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Abstract

Characterising the molecular mechanisms underlying disease risk variants identified in

genome-wide association studies (GWAS) is of major interest. Expression Quantitative

Trait Loci (eQTL) mapping studies provide a genome-wide characterisation of the im-

pact of common genetic variation on gene expression and splicing and therefore have

the potential to achieve this. In this thesis, I investigated the effect of common genetic

variants in human brain through eQTL analysis. As part of the UK Brain Expression

Consortium project, the analyses in this PhD thesis were performed on whole tran-

scriptome RNA sequencing data from neuropathologically normal human post-mortem

brain. I conducted eQTL analyses on putamen and substantia nigra using different

types of quantification in order to interrogate regulation at different stages of RNA

processing. This analysis pointed to splicing as an important process for the patho-

genesis of Parkison’s Disease. Thus, I identify not only disease-relevant regulatory loci

but also the types of analyses yielding the most disease-specific information. Due to

the limitations of current gene annotation and the complex transcriptomic landscape

in human brain, I investigated transcription and splicing in the hippocampus using

annotation-agnostic methods. This not only revealed the existence of widespread gene

misannotation in the human brain, but also revealed the limitation of current quantifi-

cation methods to capture transcriptome complexity in brain. Therefore, a reference-

free eQTL analysis was performed and by testing for eQTL-GWAS co-localisation I

found that incomplete annotation of the brain transcriptome limits the interpretation
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of risk loci for neurological disorders. I anticipate that analyses of this kind will have

an increasing impact on our understanding of a range of disorders, but are likely to

have most impact on neurological and neuropsychiatric disorders because of the high

transcriptome complexity of human brain tissue.
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Impact Statement

In this thesis, I use expression quantitative trait loci analysis in post-mortem human

brain to investigate the effect of genetic variation on gene expression. The aims of this

analysis are to provide insights into molecular processes underpinning the association

between common genetic variation and neurological and neuropsychiatric phenotypes,

and in order to obtain insights into the landscape of genetic regulation of gene expres-

sion in human brain. The data generated in this thesis is an important resource for

neuroscientists looking for potential target genes, which can be explored in detailed

functional analyses both in vitro and in vivo. Additionally, by performing analyses

with different biological process in mind this thesis identifies the regulation of splicing

as an important mechanism in human brain disorders. In this way, the results of this

thesis will aid the identification of the early pathophysiological processes underlying

neurological disorders and I hope will ultimately help identify novel therapeutic targets

for their prevention and treatment.

The identification of the genetic regulation of splicing as an important process in

disease, led me to study transcription and splicing in a reference-free manner. This

analysis revealed widespread gene misannotation in human brain. Both the analysis

pipelines used in this thesis and the results generated are likely to be of interest to

other researchers in the field. The pipeline I built, which uses read depth to define

transcribed genomic regions and then integrates this information with reads spanning

exon-exon junctions to determine evidence for splicing as well as the associated known
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gene if applicable, is applicable to any RNA-seq dataset. The output of this pipeline as

applied to hippocampal RNA-seq, could be used by geneticists interested in interpreting

both common and rare disease-associated variants. The use of more precise exon and

transcript definitions in gene screening panels, may reveal the presence of a pathogenic

mutation within a gene or may change the interpretation of genetic variation within

current genic boundaries. Therefore, it may increase the diagnostic yield of genetic

testing in patients with rare disorders by changing which genomic regions are sequenced

and how genetic variants are prioritised. Finally, it is worth noting that most of the

data generated in this thesis is already publicly available through the web-based service

interface Braineac.v2 (http://braineacv2.inf.um.es/) and a second resource is currently

under development, which will incorporate all data. This to facilitate researchers to

query in a user-friendly manner the results produced by this thesis.
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Chapter 1

Introduction

1.1 Introduction

The completion of the Human Genome Project (HGP) led to a new range of challenges

- understanding the effect of genetic human variation is amongst the most important.

In the last decade, chip-based genome-wide association studies (GWAS), and the rapid

expansion of high-throughput sequencing technologies, have both contributed to the

discovery of many associations between common genetic variants and observable phe-

notypic traits, ranging from facial characteristics (Adhikari et al. 2016) to risk of de-

veloping neurological disease (Nalls et al. 2014). However, the biological mechanisms

underlying these associations are still poorly understood. Furthermore, as loci identified

through GWAS often lie in intergenic regions surrounded by different genes, identifying

the causal gene is not a trivial task. One approach to addressing this information gap is

to consider the impact of genetic risk loci on the most proximal product of deoxyribonu-

cleic acid (DNA), namely ribonucleic acid (RNA) (Cookson et al. 2009). Expression

quantitative trait locus (eQTL) studies have been successfully used to investigate how

genetic variation influences RNA expression levels. eQTLs can be used to ascertain the

causal gene(s) within GWAS loci, which is the fundamental step to understanding the
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cascade of effects leading to the trait. In this way, eQTL analysis adds an extra layer of

functional information onto the human genome and is one part of a much broader effort

to understand the regulatory (as opposed to coding functions of DNA), as exemplified

by the collaborative projects ENCODE (The ENCODE Project Consortium 2004) and

PsychENCODE (Akbarian et al. 2015).

The aim of eQTL studies is to identify significant associations between common

DNA variants and a particular continous trait, in this case RNA expression levels. In

order to identify eQTLs, a simple linear regression model is applied to test for correlation

using the genotyped data as the independent variable and the RNA expression data

as the dependent variable (Figure 1.1). This provides a p-value which indicates the

significance of the association and a slope (β) which indicates the strength and direction

of the effect, i.e. positive or negative association.

Figure 1.1: Example of an eQTL plot. The plot provides an example of a linear
relationship between the genotype plotted on the X axis and the RNA expression levels
plotted on the Y axis. In this example the dosage of the G allele is positively associated
with the gene’s expression.

The regulation of gene expression can occur at different points during RNA produc-
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tion and processing, such as, transcription factor (TF) binding (McDaniell et al. 2010;

Kasowski et al. 2010; Reddy et al. 2012), chromatin accessibility (Degner et al. 2012;

Lee et al. 2013), alternative splicing (Montgomery et al. 2010; Pickrell et al. 2010; Li

et al. 2016b) and mRNA degradation (Pai et al. 2012) amongst others. However, gene

regulation is dictated primarely by TF binding. Transcription factors are proteins that

bind to specific DNA sequences, called transcription factor binding sites, and recruit

the RNA polymerase II to initiate transcription. Thus, when a variant is located in a

transcription factor binding site this affects TF binding, histone alteration and mRNA

expression. This has been reported in several studies performing eQTLs in humans

as the primary mechanism driving cis-acting eQTLs (Brown et al. 2013; Westra and

Franke 2014; Albert and Kruglyak 2015; Pai, Pritchard, and Gilad 2015).

The potential of eQTL analysis with regard to the understanding of regulatory pro-

cesses as well as loci has increased with the widespread use of RNA-sequencing (RNA-

Seq). The intrinsic properties of RNA-Seq allow us to analyse the entire transcriptome,

generating a more complete landscape of RNA processing including the transcription

of pre-mRNA (as detected by intronic reads), RNA splicing (indicated by exon-exon

spanning junctions) and RNA stability (measured by steady state RNA levels (Gai-

datzis et al. 2015)). Therefore, eQTL studies performed using RNA-Seq data have the

potential to provide additional insights into the mechanisms driving gene expression

changes (Pickrell et al. 2010).

Several studies have demonstrated the utility of eQTL analyses in providing insights

into a wide range of disorders (Raj et al. 2014). However, the efficacy of brain-related

eQTL analyses in the context of neurodegenerative disorders has been harder to demon-

strate. This might be because some brain disorders have a systemic nature, affecting

global biological processes rather than cell-specific processes. In fact, eQTLs analyses

performed using monocytes appear to provide greater insights for Alzheimer’s disease

(Raj et al. 2014) than brain related eQTL studies. Another alternative explanation is
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that the eQTLs of interest are present in brain, but because of current limitations in

human brain eQTL studies they are not detected. The most common form of sample

collection in brain eQTL studies is at post-mortem, this limits the RNA quality (Sidova

et al. 2015) and the sample size. Furthermore, the human brain is a complex organ

which consists of many anatomical regions each containing many distinct cell types and

with extensive inter-regional differences in expression. Thus, the interpretation of tran-

scriptomic data is complicated and the statistical power to detect regulatory signals is

more limited. Finally, human brain shows high levels of splicing and non-coding RNA

activity (Briggs et al. 2015), much of which has yet to be fully characterised (Jaffe et al.

2015; Clark et al. 2018) and this further limits eQTL analyses.

1.1.1 Expression quantitative trait loci in human brain: the

annotated transcriptome

Given that many disease phenotypes manifest only in certain tissues, to increase the

likelihood of finding eQTL and GWAS connections (Moffatt et al. 2007; Emilsson et al.

2008; Grundberg et al. 2012), it is widely believed that eQTL mapping studies are more

likely to be successful when performed in tissues relevant to disease of interest.

Several eQTL mapping studies have already been performed in adult human brain

tissues using microarray-based technologies. The focus of these studies has been the in-

terpretation of GWAS (Zou et al. 2012; Kim et al. 2012), disease-specific eQTLs (Myers

et al. 2007; Webster et al. 2009) and splicing eQTL (Heinzen et al. 2008; Ramasamy

et al. 2014). Although these microarray-based eQTL studies significantly improved the

understanding of genetic regulation in human brain, they were limited by the tech-

nology used. Microarray technologies rely on gene annotation for probe design, which

means they rapidly become outdated, particularly with regard to newly identified RNA

species (e.g. long non-coding RNAs (Wang, Gerstein, and Snyder 2009)). Furthermore,

the use of microarray-based expression measures provides limited information about al-
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ternative splicing (Malone et al. 2011; Zhao et al. 2014) and have a restricted dynamic

range because of signal saturation (Hsiao et al. 2002).

Next-Generation Sequencing (NGS) technologies overcome many of these limitations

and as costs have decreased, RNA-Seq-based eQTL studies in humans have become

increasingly common (Montgomery et al. 2010; Pickrell et al. 2010; Lappalainen et al.

2013; Battle et al. 2014). However, eQTL studies using RNA-Seq in human brains

are more limited. Fromer and colleagues (Fromer et al. 2016), have performed eQTL

analysis on dorsolateral prefrontal cortex from a cohort of schizophrenia and healthy

(N=467) individuals which were used to interpret risk loci identified from shizophenia

GWAS. This lead to the identification of potential candidate genes for schizophrenia

which were experimentally validated.

The only RNA-Seq-based eQTL analysis performed on multiple human brain tissues

was performed by the Genotype-Tissue Expression (GTEx) Consortium (Ardlie et al.

2015). While an important resource, to date the GTEx study has focused on regulatory

relationships across human tissues rather than regulatory mechanisms specific to brain,

which might impact on neurological and neuropsychiatric conditions.

1.1.2 Expression quantitative trait loci in human brain: unan-

notated transcribed regions

A limitation of current eQTLs studies is that they have largely been performed using

existing gene annotation to quantify RNA expression. Gene annotation databases are

updated quarterly suggesting that gene annotation is not complete and implying that

eQTL analyses progressively become more outdated. Although more comprehensive

gene catalogues have been published (Pertea et al. 2018), the high degree of alter-

native splicing in human brain makes the annotation of brain-expressed genes to be

disproportionately inaccurate and incomplete.

This view is supported by recent studies investigating gene expression in human
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frontal cortex across development. In their study, Jaffe and colleagues (Jaffe et al.

2015) demonstrated significant differences between the transcriptome as defined by

commonly used annotation providers and that defined empirically through RNA-Seq

data. Further evidence is provided by a study performed using Long-Read Sequencing

showing that the transcript isoform variation in human brain is more abundant than

currently described in any gene annotation database (Clark et al. 2018).

Although limited, there are some eQTL analyses which have incorporated informa-

tion on the regulation of unannotated transcribed regions. Pickrell et al. (Pickrell et al.

2010) used RNA-Seq data to show eQTL variants regulating unannotated non-coding

regions and putative protein-coding exons. However, this analysis was performed in

human lymphoblastoid cell line samples and not in human brain samples.

eQTL analysis using Cap Analysis Gene Expression Sequencing (Cage-Seq) data

from control post-mortem frontal cortex samples has shown regulation of previously

unannotated transcribed regions (Blauwendraat et al. 2016). Since this analysis was

based on CAGE-Seq measurements, it did not have the potential to identify single

nucleotide polymorphism (SNP) regulating intragenic novel splicing of novel 3’ exons.

More recently, RNA-Seq data generated from human dorsalateral pre-frontal cortex

was used to identify eQTLs targeting transcribed unannotated regions associated risk

loci for schizophrenia (SCZ) (Jaffe et al. 2017a). However, these analyses were carried

out using RNA-Seq performed on polyadenylated (PolyA) selected fragments, which

might miss non-coding RNA species (Tariq et al. 2011) (the majority of which are not

polyadenylated) and underestimate 3’ UTR variability (Huang et al. 2011).

Long intergenic non-coding RNA (lincRNA) are thought to particularly important

in generating tissue specificity in human brain (Derrien et al. 2012; Ward et al. 2015),

yet are relatively poorly characterised and not necessarely polyadenylated. Given the

regional and cellular specificity of many neurodegenerative disorders capturing this

additional complexity might significantly improve the value of eQTL analyses in the
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context of brain-related GWAS.

Improving the accuracy of the human brain transcriptome could also have an im-

pact on the detection of rare pathogenic variants. Recent studies have demonstrated

that incomplete annotation of alternative splicing may lead to false negatives when

performing conventional mutation screening analysis (Gambino et al. 2015). Therefore,

accurate gene annotation is an essential component of variant interpretation, and this

is likely to be especially important for neurological diseases.

1.1.3 Objectives of this thesis

The first objective of my thesis was to perform eQTL mapping using RNA-seq data

derived from post-mortem human putamen and substantia nigra samples originating

from neurologically normal individuals with all analyses based on current gene annota-

tion. Having generated eQTL data, in Chapter 3 I not only catalogue eQTL variants,

but also aim to identify the molecular process eQTL variants are acting on and their

relationship to brain-relevant GWAS hits.

The objective of the second portion of my thesis is to design a pipeline, and then

perform annotation-agnostic eQTL mapping using human post-mortem hippocampus

samples. As part of this pipeline I consider validation and characterisation of unan-

notated transcribed regions targeted by eQTL loci. I investigate the efficacy of my

approach to eQTL mapping in terms of the generation of novel insights into neurologi-

cal disorders. Finally, I use this project to provide a proof of principle for annotation-

agnostic methods as a means to more effectively capture the full complexity of RNA-seq

data.
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Chapter 2

Data

2.1 Overview and rationale for tissues examined in

this thesis

Substantia nigra (SNIG) and putamen (PUTM) are two of the key components of the

subcortical region known as basal ganglia (Figure 2.1). The importance of the basal

ganglia for normal brain function and behaviour is emphasised by the wide range of

neurological conditions associated with basal ganglia dysfunction. These include: i)

hypokinetic movement disorders, such as Parkinson’s disease (Dawson 2007), which is

characterised by degeneration of the dopamine-producing cells in the substantia nigra

pars compacta, ii) hyperkinetic movement disorders, such as Huntington’s disease (HD),

which primarily involves dysfunction and loss of medium spiny neurons of the striatum

(Albin, Young, and Penney 1989), and iii) neuropsychiatric disorders like schizophrenia

(Williams et al. 2014). Furthermore, another brain region of clinical interest to human

neurodegenerative disorders was analysed, the hippocampus. The hippocampus is part

of the limbic system and dysfunction of this regions is a characteristic feature of several

forms of dementia, such as Alzheimer’s disease (AD), which manifests through formation

of plaques and tangles in the hippocampus, disrupting cognitive functions like short-
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term memory. Investigating the regulation of gene expression in these brain regions

could provide insights into a wide range of neurological diseases.

Figure 2.1: Putamen, substantia nigra and hippocampus. Figure adapted from
figure 14.10 of Neuroanatomy through clinical cases, second edition.

2.2 Data generation

2.2.1 Samples

Human brain samples originating from 129 individuals of European descent were ob-

tained from two donation programs: The Medical Research Council (MRC) Sudden

Death Brain and Tissue Bank, Edinburgh, UK (Millar et al. 2007) and the Sun Health

Research Institute (SHRI), USA (Beach et al. 2008). In all cases, brain samples orig-

inated from individuals with no history of neurological disease and which had been

checked through detailed neuropathology before being classified as control samples.

Table 2.1 presents a summary of the donor and sample characteristics used in the

analyses.
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Individuals 129
PUTM Samples 111
SNIG Samples 69
HIPP Samples 101
Age Range: 16-102, mean: 57.0, median: 57, mode: 60
Gender 74.7% males - 25.3% females
Post-mortem interval Range: 1-99 hours, mean: 43.8, median: 47, mode: 48
brain bank 84.3% Edinbrugh brain bank

15.7% The Sun Health Research Institute
Major cause of death Ischemic heart disease (50.2%)

Table 2.1: Summary of sample characteristics

A total of 281 brain samples were dissected from three brain regions, namely puta-

men, substantia nigra and hippocampus. These samples constituted a subset of the

United Kingdom Brain Expression Consortium (UKBEC) dataset (Ramasamy et al.

