arXiv:1801.10414v1 [physicsins-det] 31 Jan 2018

DQMA4HEP - A Generic Online Monitor for Particle
Physics Experiments

C. Chavez-Barajas, T. Coates and F. Salvatore (University of Sussex - Department of Physics and Astronomy,
United Kingdom)
D. Cussans (University of Bristol, United Kingdom)
R. Ete (Deutsches Elektronen-Synchrotron - DESY, Germany)
A. Trles (Laboratoire de I’Accélérateur Linéaire, Centre Scientifique d’Orsay, Université de Paris-Sud XI,
CNRS/IN2P3, France)
L. Mirabito (Université Lyon et Institut de Physique Nuclaire de Lyon - IPNL, CNRS/IN2P3, France)
A. Pingault (Ghent Univiersity, Belgium)
M. Wing (University College London, United Kingdom)

Abstract—There is currently a lot of activity in R&D for future
collider experiments. Multiple detector prototypes are being
tested, each one with slightly different requirements regarding the
format of the data to be analysed. This has generated a variety of
ad-hoc solutions for data acquisition and online data monitoring.
We present a generic C++11 online monitoring framework called
DQM4HEP, which is designed for use as a generic online
monitor for particle physics experiments, ranging from small
tabletop experiments to large multi-detector testbeams, such as
those currently ongoing/planned at the DESY II or CERN SPS
beamlines. We present results obtained using DQM4HEP at
several testbeams where the CALICE AHCAL, SDHCAL and
SiWECAL detector prototypes have been tested. During these
testbeams, online analysis using DQM4HEP’s framework has
been developed and used. We also present the currently ongoing
work to integrate DQM4HEP within the EUDAQ tool. EUDAQ
is a tool for common and generic data acquisition within the
AIDA-2020 collaboration. This will allow these two frameworks
to work together as a generic and complete DAQ and monitoring
system for any type of detector prototype tested on beam tests,
which is one of the goals of the AIDA-2020 project.

I. INTRODUCTION

There is currently a lot of activity in R&D for future
collider experiments to succeed the Large Hadron Collider,
such as the International Linear Collider, Compact Linear
Collider, and Future Circular Collider. Each of these will
require advanced, next-generation detector technologies that
must be tested extensively during development to ensure that
they are capable of the sensitivities necessary to meet the
physics goals of these colliders. The R&D projects for these
detectors and subdetector components are well underway, and
many are currently in testing phases at beamlines around the
world.

The natural tendency is for each team to set their own
standards, developing software solutions custom-tailored for
their detector and development needs. In the past, this has
generated a variety of ad-hoc solutions for data acquisition
and online data monitoring, many of which cannot be applied
outside of their original intended scope. By developing tools
which are designed from the beginning to be used for many
different applications, the amount of effort and development

time necessary to create data acquisition and monitoring setups
can be reduced significantly, simplifying and speeding up
planning and deployment of physics testbeams and allowing
more science to be done faster.

The AIDA-2020 project is an EU-funded project for ad-
vancing research and development infrastructure and technolo-
gies for particle physics detector development and testing,
comprising 24 member countries and lead by CERN. The
project is split into Work Packages; Work Package 5 is "Data
acquisition system for beamtests”, aiming to develop hardware
and software to improve the infrastructure and tools available
for testing new detector components in beams, especially
for testbeams involving more than onedetector component.
The difficulty of this task is compounded by the various
different detector types; different event data models, geome-
tries, integration times, etc.make combining data from detector
components difficult. The goal of common data acquisition is
to meet this challenge by making portable software, reducing
or eliminating the work of developing DAQ systems. The
Data Quality Monitoring for High-Energy Physics framework
(DQM4HEP) aims to fulfil the needs of Task 5.4: development
of data quality and slow control monitoring. Within the AIDA-
2020 project, the DQM4HEP framework has been developed
as a generic online monitoring and data quality monitoring
tool to meet these requirements, allowing testbeam operators
and shifters to focus on the physics goals of testbeams and
less on software engineering and integration issues.

