and quantifying the impact of two
ad-hoc processing pipelines (basic and advanced) on connectivity measures. Once
the optimal strategy had been defined, we investigated the applicability of ASL for
connectivity mapping in patients with drug-resistant temporal epilepsy vs. controls (10
per group), aiming at revealing between-group voxel-wise differences in each RSN and
ROI-wise FC changes. We first found ASL was able to identify the main network (DMN)
along with all the others generally detected with BOLD but never previously reported
from ASL. For all RSNs, ICA-based denoising (advanced pipeline) allowed to increase
their similarity with the corresponding BOLD template. ASL-based RSNs were visibly
consistent with literature findings; however, group differences could be identified in the
structure of some networks. Indeed, statistics revealed areas of significant FC decrease
in patients within different RSNs, such as DMN and cerebellum (CER), while significant
increases were found in some cases, such as the visual networks. Finally, the ROI-based
analyses identified several inter-hemispheric dysfunctional links (controls > patients)
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mainly between areas belonging to the DMN, right-left thalamus and right-left temporal
lobe. Conversely, fewer connections, predominantly intra-hemispheric, showed the
opposite pattern (controls < patients). All these elements provide novel insights into the
pathological modulations characterizing a “network disease” as epilepsy, shading light
on the importance of perfusion-based approaches for identifying the disrupted areas
and communications between brain regions.

Keywords: arterial spin labeling, perfusion, functional connectivity, resting-state, ICA, epilepsy

INTRODUCTION

The concept of the brain as a complex network characterized
by structurally and functionally connected elements has gained
a relevant place in the current research (Nunez, 2010).
Understanding how brain regions specifically communicate and
how information is integrated across networks remain one of
the greatest challenges to deal with in the field of connectomics.
In recent years, functional connectivity (FC) in resting-state has
emerged as a valuable mean to characterize the intrinsic brain
architecture (Biswal et al., 2010). Indeed, since the seminal work
by Biswal et al. (1995) which proved the existence of synchronized
spontaneous activity (Biswal et al., 1995), FC has become an
increasingly popular tool to study the correlated activity in
the absence of an explicit task and to identify functionally
connected brain networks, generally known as resting-state
networks (RSNs).

So far, the majority of FC studies has been based on
resting-state fMRI (rs-fMRI) with the blood-oxygenation-level-
dependent (BOLD) contrast thanks to its simplicity, high
availability, good sensitivity, and temporal resolution (Van Dijk
et al., 2010; Friston et al., 2014). BOLD signal fluctuations,
however, represent only an indirect measure of neural activity, are
concealed by several physiological and noise contributions, and
often suffer from draining vein contamination, which limits the
spatial specificity to the site of the neural activity. Moreover, these
signals do not provide quantitative information as they result
from the overall contributions of cerebral blood flow (CBF),
cerebral blood volume (CBV) and cerebral metabolic rate of
oxygen consumption (CMRO2), and therefore only variations
between states can be derived (Chen et al., 2015). To overcome
these limitations and achieve a more direct measure of brain
metabolism, arterial spin labeling (ASL) has been increasingly
adopted as a novel functional technique. This non-invasive
MRI modality exploits magnetically labeled arterial blood water
as an endogenous tracer for quantifying brain perfusion in
physiological units (Detre et al., 1992). ASL acquisitions consist
of label and control images, which are repeated over time to
increase the signal-to-noise ratio (SNR) and whose subtraction
generates a perfusion weighted map. ASL has been initially
developed as an alternative to the more invasive techniques
from nuclear medicine, among which the [15O]-H2O positron
emission tomography (PET) is still considered the gold standard.
Despite the limited ASL availability in clinical settings, several
studies have demonstrated its good reliability and scan stability,
as well as its ability to produce accurate and reproducible CBF

measurements compared to water-PET (Alsop et al., 2015; Fan
et al., 2016), suggesting its viability as robust imaging method.

In light of these promising findings and considering its closer
coupling with the neural activity, ASL has started to be used
for localizing the general linear model activations in task-based
paradigms (Tjandra et al., 2005; Raoult et al., 2011; Boscolo
Galazzo et al., 2014; Ghariq et al., 2014) and, in very limited
studies, for resting-state FC analysis in healthy subjects (Viviani
et al., 2011; Liang et al., 2013, 2014; Jann et al., 2013, 2015;
Storti et al., 2017b, 2018). Biswal et al. (1997) were the first to
demonstrate resting-state FC based on ASL, although restricting
the analysis to a single slice, while De Luca et al. (2006) reported
the possibility of detecting five of the most common RSNs using
perfusion fluctuations (Biswal et al., 1997; De Luca et al., 2006).
These ideas were taken forward by Chuang et al. (2008) who
developed a framework for the computation of perfusion-based
FC, by removing among the others the BOLD contaminations
from ASL signals. That work suggested the need to properly clean
the ASL data before all the FC analyses (Chuang et al., 2008).
Indeed, as ASL suffers from low SNR, low temporal resolution
and low sensitivity, it requires appropriate pre-processing to
separate noise components from the true signal, thus increasing
the sensitivity of ASL-based FC findings. While the effect of
different cleaning pipelines on connectivity measures has been
widely investigated in BOLD fMRI (Griffanti et al., 2015; Carone
et al., 2017), this topic has only recently started to be addressed
in ASL. In particular, Jann et al. (2016) investigated the effect
of noise reduction on ASL-based connectivity analysis, focusing
on nuisance regression approaches with the same variables used
in BOLD and demonstrating that the connectivity results were
highly affected by the choice of a pre-processing pipeline.

Besides choosing the optimal cleaning pipeline, dealing with
the different connectivity methods currently available can be
similarly difficult, especially with ASL data. There are two
commonly used approaches for studying FC from rs-fMRI signals
that are independent component analysis (ICA) and seed-based
analysis. The first one is a data-driven method that allows
separating a set of signals into spatially independent components
(ICs) and associated time courses (McKeown et al., 1998).
ICA-based studies have identified several ICs that correspond
to functionally relevant networks as the visual and sensory-
motor loops (Beckmann et al., 2005), while others purely
reflect artefactual processes (e.g., head motion, physiological
fluctuations, MRI hardware). Therefore, ICA is a successful
technique not only to derive FC measures but also to clean
the data, as once the noise ICs are identified they can then
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be regressed out from the signals. Of note, several authors
have started to use and recommend ICA-based artifact removal
for BOLD fMRI (Griffanti et al., 2014; Pruim et al., 2015),
but to the best of our knowledge no previous studies have
investigated the impact of ICA-based denoising on ASL data
and corresponding FC measures. The alternative approach, seed-
based analysis, relies on prior hypotheses to restrict the analysis
to a predefined set of regions of interest (ROIs). In particular, it
generally requires the choice of an atlas (structural or functional)
to identify the ROIs and extract the average time series, which
are then fed into a linear correlation analysis. These results can
be then represented as FC matrices (ROI-to-ROI connectivity),
where each entry denotes links in terms of correlation. While
most of the studies tend to focus on a single FC approach,
the two methods may reveal complementary information about
the connectivity patterns especially in clinical populations, such
as voxels of altered FC in a given network of interest (from
ICA) as well as the affected connections between distinct brain
areas (from seed-based).

In terms of ASL-based FC, few previous works applied the
abovementioned connectivity measures to demonstrate that FC
can be reliably detected by perfusion and to investigate its
relationship with BOLD-based perfusion. Jann et al. (2013)
demonstrated the capability of both ICA and seed-based analysis
to identify FC networks in ASL data during a motor task
paradigm on healthy controls. Noteworthy, beside FC, ASL
enabled to quantify the level of activity as CBF within a specific
network, which would not have been feasible using BOLD-based
measures (Jann et al., 2013). Recently, Dai et al. (2016) applied
ICA to separate resting-state signals in an ASL dataset of healthy
subjects, recovering some of the main RNSs reported in literature
for BOLD fMRI (Dai et al., 2016).