2014). All samples were authorised for ethically approved scientific investigation (Re-

search Ethics Committee number 10/H0716/3) and had fully informed consent for re-

trieval. Macro-dissection and processing of brain samples was performed by Dr Mina

Ryten and Dr Daniah Trabzuni. A detailed description of the sample processing was

reported in Trabzuni et al. (Trabzuni et al. 2011). In brief, the miRNeasy 96 sample kit

(Qiagen, UK) was used to isolate total RNA and the RNA integrity number (RIN) was

assessed for each sample using the RNA 6000 Nano-LabChip kit (Agilent Technologies

UK Ltd, UK).

2.2.2 Genotyping data

Macro-dissected samples of human post-mortem brain tissue (generally cerebellum sam-

ples) were used to extract DNA. The DNA was genotyped using two BeadChip plat-

forms, the Illumina Infinium Omni1-Quad BeadChip and ImmunoChip (Nalls 2011).

Analyses of the data and generation of the SNP calls was performed using GenomeS-

tudio v.1.8.X (Illumina, USA).

Standard quality control on the merged genotyping data was performed. Individu-
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als of suspected non-European descent and samples with the percentage of non-missing

genotypes of <95% were removed from the analysis. Reported gender status and non-

relatedness of samples were confirmed. Monomorphic SNPs, variants with missing po-

sition information, variants with a p-value <0.0001 for deviation from Hardy-Weinberg

equilibrium, variants with a genotype call rate <95%, variants with less than two het-

erozygotes present and variants with mismatching alleles from 1000 Genomes Project

were removed from the analysis. The genotyped data was used for imputation with

the European panel of the 1000 Genomes Project (March 2012: Integrated Phase I

haplotype release version 3) using MaCH (Li et al. 2010) and minimac (Howie et al.

2012). Finally, SNPs with allele frequency <5% were removed, resulting in ~5.88 mil-

lion SNP and ~577 thousand indels for use in downstream analyses. Quality control

and imputation of the genotype data was performed by Dr Adaikalavan Ramasamy.

2.2.3 Generation of RNA-Seq data

The work described in this paragraph was carried out by the commercial company

AROS Applied Biotechnology A/S (Denmark).

Firstly, 100ng of total RNA was used as input for reverse transcription into com-

plementary DNA (cDNA) using the Ovation RNA-seq system v2 kit (NuGEN, UK).

Importantly, in this protocol reverse-transcription was performed using both oligo(dt)

and random hexamer primers. This meant that the resulting cDNA could include RNA

species, which do not undergo polyadenylation including some lincRNAs. The Covaris

S220 Ultrasonicator was used to obtain cDNA fragments, which were used as input

for the TruSeq DNA (Illumina, USA) library preparation kit. Adapter and barcode

sequences were ligated to the fragments and ten cycles of polymerase chain reaction

(PCR) were performed to amplify the cDNA molecules.

Lastly, the cDNA library was sequenced using the HiSeq v3 Flow cell (Illumina,

USA) with three samples per lane to obtain an average of 145M paired end reads of
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100bp long. Reads were demultiplexed and fastq files generated from the sequencing

data using the CASAVA software (Illumina, USA).

2.3 Quality control of putamen and substantia nigra

RNA-Seq data

RNA-Seq data was pre-processed to assess data quality.

2.3.1 Pre-alignment quality control

Fastq files contain the probability that a given base is read incorrectly by the sequencer,

providing means of base call accuracy. Fastq files also contain adapter sequence, ar-

tificial sequences ligated to either end of the cDNA (cDNA) fragment, during library

preparation. Trim Galore! (Krueger 2012) (v0.3.1) was used, which incorporates cu-

tadapt (Martin 2011) (v1.2.1), to identify and remove adaptors and FASTQC (Andrews

2010) (v0.10.1) to assess data quality following trimming. Bases with base call accuracy

<= 99% were removed (20 in the Phred scale, Figure 2.2) and all sequences at the 3’ of

the reads that overlapped with at least 1bp within the adapter sequences were removed.

2.3.2 Alignment

Paired end data was mapped to the human genome (build GRCh37) using tophat2

(Kim et al. 2013) (v2.0.9) with default settings and a transcriptome-guided approach

using the Ensembl (Hubbard et al. 2002) reference (v72) based on GENCODE (Harrow

et al. 2006) version 18. Reads mapping to mtRNA and rRNA regions were removed

from the analysis.

42



Chapter 2. Data

Figure 2.2: Aggregated base call accuracy before and after base call qual-
ity filtering. a) Aggregated (using means) base call accuracy before filtering. b)
Aggregated (using means) base call accuracy after base call quality filtering.

2.3.3 Post-alignment quality control

Reads mapping to exonic regions and the number of genes detected were estimated

using RNASeQC (Deluca et al. 2012) and formed quality metrics. Samples with less

than 15M exonic reads and an exonic mapping rate of less than 10% were considered to

have evidence of a failure of library costruction and were excluded entirely from further

analysis. Additionally, samples with less than 20M exonic reads and less than 17K

genes detected were selected for re-sequencing (Figure 2.3). A total of 17 samples were

re-sequenced and processed as in section 3.3.1 and 3.3.2. Mapped sequence data was

merged with previous sample data and RNA-SeQC was re-applied to assess the quality

of the merged data (Figure 2.3). A total of 170 samples, consisting of 105 putamen and

65 substantia nigra samples, were used in all subsequent analyses.

The resulting aligned files were used as input for the work described in the following

sections. The reads added and number of genes detected were further investigated with

43



Section 2.3. Quality control of putamen and substantia nigra RNA-Seq data

Figure 2.3: Post-alignment quality control. a) The Distribution of exonic reads
across samples before and after re-sequencing. b) The distribution of genes detected
across samples before and after re-sequencing.

the intention of assessing whether the number of genes detected had plateaued. Even

after geneFastq filesrating 180M reads the number of genes detected does not appear

to plateau and the data suggests a linear increase (Figure 2.4).

Figure 2.4: Increment of number of genes detected per reads added. Plot to
show the effect of re-sequencing on gene detection
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2.4 Quality control of hippocampus RNA-Seq data

The same sample quality controls as described above were performed on the 101 samples

originating from the hippocampus. These quality checks were performed by Karishma

D’Sa (PhD in the Department of Genetics and Molecular Medicine KCL) and resulted

in the re-sequencing of 9 samples.

In the case of the hippocampal samples, I also performed further analyses to ensure

sample identity rather than sequencing quality. I assessed sample data for a poten-

tial mismatch between the reported sex of brain donors and the sex as determined

by the expression of sex-specific genes, namely XIST (X chromosome gene expressed)

and DDX3Y (Y chromosome gene expressed). Expression in both genes highlighted

5 samples, of which 3 samples were reported as female while the expression suggested

they originated from males and 2 samples reported as male, but expression suggested

they originated from females. Since no labelling errors could be identified in the sam-

ple preparation and sequencing, these samples were removed from the final dataset.

Additionally, I performed a PCA analysis to identify outliers on the basis of gene ex-

pression. By plotting the first two PC axes I detected a single outlier (Figure 2.5a).

Consequently, I ranked and identified the top 10 genes contributing most to variability

across samples. Amongst this list I identified several genes known to be markers of cere-

bellar tissue, including SMPDL3B (Bettencourt et al. 2014). Plotting the expression of

SMPDL3B across all samples suggested that A653_1278 outlying sample, originated

from the cerebellum (Figure 2.5b). This sample was removed from the analysis. Thus,

resulting in a final sample set of 95 hippocampus.
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Figure 2.5: Hippocampus quality control. Identification of outliers through princi-
pal component analysis (a) and cell marker SMPDL3B gene expression in hippocampus
(b)

2.5 External datasets

In order to validate the findings presented in this thesis several datasets were used.

In choosing datasets I considered the importance of replication across gene expres-

sion profiling platforms and independent sample sets. Firstly, I sought to validate

brain-expressed unannotated regions using public RNA-Seq datasets as well as curated

databases. Secondly, validation of eQTLs was conducted across different quantification

platforms, different RNA-Seq library preparations and different human tissues.
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Validation of transcribed genomic regions

2.5.1 Recount2

To date Recount2 (Collado-Torres et al. 2017b) is the largest database of expression

profiles with over 70,000 RNA-Seq samples from the Sequence Read Archive (SRA),

The Cancer Genome Atlas (TCGA) and GTEx.

In this database all sample were processed through Rail-RNA (Nellore et al. 2016b)

and derfinder (Collado-Torres et al. 2017a) to generate whole-transcriptome expression

profiles for each sample. In this way, Recount2 can be used to provide RNA expression

data over any pre-defined genomic region in GRCh38 coordinates. In my thesis, I

specifically focused on data processed within Recount2 originating from the GTEx

project (Ardlie et al. 2015Aguet et al. 2017). The data contained in recount2 correspond

to the GTEx release version 6, which relates to samples dissected from non-diseased

post-mortem tissues from 544 individuals covering 53 distinct tissues for a total of

9662 samples. Samples were sequenced to generate RNA-Seq reads from non-stranded

76bp long paired-end reads from polyA-selected libraries. Currently, this is the largest

publicy available post-mortem human transcriptomics dataset.

2.5.2 CAGE-Seq datasets

CAGE-Seq (Kodzius et al. 2006) is a technique to measure transcription at the 5’

end of capped transcripts. I used two CAGE-Seq datasets to collect more evidence for

transcription of unannotated expressed regions. Firstly, a CAGE-Seq dataset containing

over 200 control human substantia nigra samples generated at the German Center for

Neurodegenerative Diseases (DZNE) and processed by Dr Sanchez-Simon. This dataset

is not yet publicly available. Secondly, a public CAGE-Seq dataset of 128 control

human frontal lobe samples provided by Blauwenraat and colleagues (Blauwendraat
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et al. 2016).

2.5.3 North-American Brain Expression Consortium (NABEC)

dataset

An RNA-Seq dataset provided by the North-American Brain Expression Consortium

was used to more closely match the library preparation and sequencing technology of our

core dataset. Using total RNA as input from 213 human postmortem frontal cortex

control samples, the Illumina TruSeq Stranded Total RNA kit was used for library

construction, a protocol which includes Ribo-Zero to enable ribosomal RNA reduction.

Following cDNA library construction, paired-end reads of 101bp were generated using

the Illumina Hi-Seq. Dr. Raphael Gibbs (National Institutes of Health, NIH) processed

and checked Fastq files for quality. Sequences were aligned to the genome reference

hg19/GRCh37 using the STAR aligner (2-step approach with default parameters). A

final bam file dataset with an average of 66M mapped reads per sample (N=213) were

provided by Dr. Gibbs and used as input for validation purposes.

2.5.4 NONCODE dataset

To assess whether unannotated transcribed regions were enriched for non-coding RNA,

I used the NONCODE (Liu et al. 2005; Zhao et al. 2015) dataset. The NONCODE

database contains human non-coding RNA genes identified from public literature (6532

published articles), as well as public gene databases such as, ENSEMBL, GENCODE,

RefSeq and lncRNAdb. The collated dataset was then processed by the curators to

remove redundancy, filter out protein-coding RNA and assign RNAs with potential

functions. The NONCODE catalogue used for the validation analyses was downloaded

on the 6th July 2016.
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eQTL validation

2.5.5 The Brain eQTL Almanac (Braineac) dataset

To assess robustness, eQTLs were validated across quantification platform. As part of

the UKBEC project, the Braineac dataset (Ramasamy et al. 2014) was generated using

Affymetrix Human Exon 1.0 ST arrays to produce expression profiles for ten different

human brain post-mortem tissues collected from 134 neurologically normal individuals

of European ancestry. This is one of the publicly available human brian eQTL resourse.

2.5.6 Genetic European Variation in Disease (GEUVADIS) Con-

sortium dataset

To test the eQTL brain specificity of eQTLs, I used a lymphoblastoid eQTL dataset

generated with a large sample size (N=373). The aim of the GEUVADIS project

(Lappalainen et al. 2013) was to characterise regulatory variation in different human

populations. An average of 49M paired-end reads were generated from total RNA

extracted from 465 lymphoblastoid cell lines collected as part of the 1000 Genomes

project. Only eQTLs analysed from 373 individuals of European origin were used in

this thesis for eQTL validation.

2.5.7 Genotype-tissues Expression Consortium dataset

The GTEx eQTL dataset was used to validate eQTLs across different library prepa-

ration protocols. The GTEx Consortium has generated the largest publicly available

eQTL dataset for tissue-specific regulatory variants. Sample generation is described in

section 2.5.1. I used the GTEx eQTL summary statistics v6.
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GWAS interpretation

2.5.8 Systematic Target Opportunity assessment by Genetic

Association Predictions (STOPGAP) database

To test for the enrichment of disease risk SNPs amongst eQTLs I used the STOPGAP

(Shen et al. 2017) database. STOPGAP, encompass GWAS data from five different

resources; GWAS Catalog (Welter et al. 2014), GRASP (Leslie, O’Donnell, and Johnson

2014), GWASdb (Li et al. 2016a), BioVU PheWAS (Denny et al. 2013) and risk loci

identified in literature, but not present in the aforementioned resources. STOPGAP

contains all trait associated variants with a p-value 610-4, as well as all variants in

linkage disequilibrium (LD) with the associated variant (r²≥0.7 calculated from 1000G

phase 1). The trait per variant is classified according to the Medical Subject Heading

(MeSH) gathered from pubmed.

2.5.9 GWAS datasets

Colocalisation analyses between known GWAS association signals and eQTL signals

were performed using several GWAS. Thus, full-summary statistics for PD (Nalls et

al. 2018), AD (Lambert et al. 2013), SCZ (Pardiñas et al. 2018), Multiple Sclerosis

(MS) (Beecham et al. 2013), HD progression (Moss et al. 2017), Amyotrophic Lateral

Sclerosis (ALS) (Rheenen et al. 2016), intelligence (Savage et al. 2018).

A summary of the datasets analysed in this project either as a “core” dataset or for

validation purposes are included in the table 2.2. Furthermore, GWAS datasets used

for disease interpretation purposes are included in the table 2.3.
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Source Data types Description Sample Published/
used Sample Unpublished

UKBEC total RNA-seq Multiple human 69-111 Unpublished
Consortium brain tissues
UKBEC Affymetrix array-based Multiple human 134 Published
Consortium eQTL results brain tissues
GTeX polyA RNA-seq-based Multiple human 82-100 Published
Consortium eQTL results tissues
NABEC total RNA-seq Frontal cortex tissue 213 Unpublished
Consortium aligned sequences brain tissues
Lappanainen polyA RNAseq-based lymphoblastoid 373 Published
(2013) eQTL results cell line
Blauwendraat CAGE-Seq Human frontal 128 Published
(2016) lobe tissue
DZNE - Tubingen CAGE-Seq Substantia nigra tissue 211 Unpublished

Table 2.2: Datasets included in this project.

Source GWAS Description Sample size
N cases / N controls

Beecham, 2013 MS 14,498 / 24,091
Rheenen, 2016 ALS 12,577 / 23,475
Hensman-Moss, 2017 HD progression 1,989 / NA
Nalls, 2018 PD 37,688 (cases)

18618 (proxy-cases) / 1,417,791
Savage, 2018 Intelligence 269,858 / NA
Pardinas, 2018 SCZ 40,675 / 64,643
Lambert, 2013 AD 17,008 / 37,154

Table 2.3: GWAS datasets included in this project.
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Expression Quantitative Trait Loci

3.1 Introduction

This chapter describes the comprehensive set of eQTL analyses performed in two con-

trol, adult human brain tissues, putamen and substantia nigra. These analyses were

performed in order to improve our understanding of the risk loci for neurological and

neuropsychiatric disorders, including those identified for Parkinson’s disease (Nalls et

al. 2014) and schizophrenia (Ripke et al. 2014).

Mapping eQTL analysis in human brain are particularly challenging, the human

brain is a very heterogenous organ composed of a large array of cell types with distinct

properties, leading to a similarly distinct transcriptome profile. Brain-expressed genes,

not only tend to be longer, but also have a higher proportion of alternative splicing

events as compared to all other human tissues (Yeo et al. 2004). Furthermore, RNA-

binding proteins show an enrichment of region-specific gene expression in human brain,

suggesting more complex gene regulatory mechanisms (Mele et al. 2015). In addition,

long non-coding RNAs have been proposed as mechanism to regulate genes (Wang et

al. 2011; Guil and Esteller 2012; Engreitz et al. 2016) and the brain transcriptome has

preferential long non-coding RNA activity (Briggs et al. 2015) with a significant portion
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still uncharacterised. Thus, characterising gene regulation in brain at different RNA

processing stages might reveal novel insights into neurological disorders, particularly

for splicing which has been previously associated with neurologial disorders (Arnold

et al. 2013; Chabot and Shkreta 2016). Furthermore, quantifying transcription outside

of annotated genes might yield the identification of regulatory processes that could be

important to understand neurological disorders.

