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Abstract. Real-world classification datasets often present a skewed dis-
tribution of patterns, where one or more classes are under-represented
with respect to the rest. One of the most successful approaches for al-
leviating this problem is the generation of synthetic minority samples
by convex combination of available ones. Within this framework, adap-
tive synthetic (ADASYN) sampling is a relatively new method which
imposes weights on minority examples according to their learning com-
plexity, in such a way that difficult examples are more prone to be over-
sampled. This paper proposes an improvement of the ADASYN method,
where the learning complexity of these patterns is also used to decide
which sample of the neighbourhood is selected. Moreover, to avoid sub-
optimal results when performing the random convex combination, this
paper explores the application of an iterative greedy algorithm which
refines the synthetic patterns by repeatedly replacing a part of them.
For the experiments, six binary datasets and four over-sampling meth-
ods are considered. The results show that the new version of ADASYN
leads to more robust results and that the application of the iterative
greedy metaheuristic significantly improves the quality of the generated
patterns, presenting a positive effect on the final classification model.

Keywords: Over-sampling, imbalanced classification, ADASYN, itera-
tive greedy algorithm, metaheuristics

1 Introduction

Learning from imbalanced data represents one of the current challenges in ma-
chine learning. In classification domains, imbalanced distributions occur when
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one or more classes have a significantly higher a-priori-probability [16,17]. The
difficulty of learning from imbalanced data is that classifiers will often assume
that the classes are equally represented in the dataset [26]. Consequently, stan-
dard classifiers will be biased towards the majority class, significantly harming
the performance of the minority one [8]. Nonetheless, in most cases, rare objects
(or minority class samples) will be of great interest and should be the focus of
machine learning algorithms [15], e.g. in financial engineering, where it is crucial
to detect fraudulent credit card activities from a pool of large transactions [3].
Note however, that an uneven data distribution is not the only factor that hin-
ders the learning in these cases [16,17], the complexity of the data or the size of
the training set being also determining factors.

Imbalanced learning is an active field, and there is a wide range of techniques
proposed for improving the minority class sensitivity. For a detailed survey of
these, we refer the reader to [16]. Two main groups of methods can be empha-
sized: 1) data preprocessing techniques, where the class priors are changed by
under-sampling the majority class, over-sampling the minority one [2,4] or mod-
ifying class priors by changing class labels [6]; or 2) specific learners, where the
classifier is forced to pay more attention to the minority class [7,29]. Hybrid
methods can also be found in the literature and have shown an outstanding per-
formance for this matter. These methods usually combine data and algorithm-
level techniques[8,21], e.g. traditional ensemble methods (such as bagging and
boosting) [8] which combine resampling with multiple learning models. Although
these techniques were not originally proposed to address imbalanced problems,
their relatively superior performance [8,22,28,30] enabled ensemble methods to
gain attention within this topic. Finally, there have been some recent and suc-
cessful attempts to tackle class imbalance using ranking algorithms [5].

The analysis made in this paper is mainly contextualised on data approaches,
as these present several advantages over algorithmic solutions [11], all basically
stemming from the fact that this approach does not rely on the reformulation
of a certain classification algorithm. The most straightforward resampling idea
would be repetitive over-sampling, which simply replicates existing data points
(in a similar way to cost-sensitive learning). However, generative sampling is usu-
ally preferred, where the sparse data space is populated with new data points,
producing ideally a more dense, smooth and uniformly distributed dataset [21].
Although both over-sampling and under-sampling are widely used, some stud-
ies [17] emphasize over-sampling methods for complex and highly imbalanced
datasets.

Concerning generative sampling, the most popular method is the Synthetic
Minority Over-sampling TEchnique (SMOTE) [4], which is based on a random
interpolation between minority class data points (between a randomly chosen
pattern and one of its k nearest neighbours). This algorithm presents several
important handicaps, all of them related to the omission of the majority class
in the over-sampling process, which, in some cases, depending on the data dis-
tribution, can result in a set of synthetic patterns that lie in the majority class
region and that hinders the learning process. Because of this, there have been
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different proposals over the years to improve SMOTE: borderline-SMOTE [13],
which focuses on sampling only those minority data points close to the classifica-
tion decision boundary; cluster-oversampling [18], which considers the so-called
‘rare’ regions, which are resampled individually; or safe-level SMOTE [2] and
LN-SMOTE [24], which generate new synthetic examples in the direction of the
regions populated by the minority class, to avoid introducing artificial examples
within majority class regions.