In summary, these connectivity analyses allowed to obtain
novel insights and demonstrated to hold great potential as a
tool for probing brain functionality in controls and in several
brain pathologies, including epilepsy. The latter is a neurological
condition characterized by recurrent and spontaneous seizures.
About 30% of patients do not respond to anti-epileptic drugs
(drug-resistant epilepsies) with the majority of them having
temporal lobe epilepsy (TLE) (Bernhardt et al., 2015). These
patients require a more specific assessment, which usually
involves the combination of several imaging modalities, to
guide surgical resection of the presumed epileptogenic area.
To this end, over the past years there has been a shift from
localization (detection of the epileptogenic area) to connectivity
(understanding the connections of the altered area with the
rest of the brain and thus the seizure spread), by considering
epilepsy as a “network disorder” (Centeno and Carmichael, 2014;
Bernhardt et al., 2015; Storti et al., 2017a). Several previous
studies relying on BOLD fMRI and electroencephalography
(EEG) reported alterations of resting-state FC measures in
TLE mainly involving the epileptogenic network (temporal
and mesiotemporal structures) together with selective RSNs
as the default mode network (DMN), attention and sensory
processing networks (Bernhardt et al., 2015). In epilepsy, ASL
has been used as a quantitative measure of CBF to localize
areas of interictal hypoperfusion/ictal hyperperfusion related to

the focus (Wolf et al., 2001; Boscolo Galazzo et al., 2015, 2016).
However, in light to this new notion of epilepsy as a “network
disorder”, ASL becomes central for assessing perfusion-based
connectivity as it relies on signals that are more linked to the true
neural activity and can provide a more direct and quantifiable
assessment of this pathology (Raichle, 1998). To the best of our
knowledge, no previous studies have yet investigated ASL-based
FC in epilepsy which deserves further investigations.

Therefore, the aim of this work was twofold. First, we aimed
at assessing the effect of ICA-based noise reduction on temporal
and spatial ASL analyses, focusing in particular on the impact
of the cleaning procedure on FC measures in order to build on
a reliable basis. Then, once the optimal pipeline for ASL-based
FC was identified in controls, the second step consisted in the
assessment of how ASL can be applied for connectivity mapping
in a homogeneous group of drug-resistant right TLE patients
when compared to an age/gender- matched group of controls.
Two complementary FC analyses were applied to ASL data, in
order to derive a complete picture of epileptic brains at voxel-wise
and region-wise levels. In particular, we aimed to:

(1) Determine voxel-wise between-group differences for each
RSN and detect disrupted areas within each network (from
ICA analysis).

(2) Quantify ROI-wise between-group FC changes and assess
disrupted functional connections between brain regions
(from ROI-to-ROI analysis).

MATERIALS AND METHODS

Population
Ten consecutive patients with drug-resistant TLE (PT, mean
age = 33.6 ± 8.6 years, 5 males), undergoing pre-surgical
assessment, were enrolled. The inclusion criteria were: (1)
refractory right TLE; (2) well-defined localization of seizure-
onset through EEG and video-telemetry (ictal/interictal);
(3) negative anatomical MRI images. Exclusion criteria
were as follows: alterations on structural images, general
contraindications, presence of other neurological symptoms,
seizure onset located outside the temporal lobe structure, diffuse
or bilateral epileptic spikes, and pregnancy. Ten age/gender-
matched healthy controls (HC, mean age = 32.7 ± 6.8 years, 5
males) with no history of neurological/psychiatric symptoms
were also recruited as control group.

The study was approved by the Northeast-Newcastle and
North Tyneside 1 Research Ethics Committee and carried out
in accordance with the Declaration of Helsinki of the World
Medical Association. All subjects gave informed consent prior
entering the study. Patients demographics and characteristics are
reported in Table 1.

Image Acquisition and Protocol
Imaging was carried out on a 3T PET/MRI scanner (Biograph
mMR, Siemens Healthcare, Erlangen, Germany) with a 16-
channel head and neck coil. ASL data were acquired while
subjects were in resting state and were instructed to lie still
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TABLE 1 | Clinical profile for the patient population.

Pt n◦ Sex Age Years since beginning Type of seizures Seizures frequency Relevant Current

history antiepileptic therapy

1 M 19 15 Simple partial with SG 1–2/week (partial), 1–2/month (SG) Negative CLZ, OCX, LEV

2 F 41 17 Complex partial 2–3/day Negative ZNS, ESL, CLZ

3 M 31 15 Simple partial with SG 2/month, rare (SG) Negative LEV, LCM

4 M 23 14 Complex partial 2/day Negative VPA, TPM, LEV

5 M 32 8 Complex partial with SG 1–2/month Negative OCX, ZNS, VPA

6 F 49 42 Complex partial 2–3/week Negative VPA, CBZ, CLZ, ZNS

7 M 40 7 Complex partial 3/week Negative CBZ, LTG

8 F 25 12 Complex partial 3–4/day Negative LEV, CBZ, VPA, LCM

9 F 50 44 Complex partial 1/day Negative LEV, LCM

10 F 33 30 Complex partial 3–4/week Negative OCX, TPM, CLZ, CLP

Gender, age, seizures characteristics, and antiepileptic therapy are reported in table for each patient. In all cases, the electro-clinical diagnosis from the multi-disciplinary
team reported a right temporal lobe epileptic focus. SG, secondary generalization; CLZ, Clobazam; OCX, Oxcarbazepine; LEV, Levetiracetam; ZNS, zonisamide; ESL,
Eslicarbazepine; LCM, lacosamide; VPA, valproate; TPM, topiramate; CBZ, Carbamazepine; LTG, Lamotrigine; CLP, Clonazepam.

in the scanner, to keep their eyes closed, and not to fall
asleep during the whole scanning time. The manufacturer’s
pulsed PICORE (proximal inversion with a control for off-
resonance effects) ASL sequence with Q2TIPS (QUIPSS II
with Thin-slice TI1 Periodic Saturation) and 2D-echo planar
imaging readout was used (voxel size: 3.6 × 3.6 × 5 mm3;
gap: 1 mm; 19 slices; TI1/TIs/TI2: 800/1200/1800 ms; TR/TE:
2860/17 ms). Four single-session ASL runs of 100 volumes each
were acquired 5 min apart one from the other, for a total of
200 Control/Label pairs plus a calibration scan (M0) with long
TR. A 3D T1-weighted MPRAGE anatomical scan was also
acquired for each subject (voxel size: 1.1 × 1.1 × 1.1 mm3; 208
sagittal slices, TR/TE: 2000/2.92 ms). In addition, standard MRI
sequences [e.g., T2-weighted image and 2D FLAIR (coronal and
axial planes)] were acquired in patients as part of the clinical
epilepsy protocol.