Therefore, I performed eQTL analyses using two approaches. Firstly, I quantified

transcription using a reference based approach (Figure 3.1). Several methods for

measuring RNA abundance in annotated regions were implemented with the intention

of providing insights into the different regulatory mechanisms. This resulted in four

different quantification types and each was used to generate as many eQTL types. eQTL

performed on gene-level quantification were split into those either accounting from reads

that fell exclusively into intronic or exonic regions of a gene which were termed gi-eQTLs

and ge-eQTLs respectively. eQTLs performed on single exons and exon-exon spanning

junctions were named e-eQTLs and ex-ex eQTLs. These quantification types were

designed to capture pre-mRNA, alternative splicing and steady-state mRNA regulation

(Figure 3.2). Secondly, a non-reference-based approach (Figure 3.1) quantification

was also implemented. In this way, it would be possible to overcome inaccuracies

within the current annotations and to invesitigate genetic regulation of novel intergenic

transcribed genomic regions in human brain (Figure 3.2).

While in principal a given eQTL locus could potentially regulate genes scattered

across the entirety of the human genome, including genes located on different chromo-

somes, relatively few such eQTLs (termed trans eQTLs) have been identified (Small

et al. 2011). eQTLs acting locally (termed cis-eQTLs) form the overwhelming majority

of eQTLs identified to date in human tissue. This is likely to be due to the weak ef-

fects of such eQTLs and the high burden of multiple testing correction when including

genome-wide variants. Given the relatively small numbers of putamen and substantia
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Figure 3.1: Quantification approaches. Flowchart to show the overview of the
transcription quantification approaches.

nigra samples, I was underpowered for detection of trans-eQTLs and all the analyses

presented were focused on the identification of cis-eQTLs (defined as loci within 1Mb

of the transcription start or end site of their target gene).
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3.2 Methods

3.2.1 Reference-based quantification

3.2.1.1 Quantification of gene expression considering exonic regions alone

Gene counts were generated using the software HTSeq-Counts (Anders, Pyl, and Huber

2014) (v0.5.4p4) with the “intersection-nonempty” method and using the transcriptome

definition from Ensembl (Hubbard et al. 2002) as a reference. This method resolves

ambiguous reads by assigning them to the gene that is exclusively and entirely mapped.

Moreover, duplicated reads and multi-mapped reads are excluded from this quantifica-

tion. This approach was used with the unstranded parameter set “on”.

3.2.1.2 Quantification of gene expression considering intronic regions alone

Gene counts including exonic and intronic regions were generated using the software

bedtools (Quinlan and Hall 2010)(v2.24.0) and using the transcriptome definition from

Ensembl (Hubbard et al. 2002)(v72) as a reference. Subsequently, exonic counts as

calculated in section 3.2.1.1 were subtracted. Only genes that do not overlap with the

genomic location of any other gene were considered. This was done to prevent the

inclusion of reads mapping to the exonic regions of other overlapping genes.

3.2.1.3 Quantification of exon expression

Exon counts were estimated using the python DEXSeq (Anders, Reyes, and Huber

2012)(v1.10.6) protocol. This protocol first creates a meta-exon reference collapsing

overlapping exons from different isoforms. Reads are then counted for each meta-exon.

DEXSeq was performed using the paired-end and unstranded paramerters set “on”.
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3.2.1.4 Quantification of exon-exon spanning junctions

Reads mapping to exon-exon spanning junctions were estimated using the software

Altrans (Ongen and Dermitzakis 2015)(v1.1.02). Altrans uses both paired-end read

information and split reads to predict splicing events. Similarly to DEXSeq, Altrans

creates an ad-hoc reference to group overlapping exons and identify unique portions.

The parameters included in the Altrans analysis were as follows: i) only reads with a

minimum read length of 95 bp were included (--read-length) to increase the sensitivity

of detecting splice junctions and those over 95bp read long were trimmed to maintain

consistency across reads (--trim), ii) unpaired reads (--check-proper-pairing) and reads

which were aligned using soft-clipping (--no-clipping) were excluded, iii) an estimated

fragment length (--min-exon-length) of 500bp, which is double that expected from our

library preparation method, was used as suggested by the authors, iv) split read infor-

mation (--split-reads) was required to be anchored by at least 2bp either side of splice

junctions (--anchor-length), and v) overlapping exons were not quantified (--ignore-

prob-groups). The Altrans-based quantification was performed by Karishma D’Sa and

parameters were agreed together.

3.2.2 Non-reference-based quantification

3.2.2.1 Quantification of transcribed regions

Identification and quantification of unannotated transcribed regions, was performed us-

ing the derfinder (Collado-Torres et al. 2015) R package. Derfinder calculates the cov-

erage at single base-pair resolution (Figure 3.3). Subsequently, it calculates the mean

coverage across samples (Figure 3.3), which is then adjusted by the total number of

mapping reads. Single base-pairs that did not pass the background-noise threshold (set

at 5 reads by default) were filtered out (Figure 3.3) of any further analysis. Transcribed

regions were assembled by taking contiguous reads allowing for a maximum gap of 10
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bases (Figure 3.3). Any region of less than 100bp was excluded from further analysis.

Expression of a region was defined for each sample as the mean coverage of the assem-

bled regions. Intergenic genomic regions that were not annotated in either Ensembl

(Hubbard et al. 2002) v72 or the University of California Santa Cruz (UCSC, Karolchik

et al. 2003) databases (through the R library TxDb.Hsapiens.UCSC.hg19.knownGene

version v3.1.2) were selected. Finally, the sequences of all identified regions were aligned

to the human genome using blast (Altschul et al. 1990) and filtered out if they mapped

to multiple locations with a minimum (98% alignment). This approach was applied

to each tissue separately (putamen and substantia nigra) with the aim of identifying

unannotated intergenic tissue-specific transcribed regions.
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3.2.3 Identification of eQTLs

All forms of RNA quantification described above were processed through the same

pipeline for eQTL discovery. Putamen and substantia nigra datasets were processed

separately.

3.2.3.1 GC correction and normalisation

Pickrell et al. (Pickrell et al. 2010) first described guanine-cytosine content (GC-

content) as a technical bias present within RNA-Seq data by showing selectivity in

the sequencing of genes or exons stratified on the basis of GC-content. This techinical

bias seems to be sample specific, and is present when comparing biological replicates

(Hansen, Irizarry, and Wu 2012) (Figure 3.4). Therefore, this type of bias would be

expected to have a major impact on eQTL detection. For this reason Conditional Quan-

tile Normalisation (CQN,Hansen, Irizarry, and Wu 2012), which corrects per sample

GC-content effects and quantile normalises across samples was applied to each quan-

tification method. GC-content was calculated separately for each type of quantification

and used as an input for the CQN R-bioconductor package. The resulting normalised

expression data was then transformed into RPKM values and converted to a log2 scale.

Following GC correction and normalisation, principal component analysis (PCA)

was carried out separately for each quantification type. In the case of gene-exonic or

gene-intronic, the major source of variability tissue type (Figure3.5). However, for exon

and exon-exon junction quantifications, demonstrated that tissue-specificity correlated

best with the second axis. While I investigated all known factors, the most likely source

of variability for axis 1 remains unexplained. Interestingly, similar analysis performed

for transcribed intergenic regions demonstrated that the first axis was driven by tissue

type (Figure 3.5). This suggested that this form of RNA quantification was unlikely to

be background noise.
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Figure 3.4: Log2 RPKM expression stratified by GC-content. White and grey
colours represent different samples. Figure adapted from Hansen, Irizarry, and Wu
2012.

Figure 3.5: Principal component plots. Plots of first two principal components
coloured by tissue ( putamen: red circles and substantia nigra: blue circles) for gene-
exonic (a) and transcribed intergenic (b) quantifications.

3.2.3.2 Removal of batch effects

Unknown factors (i.e. experimental hidden factors) can contribute to non-biological

variability in RNA expression levels that can lead to under detection of eQTL signals
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(Stegle et al. 2010Listgarten et al. 2010) and to spurious detections (Hyun, Ye, and

Eskin 2008).

The Probabilistic Estimation of Expression Residuals (PEER, Stegle et al. 2010)

method was used to identify unknown factors affecting expression levels and by cor-

recting for these factors to increase the power of eQTL detection. For all forms of tran-

scriptome quantification (exonic, intronic, and transcribed intergenic) with an RPKM of

greater 0.1 in at least 80% of samples in a given tissue, CQN was applied and the result-

ing expression matrix was used together with gender and age as the input for PEER.

PEER was run using default parameters and adding tissue type, age and gender as

known covariates. Known characteristics of the samples were correlated with the out-

put of PEER to obtain biological insights into the hidden factors identified. Although,

the tissue type was included as covariate in the execution of PEER, one component in

the output highly correlated with the tissue type, suggesting non-optimal convergence

by PEER.

Thus, an optimisation step was performed which consisted of running PEER twenty

times on the dataset, but using a random initialisation of the hidden factors rather than

a PCA-based initialisation (as suggested by PEER’s authors). The resulting output was

further analysed to assess the validity of the optimisation. Correlation analyses were

again computed between known characteristics and PEER components. I selected the

initialisation procedure and resulting output which produced the minimum correlation

to tissue type (based on Pearson’s R²) to obtain the final unknown factor matrix.

To assess the validity of the optimisation, correlation analyses were again computed

between known characteristics and PEER components. Although, correlation persisted,

the maximum correlation diminished considerably to ~0.3 R² from ~0.7 R² (PCA-based

initialisation).

RPKM normalised values were residual corrected using 13 unknown factors from

PEER, which were selected because they maximise eQTL identification.
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3.2.3.3 eQTL discovery

Variants within ∓ 1Mb span of annotated (i.e. genes, exons, exon-exon spanning junc-

tions) and unannotated (i.e. intergenic regions) expression features were tested using

the R package MatrixEQTL (Shabalin 2012) for the presence of an eQTL. In addi-

tion gender, age and the first three genetic principal component vectors were added

as covariates. The genetic principal component vectors were added to reduce the

intra-population variability and therefore increase the power of eQTL detection. The

Benjamini–Hochberg method was applied to calculate the false discovery rate (FDR)

adjusting for the number of tests performed for each transcriptomic feature.

3.2.3.4 Conditional analysis to obtain independent eQTLs

Stepwise conditional analysis was carried out for each quantification type to filter those

SNPs that were in linkage disequilibrium (LD) and detect independent variant effects

targeting the same expression feature. The method implemented was first suggested

by Cordell and Clayton (Cordell and Clayton 2002) for the analysis of the effects of

polymorphisms in the HLA region and involved the following steps: For each significant

eQTL ( FDR<5% ) the linear regression test was re-run for that eQTL association

adding the dosage of the significant signal as a covariate. If another eQTL variant

had a significant effect and was independent of the previous locus, a second significant

eQTL was identified. The conditional analysis was repeated until no significant eQTLs

could be identified. This method was able to identify additional signals that have an

independent effect on the same gene’s expression.

3.2.4 Replication of eQTL signals in independent datasets

Three independent datasets were used to validate the eQTL results. eQTLs gener-

ated by Ramasamy et al (Ramasamy et al. 2014), which used the same donor sam-

63



Section 3.2. Methods

ples ( 129 putamen samples and 101 substantia nigra samples), but a hybridisation-

based RNA quantification method (namely; Affymetrix Exon arrays, Affymetrix, USA)

were investigated in matching brain regions. eQTLs generated by the GTEx consor-

tium (Ardlie et al. 2015), which used RNAseq to measure gene expression, though

the library construction method differed (with GTEx using a poly(A)+ RNA-Seq li-

brary construction) was also analysed. In this case, eQTL results for putamen (N=

82), nucleus accumbens (N= 93) and caudate (N= 100) were downloaded from the

GTEx portal website (http://www.gtexportal.org) on June 10th, 2015. Finally, eQTLs

generated by Lappanainen and colleagues (Lappalainen et al. 2013) using 373 lym-

phoblastoid cell lines from the GEUVADIS consortium were analysed. The summary

eQTL results for this dataset were downloaded from the EBI ArrayExpress repository

(http://www.ebi.ac.uk/arrayexpress/files/E-GEUV-3/EUR373.gene.cis.FDR5.all.rs137.txt.gz

- on the 15th of December 2015) with the accession number E-GEUV-3.

Only ge-eQTLs were considered for replication because either it was not feasible

to match genomic locations of the quantification feature or the eQTL results using

different quantification methods were not publicly available. Replication of a given

ge-exonic eQTL within my study was achieved when the examined SNP-gene pair was

significant at 5% FDR in both our dataset and the comparison dataset.

3.2.5 Beta-hetereogeneity testing across different forms of quan-

tification

A mixed model approach was used to identify heterogeneity in eQTL signal strength

(beta coefficient or slope), across different form of quantification. To test for beta

heterogeneity between ge-eQTL and each other eQTL class (namely gi-eQTLs, e-eQTLs,

ex-ex-eQTLs and relevant i-eQTLs) targeting the same gene, two models were fitted: 1)

a non-heterogeneous (single slope) model with allele dosage as the main effect and two

random effects, namely the index of the individuals and the index of the gene-exonic or
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gene-intronic/exon/exon-exon-junction and 2) a heterogeneous (multiple slope) model

containing the same terms, but with the addition of a fixed-effect allele dosage × of

the gene-exonic or gene-intronic/exon/exon-exon-junction index interaction terms. To

avoid any bias driven by the lack of expression, the test was only performed in exon

or exon-exon-junctions considered expressed (as defined by as an RPKM of greater

than 0.1 in at least 80% of samples). I used the lme4 R package to fit both models.

A p-value for the likelihood ratio test comparing the two models was generated with

the R function anova(). Finally, p-values were adjusted by the total number of eQTLs

included in the beta-heterogeneity analysis using the Benjamini-Hochberg method.

3.2.6 Calculation of eQTL distance from the transcription start

and end sites of the target gene

Following conditional analyses the location of each eQTL was calculated with respect

to their target gene. These calculations were made taking into account stranding, and

therefore eQTLs targeting unannotated transcribed intergenic regions, which did not

have this information, were not included in this analysis. In the case of eQTLs located

within their target gene, distances were calculated as a percentage proportional to the

length of the target gene.

3.2.7 Functional annotation of eQTL signals

Functional annotation of eQTLs was performed using Ensembl Variant Effect Predictor

(VEP,McLaren et al. 2016). This analysis was performed with reference to the target

gene. If the eQTL was located outside the target gene, it was assigned as up-stream

or down-stream as appropriate. If the eQTL was located within the boundaries of the

target gene, its annotation was assigned in a conventional manner.
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3.2.8 Assessment of brain cell type-specificity of eQTL targets

The RNA-Seq data generated for substantia nigra and putamen samples was used to

generate gene co-expression networks analyses and assess the cell type-specificity of

eQTL targets. Counts of genes detected at RPKM>0.1 in at least 70% of samples

were CQN normalised (as in section 3.2.3.1) and residual corrected for 13 PEER axes

(identified as in section 3.2.3.2), gender, age and genetic axes before applying K-means

optimised weighted Gene Co-expression Network Analyses (WGCNA) (Botía et al.

2017). Annotation of cell-specific modules was performed using the augmented list

of cell-specific gene markers from the userListEnrichment present in the WGCNA R

Package (Lein et al. 2007; Oldham et al. 2008; Cahoy et al. 2008; Winden et al. 2009).

Genes assigned to modules significantly enriched for brain-related cell type markers

and with a module membership of > 0.3 were allocated a cell type “label” of neuron,

microglia, astrocyte, oligodendrocyte and endothelial cell.

Subsequently, each eQTL targeting a known genic region was assigned the same cell-

type of the target gene assuming the target gene was a member of a cell type-labelled

module. Similarly, for eQTLs targeting unannotated transcribed intergenic regions with

moderate and high evidence of being associated to a known gene, the eQTL was assigned

to the cell type of the associated gene. For eQTLs targeting unannotated transcribed

intergenic regions with low evidence for association with a known gene or which could

not be classified, the cell-type was assigned based on its highest module membership (

correlation of the expression of the transcribed intergenic region and the first principal

component or eigengene of each module), provided the module membership was at least

0.3. Finally, a Fisher’s Exact test was applied to test for enrichment of cell type specific

information within a given eQTL class. This analysis were carried by Dr Juan A. Botía.
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3.2.9 Investigation of GWAS risk variants

3.2.9.1 Enrichment of eQTLs amongst GWAS risk loci for neurological and

neuropsychiatric disorders

I investigated the enrichment of eQTL loci and risk loci identified through GWAS and

sub-classified by the STOPGAP database. eQTL-GWAS overlap was checked using all

eQTLs passing an FDR < 5%. A Fisher’s exact test was computed for the eQTLs over-

lapping GWAS hits classified as “Neurological/behavioral” relative to eQTLs overlap-

ping GWAS hits classified for all other disorders (Aging, Blood, Cardiovascular, Diges-

tive system, Ear, Endocrine, Eye, Infection, Inflammation, Liver & kidney, Metabolic,

Miscellaneous, Musculoskeletal, Oncology, Respiratory, Skin & connective tissue, Uro-

genital). Disorders classification for GWAS hits was performed by STOPGAP using

the Medical Subject Heading ontology.