II. THE DQM4HEP FRAMEWORK

DQMA4HEP is an online monitoring and data quality mon-
itoring tool developed for physics testbeams for high-energy
and particle physics. It is designed to be able to fulfil the
requirements of monitoring for physics testbeams in a generic
way. The structure of the program allows for independent com-
ponents of the framework to be used, not used, or exchanged,
by isolating each function of the program into specific and
independent processes. The components that are specific to
particular users — the analysis and standalone modules — are
written in standard C++ code, meaning they are capable of



performing any data unpacking, processing or analysis that
is necessary. The framework then handles packaging this
information in a useful way and networking to transmit it
to where it is needed, meaning that the user does not have
to worry about the mechanics of data storage, serialisation or
transmission. It also means that the framework does not need
special rules for handling particular datatypes, allowing it to
handle anything that can be packed into, decoded from, and
accessed by normal C++ methods. This results in a framework
that is able to deal with any kind of data, including user-
defined data types, making it more flexible, portable and easily
reusable.

A. Prerequisites and dependencies

DQMA4HEP is written in the C++11 standard and requires
ROOTS [1]] for handling ROOT objects such as plots, charts
and histograms. The visualisation package that contains code
for the graphical user interfaces requires Qt4 [2]. DIM is used
for network communication [3]]. There is also an optional
dependency for the usage of the LCIO event data model,
which is defined as the standardised filetype within AIDA-
2020. If LCIO files are being used, DQM4HEP requires the
LCIO software (part of the ilcSoft package [4]) in order to
compile the libraries that enable serialisation of LCIO data.

B. Programming paradigms and structure

DQM4HEP is designed with genericness as its core
paradigm, using processes and algorithms that are independent
of data type (int, float, ROOT object, etc.). The ability to
run multiple instances of each process of the framework is
also key to its flexibility. This allows users to, for example,
separate data that has undergone event building and data
from sub-detectors, operate in online or offline modes, or
distribute analysis over several networked computers to reduce
computational load.

The generic nature of the framework lies in two core
features:

e The Event Data Model abstraction allows the user
to define the type and structure of an event and how
serialisation should be handled.

o The plugin system allows the inclusion of any user-
defined classes via external libraries, such as to select
the serialisation process, online analysis, etc.

The online architecture is shown in Figure Each box
represents one process of the framework and the arrows
represent network communication between processes. Blue
boxes are internal DQM4HEP processes that users and shifters
will normally have no interaction with. Orange boxes are the
”DQM modules” — processes which must be created by the
user, specific to their hardware and setup. Green boxes are
interfaces used for controlling the framework or viewing the
monitored quantities and properties. The colour key on the
figure refers to the different roles within a team, and who is
responsible for each aspect of the framework.

The event collectors are the entrance to the framework.
They collect information coming from the data acquisition

Start/End of run (Http POST)

DQM4HEP
A (o)
Post it -
st event
(s >

data
(/dev/shm)

o

External
data source
(e.g Slow control)

Send/query
event (DIM) Send monitor
elements

Remote process managment (DIM)

Tasks G
5 & (DIM)

Fig. 1. The global online architecture of DQM4HEP.

system and are used to pass them to other elements in the
framework. Multiple event collector processes can be run in
parallel if desired. The monitor element collector receives
monitor elements from the DQM modules and makes them
available to the monitoring interface, and are the last exit
point of data before the GUI. Again, multiple monitor element
collectors can be run if desired.

There are two varieties of DQM modules:

o Analysis modules receive events from the DAQ system
via the event collector and process the event data into
a form useful for monitoring, then encapsulate these
as monitor elements to be sent to the monitor element
collector. The analysis modules must be written for the
specific usage being implemented but are produced from
templates in which ordinary C++ code is used.

o Standalone modules are almost identical to analysis
modules, except that they receive data from somewhere
that is not the DAQ system. These are mainly used for
monitoring environmental conditions.

III. GUI AND VISUALISATION

DQMA4HEP’s user interface is based on the Qt4 framework
and is divided into three separate windows, which can be seen
as the green boxes in Figure [I] These are the run control GUI,
the monitoring GUI, and the job control GUI.

The run control GUI is used for starting and stopping data
processing and starting new runs. It can also be used to pass
parameters to analysis modules at the begin of a run. The
run control GUI is optional, acting as an interface for the run
control server. Some users may choose to use DQM4HEP’s run
control as a global run control, using it to also control their
data acquisition system, while others may have a separate run
control and require that DQM4HEP’s run control be “slaved”
to the central run control.