Pre-processing and Cleaning
Approaches on HC Data
As preliminary step, in this work we aimed at systematically
analyzing the influence of the individual cleaning steps of ASL
data by relying on ICA-based artifact removal. Only HC data
were employed in this first phase, in order to identify the optimal
processing in physiological conditions and avoid any possible
bias due to the pathology. The individual steps for the analysis
of ASL data were carried out using FSL 5.0.9 (FMRIB, Oxford,
United Kingdom). Of note, the whole ASL time course was
considered, as suggested for task-based ASL data (Mumford
et al., 2006), rather than performing all the analyses on the
Control-Label subtraction or on the CBF images. While this
no-differencing method has been proven to provide increased
sensitivity for localizing brain activations, it has only recently
started to be investigated in resting-state studies as well with
promising results (Storti et al., 2017b; Hao et al., 2018). In
this way, we can rely on a high temporal resolution and high-
frequency content that is fully retained in the undifferenced
data. In particular, two cleaning pipelines were considered
for each subject:

(1) Basic pipeline: only standard pre-processing steps were
applied to each single-session ASL run separately.
These included head motion correction with MCFLIRT,
non-brain tissue removal with brain extraction tool
(BET), spatial smoothing (6-mm FWHM Gaussian
kernel), and high-pass temporal filtering (0.01 Hz) for
removing slow drifts.

(2) Advanced pipeline: each single-session ASL run, minimally
pre-processed with the basic pipeline, underwent single-
subject probabilistic ICA to decompose the data into several
ICs. The MELODIC tool (Beckmann and Smith, 2004)
with automatic dimensionality estimation was used for
performing the ICA-based artifact removal. In particular,
each IC was visually inspected and hand-labeled in order
to identify those ICs corresponding to artefactual processes
in the data. The manual classification of a component into
signal or noise was performed following well-established
criteria in literature (Griffanti et al., 2014; Salimi-Khorshidi
et al., 2014). In particular, three complementary pieces
of information were evaluated, as described in (Griffanti
et al., 2017): the IC spatial map, its time series, and its
power spectral density. IC maps were classified as signals
of interest if they showed well-defined gray matter clusters,
were characterized by predominantly low-frequency power
spectra (<0.1 Hz) and had similar patterns to those
described in literature (Beckmann et al., 2005; Smith
et al., 2009). It is important to note that the baseline
perfusion component, displaying the typical zig-zag pattern
(frequency range of 1/TR), was always retained although
above the general 0.1 Hz frequency cut-off (Hao et al.,
2018). The noise components were finally regressed out
from the basically pre-processed ASL data, resulting in four
ASL runs with advanced cleaning per subject.

To investigate the impact of cleaning procedures on the
ASL signal as well as on the most common FC outcomes,
the efficacy of the two procedures was tested through time
series and spatial map analyses. In addition, we evaluated the
effects of the ICA cleanup on CBF estimates, in order to fully
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assess the impact of the denoising on the dual information that
ASL can provide (connectivity and perfusion). Regarding time
series analysis, a global measure of temporal SNR (tSNR) was
firstly calculated for each ASL run separately. The tSNR image
was derived dividing the mean across time by the standard
deviation over time. This was then eroded to exclude possible
edge effects, and the median across space was retained for further
analyses. A paired sample t-test was applied to compare the tSNR
values between the two pipelines (p< 0.05, Bonferroni-corrected
for multiple comparisons). In addition, a one-way analysis of
variance (ANOVA) for repeated measures was performed on the
tSNR values of the four ASL runs, considering separately the basic
and advanced pipelines. Post-hoc paired sample t-tests were also
applied wherever appropriate.

Two additional measures were included in the comparison to
support the tSNR metric: loss of temporal degrees of freedom
(tDoF) (Pruim et al., 2015; Dipasquale et al., 2017) and %1STD
maps (Khalili-Mahani et al., 2013; Griffanti et al., 2016; Carone
et al., 2017). Regarding the loss of tDoF associated with the two
cleaning pipelines, this was assessed to evaluate their potential
impact on the statistical power (Pruim et al., 2015). For each
run, the total number of volumes was considered to be the total
number of tDoF initially available in the data. We then calculated
how many ICs were regressed out from the data (for each subject
and run) and every IC that was removed was considered as a
single tDoF. The lost tDoF was finally expressed as a percentage
of the total available tDoF.

The %1STD maps (Khalili-Mahani et al., 2013) were
computed to quantify the percentage of the voxel-wise temporal
fluctuation amplitude of the minimally pre-processed data (basic)
that is suppressed by the advanced cleaning. This map was
calculated for each subject (separately for each run) as follows:

%1STDmap = 100 ·
STD(imgbasic)− STD(imgadvanced)

STD(imgbasic)

where STD is the standard deviation of each voxel over the
acquired ASL volumes.

The %1STD maps were then spatially normalized to the 2-
mm MNI152 standard space (FNIRT) and used to build, for each
of the four runs, a probability map of areas where %1STD> 25%
across subjects. This would highlight in which areas the ASL
variance was more frequently reduced across subjects by the
advanced cleaning (Griffanti et al., 2016; Carone et al., 2017).

Regarding spatial map analysis, in absence of a ground-
truth of the neural signal, our working assumption was that
the cleaning of the data would enhance the similarity and the
spatial correlation of each IC to the corresponding reference
template (for ICA and RSNs) (Griffanti et al., 2016). For ICA,
a multi-session temporal concatenation analysis as implemented
in MELODIC was run for each subject and pipeline, after
having non-linearly registered all the ASL data to the 2-mm
MNI152 standard space (FNIRT). The resulting IC maps were
converted to z-statistic maps and threshold at z = 3. The most
common RSNs described in literature were identified at the
individual level and then compared to the corresponding well-
known template from Smith et al. (2009) encompassing 20

RSNs. Of note, this template has been considered in this study
despite being derived from BOLD fMRI as no reference RSN
templates derived from ASL are currently available in literature.
Indeed, as ASL is still not widely used and accepted in the
FC field, a technique-specific RSN template is not available
yet, precluding the possibility to compare our results with a
common ASL reference from literature. In our opinion, this
template can be reasonably considered the gold standard for
the assessment of ASL-based ICA maps as well, as we aimed
to demonstrate that ASL can extract similar RSNs to those
reported in literature in BOLD studies (Dai et al., 2016).
The spatial similarity/overlap between each IC map (derived
from the two pipelines) and the corresponding BOLD template
was determined using the Dice Similarity Coefficient (DSC)
(Dice, 1945). This index compares the number of common
voxels as follows: DSC (A, B) = 2(A∩B)/(A + B), where
A and B are the two IC maps. In addition, the level of
spatial cross-correlation (r-value) was assessed for each RSN
using the fslcc tool in FSL. For each RSN independently, the
DSC and r-values calculated from the basic and advanced
pipelines were statistically compared through paired sample
t-tests (p< 0.05).

A group-ICA was also performed by temporally concatenating
all the subjects/sessions and the resulting group RSNs were
spatially compared to the reference template in terms of DSC
and r-values as above. This step aimed at providing further
information about the impact of the cleaning procedures on the
RSNs estimated at both single and group level.

Finally, regarding the CBF analysis, the ASL volumes filtered
with both basic and advanced pipelines were pairwise subtracted
and averaged to obtain perfusion-weighted images. These maps
were quantified into CBF (ml/100 g/min) applying the general
kinetic model (Buxton et al., 1998) as follows:

CBF =
6000 · λ · 1M · e

TI2+(n−1)slicetime
T1B

2 · α · TI1 · M0t

where λ is the brain–blood partition coefficient (0.9 mL/g), 1M
represents the difference images (perfusion-weighted maps), TI1
and TI2 are the sequence time parameters described above, n
is the slice number, slicetime is the time taken to acquire each
single slice (∼55 ms), T1B is the longitudinal relaxation time of
blood (1650 ms at 3T), α is the inversion efficiency (0.95 for
pulsed ASL) (Alsop et al., 2015), and M0t is the tissue equilibrium
magnetization (voxel-wise estimated from the calibration scan).