3.3 Results

3.3.1 eQTL signal detection

Association testing was performed between ~6.5 million genetic loci (~5.88M SNPs and

~577K indels - collectively referred as variants) and ~411,000 RNA expression traits in

putamen and ~370,000 RNA expression traits in substantia nigra resulting in ~5.3billion

eQTL tests. A false discovery rate (FDR) is applied to the p-value to control for the

total number of variants tested in ∓ 1Mb range of the RNA expression trait. Following

conditional analysis and using a FDR of 5%, 21,955 eQTLs were identified in total.

A summary table with the number of signals detected using different quantifications

by brain region is presented in Table 3.1. This table also includes the number of

independent secondary eQTLs identified following stepwise conditional analysis. The

number of secondary independent eQTLs signals identified in this study is small and is
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likely to be understimated because detection of secondary effects requires larger sample

sizes. While there is a substantial difference in the number of eQTLs detected between

the brain regions, this is most likely to be due to the difference in sample size, with

putamen having almost double the number of samples available for analysis as compared

to substantia nigra.

Tissue Quantification Features included eQTL signals
Putamen
(N=105) Gene-exonic 19,039 1,235 (23 ind.sign)

Gene-intronic 4,713 348 (7 ind.sign)
Exon 275,703 8,946 (176 ind.sign)
Exon-exon Junction 96,738 2,180 (52 ind.sign)
Transcribed intergenic 14,905 1,042 (26 ind.sign)

Substantia Nigra
(N=65) Gene-exonic 17,499 650 (13 ind.sign)

Gene-intronic 4,331 178 (2 ind.sign)
Exon 251,575 5,436 (87 ind.sign)
Exon-exon Junction 88,936 1,619 (24 ind.sign)
Transcribed intergenic 8,135 314 (13 ind.sign)

Table 3.1: Summary of significant eQTL at 5% FDR by quantification type.
The term “ind.sign” indicates the number of additional eQTLs which have an indepen-
dent secondary effect on a gene.

I detected 1,885 gene-exonic eQTLs, corresponding to 1,377 SNPs and 1,273 genes.

Thus, eQTLs were identified for 5.1% of the total number of genes tested in this category.

This included 36 gene-exonic eQTLs detected through stepwise conditional analyses.

Fewer gene-intronic eQTL signals were identified (526 in total), due to the lower number

of genes tested. However, the yield of this approach, defined as for both tissues as the

total number of eQTL identified divided by the total number of features tested within

the same category, remained similar (5.8%).

The largest number of eQTL signals were generated using exon-level quantification.

However, this was due to a large proportion of eQTLs tagging exons from the same

gene. In fact, 4,943 (out of 8,946) and 2,490 (out of 5,436) eQTL signals targeting

exons, respectively for putamen and substantia nigra, shared a target gene.
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Exon-exon junction quantification generated 3,799 eQTLs, corresponding to a yield

of 2.0%, similar to the yield obtained using exon quantification (2.9%). Finally, test-

ing intergenic transcribed regions had the highest yield with 1,356 eQTLs detected

corresponding to 5.9% of all transcribed intergenic regions tested.

Figure 3.6: eQTL yields of per quantification type. Bar chart to show the eQTL
yields for both tissues. Yields were calculated as the number of expression features
within a category divided by the total number of tested features within the same cate-
gory.

3.3.2 eQTL signals show high replication rates across platforms

and datasets

To determine the quality of the cis-eQTL pipeline, eQTLs detected in this analysis

were compared to those identified in putamen (N=129) and substantia nigra (N=101)

by Ramasamy et al (Ramasamy et al. 2014). Using this dataset, I found that 50.6% and

50.4% respectively of eQTLs identified using the RNA-Seq-based analysis of putamen

and substantia nigra could be detected within the microarray dataset. This replica-

tion rate is high considering replication rates across previous eQTL mapping studies

(McKenzie et al. 2014; Ardlie et al. 2015), but given that both studies shared the
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same biological material it might have been expected to be even higher. This could

be attributed to the different technologies used for RNA quantification (sequencing-

based versus hybridisation), different analysis pipelines and smaller samples size for the

RNA-Seq study.

Replication was also assessed using the RNA-Seq-based eQTLs generated by the

GTEx consortium (Ardlie et al. 2015). This demonstrated a replication rate of 38.1%

for eQTL signals in putamen and 59.9% for substantia nigra.

Finally, I checked the replication of eQTL signals in the RNA-Seq eQTL study

reported by Lappalainen et al. 2013. Using this data set I found that 22.0% and

24.2% of eQTLs identified in putamen and substantia nigra respectively were replicated.

Given the significantly larger number of samples in the Lappalainen study (N=373),

the higher replication rate of eQTLs within the GTEx datasets which are derived from

similar brain regions, emphasizes the importance of validating eQTLs within similar

tissues/cell sample datasets and suggests that many of the eQTLs identified are tissue-

specific.

3.3.3 Characterisation of eQTL signals

3.3.3.1 Identification of splicing-specific eQTLs

Exon and exon-exon junction quantification has the potential to provide information

regarding alternative splicing and could be used to identify transcript-specific eQTLs.

However, this is complicated by the usage of a given exon (and corresponding exon-

exon junctions within multiple transcripts). Therefore, in order to better determine

whether any of the exon and exon-exon junction eQTLs were related to transcript-

specific rather than gene level regulation we used beta heterogeneity testing across the

gene, as previously described by Ramasamy and colleagues (Ramasamy et al. 2014).

The beta-heterogeneity test differentiates between eQTLs that regulate single exons or

exon-exon junctions from those that regulate the overall expression of genes indicating
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possible alternative splicing regulation. The advantage of this approach is that beta

estimation at any given exon or exon-exon junction is independent of power.

I used beta-heterogeneity testing to determine whether the exon and exon-exon

eQTL (e-eQTLs and ex-ex-eQTLs) identified were distinct from more standard gene-

level eQTLs (ge-eQTLs). This analysis showed that only 13.2% and 6.9% e-QTLs

and ex-ex-eQTL were detecteble amongst ge-eQTL (Figure 3.7) suggesting not only

that e-eQTL and ex-ex-eQTL are likely to be driven by splicing effects, but that these

eQTL classes provide distinct regulatory information as compared to standard gene-

level analysis.

Figure 3.7: Heterogeneity test comparing gene-level eQTLs to non-standard
eQTL. Bar chart showing the heterogeneity of eQTL signals when comparing gene-
level eQTLs to non-standard eQTL classes applied to the same gene. Analysis were
perfoermed separately for gi-eQTLs (red), e-eQTLs and ex-ex-eQTLs (turquoise bars).
All signals with an FDR-corrected p-value of < 5% using a beta-heterogeneity test were
considered distinct (opaque bars), while an FDR-corrected p-value of > 5% was taken
as evidence of eQTL sharing (transparent bars).
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3.3.3.2 Location and functional annotation of eQTLs signals around target

genes

Since recent studies have demonstrated that the location of eQTLs with respect to their

target gene can provide insights into the molecular basis for their effectsGaffney et al.

2012; Battle et al. 2014, I investigated this for all types of eQTLs identified.

Figure 3.8: Location of eQTLs with respect to their TSS and TES for the
different types of quantification. Histogram to show the distribution of the location
of eQTL variants relative to the target gene. Distance of variants within the gene are
epressed in percentage relative to the TSS (0% as the TSS genomic position and 100%
as the TES genomic position). The red lines indicate the density of the distribution.
The blue lines indicate the TSS and TES of the target gene.

I found that eQTL signals of all types showed a bimodal distribution, with peaks

centered around the transcription start site (TSS) and the transcription end site (TES)
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for all type of quantification (Figure 3.8). This confirms the findings of previous eQTL

studies (Li et al. 2016b). However, I also found a significant association between the

location of the variant (namely whether it is was located within the boundaries of its

target gene or not) and the type of quantification used to detect the eQTL (P-value

chi-square <2.2 x 10-¹6).

Using the results of the beta-heterogeneity test, in section 3.3.3.1, to confidently

separate eQTLs into splicing-specific eQTLs (ex-ex-eQTL and e-eQTL) and gene-level

eQTLs (ge-eQTL and gi-eQTL), it was possible to demonstrate that eQTL variants

annotated as downstream were enriched amongst splicing-specific eQTLs as compared

to gene-level eQTLs (Figure 3.9, Fisher Exact test p-value = 1.4 x 10-³). Furthermore,

there was a significant enrichment of 3’ UTR variants (Figure3.9, Fisher’s Exact test p-

value = 4.9 x 10-7) amongst eQTLs related to splicing as compared to eQTLs related to

changes in overall gene expression. This suggests that splicing-specific eQTL and gene-

level eQTL effects potentially underlie different regulatory processes. In particular,

enrichment of regulatory variants in 3’ UTR have been previously reported as post-

transcriptional mechanisms to influence RNA stabilityMatoulkova et al. 2012; Pai et al.

2012.
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Figure 3.9: Enrichment of variant annotation for different eQTL classes. Bar
chart to show the percentage of eQTL variants located downstream of the target gene
(left panel) and percentage of eQTL variants located at the 3’ UTR of the target gene
(rigth panel).

3.3.4 Splicing eQTL targets are enriched for neuronal genes

Several studies have demonstrate that eQTL may be generated by specific cell types

(Fairfax et al. 2012; Naranbhai et al. 2015; Westra et al. 2015). With this in mind,

gene co-expression networks annotated with cell-specific markers were used to assign

eQTL target genes (41.5% of all target genes) to 5 broad cell types, namely astro-

cyte, endothelial, microglia, neuron and oligodendrocyte. Subsequently, cell-specific

enrichment was tested within each eQTL quantification category. eQTLs that are more

related to splicing, namely e-eQTLs and ex-ex-eQTLs, showed a significant enrichment

in neuronal genes (FDR-corrected p-value = 3.89 x 10-¹7 and 9.12 x 10-6 in putamen

and substantia nigra respectively, Figure 3.10) astrocyte genes (FDR-corrected p-value

= 8.74 x 10-4 and 1.12 x 10-³ for e-eQTLs and ex-ex-eQTLs respectively in substantia

nigra, Figure 3.10) and oligodendrocyte genes (FDR-corrected p-value = 1.7 x 10-³ and

4.1 x 10-² for e-eQTLs and ex-ex-eQTLs respectively in substantia nigra, Figure 3.10).
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This reinforces the importance of capturing different regulatory mechanisms in human

brain samples.

Figure 3.10: Enrichment of cell-type in eQTL target genes across eQTL
classes. Bar chart to show that the genes and features targeted by different eQTLs
classes are variably enriched for genes with cell-biased expression. We performed this
analysis separately for eQTLs generated through the analysis of putamen (right panel)
and substantia nigra (left panel) RNAseq data. In each case the cut-off for significant
cell type-specific enrichment of targeted features is depicted with a dotted red line.

3.3.5 Interpretation of GWAS hits using eQTLs

To evaluate the importance of the eQTLs discovered for complex diseases, the overlap

of eQTL signals with known GWAS hits, classified by the STOPGAP database, was

explored. Analyses were restricted to GWAS hits passing genome-wide significance (p-

value < 5 × 10-8). When considering all GWAS hits, eQTL classes related to changes

in overall gene expression had the highest overlap with 7.6% for gi-eQTL and 6.3 ge-

eQTL of eQTL variants of these classes also being GWAS hits, followed by e-eQTL and

ex-ex-eQTL which have rates of GWAS overlap of 5.1% and 3.7% respectively (Figure

3.11).
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Figure 3.11: Overlap between GWAS variants and eQTL for the different
eQTL classes. Bar chart to show the percentage of the eQTL variants that overlap
with GWAS risk’s variants classified by the STOPGAP database stratified by eQTL
type.

Interestingly, eQTL categories were enriched for GWAS variants associated with

neurological and behavioural disorders ( Fisher Exact test p-values for all quantification

are <0.05, Figure 3.12) as compared to all other phenotype-associated variants.

Similar, sub-analyses performed on eQTLs of different types, show an enrichment

of GWAS risk SNPs for adult neurological disorders was present in ex-ex-eQTLs and

e-eQTLs (Figure 3.12). This would suggest that while splicing-specific eQTLs might

be harder to detect than gene-level effects, RNA splicing might be an important target

for neurological and behavioural risk variants. Furthermore, all eQTL classes show

enrichment of GWAS risk SNPs for adult neurological disorders (Figure 3.12), these

results highlight the value of performing eQTL analyses within disease relevant tissues

despite the challenges.
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Figure 3.12: Enrichment of risk variants reported for neurological and be-
havioural disorders amongst eQTLs categories. Bar chart to show the enrich-
ment of GWAS risk’s variants amongst eQTL types. For each eQTL category Fisher
Exact test p-value for the enrichment is displayed on the x axis.

I explored this further for a number of adult neurological disorders for which I also

had access to GWAS summary statistics, namely Parksinson’s disease (Nalls et al. 2014)

and multiple sclerosis (Sawcer et al. 2011). These diseases were selected because while

they both have an adult onset, the pathology in multiple sclerosis is largely within white

matter, while PD is characterised by neurodegeneration within the basal ganglia and

specifically dopaminergic neurons of the substantia nigra. I generated Q-Q plots (as

per Li et al. 2016b) to look for evidence of an enrichment of SNPs with low p-values

in the disease GWAS amongst the eQTLs detected. As demonstrated by Li et al.

2016b, this approach makes it possible to more sensitively compare different types of

eQTLs (relating to different molecular processes) and their contribution to a complex

disease. Using this approach an enrichment of SNPs with low p-values in the PD
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GWAS was demonstrated amongst exon-exon spanning junctions eQTLs (ex-ex-eQTL)

as compared to other types of eQTLs (Figure 3.12a). Given that ex-ex-eQTLs are

most closely related to splicing, this suggests that regulation of tissue-specific splicing

might be playing a particularly important role in PD. This type of enrichment was not

observed within the analysis of the GWAS for MS (Figure 3.12b), which is a disease

predominantly of the white matter driven primarely by immune dysfunction.

Figure 3.13: GWAS low p-value enrichment for ex-ex-eQTLs. a) Quantile-
Quantile(Q-Q) plots of PD GWAS p-values for ge-eQTL and ex-ex-eQTL. b) Q-Q plots
of MS GWAS p-values for ge-eQTL and ex-ex-eQTL.

3.4 Discussion

Improving the understanding of risk loci for neurological disorders using eQTL analyses

has proven to be challenging. Not only is the availability of human brain samples

limited, but human brain has various layers of complexity, due to cellular heterogeneity

and high regional interconnectivity. This complexity is the motivation for more specific

forms of data processing and analyses.

In this chapter, I studied the regulation of different RNA processes, by quantify-
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ing transcription with different approaches, in control brain tissues relevant to various

neurological and neuropsychiatric disorders. The RNA-Seq dataset used represents a

unique resource because of the tissues analysed and the protocols used to generate the

data.

Using beta-heterogeneity testing I was able to differentiate variants across different

eQTL classes, representing distinct regulatory sites and likely acting through different

regulatory mechanisms. While e-eQTLs and ex-ex-eQTLs are likely to be regulating al-

ternative splicing and controling mRNA stability of specific isoforms, gene-level eQTLs

are likely to be changing transcriptional rate and this view is supported by the differ-

ent genomic locations of eQTLs. Furthermore, I found that eQTLs related to splicing

(e-eQTL and ex-ex-eQTL) have gene targets enriched for neuronally expressed genes,

as evidenced by the cell-type enrichment analysis. This reinforces the importance of

different quantification strategies to improve the value of eQTL data.

Finally, I demonstrated a significant enrichment of risk SNPs for neurological and

behavioral disorders within the eQTL dataset. This suggests that eQTL analyses per-

formed in disease related tissues are more likely to improve the characterisation of

GWAS risk loci. When I investigated the possible molecular mechanisms underlying

this enrichment using the different eQTL types in PD (a disease which is characterised

by neurodegeneration and dysfunction of the basal ganglia), these findings indicate that

splicing should be a focal point in the follow-up of GWAS experiments.

In conclusion, eQTLs not only have the potential to explain how genetic variability

can influence particular phenotypes, but by using more complex approaches can provide

insights into the molecular mechanisms through which they operate.
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Identification and genetic regulation of

transcribed intergenic regions

4.1 Introduction

The analyses presented in this chapter were motivated by growing evidence for in-

complete annotation of the adult brain transcriptome. Different components of gene

annotation references can be affected by incomplete annotation. Most simply, inac-

curacies can be classified as those within known gene boundaries (e.g. intron-exon

boundaries) or outside known gene boundaries (e.g. novel genes or novel 3’ or 5’ ex-

ons of known genes). In particular, the former might be more challenging to detect

using a total RNA protocol because of the presence of pre-mRNA has the potential

to generate false positives. This might not be the case for RNA-Seq generated from

poly(A)+ selected libraries because of the significant smaller proportion of pre-mRNA

fragments (Zhao et al. 2018). However, total RNA library construction might be more

useful for inaccuracies outside known gene known gene boundaries and in particular

for non-polyadenylated transcripts. This is important because gene annotation refer-

ences serve as a framework for most gene expression studies and inaccuracies in these
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references have the potential to lead to significant errors.