ADASYN [15] is also a relatively new approach which refines SMOTE by
focusing on those patterns with a higher learning complexity (i.e. those closer
to the class boundary). As a result, ADASYN adaptively shifts the focus of the
classification model towards more difficult examples, showing promising results
[15]. Although more complex examples are resampled with a higher probability,
the interpolation process of ADASYN still relies on a random selection of one
of the k nearest neighbours of the pattern, which, depending on the dataset and
the choice of k, can lead to the generation of minority samples in the majority-
class region (see Figure 1), i.e. one the main problems with SMOTE still remains
partially unsolved when using ADASYN. As can be checked in this Figure, new
synthetic patterns could be generated in regions associated to the majority class,
depending on the choice of the k parameter for the nearest neighbour analysis.
Different k parameters could be chosen for different patterns, which emphasizes
the necessity of using an optimisation algorithm.

Minority class

Majority class

Non-problematic
over-sampling region

Problematic
over-sampling region

Fig. 1: Imbalanced toy dataset with problems associated to standard oversam-
pling.

In this sense, over-sampling data-level approaches can be formulated as an
optimisation problem to further refine the data distribution and avoid the above-
mentioned class inconsistencies. In particular, the generation of synthetic sam-
ples can be defined as follows: given an imbalanced dataset D = {Dm ∪ DM},
with Dm being the set of examples of the minority class and DM the set of
examples of the majority class (or examples of other classes; |Dm| << |DM |),
the goal is to generate a set of synthetic examples S such that the performance
of a classifier trained on D ∪ S is maximised. This problem can be effectively
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addressed by metaheuristic algorithms. However, to the best of our knowledge,
there are very few works in this direction. For example, the work of Ghazikhani
et al. [12] presents an evolutionary algorithm that evolves the optimal regions to
apply over-sampling. On the other hand, under-sampling can be also approached
by using a binary genetic algorithm for selecting which majority patterns are
used for learning, and there are different works exploiting this idea [23]. Finally,
Wong et al. [32] used an evolutionary algorithm for simultaneously applying
under-sampling and over-sampling.

Iterated Greedy (IG) [10,27] is a simple metaheuristic that, in contrast to
evolutionary methods, specifically incorporates heuristic information to address
the problem at hand. This metaheuristic is based on the application of two opera-
tions on the best found solution: destruction and construction. During the former
one, some solution components are removed, generating a partial solution. In the
latter, a heuristic greedy procedure completes the partial solution. The process
is repeated until a stopping condition is met. This paper proposes an iterated
greedy model to improve the solution of over-sampling algorithms in imbalanced
datasets. Our method encodes candidate solutions as sets of synthetic samples,
where destruction and construction operators apply on. Its heuristic construc-
tion operator is an enhanced version of ADASYN that considers the complexity
of the patterns also when selecting the neighbour for the convex combination,
but could also be applied to other over-sampling strategies. More specifically,
from the k nearest neighbours, we select a complex pattern that is, at the same
time, close to the pattern to be resampled.

The rest of this paper is structured as follows: Section 2 presents the descrip-
tion of the over-sampling algorithm proposed. Section 3 describes the different
experiments considered for evaluating the proposal and the corresponding re-
sults. And finally, Section 4 outlines some concluding remarks.

2 Algorithm description

2.1 ANEIGSYN: an Iterated Greedy based Generative Sampler

The model proposed in this paper is an IG that addresses the task of over-
sampling as an optimisation problem. Given an imbalanced dataset D = DM ∪
Dm, the method searches over the candidate sets of synthetic examples for those
from which better classifiers can be induced. The process is divided in four stages:

– Initialisation: D is divided into three sets that are subsequently used in their
corresponding stages: Tr from which synthetic examples are generated, with
50% of the examples in D, V for guiding the search process by validating the
synthetic sets produced, with 30% of the examples in D, and Te for testing
the final classifier, with rest of D (20%). Te is never considered for inducing
the classifier, but just for evaluation once the search process has finished.