For each subject, these CBF maps in native space were
spatially normalized into the 2-mm MNI152 standard space,
using the transformations previously estimated. Considering
all controls, the maps resulting from the two pipelines were
statistically compared on a voxel-wise basis (Wilcoxon’s rank sum
test, p < 0.05 with false discovery rate correction for multiple
comparisons) and group CBF maps were derived separately for
the two approaches. To provide representative CBF values, we
calculated the mean CBF across gray and white matter (GM,
WM) for each subject in native space. To do this, each subject’s
structural image was segmented to obtain tissue probability maps
for GM and WM, which were then thresholded at 0.9 and
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binarized. These masks were back-projected in ASL space by
inverting the linear registration from ASL to the corresponding
T1-weighted image (Boundary-Based Registration, ASL-to-T1).
Additionally, we computed the ratio of mean CBF in GM
over WM as a measure of contrast ratio for each pipeline
(Vidorreta et al., 2013).

FC Analysis on Patients and Controls:
ICA and RSN (Within-Network
Connectivity)
The optimal pipeline resulting from the previous evaluations on
the HC group was applied to process all the PT data before
performing FC analyses and group comparisons.

In order to extract the different RSNs, group-ICA using
MELODIC in FSL was performed, temporally concatenating the
functional images of all subjects/sessions in the temporal domain
to create a single 4D dataset. In particular, each cleaned dataset
was firstly linearly registered to the corresponding structural
image using FLIRT with Boundary-Based Registration (Greve
and Fischl, 2009) and then spatially normalised to the 2-mm
MNI152 standard space using non-linear registration (FNIRT).
This concatenated dataset was decomposed with automated
dimensionality estimation, leading to IC maps (2 × 2 × 2 mm3)
reflecting both the RSNs of interest as well as residual
noise components.

In order to recover the individual RSNs and assess within-
network group differences, the whole output from the group-ICA
was used as input template in a dual regression algorithm. Indeed,
this approach allows to detect voxel-wise group differences in
the FC of the different RSNs as well as to identify subject-
specific networks based on those identified at the group level
(Beckmann et al., 2005; Filippini et al., 2009). This involved two
subsequent steps: spatial and temporal regression. First, the full
set of IC spatial maps from group-ICA was linearly spatially
regressed against the single-subject pre-processed data, providing
a set of subject-specific time series (one per each component).
Then, these individual time series were variance normalized and
temporally regressed against the corresponding pre-processed
data, converting each time series to an individual IC spatial map.
Note that, as for each subject multiple ASL runs were available,
the average across the four session maps was performed to get a
single IC per participant to be used for the subsequent statistical
analysis. For each component of interest, a non-parametric
permutation testing using the randomize feature in FSL was
conducted (5,000 permutations) in order to statistically compare
the IC spatial maps and identify between-group differences at
the voxel-wise level. The resulting group difference maps were
thresholded using a threshold-free cluster enhancement (TFCE)
technique and a corrected p < 0.05 for multiple comparisons
(family wise error, FWE) (Nichols and Holmes, 2002). Group
maps were also obtained for HC and PT performing a one-
sample t-test on the subject-specific spatial maps derived for each
component as output of the second stage of dual regression,
calculating the corresponding z-map and applying a mixture
model correction (z = 3 as threshold) (Filippini et al., 2014;
Griffanti et al., 2014).

FC Analysis on Patients and Controls:
ROI-to-ROI Correlation Matrices
(Between-Region Connectivity)
We developed in-house MATLAB scripts to perform ROI-
based FC analysis on subject-specific ASL cleaned data. Indeed,
while dual regression ICA allows investigating between-group
differences in the co-activity of each RSN, complementary
information about possible changes in inter-region FC can be
derived from ROI-to-ROI connectivity analysis. Regarding the
brain parcellation, ROIs were defined by using the individual
RSNs as masks to extract the time series. Noteworthy, we are not
dealing with the time course of the whole map per se, but with the
signals from the different regions composing each IC. Specifically,
for each subject, the networks of interest were subdivided into
distinct spatially contiguous regions, representing the main nodes
of each RSN, by applying the cluster tool in FSL on the individual
spatial maps from the second stage of dual regression (using
z = 3 as threshold). To verify the reliability of the ICA-based
ROIs, the results were visually checked according to the well-
known literature findings and the main clusters from the BOLD
IC template (Smith et al., 2009) were further used as additional
reference to confirm the identification of the network nodes. For
example, for the DMN eight main ROIs were depicted in all
subjects, consistently with previous works (Pievani et al., 2017).

Then, for each subject, the four cleaned and spatially
normalized ASL runs were voxel-wise demeaned, variance
normalized, and temporally concatenated resulting into time
series of 400 volumes length. For each region, a representative
mean time course was extracted averaging the time series of
all the voxels within the area. A symmetric connectivity matrix
was derived for each subject calculating the Pearson correlation
coefficient between pairs of nodes. Matrices were compared
between the two groups through non-parametric permutation
testing (5,000 permutations) with a significance threshold of
0.05 (FWE-corrected) (Nichols and Holmes, 2002). Given the
exploratory nature of the study, the statistical results uncorrected
for multiple comparisons are also reported.

RESULTS

Effect of Cleaning on ASL HC Data
The basic and advanced pipelines were successfully employed to
clean all the ASL data of the HC group. Our results revealed
that an advanced cleaning based on ICA artefactual removal
could improve both the signal properties of the ASL signals
(in terms of tSNR combined with lost tDoF and ASL variance
reduction) as well as the spatial similarity of the different spatial
components to the literature templates (in terms of DSC and
r-values). Moreover, results revealed that the impact of ICA on
CBF values was minimal, allowing to preserve the important
baseline perfusion content.

The ICA cleanup removed several components of no-
interest (Supplementary Table S1). On average, the following
percentages of components removed during the denoising were
found (mean ± standard deviation values across subjects):
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23.1 ± 7%, 24.4 ± 7.5%, 22.9 ± 7%, and 21.4 ± 5% for the first,
second, third, and fourth run, respectively.

The median tSNR values for the controls with the two cleaning
options are reported in Figure 1A. Considering separately the
four ASL runs, the tSNR was significantly higher after cleaning
with the advanced pipeline (p < 0.01, Bonferroni-corrected) in
all cases. As a side note, the values were comparable across
the sessions for both pipelines, with no statistically significant
differences [basic: F(3,36) = 0.81, p-value = 0.49; advanced:
F(3,26) = 0.99, p-value = 0.41].

The loss of tDoF related to the advanced pipeline was similar
across the four runs, with an average value of 8.0 ± 2.7% across
subjects and runs (Figure 1B). The probability maps showing
the distribution of ASL fluctuation reduction across subjects are
reported in Figure 1C. By relying on the ICA-based cleanup,
the highest reduction of fluctuations was localized at brain

edges, where motion artifacts are predominant, and in areas
corresponding to blood vessels, as the posterior cerebral artery,
the middle cerebral artery, and pontine arteries. Similar patterns
were found across the four single runs. An average decrease of
33% in the ASL signal variance was found when the advanced
pipeline was applied.

Regarding the spatial map analyses, the ICA decompositions
on basic and advanced cleaned data revealed 12 common
RSNs in all subjects: three visual networks (medial [VISmed],
occipital [VISocc], and lateral [VISlat]), DMN, cerebellum
(CER), sensorimotor (SMN), auditory (AUD), executive (EXE),
left/right frontoparietal (FP.l, FP.r), temporal (TEMP), and
thalamus (THL). Examples of how the extraction of the RSNs
at the individual level is influenced by the specific cleaning
procedures are reported in Figure 2 for three representative
networks (DMN, SMN, and FP.l) derived from separate controls.