Several studies have suggested that current gene annotation may be incomplete in

human brain (Chen et al. 2011; Zhang et al. 2012; Jaffe et al. 2015; Blauwendraat et al.

2016), not only within gene boundaries but also within intergenic regions. For example

Jaffe and colleagues (Jaffe et al. 2015) found evidence for transcription of ~12Mb of

intergenic material in adult human frontal cortex. These transcribed intergenic regions

were more likely to be differentially expressed during cortical development and the

authors postulated that these regions may not have been annotated previously because

they are highly cell-specific.

Further evidences for novel intergenic transcription are provided in another study

using nuclear fractionation coupled with RNA-Seq (Werner et al. 2015). In this study,

Werner and colleagues demonstrate that more than 80% of chromatin-associated RNAs,

which promote activation of neighboring genes, were absent in annotation databases. In

fact, the advent of RNA-Seq more generally has permitted the discovery of thousands

of lncRNAs of which ~40% are thought to be expressed specifically in brain (Derrien

et al. 2012). However, given that most of the RNA-Seq studies performed to date

have used polyadenylated (poly(A)+) RNA capture libraries and many lncRNAs are

not polyadenylated, existing studies may have limited sensitivity when detecting tissue

or cell specific lncRNAs. Finally, evidence for incomplete annotation is supported by

the almost quarterly updates on gene references, suggesting a continuous refinement of

transcriptome annotation.

Inaccuracies of gene annotation might also have an impact in the understanding of

complex disease. In the past decade, the improvements of sequencing technologies have

generated advances in genetic research through the identification of genetic variants

contributing to both complex and rare disease. However, the interpretation of these

variants remains a challenging task and more accurate gene annotation could poten-

tially improve the characterisation of variants. At present 43% of GWAS variants map
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to intergenic regions (Hindorff et al. 2009) making it very difficult to determine the

underlying molecular processes driving increased risk of disease. Therefore, interpre-

tation of GWAS risk loci could potentially be improved through the identification of

novel exons or genes lying outside known gene boundaries since intergenic risk SNPs

may either lie within these regions or regulate such regions. In particular, undiscovered

non-coding RNAs may underlie the function of a proportion of GWAS risk variants.

Determining the pathogenicity of rare variants requires not only the identification of

causal genes, but a thorough understanding of the gene’s structure (MacArthur et al.

2014). A full characterisation of gene structure will improve the interpretation of a

given variant’s significance and its impact on gene integrity and function. Moreover,

unannotated exons lying outside of gene boundaries are likely to be excluded from

targeted genetic screening with the implication that some pathogenic mutations could

be missed.

Therefore, improving the accuracy and completeness of the annotation of both cod-

ing and non-coding genes improves our understanding of the impact of genetic variation

in complex and rare diseases. The complexity of alternative splicing, cellular hetero-

geneity and difficulty of access to brain tissues increases the impact of misannotation

for brain-expressed genes, suggesting this will particularly affect the interpretation of

genetic variation for neurological diseases. In this chapter I perform eQTL analysis on

the most conservative portion of the data, corresponding to the non-coding portion least

interferred with by the coding portion, namely the intergenic transcription. I explored

the extent of inaccuracies outside gene boundaries and, subsequently, I investigated the

impact of gene annotation incompletness on variant interpretation.
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4.2 Methods

4.2.1 Characterisation of transcribed intergenic eQTLs

The approach used to identify eQTLs targeting transcribed intergenic regions was de-

scribed in the previous chapter (Section 3.2). Given the large quantity of transcribed

intergenic regions identified and a limited number of functional gene loci still to be

discovered (Pertea et al. 2018), the characterisation of transcribed intergenic regions

was designed to prioritise those regions that represent incomplete annotation of existing

genes. Therefore, the transcribed intergenic regions were characterised using the steps

below (Figure 4.1):

1. Evidence of split reads spanning transcribed intergenic regions and a known gene:

These regions were characterised as regions with strong evidence of being part

of a known gene.

2. Evidence of co-expression (defined as Pearson’s R²>0.2) of a novel transcribed

intergenic region with the nearest gene and close proximity to that gene (=<5Kb):

These regions were characterised as regions withmoderate evidence of being part

of known gene.

3. Evidence of low co-expression (defined as Pearson’s R²60.2) of an unannotated

transcribed region with the nearest gene, and no split reads linking the region

to a known gene and distant from any known gene (>5Kb): These regions were

characterised as having weak evidence of being part of a known gene. This group

of regions were further subdivided on the basis of those that have split reads

linking one region with “weak” evidence with with another region with “weak”

evidence.

4. Some unannotated transcribed regions did not meet criteria for either strong,
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moderate or weak evidence of being part of a known gene and so remained un-

characterised.

Figure 4.1: Characterisation of transcribed intergenic regions. Schematic illus-
tration to show the features used to categorise transcribed intergenic regions targeted
by i-eQTLs as those with strong, medium or weak evidence for being part of a known
gene.

4.2.1.1 Characterisation of intergenic unannotated regions with strong ev-

idence of being part of a known gene

To determine whether an unannotated transcribed region had strong evidence of being

part of a known gene, the information on split reads was collected per sample from the

Tophat2Kim et al. 2013 junction output file. Each split read is a short cDNA sequence

that aligns to a genomic location with a gap (or multiple gaps) in-between, so providing
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accurate information about splicing events (Figure 4.2).

Figure 4.2: Split read example. Example of how split reads
align in the presence of splicing events. Figure adapted from
https://upload.wikimedia.org/wikipedia/commons/0/01/RNA-Seq-alignment.png

Overlaps between transcribed intergenic regions targeted by eQTLs and split reads

was assessed using the GenomicRanges (Lawrence et al. 2013) R package. If an unnan-

otated transcribed region overlapped with a split read, then the same split read was

screened for overlap with any surrounding gene. In this way, it was possible to iden-

tify split reads that linked the transcribed region with annotated genes and suggested

that a novel splicing event had occurred to generate a presumed novel exon. For each

region with strong evidence of a connection to a known gene, strand, distance and co-

expression was calculated in relation to the relevant annotated gene. Furthermore, the

total number of samples in which split reads could be detected was collected in order to

provide a measure of confidence. Only transcribed intergenic regions with split reads

present in at least 4 separate samples were defined as regions with strong evidence of

being part of a known gene.
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4.2.1.2 Characterisation of intergenic unannotated regions with moderate

evidence of being part of a known gene

Unannotated transcribed intergenic regions were classified as having moderate evidence

of being part of a known gene when the regions showed high co-expression and were lo-

cated in close proximity with their nearest gene. This classification was only used in the

absence of relevant split read information. The nearest gene, in genomic distance, from

each unannotated transcribed region was selected using the GenomicRanges (Lawrence

et al. 2013) R package. The correlation (R²) was calculated between the expression of

each transcribed intergenic region and each exon of the nearest gene.

The distance between the nearest gene and each unannotated transcribed region was

also used as a parameter to categorise unannotated transcribed regions. Unannotated

transcribed intergenic regions that were more than 5 Kb from the nearest gene were

not included within the category. The 5 Kb threshold was determined after calculating

the distribution of intron lengths amongst genes expressed in human brain. In this

way it was possible to see that while some of the regions with moderate evidence

were continuous with the last exons of their nearest gene( Figure 4.1), suggesting an

“extension” of a known exon, others were completely separate, suggesting a new splicing

event. In summary, transcribed intergenic regions that had an R² greater than 0.2 with

any of the exons of the nearest gene and which were 5Kb or less from their nearest gene

were classified as having moderate evidence for being part of a known gene.

4.2.1.3 Characterisation of intergenic unannotated regions with weak evi-

dence of being part of a known gene

Unannotated intergenic transcribed regions with weak evidence of being part of a known

gene were defined based on distance from their nearest gene and co-expression with

the nearest gene. Distance and correlation from the nearest gene was calculated as

for regions that exhibited moderate evidence for being part of a known gene (section
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4.2.1.2). Transcribed intergenic regions were categorised as having weak evidence of

being part of a known gene if they had a correlation of R²60.2 and were more than 5Kb

from their nearest gene. These regions were sub-classified using split read information.

4.2.2 Replication of transcribed intergenic regions in indepen-

dent datasets

4.2.2.1 Replication within the recount2 platform

Replication was assessed using RNAseq data from all 54 tissues generated by GTEx

and released within recoung2. Each of the 54 tissues was investigated separately. Using

the genome coordinates of all transcribed intergenic regions detected in putamen and

substantia nigra, I quantified expression profiles. Quantification was facilitated by Dr

Leonardo Collado-Torres at the Lieber Institute. In the case of each transcribed regions,

read counts were transformed into RPKM and replication was considered if the region

had an RPKM > 0.1 in at least 80% of samples in the tissue of interest.

4.2.2.2 Replication within the NONCODE database

Overlaps between transcribed intergenic regions and regions annotated within the NON-

CODE (Liu et al. 2005) database were investigated. NONCODE is a comprehensive

database of annotated RNA sequences that do not encode for proteins. This database is

derived from the published literature and public repositories, such as lncRNAdb (Quek

et al. 2015). Transcribed intergenic regions were lifted to the GRCh38 to match the

NONCODE genome version using the web-tool liftover from Ensembl. Replication was

counted if at least one bp overlap between the region annotated in NONCODE and

the intergenic transcribed region. Overlaps were performed using the R Bioconductor

package GenomicRanges.
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4.2.2.3 Replication within independent RNA-Seq datasets

RNA-seq aligned bam files were obtained for a cohort of 213 human control frontal

cortex (FCTX) samples. This data was generated in Dr. Mark Cookson’s laboratory

as part of the North America Brain Expression Consortium (NABEC). Alignment and

standard quality checks were performed by Dr. Raphael Gibbs using the software STAR

(Dobin et al. 2013) and version hg19 of the human genome annotation from UCSC

(Karolchik et al. 2003). Aligned bam files were analysed using the same approach as

that used for analysis of putamen and substantia nigra (section 3.2.2.1). Using the same

parameters and filtering steps (RPKM>0.1 in at least 80% of the samples and regions

>=100bp), 25021 transcribed intergenic regions were identified in FCTX. Overlaps

between the transcribed intergenic regions in putamen/substantia nigra and the frontal

cortex samples were performed using the R Bioconductor package GenomicRanges and

replication was considered if at least one bp was overlapping.

4.2.2.4 Replication within independent CAGE-Seq datasets

I used CAGE-Seq data from an unpublished human control substantia nigra (N=211)

and a publicly available human control frontal lobe (N=128) (Blauwendraat et al. 2016)

dataset to assess the replication of unannotated transcribed intergenic regions across

different sequencing technologies. CAGE-Seq only captures the 5’ end of transcripts

and since mRNA degradation takes place from 5’ to 3’, flanking regions of 500bp were

added upstream and downstream to all transcribed intergenic regions. The genomic

overlap was performed using the software intersectBed from BEDTools (Quinlan and

Hall 2010) with default parameters. In the case of substantia nigra CAGE-Seq data,

the genomic coordinates of transcribed intergenic regions were lifted to the GRCh38

to match genome versions. Replication of transcribed intergenic regions was counted

if at least one bp was overlapping with a CAGE-Seq identified region. This work was

performed in collaboration with Dr. Javier Simon-Sanchez at the German Center for
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Neurodegenerative Diseases (DZNE) in Tubingen.

4.2.3 Validation of intergenic transcribed regions using RT-PCR

and Sanger sequencing

A small number of transcribed intergenic regions were also validated experimentally

by Regina Reynolds (PhD student in Department of Neurodegenerative Disease UCL).

The selection of transcribed intergenic regions for validation was guided by the RPKM

expression of these regions in putamen and by evidence of split reads supporting these

regions. Of the eight transcribed intergenic regions investigated, three regions had

strong and three regions had moderate evidence of being part of a known gene and two

regions had weak evidence of being part of a known gene. Seven RNA samples, each

derived from a different individual, were used for validation.

The High Capacity cDNA RT Kit (Applied Biosystems) in combination with ran-

dom primers was used to perform reverse transcription with 500μg of total RNA as

input. Custom primers were designed to cover the predicted split reads to perform

the Polymerase Chain Reaction (PCR) experiment using the FastStart PCR Master

(Roche). Gel electrophoresis was used to confirm amplification of bands and by using

Exonuclease I (Thermo Scientific) and FastAP Thermosensitive Alkaline Phosphatase

(Thermo Scientific), PCR products were removed. The sequencing step was performed

using the BigDye terminator kit (Applied Biosystems) and sequences were analysed

using the CodonCode Aligner (V. 6.0.2). After sequence quality control, contiguous se-

quences were aligned to the human genome (GRCh37/hg19) and viewed in the UCSC

genome web browser for manual inspection.
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4.2.4 Beta-heterogenity testing of eQTLs targeting known an-

notated regions and intergenic transcribed regions

To identify heterogeneity in eQTL signal strength, beta-heterogeneity testing was per-

formed as previously described in section 3.2.5, but in this chapter was used between

eQTL targeting unannotated transcribed regions and eQTL targeting the reference

gene. The reference gene is the gene which the intergenic transcribed region have ev-

idence of being part of. With this in mind, I applied the following models using the

transcribed intergenic region and the exon of the reference gene with the highest co-

expression (for simplicity, referred to as transcribed region and known exon respectively

in this paragraph) : 1) a model that assumed a shared eQTL across the transcribed

region and the known exon, which contained two main effect terms, allele dosage and

an index identifying the transcribed region and the known exon, and one random ef-

fect, which indexed each individual in the dataset. 2) a model that assumes no-shared

eQTL between the transcribed region and the known exon containing the same terms

as in model (1) with the addition of a set of fixed effect allele dosage × index for the

transcribed region and the known exon. The R function lmer() was used to fit both

models and a likelihood ratio test was applied to determine the significance. Finally, the

Benjamini–Hochberg method was applied to the p-value to adjust for the total number

of eQTLs tested.

4.2.4.1 Colocalisation of eQTLs and GWAS risk loci for Neurological dis-

orders

The R software coloc (Giambartolomei et al. 2014) was used to assess the colocalisation

of Parkinson’s disease and schizophrenia loci amongst eQTL signals. All loci with a

GWAS p-value <10-5 were tested for colocalisation. The betas and standard errors

from the summary statistics of common SNPs across both datasets and within 1MB
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of the GWAS SNP of interest were used as input. Coloc was run with default priors

and parameters to generate the posterior probabilities of five different hypotheses: H0:

No colocalisation and no causal SNP identified in both GWAS and eQTL, H1: No

colocalisation but causal SNP is found within the GWAS set,H2: No colocalisation but

causal SNP is found within the eQTL set, H3: No colocalisation but both sets contain

a causal SNP. H4: Colocalisation of the causal SNP present in both sets. We defined

loci that colocalised as per Li and colleagues (Li et al. 2017b) when H3+H4≥0.8 and

H4/H3≥2. While H3+H4≥0.8 represents sufficient test power to reliable call a colocalise

locus, the H4/H3≥2 reprensents a greater (at least twice) posterior probability of being

colocalised locus. This work was performed by David Zhang (PhD in Department of

Neurodegenerative Disease UCL).

4.3 Results

4.3.1 Reference-free approaches enlarge the transcriptome within

human substantia nigra and putamen

The number of transcribed bases within unannotated intergenic regions was calculated

and compared to the number of bases present within expressed annotated regions. Using

this approach an additional 7.09M and 3.48M bases were detected using the reference-

free approach, respectively for putamen and substantia nigra. This corresponded to a

12.5% and 6.6% increase in the size of the annotated transcriptome within these tissues

(Figure 4.3).
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Figure 4.3: Genomic length of annotated expressed exons compared to tran-
scribed intergenic regions. Bar chart to show the total size in bp of annotated exons
(blue) and transcribed intergenic regions (green) for putamen and substantia nigra.

4.3.2 Replication of transcribed intergenic regions in indepen-

dent datasets

I recognised that a proportion of the intergenic trancribed regions identified may orig-

inate from technical variability, thus I investigated further for evidence of validation

across different GENCODE versions and independent datasets. Since GENCODE ver-

sion 19 was released during the course of this analysis, I checked whether any of the

transcribed intergenic (defined as intergenic on the basis of version 18, see 3.2.2.1) re-

gions identified had been incorporated into version 19. Firstly, I measured how many

transcribed intergenic regions were annotated as exonic if I had used the the GEN-

CODE version 19. The annotation was performed in both version using the R package

annotateRegions with a minimum overlap of 1bp. I found that 1149 (5% of all tran-

scribed intergenic regions identified in GENCODE version 18) were annotated in version
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19, but not in the version 18 (Figure 4.4). This not only demonstrates the validity of

the reference-free approach to identify novel transcribed regions, but reinforces the un-

derlying rationale for this analysis, namely that transcriptome references for brain are

incomplete.

Figure 4.4: Annotation of transcribed intergenic regions in later version of
GENCODE. An example of a transcribed regions (chr21:27588064-27589052) inter-
genic that was annotated as intergenic in the GENCODE v.18 (Left). However, the
same region was later annotated in the GENCODE v.19 (Right) as long intergenic non-
coding RNA: AP000230. The AP000230 gene was manually annotated in the Human
and Vertebrate Analysis and Annotation (HAVANA) group as part of the GENCODE
project.