– Construction: A candidate set of synthetic examples S is built according to
the heuristic described in section 2.2 and using the examples in Tr∪V . This
stage generates new synthetic examples, as many as to balance the number
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of examples of majority and minority classes in Tr∪S, that are included into
S. This stage can also be applied from scratch, i.e. using an empty candidate
set S, or over a partial candidate set that is the output of the Destruction
stage.

– Validation: Any new candidate set S is evaluated according to the perfor-
mance of the classifier induced from Tr ∪S when predicting the label of the
examples in V . The considered performance metric is the geometric mean
(see section 3 for more details).

– Destruction: The best so far candidate set is partially destroyed by remov-
ing 15% randomly chosen examples. Then, this partially destroyed solution
becomes the input for the construction stage of the next iteration.

Finally, the process finishes after a maximum number of iterations, 100 in
our case, and the best obtained classifier is evaluated on Te.

2.2 Improved version of ADASYN: Adaptive NEighbours Synthetic
Sampling (ANESYN)

The heuristic procedure that generates the initial solution and reconstructs every
partial one is at the core of every IG algorithm, given that it exploits problem
knowledge to produce better solutions than random ones [9].

As stated before, one of the most useful sources of information to generate
synthetic examples is the proximity of the solutions to the decision boundary
from which synthetic patterns are generated, which can help the learner to ap-
proximate it accurately, and how the selected generative solutions are combined,
because inappropriate pairings may favour the generation of synthetic examples
in non-appropriate regions (see Figure 1). Therefore, our proposed improved ver-
sion of ADASYN emphasizes these two aspects, producing synthetic solutions
from original solutions that are expected to be close to the decision boundary
and close to each other. Its main scheme is:

1. The proximity to the decision boundary of each minority example si ∈ Gm

is estimated according to the equation (G = Tr ∪ V ):

r̂i =
ri∑|Gm|

j rj
, where ri = |{s : s ∈ GM and s ∈ NG∪Sp(si, k)}|/k,

where NG∪Sp
(si, k) is the set of the k samples from G ∪ Sp (i.e. the set of

samples used for generation of patterns plus the synthetic patterns already
generated but not removed from the solution) closest to si.

2. The number of times each minority sample will participate as the main
generative sample is computed according to its estimated proximity to the
decision boundary, as gi = br̂i · Nc. Given that we use the floor operator,
b·c, the required number of synthetic patterns is probabilistically completed
increasing the number of times minority examples participate according to

the remainders (ri ·N mod
∑|Gm|

j rj).
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3. For each time a minority sample si is used for generating a synthetic sample,
a secondary original pattern sj ∈ NG(si, k) (note that in this case we dis-
card already generated synthetic patterns) is selected in accordance to the
probabilities pj :

pj = εj/

|Gm|∑
k

εk, and εj = αr̂′j + (1− α)/d(si, sj),

where r̂′j is r̂j normalised according to the sum of r̂j for those patterns in
the vicinity NG(si, k), and d(si, sj) is the euclidean distance between the
examples, also normalised by the sum of the same quantity for the elements
in NG(si, k).

4. Finally, a new synthetic example is generated per pair of generative samples
{si, sj} as the linear interpolation si + λ · (sj − si), where λ is a random
value in (0, 1).

Note that the proximity of every minority example (Step 2) is computed
considering both the original examples and the synthetic ones that have not
been removed from the current solution (G ∪ Sp), so minority examples whose
vicinity has been populated with many synthetic ones will be nominated as main
generative examples less times than previously.

Additionally, instead of fixing the number of nearest neighbours analysed (see
step 1, parameter k) for all datasets, we have considered an adaptive method.
The value of k considered for the algorithm is the minimum value for which
there is at least one majority sample among the k closest ones for each minority
example.