FIGURE 1 | (A) Distribution of temporal signal-to-noise ratio (tSNR) values derived from control’s data, with both basic and advanced cleaning pipelines. The four
ASL runs were considered separately (∗∗p < 0.01, Bonferroni-corrected for multiple comparisons). (B) Loss of temporal degrees of freedom (tDoF) for each of the
four runs. Only the advanced pipeline was considered, as no lost tDoFs were present in the case of the basic cleaning. (C) Spatial pattern of changes in ASL signal
standard deviation after using the advanced pipeline. The probability maps, representing areas where the variance was reduced more frequently in controls, are
reported for each run separately. These maps represent for each voxel the percentage of subjects with %1STD > 25%.
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FIGURE 2 | Example of three resting-state networks (DMN, SMN, and FP.l)
derived from separate healthy subjects by applying the two different cleaning
pipelines to the ASL datasets. The corresponding BOLD template from
literature is also reported for reference. All the component maps were
thresholded at z = 3.

Visually evaluating the IC maps, a good similarity with the
BOLD template was appreciable in all cases, although a closer
match was found when the ASL data were processed with the
advanced cleaning. This is particularly evident in the case of
the SMN example of Figure 2, where the right-left primary
motor areas were only partially recovered with the basic pipeline
and a significant contamination from the subcortical regions
was found. When these evaluations were quantified in terms
of spatial similarity with DSC, the results consistently showed,
across subjects, a good level of overlap with the corresponding
reference networks (Smith et al., 2009). This is visible in the
boxplots of Figure 3 (top) reporting the distribution of individual
DSC values calculated at single-subject level for all the identified
networks. This overlap further increased with the application
of the advanced pipeline in all cases. In particular, for three
RSNs (DMN, CER, and THL) the similarity was proved to be
significantly higher when the advanced cleaning was applied to
the ASL data (p < 0.05). This trend was further confirmed by
the spatial cross-correlation analyses, summarized in Figure 3
(bottom), where we found for all the twelve RSNs an overall
mean r-value>0.25, which is generally considered a valuable cut-
off value for classifying a good component from BOLD fMRI
data (Smith et al., 2009). The DMN and THL resulted to be
the networks with significantly higher values after the advanced
cleaning (p< 0.05) also in terms of spatial correlation.

When assessing the impact of the processing pipeline on the
group-ICA results, consistent results as for the single-subject
ICA were found, showing increases in spatial overlap/correlation
with the advanced pipeline (Table 2). While some RSNs only

partially benefited from the ICA-based processing (e.g., VISocc,
CER, FP.l, and FP.r), for other networks, as VISmed, DMN, AUD,
EXE, and THL, the DSC/r-values were markedly higher after the
advanced cleaning. This was visible also in the SMN network,
which further confirmed the difficulties in its extraction already
found at the individual level. Considering the complementary
information provided by DSC and r-value, EXE and VISmed
were overall the RSNs with the minimum and maximum
similarity to the BOLD template, respectively, for both basic and
advanced cleaning.

Finally, similar CBF maps for both basic and advanced
pipelines were found (Figure 4). The qualitative similarity
between maps was confirmed by the Wilcoxon’s rank sum
test (p < 0.05, corrected) which revealed no statistically
significant changes pre/post ICA-based cleanup. Considering as
representative measures the mean values over GM and WM, CBF
was reduced of about 2.6% in GM (from 35.1± 4.5 ml/100 g/min
to 34.2 ± 4.5 ml/100 g/min) and of about 5.1% in WM (from
13.5 ± 2.7 ml/100 g/min to 12.8 ± 2.2 ml/100 g/min). The GM-
to-WM contrast revealed a slight increase with the advanced
pipeline (from 2.6 to 2.7).

Based on all these results, the advanced cleaning pipeline
was chosen for all the subsequent analyses and processing of
patient’s data.

FC Analysis in Epilepsy Patients and
Controls – ICA and RSNs
The group-ICA decomposition performed on the temporally
concatenated HC and PT data produced 43 ICs. Out of
these, 32 were visually classified to be noise-related artifacts
representing mainly head motion, scanner/hardware drifts,
signals from white matter, and cerebrospinal fluid. These
components were discarded from further analyses, leaving 12
RSNs of interest retained for the subsequent dual regression
analysis. In particular, the same networks already found in the
HC group (at both subject- and group-level) were here recovered.
The corresponding group IC maps, thresholded at z = 3, are
reported in Figure 5 for HC and PT separately. While all the
ASL-based RSNs were visibly consistent with the canonical BOLD
networks reported in literature, also for the epilepsy patients,
between-group differences were identified in the structure of
some ICA networks when statistically compared. Regarding the
voxel-wise analysis with permutation testing and a corrected
threshold (p < 0.05, FWE), areas of decreased connectivity only
were found in four RSNs in the PT group compared to HC.
The most prominent changes were detected in the CER, DMN,
and FP.l (Figure 6 and Table 3). Most of the significant clusters
were located in the ipsilateral hemisphere, as clearly visible for
the DMN and CER. Conversely, the statistical analysis revealed
voxels of significant FC increase in epilepsy patients with respect
to HC in the VISmed, VISocc, SMN, and EXE (p < 0.05,
FWE). These clusters were mainly located contralateral to the
epileptic focus. For the TEMP network, significant alterations
over the temporal lobes (TLs) were found. In particular, areas of
increased connectivity were identified in PT in the contralateral
hemisphere to the epileptic focus, while the reversed pattern
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FIGURE 3 | Distribution of Dice similarity coefficient and spatial cross-correlation values across healthy controls. The two indices were calculated for each spatial
component derived from the data cleaned with the basic and advanced pipelines, respectively, by comparing the network of interest to the corresponding template
component. ∗Statistically significant differences, p < 0.05.

was seen ipsilaterally. Finally, no changes were shown in the
remaining networks (Figure 6 and Table 3).

FC Analysis in Epilepsy Patients and
Controls – ROI-to-ROI Correlation
The 12 RSNs identified at the group-level were divided into a
total of 30 different ROIs, representing the main nodes of each
network, and were used to extract the signals to calculate the
between-areas FC measures. Figure 7 displays the correlation-
based FC values between ROIs, averaged over subjects in each
group and expressed as connectivity matrices. The similarity

between HC and PT FC matrices was high, as confirmed by
the 2D spatial correlation value (r = 0.83). However, selective
alterations in specific connections were identified when the
pairwise ROI correlations were statistically compared. Supra-
threshold values resulting from the permutation testing and
corresponding to significant correlation differences between
groups are also displayed in Figure 7, for both p < 0.05
without correction for multiple comparisons and corrected with
FWE. When considering the uncorrected p < 0.05, several links
with diminished FC in PT compared to HC were identified
(64/435, 14.7%). Out of these, 22/64 (34.4%) represented altered
intra-hemispheric connections (13/64 and 9/64 were located

Frontiers in Neuroinformatics | www.frontiersin.org 9 March 2019 | Volume 12 | Article 101

https://www.frontiersin.org/journals/neuroinformatics/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroinformatics#articles


fninf-12-00101 March 4, 2019 Time: 17:6 # 10

Boscolo Galazzo et al. ASL-Based Functional Connectivity in Epilepsy

TABLE 2 | Group resting-state networks (RSNs) and similarity indices.