Next I investigated all transcribed intergenic regions for evidences of expression

in four independent datasets, the GTEx samples within the recount database, the

NABEC dataset, the NONCODE database and the Blauwendraat and DZNE CAGE-

Seq datasets. Using GTEx data I found that 48.1% of the transcribed intergenic regions

were also expressed in matching brain regions; either putamen or substantia nigra. If

I considered all central nervous system tissues in GTEx, the replication rates rose to

63.6%. This represents a very high replication rate considering that a polyA selection

step was used in the generation of GTEx data, an approach which is expected to exclude

non-poly adenylated non-coding RNAs.

With this issue in mind, transcribed intergenic regions were investigated in the
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NABEC dataset which was generated with a more similar library preparation of the

UKBEC RNA-Seq dataset. Of all transcribed intergenic regions detected there was

evidence for transcription in the NABEC dataset in 41.9% and 44.3% respectively in

putamen and substantia nigra. This is a high replication rate considering the non-

matching tissue types.

Furthermore, to investigate if transcribed intergenic regions were generated through

unannotated non-coding RNA transcripts, I used the non-coding RNA catalogue, NON-

CODE. I found that 22.5% of transcribed intergenic regions detected in putamen and

24.3% regions detected in substantia nigra overlapped with regions catalogued in the

NONCODE database. Again, this is a high overlap since it does not take into consid-

eration differences in technologies used to detect non-coding RNA, tissue type or the

analysis used to annotate the regions in the NONCODE database.

Finally, I investigated expression of transcribed intergenic regions in both the Blauwen-

draat (Blauwendraat et al. 2016) and DZNE CAGE-Seq datasets, the replication was

6.4% across both tissues. Although the replication rate in the CAGE-Seq appeared

discouraging, the low replication rate may be due to the 5’ bias of the CAGE-Seq data,

which would not be capable of capturing novel regions identified at the 3’ end of tran-

scripts. Furthermore, one would expect to identify a greater number of transcribed

intergenic regions at the 3’ end of known genes because of the 5’ to 3’ degradation

taking place and the 3’ bias generated by oligo(dT) priming (Kuersten 2012).

In summary, considering all transcribed intergenic regions identified across both

tissues 75.4% were validated in at least one independent dataset.

4.3.3 Identification and classification of i-eQTLs and their tar-

get regions

Association testing was performed between ~6.5 million genetic loci (~5.88M SNPs and

~577K indels - collectively referred as variants) and 14,905 RNA expression traits in
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putamen and 8,135 RNA expression traits in substantia nigra. Each RNA expression

trait corresponded to a transcribed intergenic region. This resulted in ~0.54billion

eQTL tests. Following conditional analysis and using an FDR of 5%, 1363 eQTLs were

identified in total. These eQTLs were termed i-eQTLs.

I focused on these i-eQTLs and their target regions in all subsequent analyses on the

basis that transcribed intergenic regions with evidence for regulation have the potential

to be tested for disease relevance.

This approach led to the prioritisation of 1236 transcribed intergenic regions for

further analysis. Of these target regions, 17.4% were classified as regions with strong

evidence for being a part of a known gene as indicated by the detection of split reads.

This corresponded to 200 transcribed intergenic regions (blue points in Figure 4.5). A

further 34.1% of target regions were classified as regions with moderate evidence for

being part of a known gene (yellow points in Figure 4.5). These transcribed intergenic

regions are likely to represent misannotation of the first/last exons of a known gene,

or unannotated novel exons with insufficient read depth to allow detection of a split

read. Regions with weak evidence for connection with a neighbouring gene accounted

for 17.7% all i-eQTL target regions detected (red points in Figure 4.5). Amongst the

219 of regions with weak evidence of being part of a known gene, were a subset with

evidence of split reads linking one intergenic region to another. Finally, 31.9% of i-eQTL

targeted regions remained uncharacterised (Table 4.1).

Tissue Strong Moderate Weak Unchar. Total
Putamen
(N=105) 158 318 135 301 946

(34 with split reads)
Substantia Nigra
(N=65) 42 104 38 94 290

(12 with split)

Table 4.1: Summary of transcribed intergenic regions classification. Table to
show a summary of i-eQTL target regions divided by classification and tissue.
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Figure 4.5: Characterisation of transcribed intergenic regions targeted by i-
eQTLs. Scatter plot to show the characterisation of transcribed intergenic regions.
Each point represents a transcribed intergenic region. X axis indicates distance from
reference gene and Y axis indicates the Pearson R² for the expression between tran-
scribed intergenic region and the nearest exon of reference gene.

4.3.4 Regions with strong evidence for being part of a known

gene have higher replication rates in independent datasets.

Replication of i-eQTL target region expression was also considered for each type of

classification, namely regions with strong, moderate and weak evidence for being linked

to a known gene.

Remarkably, most of the unannotated regions showing strong evidence of being

part of a known gene were validated in the recount dataset. The replication rate was

88.9% when considering both putamen and substantia nigra. The validation increased
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to 95.4% when considering all GTEx brain tissues contained in recount2 (Figure 4.6).

The majority (59.6%) of all i-eQTL target regions with strong evidence of being part

of a known gene were also replicated in the NONCODE catalogue. The validation rate

was also high in the independent frontal cortex data set made available by NABEC with

65.0% of regions replicating. Furthermore, 15.0% of transcribed intergenic regions up-

stream of known gene were detected in CAGE-Seq data. Thus, the replication rate was

98.6% if we consider validation in at least one of the independent datasets (Recount2,

NONCODE, CAGE-Seq data and NABEC data).

For transcribed intergenic regions classified as having moderate evidence for con-

nection to a known gene in putamen and substantia nigra, recount2 provided support

for transcription in 79.0% of cases using either the putamen or substantia nigra GTEx

data (Figure 4.6). Furthermore, of these regions 23% were detected in the NONCODE

database, 45.3% were identified in the NABEC dataset and 6.9% was found in the

CAGE-Seq datasets. When considering all data sets, 92.3% of regions were detected in

at least one independent dataset.

Replication of transcription of intergenic regions with weak evidence of being part

of a known gene was 41.5% on the basis of GTEx putamen or substantia nigra samples

withinin recount2 (Figure 4.6). However, if I considered those regions with split reads

support, the replication rate increased to a 93.8%. Across all replication datasets,

namely the NONCODE database, NABEC frontal cortex sequencing data and CAGE-

Seq data, replication rates were higher when intergenic regions had split read support.

Considering all transcribed intergenic regions with weak support for being part of

known gene the validation rate was 79.1% in at least one independent dataset, increas-

ing to 98.0% for those regions supported by split reads. Taken together the higher

replication rate in independent datatasets suggests that trranscribed intergenic regions

were more likely to replicate when there was evidence not only of transcription, but

also splicing (as indicated by the presence of split reads).
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Figure 4.6: Replication of i-eQTL targets. Bar plot to show replication of expres-
sion of transcribed intergenic regions targeted by i-eQTLs in GTEx data. Replication
rates are displayed separately for analyses performed for both putamen (PUTM) and
substantia nigra (SNIG) GTEx RNAseq data, separately from RNAseq data generated
for all brain tissues within GTEx.

4.3.5 Validation of regions with RT-PCR and Sanger Sequenc-

ing

A set of transcribed unannotated regions were selected for experimental validation using

RT-PCR and Sanger Sequencing. A final set of eigth unannotated transcribed regions

were selected across the different characterisation types (three for region with strong

evidence of being part of a gene, three for moderate evidence of being part of a gene, two

regions with weak evidence of being part of a gene). Sanger sequencing confirmed the

expression of all eight transcribed intergenic regions tested for experimental validation.

The validation was independent of the transcribed intergenic regions classification. In-

terestingly, the Sanger Sequencing not only validate the transcribed intergenic regions,

but also the split reads suggesting that the split reads were robustly detected in the
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RNA-Seq data.

Figure 4.7: Validation of transcribed intergenic regions using Sanger Sequenc-
ing. Sequencing results for i-eQTL target regions with strong, medium and weak evi-
dence for being part of a known gene. In each case, multiple tracks are provided showing
the location of the primers used, the alignment of Sanger sequenced cDNA and the split
reads detected by the RNA-Seq data.

4.3.6 Most i-eQTLs represent novel regulatory positions with

evidence for functional significance

Beta-heterogeneity testing was used to investigate the effect of i-eQTL signals amongst

all characterised regions and their reference gene (as defined by split read information,

co-expression or proximity). In all cases, regions targeted by i-eQTLs were separated

in two groups based on the beta-heterogeneity test FDR: i) regions that share an eQTL

signal with the reference gene (as defined by an FDR >5%), and ii) those that do not

share an eQTL signal with their reference gene (as defined by an FDR =< 5%). This is

similar to the approach that was used to investigate eQTL sharing in section 3.2.5. This

demonstrated that while a portion of known exons share their eQTL signals with other

annotated exons (Figure 4.9a), many of the unannotated regions classified as strong,

moderate and weak, do not share their associated eQTL signals with their reference

gene (Figure 4.9b). As it might have been expected, this difference was most apparent

amongst transcribed intergenic regions with weak evidence of being part of a known

gene (Fisher Exact test p-value< 2.2 x 10-¹6, Figure 4.9). This suggests that regions

with weak evidence of being part of a known gene are most likely to be functioning

independently of the reference gene. However, even amongst target regions with strong
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evidence of being part of a known gene, the proportion of i-eQTLs sharing signals

with annotated expression features was only 44% (Figure 4.9). Thus, the majority of

i-eQTLs represent novel regulatory variants, with those i-eQTL targeting transcribed

intergenic regions with strong and moderate evidence of being part of a known gene are

probably acting in a transcript-specific manner.

Finally, the transcribed intergenic regions targeted by i-eQTLs were tested for cell-

specific enrichment using WGCNA ( described in section 3.2.8). Module-membership

was used to assign i-eQTL target to modules enriched for gene markers of five different

cell types (neuron, oligodendrocyte, astrocyte, microglia and endothelial cell). Using

this approach, I found that the targeted transcribed intergenic regions were enriched

for regions co-expressed with neuronal genes (FDR-corrected p-value = 1.20 x 10-²

in putamen), suggesting that i-eQTLs might be of functional relevance. Thus, this

analysis provides evidence of the importance of capturing regulatory information in a

reference-agnostic manner.

4.3.7 Implications of transcribed intergenic regions for Mendelian

disorders.

In the last decade, Exome-Sequencing (Exome-Seq) has revolutionised the identification

of pathogenic mutations for Mendelian disorders, contributing to the improvement of

clinical diagnostics. However, this approach depends on the accuracy of gene annota-

tion and if exons are “missing” from references, not all pathogenic variants are captured

and sequenced, potentially leading to false negatives. Hence, the identification of unan-

notated regions with strong and moderate evidence of being part of a known gene could

have a direct clinical application in Mendelian disorders since these additional genomic

regions may also require screening for disease-causing variants.

The potential importance of transcribed intergenic regions with strong evidence

of being part of a known gene was investigated by looking at how many Mendelian
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genes would be affected. Of 132 genes associated through split reads with a transcribed

intergenic region, 19 genes are already implicated in Mendelian disorders, as catalogued

in the Online Mendelian Inherited in Man (OMIM) database.

If transcribed intergenic regions with moderate evidence of being part of a known

gene are also included, the number of affected OMIM genes increases to 41 genes. PEX2

is an example of a Mendelian gene associated with a transcribed intergenic region with

strong evidence of being part of a the gene (Figure 4.10). PEX2 encodes a peroxisomal

membrane protein and is associated with the autosomal recessive condition, Zellweger

syndrome. Given that a significant proportion of individuals with probable Zellweger

syndrome do not receive a molecular diagnosis, the transcribed intergenic region iden-

tified could represent a novel genomic region to screen for pathogenic mutations in

undiagnosed patients.

Figure 4.10: Relevance of transcribed intergenic regions for OMIM genes.
Visualisation of genomic annotations for transcribed intergenic region (DER21123) as-
sociated and PEX2. i-eQTL for the rs35877910 tagging the DER21123 region.
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4.3.8 Use of i-eQTLs to understand complex diseases

The relevance of i-eQTLs and their target regions was also investigated in the context

of complex diseases. First, the overlap between all i-eQTLs and all risk SNPs within

the NHGRI catalogue (as in section 3.2.9) was measured. This demonstrated that

7.8% of all i-eQTLs were listed as a risk SNP in the STOPGAP database. Of these

i-eQTLs, 6.0% could not be identified through an eQTL tagging an annotated region

(i.e. ge-eQTL, e-eQTL and ex-ex-eQTL). Therefore, i-eQTLs provide novel information

for interpretation of GWAS hits. Furthermore, using the same approach that was used

for ge-eQTLs (section 3.3.5) I found a significant enrichment of risk loci associated with

adult neurological disorders (Fisher Exact test p-value 1.29 x 10-7) as compared with all

other phenotypes present in the STOPGAP catalogue amongst i-eQTL. This suggests

that i-eQTL are also relevant for the interpretation of adult neurological disorders.

The explanatory potential of i-eQTLs was investigated in more detail in for late onset

Alzheimer’s Disease (AD, Lambert et al. 2013), Parkinson’s Disease (PD, Nalls et al.

2014) and Schizophrenia (Ripke et al. 2014). The aim of this analysis was to compare

the information content of i-eQTLs with eQTLs related to annotated regions. I found

no evidence of enrichment of low p-values for Parkinson’s Disease GWAS (Figure4.11

a). However, i-eQTLs were enriched for low p-values in the Alzheimer’s Disease GWAS

(figure4.11 b). This enrichment was more apparent amongst i-eQTLs as compared to

conventional eQTLs (ge-eQTL, e-eQTL, ex-ex-eQTL). Furthermore, i-eQTLs were also

enriched for low p-values in the schizophrenia GWAS. In this case, the enrichment was

similar comparing across all types of eQTLs (figure4.11c). This would suggest that

i-eQTL target regions might be playing an important role in specific diseases.
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Figure 4.11: a) Q-Q plots of Parkinson’s Disease GWAS p-values for ge-eQTL,ex-ex-
eQTL,e-eQTL and i-eQTL. b) Q-Q plots of Alzheimer’s Disease GWAS p-values for
ge-eQTL,ex-ex-eQTL,e-eQTL and i-eQTL. c) Q-Q plots of Schizophrenia GWAS p-
values for ge-eQTL,ex-ex-eQTL,e-eQTL and i-eQTL.

I investigated the importance of i-eQTLs in a locus-specific manner using the coloc

software (Giambartolomei et al. 2014). I found that twenty-two i-eQTL signals colo-

calised with risk loci for schizophrenia (Table 4.2). An interesting example is the SNX19

locus, which has already been reported in schizophrenia (Zhu et al. 2016; Fullard et al.

2017) with the lead SNP rs35774874 (GWAS p-value = 1.97 x 10-¹¹). This risk locus

colocalised with an i-eQTL targeting a transcribed intergenic region with moderate

evidence for being part of SNX19 and located beyond the existing 3’UTR of the gene.
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Chapter 4. Identification and genetic regulation of transcribed intergenic regions

The co-localisation results also highlighted i-eQTL that were targeting unannotated

regions that were not linked to a known genes, fourteen out of twenty-two co-localising

i-eQTL were targeting these independent intergenic regions. Amongst these, the region

DER36302 (chr15:84165059- 84165223, eQTL p-value = 1.15 x 10-¹0 in putamen) that

co-localises with the schizophrenia risk SNP rs950169 (GWAS p-value = 7.62 x 10-¹¹

) and has its highest expression in two brain regions relevant to schizophrenia and

represents a novel genomic location to be explored. This reinforces the importance of

performing eQTL analysis using a reference-free approach to identify novel candidates

genes/regions.

Figure 4.12: Schizophrenia co-localisation Example. Co-localisation of the i-eQTL
targeting transcribed intergenic region DER36302 with schizophrenia GWAS lead SNP
rs950169.
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Figure 4.8: Example of i-eQTL sharing signals with eQTL targeting anno-
tated exons. a) Association of local variants and rs113317084 (red points), with the
expression of the transcribed intergenic region DER32583 (green track) and gene-level
expression of DNAJC15 (blue track). b) Association of local variants and specifi-
cally rs4696709 (red points), with the expression of the transcribed intergenic region
DER10633 (green track) and gene-level expression of ABLIM2 (blue track). DER10633
is classified as having strong evidence of being part of ABLIM2 supported by split reads,
linking the DER10633 with ABLIM2.
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Chapter 4. Identification and genetic regulation of transcribed intergenic regions

Figure 4.9: i-eQTL sharing signals with eQTL targeting annotated exons.
Barplot of the beta-heterogeneity test of known exons and all characterised regions
separated by significance. All signals with an FDR-corrected p-value of < 5% using a
beta-heterogeneity test were considered distinct (opaque bars), while an FDR-corrected
p-value > 5% was taken as evidence of eQTL sharing (transparent bars).
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4.4 Discussion

The complexity of gene expression and splicing in brain make gene annotation in this

tissue a challenging task. The recognition of this issue has led me towards the analysis

of eQTL effect in a reference-free manner. Using this approach, I identified the existence

of transcribed intergenic regions, which represented 6.6-12.5% of the total transcription

in the human putamen and substantia nigra. While a comparison with an updated

release of annotation reference GENCODE (version 19) indicated that 5% of detected

regions were incorporated into the amended reference, replication of these regions in

independent datasets was very high (75.4%) suggesting references remain inaccurate.