The monitoring GUI accesses the monitor elements that
are collected by the monitor element collector servers. This
interface is highly flexible and customisable, featuring multiple
canvases. The individual monitor elements are arranged in a
tree- or folder-like structure, allowing them to be organised
in logical structures, such as by layer, channel, type, etc. The
elements are also customisable and editable from within the
Ul, allowing manipulation such as zooming, scaling and fit-
ting. Specific combinations of displayed monitor elements can



[EEE) EE0]

ME The X0 vs J Layer 4

The X0 vs I Laer 4

The X0 vs J Layer §
The X0 vs I Layer§

Fig. 2. Two plots produced by DQM4HEP during SDHCAL and AHCAL test-
beams. Top: several hitmaps of the SDHCAL in use. Bottom: AHCAL+beam
telescope correlation plots.

be pre-set using an XML steering file, allowing complicated
setups or large number of plots to be shown immediately upon
startup. The update cycles of the monitor elements can also
be set to either automatic or manual.

The job control GUI controls the starting and stopping of all
the DQMA4HEP processes, and is used to initialise and set up
the framework. The job control GUI also allows operators and
shifters to monitor and control the state of running processes,
view or change parameters used in analysis, manually control
the system while running in offline mode, and open logging
files.

IV. DATA QUALITY TESTING

An additional level of online monitoring is data quality
monitoring, which assesses data being received in real-time, al-
lowing testbeam operators and shifters without detailed knowl-
edge of the hardware to determine whether the device under
test is operating as expected and fulfilling the requirements
for resolution, timing, etc. Data quality monitoring (DQM)
uses a variety of methods to assess the quality or “goodness”
of data received, including ordinary statistical measures such
as the mean and standard deviation, as well as slightly more
advanced techniques such as the Kolmogorov-Smirnov test.

Quality tests are currently being implemented in the frame-
work but when complete will be able to be applied to any
monitor element(s) from within analysis modules. It will also
be possible to run quality tests in both online and offline
modes.

V. IMPLEMENTATION EXAMPLES

DQM4HEP has already been used in a number of test-
beams for multiple detector prototypes, including combined
testbeams. So far these have been with the AHCAL+beam
telescope, and SDHCAL+SiWECAL. More information on
these detectors and testbeams can be found in the references
[3][6] and some examples of the framework in use can be seen
in Figure [2]

In the two examples, interfacing with the data acquisi-
tion system was done differently. For SDHCAL testbeams,
DQMA4HEP was interfaced with the DAQ using shared mem-
ory (shm), allowing it to access information online. For
AHCAL testbeams, the framework was used in “nearly-online”
mode — completed runs in LCIO format were accessed by the
LCIO file service over network-attached storage as soon as
an individual run file was finished. The file service can be
run on files as they are being written but as events are loaded
into memory, only events that were present in the file at that
time were available for monitoring. Work to improve this is
on-going.

During AHCAL testbeams, DQM4HEP has been and re-
mains an incredibly useful as a tool to identify issues with the
detectors during testing. For example, when new scintillator
tile layers were being tested for the first time, the hitmaps
allowed quick and simple visual identification of any tiles
whose electronics were noisy or dead. These were plainly
visible as erroneous hits for noisy channels, or gaps in the
hitmap for dead channels. In SDHCAL testbeams, hitmaps
were used to identify that some of the detector elements
showed a lack of hits in their centres due to an overflow
of incoming gas. By using hitmaps made in DQM4HEP, the
problem could be identified and corrected, restarting a new
run with a more stable detector.

VI. INTERFACE WITH GENERIC DATA ACQUISITION
SOFTWARE FRAMEWORKS

One of the AIDA-2020 Work Package 5 main tasks (Task
5.3) is the “Development of central DAQ software and run
control”. The efforts in this Task 5.3 have been focused in
the developping of the EUDAQ[7] framework. EUDAQ was
originally designed as data acquisition software for EUDET-
type beam telescopes, EUDAQ has grown to become a generic
DAQ framework for other detector types. EUDAQ is designed
so that the core is flexible and portable, and all hardware-
specific components are separate and can be created, used or
ignored at the user’s discretion.