RSN Dice coefficient Spatial correlation

Basic Advanced Basic Advanced

VISmed 0.646 0.726 0.729 0.752

VISocc 0.313 0.380 0.273 0.344

VISlat 0.590 0.640 0.583 0.609

DMN 0.520 0.661 0.701 0.737

CER 0.257 0.290 0.184 0.208

SMN 0.200 0.481 0.224 0.449

AUD 0.396 0.612 0.447 0.590

EXE 0.178 0.331 0.185 0.287

FP.l 0.501 0.513 0.385 0.492

FP.r 0.449 0.497 0.391 0.453

TEMP 0.409 0.491 0.388 0.464

THL 0.255 0.673 0.214 0.673

Dice similarity coefficient (DSC) and spatial cross-correlation (r-value) values
calculated between each RSN and the corresponding BOLD template are reported
for both basic and advanced pipelines.

contralateral and ipsilateral to the epileptic focus, respectively),
while 28/64 (43.8%) were inter-hemispheric links featuring
HC > PT patterns. In addition, 8/64 (12.5%) were inter-
hemispheric links connecting the same region in the two
hemispheres, as the right-left TL, the right-left THL or the right-
left precentral gyrus (PRG). Of note, more than 50% of the altered
connections involved one of the visual areas of both hemispheres,
as visible in Figure 7.

Considering the reversed pattern (HC < PT), increased FC
values were found in the PT for 35/435 links (8.1%). Out
of these, the large majority corresponded to intra-hemispheric
connections, located both in the right and left hemisphere,
resulting in a total of 17/35 (48.6%) altered FC links. Conversely,
only 9/35 (25.7%) were inter-hemispheric connections.

Noteworthy, patients resulted to have within-network
connections with decreased FC in several RNS, for example
within DMN and FP, while the increased connectivity patterns
involved mainly the between-network connections. In addition,
several connections to the TLs resulted to be altered, with the
right TL featuring increased FC with several DMN areas, while
the left TL revealed mainly decreased FC with visual areas as well
as with other temporal structures.

When correction for multiple comparisons was applied
(FWE), few connections survived the thresholding (Figure 7).
In particular, the links between the left Hippocampus and
visual areas as well as few within-DMN links confirmed the
strong decreased patterns in PT compared to HC, while two
connections, one of those involving the contralateral temporal
areas, presented strong increased FC values in PT.

DISCUSSION

In this study, we report the first comprehensive assessment of
FC patterns and modulations in drug-resistant TLE patients by
relying on ASL signals. In addition, we investigated the effect of

cleaning procedures on ASL data acquired on HC, in order to
identify possible confounding factors for FC analysis and define
the optimal pre-processing pipeline in physiological conditions.
Our results demonstrated that a more advanced pipeline based
on ICA noise removal leads to higher tSNR values, and to
a reduction of ASL signal variance particularly evident over
problematic areas, as brain boundaries or over blood vessels, with
a minimum impact on the CBF estimates. Moreover, it allows
the identification of RSNs with enhanced spatial similarity to the
available BOLD template. Having identified the best pipeline, we
applied it to a dataset of right TLE patients to investigate FC
changes in this “network disease” at the voxel (ICA) and ROI level
(ROI-to-ROI analysis), and compared them to the HC group.
Disrupted brain networks and FC were found in our group of
TLE patients. In particular, patterns of increased within-network
FC were mainly found contralateral to the epileptic focus, while
between-ROI links with increased FC were found ipsilaterally.

FC analyses are currently a useful tool to assess the
organization and functionality of the brain networks, along with
their possible alterations in patients. FC is defined as the temporal
dependencies between neural activity of separate areas and in
the resting-state brain can provide a rich set of network features.
BOLD-based resting-state FC was firstly demonstrated by Biswal
et al. (1995) who showed high correlation between left and
right motor areas at rest, suggesting the presence of an intrinsic
motor architecture (Biswal et al., 1995). Later on, it was found
that different networks of correlated temporal patterns can be
recovered at rest, including the DMN which has been shown to
be active at rest and impaired in many neurological conditions
(Beckmann et al., 2005; Smith et al., 2009). However, BOLD
contrast represents only an indirect measure of neural activity,
is highly affected by several noise contributions, and often suffers
from draining vein contamination. On the contrary, ASL offers
a valid alternative as it allows to derive signals directly related to
brain perfusion, which is thought to be closely coupled to regional
neural activity (Raichle, 1998), and therefore has recently gained
interest in the research community for assessing brain resting-
state FC. Of note, while almost all these ASL-based FC studies rely
on analyses performed on the Control-Label images or on CBF
maps directly, in this study we preferred to consider the whole
time course, treating the ASL signals as the BOLD ones. In this
way, a high temporal resolution and a high-frequency content
were available for all the connectivity analyses. This approach
has been recommended for task-based analyses (Mumford et al.,
2006), but has been scarcely employed for studying resting-state
FC with ASL, despite the promising results (Storti et al., 2017b,
2018; Hao et al., 2018).

A key aspect for reliable FC analyses is the choice of the
pre-processing applied to the data to recover and separate the
signal of interest from the other noise related fluctuations. This
aspect has been widely investigated in BOLD-based connectivity
and several cleaning pipelines have been developed, mainly
based on nuisance regression or on ICA (Pruim et al., 2015).
These pipelines result in clean fMRI time series that more
accurately reflect the underlying brain fluctuations of interest and
reduce possible bias in the subsequent FC analyses (Dipasquale
et al., 2017). In nuisance regression-based pipelines, motion
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FIGURE 4 | Mean cerebral blood flow (CBF) maps in physiological units (ml/100 g/min) calculated across the group of healthy controls from the ASL data cleaned
with the basic and advanced pipelines. Some representative slices of interest in the 2-mm MNI152 standard space are reported in radiological convention. No
statistically significant changes were detected between the CBF maps derived from the two pipelines when compared on a voxel-wise basis.

FIGURE 5 | Twelve resting-state networks (RSNs) of interest derived from the control and patient group analyses. All spatial maps were converted to z-statistic
images and thresholded at z = 3. Each map was superimposed to the 2-mm MNI152 standard space and shown in radiological convention.

parameters are estimated and regressed out (as parameters of
no interest) from fMRI signal, together with averaged white
matter and cerebrospinal fluid time series. Conversely, ICA-based

cleaning methods are tools to decompose the data into signals of
interest and structured noise, which are then regressed out from
the data. The different components can be either classified by

Frontiers in Neuroinformatics | www.frontiersin.org 11 March 2019 | Volume 12 | Article 101

https://www.frontiersin.org/journals/neuroinformatics/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroinformatics#articles


fninf-12-00101 March 4, 2019 Time: 17:6 # 12

Boscolo Galazzo et al. ASL-Based Functional Connectivity in Epilepsy

FIGURE 6 | Within-network functional connectivity (FC) differences between patients and controls resulting from the permutation testing on the dual regression
outputs. Clusters of significant difference (p < 0.05, FWE-corrected with TFCE) are overlaid on the MNI152 standard space and shown in radiological convention. In
particular, areas featuring decreased FC in patients are reported with the blue-light blue colormap (HC > PT), while increased FC patterns in patients are decoded
with the red-yellow colormap (HC < PT).

manual labeling or using automatic tools, like ICA-FIX and ICA-
AROMA (Salimi-Khorshidi et al., 2014; Pruim et al., 2015) which
have been recently developed for BOLD data. In the context of
ASL, how noise reduction affects ASL signal properties and FC
measures is still largely unknown. Recently, Jann et al. (2016)
exploited nuisance regression as a cleaning method of ASL data

and investigated its impact on perfusion-based FC in controls and
children with autism spectrum disorders. In particular, different
pipelines based on nuisance regression were implemented and
their effect was investigated in a seed-based analysis aimed at
reproducing the DMN. The authors demonstrated a change in
FC strength and spatial maps when different nuisance variables
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TABLE 3 | Clusters of between-group differences in within-network connectivity.