3 Experiments

This section presents the different experiments considered for evaluating the
performance of the method proposed. We have tested our algorithm on six real-
world machine learning datasets, which can be downloaded from the UCI ma-
chine learning repository3 [20] and Keel repository4 [1]. The battery of datasets
is described in Table 1 and is similar to that considered in the original ADASYN
paper [15], but we have also included the page dataset. Table 1 includes the im-
balance ratio (IR), which is the ratio between the number of patterns of the
majority class and that of the minority one.

For the experimental design a holdout procedure is performed 100 times,
i.e. 100 training/test partitions are randomly performed, where, as previously
discussed, 50% of data is used as training while the remaining 50% is considered
for test purposes. All the partitions are stratified, in such a way that the original
class distribution of the dataset is approximately maintained in the partitions.

3 https://archive.ics.uci.edu/ml/datasets.html
4 http://sci2s.ugr.es/keel/imbalanced.php

https://archive.ics.uci.edu/ml/datasets.html
http://sci2s.ugr.es/keel/imbalanced.php
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Table 1: Characteristics of the datasets used in this paper

Dataset # Patterns # Minority patterns # Majority patterns IR # Attributes

abalone 731 42 689 16.40 7
ionos 351 126 225 1.79 34
page 5472 559 4913 8.79 10
pima 768 268 500 1.87 8
vowel 990 90 900 10.00 10
vehicle 846 199 647 3.25 18

Since the ANEIGSYN algorithm is based on a validation set, the 50% of training
data is also partitioned into two stratified sets, as detailed in section 2.1.

All the experiments have been performed using a decision tree as base clas-
sifier, given that it is one of the most popular classification methods and has
been also considered for evaluating other over-sampling algorithms [13,15]. We
have used the implementation included in the Python scikit-learn machine
learning framework [25], where an optimised version of the CART algorithm is
considered for the tree induction. This implementation includes heuristic algo-
rithms, where locally optimal decisions are made at each node. This makes the
induction process non deterministic, and different trees can be obtained accord-
ing to the seed used for random number generation.

Different preprocessing methods have been compared in this paper:

– A decision tree directly obtained from the original dataset, without prepro-
cessing (Original).

– The well known SMOTE algorithm [4].
– The standard ADASYN method, as described in [15], where the difficulty of

classifying each minority class pattern is considered for selecting the patterns
to be resampled.

– The ANESYN method consists of the application of the improved version of
ADASYN, without using the proposed IG algorithm (see section 2.2).

– The application of the improved ADASYN together with the iterative re-
finement of the generated interpolation (ANEIGSYN, see section 2.1).

The number of nearest neighbours considered is k = 5 for all methods, ex-
cept ANESYN and ANEIGSYN, which automatically select the value of k as
explained in section 2.2.

The results have been reported in terms of two metrics, both specially de-
signed to deal with imbalanced data (in both cases, the positive class is the
minority one):

– The Geometric Mean of the sensitivities (GM =
√
Sp · Sn) [19], where Sp

is the sensitivity for the positive class (ratio of correctly classified patterns
considering only this class) and Sn is the sensitivity for the negative one.

– The Area Under the ROC curve (AUC) [14]. Although receiver operating
characteristic (ROC) graphs are useful tools for analysing the performance
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of classifiers, these graphs need to be reduced to single scalar values to ease
their comparison. The most common method is to compute the area under
the curve (AUC), which has been shown to be equivalent to the probability
that a classifier assigns a higher score to a randomly chosen positive pattern
than to a negative one.

A first experiment was performed to check whether the iterative process of
ANEIGSYN resulted in better suited synthetic patterns. Fig. 2 includes differ-
ent boxplots comparing the test GM results obtained by generating 150 deci-
sion trees using the original dataset (Original) and complementing this dataset
with the synthetic data generated by ANEIGSYN, before applying the destruc-
tion/construction iterative process (‘First iteration IG’ in the figure), and after
the iterative process (‘Last iteration IG’ in the figure). As can be checked, the
generation of synthetic data improves the results obtained by using the original
data for all datasets, except for ionos, probably due to the relatively low degree
of imbalance of this dataset (IR = 1.79). However, the IG algorithm improves
the results of the trees consistently for all datasets if we compare the first and
last iterations. These results confirm that the good performance obtained by the
IG algorithm is not due to the lucky chance of the seed considered for the gener-
ation of the decision tree but to the quality of the synthetic patterns generated
by the method.