Further validation experiment using RT-PCR and Sanger sequencing, confirmed the

expression of a selection of regions and highlighted the reliability of the split read

information detected in RNA-Seq data. Toghether these findings suggest that the

transcribed intergenic regions identified are most likely to be the result of incomplete

annotation of the human brain transcriptome.

Using a reference-free approach I was able to obtain information on the regulation

of transcribed intergenic regions, termed i-eQTLs. Of these, a significant proportion

represent novel putative regulatory information as compared to reference-based eQTL

analysis. This implies that incomplete annotation of the human brain transcriptome is

limiting eQTL discovery.

I designed a pipeline to characterise i-eQTL target regions in relation to known

genes, on the assumption that I was unlikely to discover entirely new genes. The

replication of characterised i-eQTL target regions suggested that transcribed regions

with evidence of splicing (as indicated by the presence of split reads) were most reliable.

This suggests that split reads while representing a small proportion of the data in a

short read RNA-Seq dataset, have an extremely high information content (e.g. splicing

events) as well as their reliability across independent datasets. However, 19.9% of i-
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eQTL target regions had evidences of splicing information, of which 16.1% were linked

to a known gene. This percentage is expected to increase, because I was limited by

the quantity of split reads, which form only a small proportion of all RNA-Seq data.

In addition my analysis did not include intragenic expressed regions, which might be

expected to be more likely to represent novel exons of known genes.

Given that i-eQTL target regions have the potential to be functional, I therefore

explored their disease relevance. Currently, there are large numbers of patients suffering

from probable Mendelian disorders that do not receive a genetic diagnosis, 50-75%

remain without diagnosis (Taylor et al. 2015), by conventional genetic screening, the

detection of novel transcribed regions (whether associated with known genes or not)

could be important diagnostically. The potential of this approach is demonstrated by

the identification of several potential novel exons for genes which are already implicated

in Mendelian disorders

Lastly, implications of i-eQTL signals on GWAS hits interpretation was investigated.

This showed that GWAS risk loci for neurological and behavioral disorders were enriched

within the i-eQTL dataset and that i-eQTL represented additional information for

GWAS interpretation that was not identified through reference-based eQTL analyses.

Furthermore, by means of colocalisation analysis I have demonstrated that i-eQTL

provided insights for specific schizophrenia risk loci. I have highlighted a GWAS locus

for schizophrenia that colocalise with an i-eQTL that targets a transcribed intergenic

region that appears to be part of an already known candidate gene for shizophrenia.

In conclusion, while the analysis methods utilised to identify i-eQTLs and and char-

acterise target regions, have significant limitations, they overcome some of the current

limitations in gene annotation and represent a valuable source of information for the

neuroscience community. Particurlarly for those researchers focusing on gene discovery

and those focusing on the function of a specific gene.
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Chapter 5

Hippocampus analysis

5.1 Introduction

The work described in Chapter 4 suggests that novel transcription can be classified into

two major forms: i) novel transcription which appears to be independent of any known

gene and could represent a new gene or potentially novel transcription of another form,

such as expressed enhancers (Kim et al. 2010), and ii) novel transcription which is

associated with a known gene and is likely to be an indication of incomplete annotation

of the gene and all its isoforms. The data described in Chapter 4 suggests that the

latter, namely incomplete annotation, occurs more frequently. This chapter follows on

this work by exploring further the impact of splicing and misannotation of known genes

in brain by using both the qualitative and the quantitative information contained in

RNA-Seq data.

RNA-Seq data is most commonly used to quantify transcription in pre-defined ge-

nomic ranges. This type of analysis heavily relies on the quality of existing annotation

and provides limited information on RNA processing, including splicing. While it the

most standard way in which RNA-Seq data is used, RNA-Seq data can also provide

qualitative information relating to RNA structure as exemplified by the detection of

110



Chapter 5. Hippocampus analysis

circular RNAs, gene-fusions and splicing events. However, this information requires

more sophisticated forms of analysis and although the methods to capture quantita-

tive information from RNA-Seq data are well established (Anders, Reyes, and Huber

2012; Anders, Pyl, and Huber 2014; Ongen and Dermitzakis 2015; Collado-Torres et al.

2017a), there are fewer methods available to capture qualitative information and they

tend to have only been used by a few specific studies.

This disparity in the availability of well-tested methods has arisen because extracting

RNA structural information, including splicing information from short-read RNA-Seq

data is a challenging task. Several approaches primarily using read depth across exonic

regions to infer RNA structure have been developed (Anders, Reyes, and Huber 2012;

Trapnell et al. 2013; Pertea et al. 2015; Frazee et al. 2015). While these methods

make use of all data available, they tend to be inaccurate when the information to be

extracted reaches a higher level of complexity (Hu et al. 2018), as in the case of a gene

with multiple expressed transcripts. Other approaches have put greater emphasis on

the detection of split reads (Li et al. 2018). As described in section 4.2.1.1, split reads

in RNA-Seq data are reads that have a gapped alignment to the genome (e.g. reads

mapping to exon-exon junctions). Since they commonly arise due to the process of

RNA splicing, they provide key structural information.

While split reads are generally a small fraction of an RNA-Seq dataset, split reads

contain accurate and reliable qualitative information. This is well documented by Nel-

lore and colleagues (Nellore et al. 2016a), who investigated splicing diversity by means

of split read analysis across 21,504 RNA-Seq samples. They found high replication of

split reads across datasets, even using several detection methods. Furthermore, the re-

liability of split reads has led to this data feature being used to assess the performance

of gene reconstruction softwares (Engström et al. 2013).

Split reads have also been used to identify circular-RNAs, detected by using inverted

mapped split reads in RNA-Seq samples (Zhang et al. 2014; Gao, Wang, and Zhao
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2015), gene-fusions through split reads connecting two known genes (Liu et al. 2013;

Zhao et al. 2017), and insertion and deletions (Sun et al. 2016). However, split reads

are primarily used to understand variation in splicing (Schreiber et al. 2015; Nellore

et al. 2016a; Kremer et al. 2017; Cummings et al. 2015).

In this chapter, I combine an annotation-free approach to quantify transcription with

split read data to investigate gene expression and splicing in the human hippocampus.

This tissue was selected for this analysis because of its key role in a range of neuro-

logical and neuropsychiatric diseases, including Alzheimer’s disease and schizophrenia,

but also because of its importance in memory and cognition. Given that unannotated

transcribed regions might be expected to be enriched for alternatively spliced exons

important for complex neurological functions, I hypothesised that hippocampal tran-

scriptomic data could potentially yield more novel findings in this context. I use the

expression features I generate as the basis for an eQTL analysis and compare the out-

put to more standard, publicly available approaches. Finally, I investigate whether

the annotation-free approach developed in this thesis can generate novel insights into

neurological and neuropsychiatric diseases.

5.2 Methods

The generation and quality control of the hippocampus RNA-Seq data is described in

detail in section 2.4.

5.2.1 Imputation

The initial standard quality checks of the genotype calls were performed by Dr Adaikala-

van Ramasamy (Principal Investigator (Systems Biology), Singapore Institute for Clin-

ical Sciences, A-STAR). Consisted of two types of quality checks. Firstly, quality check

on variants were applied; variants containing a score call equals to 0 for all individuals
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were filtered out. Secondly, quality check on individuals was applied in the following

order; 1) Gender check which identified three mismatched due to mislabeling errors,

this was corrected and all individuals were included in the analysis. 2) A familial relat-

edness check was applied using a identity-by-descent (IBD) threshold of 0.1875, which

corresponds to second or third degree of relatives, none of the individuals were removed

using this cutoff. 3) Identify population outliers using principal component analysis,

three individuals were removed because they were suspected to have Mexican and Chi-

nese ancestry. 4) Genotype call rate filtering of 5%. 5) Since the genotype dataset

is the aglomeration of two chip-array platforms (Infinium Omni1-Quad BeadChip and

Immunochip) redundant genotype sites were removed. These quality control steps left

a total of 786,186 markers.

I then subsetted the genotyped calls to the 101 individuals with RNA-Seq samples

and I carried out the following steps, as suggested in the sanger imputation service:

1) I obtained the marker’s frequencies using the plink software and then, using Will

Rayner’s script (http://www.well.ox.ac.uk/~wrayner/tools/#Checking), the reference

allele for the markers was harmonised to the match the reference allele of the Haplotype

Reference Consortium (HRC) v1.1 Panel. The reference allele of 542,996 SNPs were

changed as well as 253 that had the strand inverted. Furthermore, a total of 5,658

were excluded because the allele did not match the refence panel or the SNP was not

included in the HRC v1.1 panel.

2) An additional step was added to remove SNPs which can demonstrate strand

ambiguity (genotypes G>C, C>G, A>T and T>A). This step removed 21145 SNPs.

3) Retain SNP with MAF>5% and HWE of 0.0001. 4) Sex checks confirmed. The

input file used in the Sanger Imputation service contained 759,382 SNPs.
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5.2.2 Spliced Transcripts Alignment to a Reference (STAR)

The STAR (v. 2.4.0.1) (Dobin et al. 2013) aligner was used for read alignment because

of its sensitivity in identifying split reads (Engström et al. 2013). STAR uses a 2-step

approach to increase the split read identification.

In order to accelerate the mapping process to the reference genome I created a

STAR index. The index was built using both the genome and transcriptome references

downloaded from ENSEMBL database version 87 which corresponds to the human

genome reference GRCh38. The first pass of STAR was run with a maximum of 2

mismatches allowed per read and only uniquely mapped reads were retained. Split

reads with gaps spanning 6 20bp were considered indels and those with gaps of over

1Mb long were filtered out. Mate paired-end reads aligning more than 1Mb from each

other were removed. Furthermore, overhang sequences around the acceptor and donor

sites of split reads where selected as per ENCODE standard RNA-Seq pipeline. A

minimum of 3 bp overhang was required for split reads matching precisely annotated

junctions and a minimum of 8 bp overhang was required for unannotated split reads,

with all other split reads removed. I then collected split reads for all samples and

removed split reads present < 5% of samples and all those mapping to the mitochondrial

genome. Consequently, a total of 145,751 novel split reads were additionally included

to regenerate the STAR index that was used for the second pass alignment.

5.2.3 Quantification

5.2.3.1 Quantification of gene and transcript expression

Transcript quantification was performed using Salmon (v0.8.2) (Patro et al. 2017). I

used the “lightweight” alignment approach, which maps the raw sequencing reads di-

rectly to the reference transcriptome. Transcripts were quantified using the ENSEMBL

reference version 87 and Salmon was run with using options for non-stranded RNA-Seq
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libraries, correction for possible 3’ fragment positional bias in the RNA-Seq data (Love,

Hogenesch, and Irizarry 2016) and withmodeling of GC content bias in order to dimin-

ish systematic errors in the transcript quantification estimates (Roberts et al. 2011).

I used the Salmon’s variational Bayesian Expectation-Maximisation algorithm method

to obtain optimised transcript quantification. Finally, a bootstrapping option using a

resampling approach was used to account for technical variantion in the abundance esti-

mates. Salmon produced transcript-specific expression values (measured in Transcripts

Per Kilobase Million, TPM) values and these were used for the eQTL analysis.

The R package tximport (Soneson, Love, and Robinson 2015) was used to transform

Salmon transcript-level quantification to gene-level quantification values. Transcript-

level and gene-level quantifications were then filtered by using TPM > 0.3 in at least

80% of the samples, quantile normalisation using the R function normalize.quantiles()

was applied to both quantification levels and log transformation was not applied. The

TPM-normalised expression profiles of 37,114 transcripts and 20,179 genes were used

in subsequent analyses.

5.2.4 Non-reference-based quantification

5.2.4.1 Quantification of alternative splicing

Intron excision ratios were calculated using LeafCutter (Li et al. 2018) or both anno-

tated and unannotated splicing events and used as a measure of splicing. BAM files

generated using STAR in section 5.2.2 were converted to an exon-exon spanning junc-

tion file format. The exon-exon spanning junction file was used to define intron clusters

with alternative intron excision ( Figure 5.1) using the threshold of ≥50 split reads

per intron cluster and maximum intron length of 1Mb. LeafCutter filters out introns

present in <40% of samples or with small or no variation across samples. Finally, intron

excision ratios were standardised across individuals and quantile normalised.
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Figure 5.1: LeafCutter, example intron clusters. LeafCutter uses split reads to
generate clusters of alternative intron excision. In this example, by using five different
split reads leafcutter generates two different clusters amongst those split reads that
share splice sites. Image adapted from Figure 1a, Li et al. 2018

5.2.4.2 Quantification of transcribed regions

I used the software R derfinder (Collado-Torres et al. 2015) as described in section

3.2.2.1, to quantify transcribed regions. However, this time the the methodology to

define the regions was optimised.

Derfinder uses a mean coverage cut-off (MCC), defined as the minimum number of

reads for each single base to be considered as transcribed, to define expressed regions

(ERs). Once coordinates of ERs are generated, derfinder uses the max-region-gap

(MRG), defined as the maximum gap in bases between two adjacent ERs to be merged

into one ER. The mean coverage cut-off and the max-region gap parameters were op-

timised to improve the definition of ER in the hippocampus dataset and this work was

performed in collaboration with David Zhang (PhD in Department of Neurodegenera-

tive Disease UCL).

In order to reduce the impact of ambiguos mapping reads across overlapping exons,
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a total of 156,339 non-overlapping exons from ENSEMBL v.87 were used as baseline

for the optimisation step. Subsequently, the absolute coordinate difference (∆) between

the exon and the identified ER is calculated. Let ER be the expressed regions identified

by the derfinder that overlaps the exons. Let start and end be the functions that return,

respectively the most left and the most right genomic coordinates, thus for each ER i

the ∆ is calculated as follows:

∆i = |start(exoni)− start(ERi)|+ |end(exoni)− end(ERi)|{
i = 1 . . . n n ≤ 156, 339

The ∆ was calculated for 1,639 sets of ERs generated using 149 mean coverage cut-

offs (from 0.2 to 15 stepping by 0.1) and 11 max-region-gaps (from 0 to 100 stepping by

10). Finally, the accuracy of each set of ER generated is summarised into the median

∆ and the total number of ERs with ∆ = 0. While the median exon delta represents

the overall difference between all ER definitions and what is considereded the “ground

truth” ( assuming non-overlapping exons are well defined), the number of ERs with

∆ = 0 provides the extent to which ERs precisely defined the non-overlapping exons.

The mean coverage cut-off and max-region-gap pair that generated the set of ERs

with the lowest median exon delta and highest number of ERs with ∆ = 0 was chosen

as the most accurate transcriptome definition for each tissue. This analysis suggested

a cut-off of 3.3 and a max-region-gap of 10 (Figure 5.2).
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Figure 5.2: Optimisation mean coverage cutoff (MCC) and max region gap
(MRG) for detection of transcription. a) Transcription is detected for hippocam-
pus in annotation agnostic manner and generating ER. The MCC is the number of
reads supporting each base above which that base would be considered transcribed and
the max region gap (MRG) is the maximum number of bases between ERs below which
adjacent ERs would be merged. The optimisation uses the non-overlapping exons from
ENSEMBL v87 reference annotation to optimise the region definition. Courtesy David
Zhang. b) Line plot to show the selection of the MCC and MRG that minimised the
difference between ER and exon definitions (median exon ∆). c) Line plot to show
the selection of the MCC and MRG that maximised the number of ERs that precisely
matched exon definitions ( ∆ = 0). Dark brown line represents the optimal for MCC
(3.3) and MRG (10).

Following ER identification, ERs of < 3 base pairs in length were removed and the

expression within the remainder of ERs was quantified. Regions were annotated based

on existing annotation using the annotateRegions R function. The GC-content of each

ER was calculated using the bedtools (v.2.27.1) and conditional quantile normalisation

118



Chapter 5. Hippocampus analysis

was applied to all ERs. Finally, ERs were annotated on the basis of the existing

annotation (ENSEMBL v. 87) using the annotateRegions R function.

5.2.5 Pipeline for the identification of eQTLs

5.2.5.1 Removal of batch effects and eQTL pipeline

I tested various approaches to see if it would be possible to improve the estimation and

removal of undesiderable variance in expression profiles and so increase the power of

eQTL discovery. I used the TPM-normalised gene-level expression profiles generated

in section 5.2.3.1 as the input for PCA, Surrogate Variable Analysis (SVA, Leek et al.

2012) and PEER. For SVA and PEER the known factors age, gender, brain bank and

the first 3 genetic principal component axes were included.