ROI Voxels MAX X (mm) MAX Y (mm) MAX Z (mm) p-Value peak

HC > PT

DMN MTG.r/TL.r 367 60 −22 −10 0.030

MFG.r 348 54 34 20 0.034

PCC.r/PL.r 141 6 −54 10 0.029

CER CER.r 2478 48 −50 −28 0.048

CER.l 1254 −36 −40 −34 0.050

FP.l SPL.l/PL.l 840 −32 −48 48 0.048

MFG.l/FL.l 89 −44 14 38 0.050

FP.r FL.r 460 48 50 10 0.029

PPC.r 267 48 −56 28 0.048

TEMP TL.r/pHiPPa.r 791 32 −8 −32 0.042

HC < PT

VISmed LgG.l/TOF.l 286 −28 −48 −6 0.028

OFG.r/OL.r 141 26 −68 −10 0.038

OL.l/PL.l 31 −16 −68 18 0.041

VISocc OFG.l/OL.l 283 −16 −80 −14 0.017

LOC.l/OL.l 133 −28 −94 −2 0.042

SMN PRG.l/pCg.l 2959 −12 −32 40 0.010

SMC 50 −6 −22 60 0.044

EXE FL.r/SFG.r 467 26 44 14 0.030

FL.l/MFG.l 463 −32 44 20 0.038

PAC/ACC 30 0 46 −2 0.044

TEMP TL.l/pHiPPa.l 1284 −24 −4 −22 0.041

The statistical results identified by the permutation testing on the dual regression output are reported for each resting-state network (p < 0.05, FWE-corrected with TFCE).
In particular, clusters of within-network decreased connectivity in patients compared to controls (HC > PT) as well as those of increased connectivity (HC < PT) were
identified. MTG, middle temporal gyrus; TL, temporal lobe; MFG, middle frontal gyrus; PCC, posterior cingulate cortex; PL, posterior lobe; CER, cerebellum; SPL, superior
parietal lobe; FL, frontal lobe; PPC, posterior parietal cortex; pHIPP, parahippocampus; LgG, lingual gyrus; TOF, Temporooccipital fusiform gyrus; OFG, orbitofrontal
gyrus; OL, occipital lobe; LOC, Lateral occipital lobe; PRG, precentral gyrus; pCg, postcentral gyrus; SMC, supplementary motor cortex; SFG, superior frontal gyrus;
PAC, paracingulate gyrus; ACC, anterior cingulate cortex; l, left; r, right.

were used and highlighted the similarity of ASL results compared
to BOLD data (Jann et al., 2016). To date, however, no study has
investigated the effect of ICA-based noise reduction on ASL. Only
Hao et al. (2018) have reported preliminary results on similar
aspects of ICA cleanup for pCASL data. Here, we proposed and
assessed the use of ICA as an alternative pre-processing method
for ASL data, evaluating its impact on several aspects of the
analysis. It is worthy of note, that despite having calculated the
tSNR metric, which has been extensively used in literature to
compare different pre-processing pipelines, including ICA-based
approaches as ICA-AROMA and ICA-FIX (Griffanti et al., 2015,
2016; Dipasquale et al., 2017), this measure might not be suitable
for evaluating ICA cleanup on its own. Indeed, as an inherent
consequence of the method, increased tSNR values can be found
even when a significant number of meaningful components
are removed from the data (related to the reduced standard
deviation). Therefore, this metric should be treated carefully and
assessed jointly with other measures, as the loss of tDoF or the
spatial maps of changes in ASL signal standard deviation. The
different IC maps were manually classified into signal of interest
or noise, as the visual inspection of the components still remains
the gold standard (Griffanti et al., 2017), despite being time-
consuming and requiring expertise. The validity and reliability
of this cleaning method were assessed on both time series,

network analysis and CBF estimates. All in all, we were able to
demonstrate that ICA-based pre-processing of ASL data can lead
to higher tSNR values, good variance reduction (mainly at the
brain edges, which are often contaminated by motion artifacts)
and improved RSNs recovery, when compared to basic cleaning.
Only minor perfusion reductions (not statistically significant)
were found after ICA-based denoising. This is in line with the
findings shown by Hao et al. (2018), demonstrating a global CBF
reduction in both controls (around 2%) and children with sickle
cell disease (around 6%).

Having demonstrated that ASL pre-processing using ICA can
improve the recovery of RSNs, we applied this cleaning method to
a cohort of right TLE patients. In line with the concept of epilepsy
as a “network disease,” we were interested in assessing perfusion-
based connectivity changes which could highlight pathological
mechanisms and modulations in this neurological condition. In
particular, we aimed at providing a complete assessment of the
main FC analyses, focusing on both ICA and seed-based analyses
(ROI-to-ROI) to derive complementary information. On the one
hand, ICA can identify areas of increased/decreased connectivity
in patient networks compared to controls. On the other, ROI-
to-ROI connectivity can highlight altered connections between
specific brain areas. Previous studies have investigated ASL-based
FC in healthy controls using either ICA-based methods (Jann
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FIGURE 7 | Functional connectivity (FC) matrices averaged across all subjects for the two groups (controls [HC] and patients [PT]). Thirty regions of interest were
extracted from the 12 resting-state networks, and were sorted in the matrices according to their belonging network. Regions are the row and column indices of the
FC matrices, and the corresponding matrix element provides the color-coded Pearson correlation coefficient. The significant FC links (p < 0.05, both without
correction for multiple comparisons and FWE-corrected) are also reported for the control vs. patient analysis. Each element of these matrices provides the
color-coded p-value of the statistical differences, as indicated by the colorbar (blue: HC > PT; red: HC < PT). Only the lower triangular part of the matrix, i.e.,
excluding self-connections and redundant connections, is shown due to the symmetry of the FC matrix. MedV, medial visual; LatV, lateral visual; OccV, occipital
visual; mPFC, medial prefrontal cortex; pIPL, posterior inferior parietal lobule; PCC, posterior cingulate cortex; MTG, middle temporal gyrus; Hipp, hippocampus;
Cer, Cerebellum; PRG, precentral gyrus; SMA, supplementary motor area; STG, superior temporal gyrus; ACC, anterior cingulate cortex; lPFC, lateral prefrontal
cortex; PPC, posterior parietal cortex; TPL, temporal lobe; THL, Thalamus; l, left; r, right.

et al., 2013; Dai et al., 2016) or seed-based analyses (Jann et al.,
2013; Storti et al., 2017b, 2018) and reported concordant results
with BOLD-based connectivity. However, ASL signals are more
directly related to the underlying neuronal activity, being flow-
dependent only, and can allow the additional quantification of
CBF of specific networks which is not possible by using BOLD
only (Jann et al., 2013). Some works have also shown a good
spatial similarity between connectivity hubs (from graph-theory
metrics) and metabolism/flow distribution, suggesting a close
relationship between connectivity and metabolic demands of the
brain that can be assessed with ASL data (Liang et al., 2014;
Storti et al., 2018). Limited work has been carried out to assess
perfusion-based connectivity in patients. As an example, seed-to-
voxel perfusion-based FC was assessed in chronic fatigue disease
leading to better understanding of this disease’s pathogenesis
(Boissoneault et al., 2016).