Additionally, the results of the different algorithms can be checked in Table 2,
where the average test GM and AUC performances are included. We also obtain
the ranking of each method in each dataset according to test GM and AUC
(R = 1 for the best performing method and R = 5 for the worst one) and the
average rankings are included in Table 2. In order to check if the differences
found are significant, a Wilcoxon statistical test [31] has been considered. The
corresponding p-values of the tests comparing ANEIGSYN against each of the
other methods are also shown in Table 2.

From the results of this Table, we can first conclude that better results are
obtained by applying SMOTE than by applying ADASYN. Moreover, the two
proposals of this paper (ANESYN and ANEIGSYN) generally improved the
performance of ADASYN. Firstly, the improvement of the ADASYN method
implemented (ANESYN) results in much better ranking values than standard
ADASYN, both for GM and AUC. Indeed, the results of ANESYN are the
second best ones from all the methods compared. Secondly, we can clearly con-
clude that the ANEIGSYN method is the best performing one in GM and AUC,
although slightly better results are obtained for GM . Moreover, the statistical
tests confirm these results (all differences favouring ANEIGSYN are significant,
p-values < 0.05), showing that the differences are not due to random nature of
the algorithms.

4 Conclusions

This paper presents two main contributions: 1) a new improved version of the
ADASYN method [15], based on a better selection of the secondary pattern from
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(a) abalone (b) ionos

(c) page (d) pima

(e) vehicle (f) vowel

Fig. 2: Comparison of the test GM results of 150 decision trees obtained without
preprocessing the data (Original) or by including the synthetic data generated
by ANEIGSYN for the first and the last iterations. These results are averaged
over 100 executions of the algorithm.
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Table 2: Average test performance values obtained from the 100 executions and
Wilcoxon statistical test results

Original SMOTE ADASYN ANESYN ANEIGSYN

GM

abalone 0.54222 0 .58094 0.57606 0.56608 0.60565
ionos 0.85164 0.85273 0.84114 0.84343 0 .85212
page 0.89739 0.91108 0.90436 0 .91825 0.92186
pima 0.65718 0.65778 0.65964 0 .66284 0.66618

vehicle 0.89159 0.89003 0 .89741 0.89516 0.89772
vowel 0.93069 0.93156 0.92885 0 .93799 0.94233

RGM 4.33 3.00 3.67 2 .83 1.17
Wilcoxon p 0.028 0.028 0.046 0.028 −

AUC

abalone 0.63602 0.64108 0 .64777 0.64159 0.65864
ionos 0 .85471 0.85588 0.83731 0.84536 0.85396
page 0.90107 0.91145 0.90686 0 .91913 0.92230
pima 0.66566 0.66599 0.66507 0 .66660 0.66880

vehicle 0.89385 0.89228 0.89132 0 .89679 0.89896
vowel 0.93328 0.93341 0.93102 0 .93939 0.94342

RAUC 3.83 3.00 4.33 2 .50 1.33
Wilcoxon p 0.046 0.046 0.028 0.028 −
The best result is in bold face and the second one in italics

which the synthetic example is generated, and 2) an iterated greedy algorithm
for repeatedly destructing and reconstructing the set of synthetic patterns to
improve the performance of the over-sampling process. From the results obtained
by evaluating six benchmark imbalanced datasets and two baseline over-sampling
methods (SMOTE [4] and ADASYN [15]), the improved version of ADASYN is
seen to yield superior performance than the original one, and the iterated greedy
algorithm is able to improve all the results. As future research lines, we would like
to test the use of probabilistic classifiers together with continuous performance
metrics for evaluating the quality of the synthetic patterns, which we think could
enhance the convergence of the algorithm.
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