The distributed process structure of EUDAQ allows individ-
ual elements to be swapped out, saving effort and development
time, compared with custom-writing an ad hoc solution that
has limited flexibility and portability. While EUDAQ has an
online monitoring component, it is not being discussed, and
may be removed from future versions in favour of DQM4HEP.

EUDAQ can be used as a generic DAQ, while DQM4HEP
can be used as a generic data quality monitoring tool. Both
are hardware-independent and when used in concert may
form a fullyfeatured, generic and portable DAQ/DQM system,
replacing most software used during beam tests.



Development of an online linkage is underway, which
will allow EUDAQ to stream events to DQM4HEP pro-
cesses online. Once this is completed, the combined EU-
DAQ/DQMA4HEP system will allow a fully-generic DAQ and
monitoring system. The only detector specific components will
be:

o EUDAQ Producer and DataConverterPlugin
« Event type and serialisation method
e Online anaylsis tasks and modules

VII. CONCLUSION

With its generic and flexible programming, DQM4HEP
forms a powerful and portable framework for online moni-
toring and data quality monitoring for physics testbeams that
will allow physicists to focus on the physics goals instead of
the engineering and software issues of building and deploying
their own monitoring systems. Planned future work to allow
DQM4HEP to interface directly with EUDAQ, a generic data
acquisition system within AIDA-2020, will allow the two
software frameworks to work together to form a generic data
acquisition, monitoring and quality monitoring system that is
capable of being used for nearly any type of detector model.

The DQM4HEP framework can be found on Github
at https://github.com/DQOM4HEP. User and technical
documentation is currently in progress but any enquiries about
the framework can be directed to dgm4hep@gmail.com.

ACKNOWLEDGMENT

This project has received funding from the European
Union’s Horizon 2020 Research and Innovation programme
under Grant Agreement no. 654168. The research leading
to these results has received funding from the People Progr
amme (MarieCurie Actions) of the European Unions Sev-
enth Framework Programme (FP7/2007-2013) under REA
grant agreement n. PCOFUND-GA-2013-609102, through the
PRESTIGE programme coordinated by Campus France.

REFERENCES

[1] R. Brun and F. Rademakers, ROOT — An Object Oriented Data Analysis
Framework, Nucl. Inst. & Meth. in Phys. Res. A 389, 1997, pp. 81-86.
Available at: http://root.cern.ch

[2] Qt Company, http://www.qt.i0, v4.7, 2016.

[3] C. Gaspar et al., DIM a Portable Lightweight Package for Information
Publishing Data Transfer and Inter-process Communication presented at
the Int. Conf. Computing in High Energy and Nuclear Physics, Padova,
Italy, 2000)

[4] F. Gaede and J. Engels, 2007. Marlin et al-A Software Frame-
work for ILC detector R&D. EUDET-Report-2007-11. Available at:
http://ilcsoft.desy.de/portal

[S] CALICE collaboration, 2016. First results of the CALICE SDHCAL
technological prototype. Journal of Instrumentation, 11(04), p.P04001.
|hep-ex/1602022776]

[6] C. Adloff, Y. Karyotakis, J. Repond, A. Brandt, H. Brown, K. De, C.
Medina, J. Smith, J. Li, M. Sosebee and A. White, 2010. Construction
and commissioning of the CALICE analog hadron calorimeter prototype.
Journal of Instrumentation, 5(05), p.P05004. [hep-ex/10032662]

[71 Y. Liu. EUDAQ2 User Manual. Retrieved October 13, 2017, from
https://github.com/eudaqg/eudaq


http://root.cern.ch
http://www.qt.io
http://ilcsoft.desy.de/portal
http://arxiv.org/abs/hep-ex/1602022
http://arxiv.org/abs/hep-ex/1003266

	I Introduction
	II The DQM4HEP framework
	II-A Prerequisites and dependencies
	II-B Programming paradigms and structure

	III GUI and visualisation
	IV Data quality testing
	V Implementation examples
	VI Interface with generic data acquisition software frameworks
	VII Conclusion
	References