In epilepsy, while perfusion changes based on ASL CBF maps
have already been reported in the epileptogenic area (Wolf et al.,
2001; Storti et al., 2014; Boscolo Galazzo et al., 2015, 2016), to the

best of our knowledge this is the first work which applied ASL-
based connectivity to this neurological condition. Regarding ICA
and related RSNs, previous studies on HC have demonstrated
the ability of ASL to extract similar RSNs to those identified
in BOLD studies, but generally limited to only a subgroup of
the most common ones (De Luca et al., 2006). In the most
recent study on this topic, Dai et al. (2016) reported seven major
group-level RSNs from ASL data in HC, including the DMN,
visual networks, SMN, and AUD (Dai et al., 2016), but failed
to identify other RSNs as the mesial-limbic structures and THL.
Conversely, in our study, we demonstrated for the first time that
ASL was able to identify not only the main network (DMN)
but also all the others generally detected with BOLD and never
previously reported from ASL. These results were confirmed in
both controls and patients with 12 RSNs of interest, proving
the viability of ASL as an alternative technique for depicting
the major RSNs, potentially holding higher specificity/sensitivity
than BOLD. While the different networks were qualitatively
similar between the two groups, the voxel-wise statistical analysis
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showed areas of altered connectivity within several ICs. In
agreement with previous studies of BOLD FC in epilepsy
(Hamandi et al., 2008; Zhang et al., 2009), increased connectivity
in the visual areas (occipital and medial visual cortex) was found
in PT. Hyperactivity of the visual system and its involvement
in seizure propagation in TLE patients have been reported
in previous connectivity studies (Hamandi et al., 2008; Zhang
et al., 2009). Although this finding is still controversial, this
might be interpreted as “hyperfunction” caused by the epileptic
activity (Zhang et al., 2009) also in light with the potential
connection between epileptogenic areas (parahippocampus and
mesial temporal) and the occipital lobe (Hamandi et al., 2008).
In our group of patients, areas of increased FC were also shown
within networks involved in motor and sensory processes, which
have already been proven to be dysfunctional in TLE (Zhang
et al., 2009; Cataldi et al., 2013).

Conversely, decreased FC values were found in areas possibly
disrupted by the disease, as the DMN and CER. This is in line
with previous literature findings, which have shown that the
activity in the DMN can be disrupted by the long-term effect
of the disease, while decreased connectivity in the cerebellum
areas can be related to impaired motor coordination (Zeng
et al., 2013). Finally, in the TEMP network (the so-called
epileptogenic network in TLE), we found a double pattern,
with decreased values ipsilaterally and increased connectivity
contralateral to the epileptic focus. This is in agreement with
the majority of BOLD rs-fMRI studies that report decreases
of connectivity within the epileptogenic network (Centeno
and Carmichael, 2014). In addition, Bettus et al. (2009, 2010)
showed that in TLE patients FC was also increased in the
homologous regions contralateral to the focus, possibly related
to the propagation phenomenon. Therefore, the increased
connectivity patterns located outside the epileptogenic region
in the contralateral hemisphere might suggest a compensatory
mechanism in this pathology.

Regarding ROI-to-ROI connectivity, we relied on a functional
parcellation of the different nodes based on ICA decomposition
and clustering rather than using structural atlases, which
have been proven to be only partially suitable for deriving
FC matrices (Bijsterbosch et al., 2017). In terms of statistical
differences between connectivity matrices, our principal
findings are decreased inter-hemispheric FC and increased
intra-hemispheric FC (both ipsi- and contra-lateral to the
focus) in patients compared to controls. In particular, several
within-network connections revealed decreased FC, except
for the VIS networks which, however, were characterized by
several between-network alterations. Maccotta et al. (2013)
reported similar findings, showing decreased local and inter-
hemispheric FC together with increased intra-hemispheric
connectivity ipsilateral to the focus in unilateral TLE patients.
Decreased inter-hemispheric connectivity can be attributed
either to adaptation (to preserve function in the contralateral
hemisphere) or to disruption (maladaptive organization)
as a consequence of the disease (Maccotta et al., 2013).
Conversely, increased intra-hemispheric connectivity might
represent increased coupling which might be connected
to seizure propagation. As expected, the temporal areas

showed several dysfunctional links, with the ipsilateral regions
revealing increased FC and a decrease in the corresponding
right-left coupling.

Although we proved that ASL-based FC can be a feasible
tool to study clinical populations and can provide important
information in drug-resistant epilepsy, we recognize some
limitations. First, the sample size of this study is limited, as
we restricted the selection to a group of MRI-negative patients
with a clear diagnosis (right TLE). However, in this way, we
were able to provide a proof of concept of perfusion-based FC
in epilepsy, based on a more homogeneous population. More
studies on larger groups, also enclosing other types of epilepsy,
are necessary to further evaluate the findings and to better assess
the performance of ASL in this pathology. In addition, we lack
resting-state BOLD fMRI data which unfortunately were not
acquired in all subjects, precluding the possibility to compare
our novel ASL-based findings with those coming from a more
established FC technique as BOLD. Therefore, in a future study,
we will address this important aspect, in order to more precisely
evaluate the added value of ASL and compare the information
provided by the two imaging modalities.

As additional note of caution, we need to acknowledge that
an old ASL sequence was employed in this study (PICORE
Q2TIPS ASL product sequence), while the scientific community
is moving toward better labeling and readout options (in
particular 3D-pCASL) as suggested by the recent consensus
paper (Alsop et al., 2015). Moreover, no background suppression
pulses were available for our ASL sequence and a rather long
TE (17 ms) was chosen which, however, was the shortest
possible considering the combination of all the other acquisition
parameters and was in line with values previously used in
literature. These sequence parameters could include a marked
BOLD signal weighting in the ASL images and, combined with
the fact the label/control time-series were considered globally
rather than subtracted, this could lead to an analysis which
is close to a regular BOLD rs-fMRI analysis. Therefore, it is
important to keep in mind that our findings might not be
directly transferable to more advanced ASL datasets and further
studies are necessary to understand the effect of the different
sequences and analysis approaches on the connectivity measures
derived from ASL.

However, despite its inherent limitations, since the PICORE
Q2TIPS ASL product sequence is commercially available in most
of the Siemens scanners and is often used in clinical settings
where research sequences are rare, we believe it is timely to
verify its feasibility and applicability not only for quantifying
perfusion but also in the context of connectivity. Our results
could add a new piece of information to the current literature,
providing some hints about the performance of such scheme for
deriving connectivity measures. In particular, we demonstrated
how these ASL data can be jointly exploited to derive both
connectivity and perfusion estimates. The CBF quantification was
left aside for the patient group, as this was out of the main scope
of the manuscript, but would provide additional information
allowing, among the others, to characterize the CBF levels of the
different RSNs and therefore identify the local flow alterations.
Finally, regarding the pre-processing steps we decided to focus
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our analysis on two pipelines only, one of which based on ICA
noise removal, as to the best of our knowledge the latter has
not been previously applied to ASL data. As future direction, a
more complete assessment of the cleaning effect on ASL signals
should be performed, including more processing pipelines (as
nuisance regression or scrubbing) and, possibly, automated tools
for IC classification.

CONCLUSION

In conclusion, with this work we aimed at providing a
better understanding of ASL pre-processing for removal of
noise components as well as to investigating its suitability
for the characterization of pathological mechanisms and
modulations in epilepsy. Our results proved that ASL-
based FC can be a viable technique for characterizing the
intrinsic brain organization and its integrity in patients,
potentially featuring higher specificity in detecting RSNs
than BOLD. The complementary FC analyses provide new
insights into the pathological mechanisms characterizing this
“network disease” that still remains poorly understood in
the current literature. Our findings in terms of dysfunctional
areas and connections underline the complex changes
occurring in TLE, and stress the need of moving from
localization to connectivity as well as to exploit different
modalities (such as ASL) for finding a new functional imaging
marker for epilepsy.
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