I also tested the Qualitative Surrogate Variable Analysis (qSVA) method developed

by Andrew Jaffe and colleagues (Jaffe et al. 2017b). This method attempts to measure

and correct for the effects of RNA degradation on RNA expression profiles specifically

in human brain. This is done by measuring the impact of leaving post-mortem brain

tissue (grey matter) at room temperature for between 0 and 60 minutes and sampling

at regular intervals. At each time point RNA was extracted and sequenced and subse-

quently differentially expressed genomic regions were identified in a time series analyses.

Expressed regions that were differentially expressed over time were considered a proxy

for degradation. This experiment was performed using two types of library construc-

tion, namely polyA–selected libraries and ribodepletion libraries, the latter generated

by using total RNA as input. This generated two sets of differentially expressed genomic

regions. I tested both sets by quantifying the expression within these specific genomic

regions using the R function getRegionCoverage from derfinder and then applied the R

qSVA function and extracted the surrogate variables.

For each method used (PCA, SVA, PEER and qSVA), I performed an eQTL anal-

ysis using the MatrixEQTL R package and sequentially adding the axes to identify
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the method and the number of axes that maximised eQTL discovery. This approach

demonstrated the utility of using PEER with 19 covariates included (Figure 5.3).

Figure 5.3: Optimisation of batch effect removal using different methods.
Line plot to show number of eQTL signals identified (y-axis) and number of covariates
included in the analysis (x-axis). Each line correspond to a different method to generate
the covariates. The red dashed line represents the optimum number of covariates (19
PEER) to include in the analysis to obtain the maximum number of eQTL signals.

Thus, 19 PEER covariates were used in addition to gender, age, brain bank and

the first 3 genetic principal component to perform eQTL for all quantification types.

Finally, conditional analysis were applied as per section 3.2.3.4 to identify secondary

signals.

5.2.6 Replication of eQTL signals in independent datasets

I assessed the replication of eQTL signals in the paired genotyping and RNA-seq data

provided by NABEC. While this data set differed in terms of the tissue analysed (frontal

cortex versus hippocampus) and the library construction protocol used (Illumina TruSeq

Stranded Total RNA kit versus Nugen ovation kit), I had full access to the BAM files

which allowed me to re-run the eQTL analysis through the same pipeline as the discov-
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ery hippocampus dataset. Imputed genotyping data (using the HRC v.1.1) and aligned

sequences RNA-Seq data were provided by Dr Raphael Gibbs (NIH). The aligned se-

quence data was used to quantify the transcribed regions identified in the hippocampus

dataset. The same reference-agnostic eQTL pipeline was then used to test eQTLs

passing an FDR threshold of 5% in the discovery hippocampus dataset.

5.2.7 Split read annotation

Split reads were annotated based on the location of the implied donor and acceptor sites

and then assessed to identify unannotated split reads. I used the R packages refGenome

and GRanges in combination with the transcriptome definition from ENSEMBL v.87 to

annotate the split reads. Split reads with both ends present (including the combination

of donor and acceptor sites) within ENSEMBL were labelled as “annotated”. Split reads

with a single end annotated were labelled as either “novel donor site” or “novel acceptor

site” as appropriate. Split reads with both ends present within ENSEMBL, but where

the precise combination of donor and acceptor sites was not present in the annotation

were labeled as “novel splice site usage” reads. Finally, split reads for which neither end

was present within existing annotation were labelled as unannotated.

Finally, using the MaxEntScan software (Yeo and Burge 2004) I measured the pre-

dicted strength of all donor and acceptor sites implied by the split reads using the

9 and 23 base pair sequences respectively for the donor and the acceptor sites. The

MaxEntScan software uses the Maximum Entropy Principle to model the frequency

distributions of sequence motifs around a comprehensive dataset of known splice sites.

This provides a means of scoring any given sequence motif in terms of the probability

of it being a true splice site.
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5.2.8 Split read replication

I downloaded split reads relating to all samples included within GTEx v6 (covering 54

human tissues) from the recount2 resource. For each tissue, replication was considered

to be successful if 5% of the samples from a given tissue contained split reads with

precisely match the same genomic coordinates for the implied intron.

5.3 Results

5.3.1 Misannotation is prevalent in intragenic regions

In order to assess gene misannotation in the human hippocampus, I used three dif-

ferent quantification methods. The output of Derfinder was used to detect genomic

regions with transcriptional activity, while the outputs of STAR-derived split reads

and LeafCutter were used to detect splicing events. Derfinder identified 348,121 ex-

pressed regions (ERs) totaling 130Mb of sequence. STAR detected 351,781 splicing

events, defined as unique split reads present in >5% of samples. LeafCutter identified

65,932 splicing events, 91.0% of which were detected by STAR. Unique splicing events

identified by STAR and LeafCutter were merged into a single dataset.

Subsequently, ERs and splicing events were annotated using the ENSEMBL v87

gene reference. ERs were subdivided into five different classes (Figure 5.4a): 1) Exonic,

ERs exclusively overlapping exons; 2) Intronic, ERs exclusively overlapping introns;

3) Intergenic, ERs exclusively overlapping intergenic regions; 4) Exonic-intronic, ERs

overlapping both an exon and an intron; and 5) Exonic-intergenic, ERs overlapping

both an exon and an intergenic region. Similarly, splicing events identified using STAR

and LeafCutter were divided into three classes (Figure 5.4a): 1) Novel alternative splice

site usage, such that both ends of the split read are annotated but the combination of

the two exons is not within annotation; 2) Novel alternative donor or novel alternative
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acceptor splice sites, such that either the donor or the acceptor sites are unannotated;

3) Novel intergenic splicing, such that both ends of the split read are unannotated.

Figure 5.4: Classification of ER and split reads.a) Classification of ERs using
ENSEMBL v87 reference annotation and bar-chart to show the percentage of ERs for
each class. b) Classification of split reads using ENSEMBL v87 reference annotation
and bar-chart to show the percentage of split reads for each class.

Using this classification system, I was able to measure the extent of unannotated

transcription and splicing in the human hippocampus. Unannotated transcription ac-

counted for 66.6% of ERs, corresponding to 99.9 Mb with the majority of unannotated
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ERs classified as intronic (54.5% of ERs, Figure 5.4). Of all splicing events, 35.8% were

unannotated with most of these events being either alternative donor or alternative ac-

ceptor type (Figure 5.4). While I recognise that the information from ERs is harder to

interpret given that the library construction method used would be expected to capture

pre-mRNA, the analysis of both ERs and splicing events suggests that misannotation is

largely within intragenic regions and that alternative splicing may not have been fully

characterised in the hippocampus.

5.3.2 ERs identified within introns are largely due to sequencing

of pre-mRNA.

ERs were further analysed using split reads. As previously discussed split reads can

provide evidence that RNA is not only transcribed from a specific region of the genome

but is also processed by the splicing machinery. I found that 31.7% of the annotated

ERs (i.e. those ERs which overlapped a known exon) had evidence of splicing. In

comparison, 8.4% of unannotated ERs (intronic and intergenic ERs) showed evidence

of splicing, of these 94.8% were connected to a known gene. However, only 2.6% of

intronic ERs showed evidence of splicing. One explanation for this low level of overlap

with splicing events amongst intronic ERs, is that these ERs are generated through

reads mapping to pre-mRNA or have been generated by pervasive transcription. To

further investigate the molecular basis of intronic ERs, I checked the replication of ERs

within the NABEC and GTEx RNA-Seq datasets. While the presence of pre-mRNA

fragments would be expected in the NABEC dataset because the library construction

used total RNA and ribodepletion, pre-mRNA fragments would be expected to be rela-

tively rare in the GTEx dataset because this data was generated using a polyA-selected

library. Focusing on intronic ERs, the replication rate was high within the NABEC

dataset (83.9%, Figure 5.5b), but low in the hippocampus GTEx dataset (4.5%, Figure

5.5a). This suggests that the majority of ERs represent pre-mRNA expression, but also
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that pre-mRNA expression replicates when considering datasets generated using non-

polyA-selected libraries. For all other types of ERs (exonic, intergenic, exon-intronic,

exon-intergenic) replication rates were similar in GTEx and NABEC suggesting that

these measures were not affected by the library construction method. In keeping with

the existing literature, I found that all types of unannotated split reads, including

those with no previously reported donor or acceptor splice sites were highly replicable

with replication rates of 37.5–65.3% (Figure 5.5a) across all types of novel split reads

within GTEx hippocampus. Furthermore, replication was largely robust to the library

construction method and replication rates were 42.8-63.0% (Figure 5.5b) in NABEC.

In summary, this analysis demonstrated that while the detection of intronic ERs is

due primarily to pre-mRNA sequencing, misannotation of the hippocampal transcrip-

tome is still largely intragenic as evidenced by highly reliable split read data.

Figure 5.5: Replication ER and split reads in independent datasets. a) Bar-
chart that illustrates replication of ERs and split reads stratified by classes using the
GTEx dataset. b) Bar-chart that illustrates replication of ERs and split reads stratified
by classes using the NABEC dataset.
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5.3.2.1 Annotated and unannotated splice sites are similar in strength

To investigate the splicing efficiency of unannotated splice sites, the 5’ and 3’ splice

site strengths were estimated using the MaxEntScan software (Yeo and Burge 2004)

and compared to those estimated for annotated splice sites. The scores produced by

the MaxEntScan software (MaxEnt score), were generated using the sequences around

the splice site, with higher scores corresponding to higher probabilities for the sequence

to be recognised as a splice site. Split reads classed as novel alternative splice site

usage were removed from this analysis, because they do not represent novel splice site

locations, but only novel usage of already annotated splice sites. For the same reason,

the annotated splice sites for split reads classified as novel alternative acceptor and novel

alternative donor were not included in this analysis. The distribution of MaxEnt scores

for annotated and unannotated splice sites were highly overlapping at both the 5’ and 3’

sites. The largest differences in the distribution of scores was seen for novel alternative

donor and the novel alternative acceptor sites as compared to the equivalent annotated

sites (Figure 5.6). Interestingly, amongst unannotated split reads, those annotated as

being entirely novel and located within intergenic regions had 5’ and 3’ MaxEnt score

distributions which most closely resembled those of annotated splice sites (Figure 5.6).

These findings suggest that the splice sites implied by unannotated split reads have the

strength to be recognised by the splicing machinery.

5.3.3 Current quantification softwares do not fully capture the

complexity of the hippocampus transcriptome

In order to measure transcriptome complexity, I used a range of different methods, all of

which provide transcript-specific information either directly or indirectly. Transcript-

specific information is provided by LeafCutter and split reads were detected by the

STAR aligner. While Salmon quantifies annotated full-length transcripts, LeafCutter
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Figure 5.6: 5’ and 3’ splice site sequence strength. a) Distributions of 5’ splice
site MaxEnt scores stratified by split read classes. b) Distributions of 3’ splice site
MaxEnt scores stratified by split read classes.

and split read data provide information about individual splicing events. Since they

are annotation-agnostic in their approach, both methods can be used for the detection

of novel splicing events.

In the first instance, I focused on the detection of splicing events already within

annotation and quantified the number of unique ENSEMBL transcripts detected by

each method. While Salmon provides this information directly, in the case of LeafCutter

or split reads identified by STAR, this information had to be inferred. To this end, each

splicing event (detected by both LeafCutter and the split reads) was annotated using the

ENSEMBL v.87 transcript reference and filtered such that only splicing events, which
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are unique to a single transcript were retained to generate a minimum set of transcripts

that would be compatible with the data (Figure 5.7). This analysis demonstrated that

split reads and Salmon detected 3.03 and 2.84 fold more transcripts than LeafCutter

respectively (39,386 for split reads, 36,850 Salmon, 12,988 LeafCutter, Figure5.8).

Figure 5.7: Transcript detection workflow. Schematic illustration to show the
detection of transcript using different methods (Salmon, LeafCutter, split reads).
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However, Salmon cannot detect novel splicing, which according to the data generated

in Chapter 4 and several recent transcriptome studies is prevalent in human brain (Jaffe

et al. 2015; Nellore et al. 2016b; Bartonicek et al. 2017; Clark et al. 2018; Jaffe et al.

2018).

Consistent with the current literature, both LeafCutter and the split read data

suggested that novel splicing is widespread in hippocampus. LeafCutter, detected 3,648

novel splicing events, while the split read data identified 42,638 novel splicing events

(Figure 5.8). The greater than ten-fold difference in the number of splicing events

detected by these methods may be due in part to the fact that LeafCutter only detects

splicing when a gene expresses at least two different transcript isoforms within the

tissue.

Thus, this analysis suggests that existing methods to quantify splicing events do

not capture the full complexity of the transcriptome, even when analyses are restricted

to annotation and that while the scarcity of split reads may make quantification prob-

lematic, this feature of the RNA-Seq data may provide the most complete snapshot of

splicing at present.

5.3.3.1 Evidence for brain-specific misannotation

Given the reliability of unannotated split reads detected in hippocampus, I investigated

their tissue specificity with the aim of obtaining insights into functional relevance of

the splicing events they capture. Using a subset of the GTEx data I determined the

replication of the split reads identified in the hippocampus dataset within all 13 GTEx

brain tissue and whole blood RNAseq data sets. A replication matrix of split reads

across GTEx tissues was generated, assigning 1 if the split read was detected in the

GTEx tissue and 0 otherwise (with replication defined as in section 5.2.8). Unsuper-

vised hierarchical clustering was then performed using the Pearson’s linear dissimilarity

measure and applied to the replication matrix of split reads across the GTEx tissues.
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Figure 5.8: Annotated and unannotated splicing events detected. Left panel:
bar-chart to show the number of detected genes and annotated splicing in the form of
transcripts by the different methods. Right panel: bar-chart to show the detection of
unannotated splicing events by the different methods.

This approach not only suggested that novel splicing, as measured by the split reads, is

often specific to a brain region, but that splicing events also cluster in an anatomically

expected manner (Figure 5.9), which would be consistent with functional importance.

Furthermore, the low replication rate of split reads in whole blood samples suggests

that the split reads are unlikely to be the product of systematic mapping errors that

should be independent of the tissue sampled.
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Figure 5.9: Replication of unannotated split reads cluster in brain anatomi-
cally manner. Heatmap and clustering of replication matrix for split reads in 13 brain
samples and whole blood in GTEx.

5.3.4 eQTL discovery

While split reads represent a rich data resource within RNAseq datasets, they are rel-

atively scarce (10.1% of aligned reads) and so an eQTL discovery strategy focused on

this portion of the data would discard a significant amount of useful information. By

contrast, an eQTL discovery strategy based on derfinder and the quantification of ERs

is highly efficient in the sense that all mapping data is used, but risks being inaccurate

and difficult to interpret. Therefore, I postulated that an approach, which integrated

131



Section 5.3. Results

both forms of data would be the most informative and could be more explanatory for

disease than existing eQTL discovery pipelines based on LeafCutter or Salmon. I tested

this by performing eQTL mapping analyses using 5,464,310 SNPs and a total of 471,153

expression features. The expression features were divided into four types, namely gene-

level quantification (based on Salmon output), transcript-level quantification (based on

Salmon output), splicing quantification (based on LeafCutter output) and ER quan-

tification (based on derfinder output) to generate four different eQTL classes: Gene

eQTL (ge-eQTL), transcript eQTL (t-eQTL), splicing eQTL (s-eQTL), expressed re-

gion eQTL (er-eQTL). These eQTLs had varying dependence on existing annotation

with s-eQTLs having the potential to identify regulatory SNPs targeting novel splicing

and er-eQTLs being entirely annotation-agnostic in nature. This resulted in 1,8 billion

tests being performed and resulted in the identification of 232,199 eQTLs at 5% FDR

after conditional analysis (Table 5.1).

Quantification Features tested eQTL signals eQTL unique
target features

Gene (Salmon) 20,179 2,332 2,175
Transcript (Salmon) 37,114 2,419 2,212
Splicing (LeafCutter) 65,739 4,966 4,727
Expressed Region (derfinder) 348,121 24,965 23,749

Table 5.1: Summary of eQTL discovery. Table to show a summary of eQTL
discovery divided by features tested. Number of unique target features, represents the
number of unique eQTL target features for each eQTL class.

Use of entirely reference-based approaches (ge-eQTL and t-eQTL) resulted in the

identification of 4,748 independent eQTL signals targeting 2,337 protein coding genes.

However, using reference-free approaches (s-eQTL and er-eQTL) resulted in the iden-

tification of a substantially larger number of eQTL signals (29,931, an increase of 6.3

fold more eQTLs) targeting a larger proportion of protein coding genes (14,767 genes

equating to 66.2% of all protein coding genes). Furthermore, I found that eQTL sig-

nals targeting unannotated features represented a large proportion of the eQTL data.
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In fact, 68.1% of all er-eQTL were targeting unannotated ERs of which 50.1% were

intronic and 7.8% were intergenic (Figure 5.10).

Figure 5.10: Er-eQTL target ER proportions. Bar-Chart to show the percentage
of er-eQTL targets stratified by ER classes

5.3.4.1 Replication of eQTL

Given that the largest proportion of eQTLs identified in my analysis were generated

through the use of the annotation-agnostic quantification method, derfinder, to pro-

duce er-eQTLs, I focused my replication analysis on this portion of the data. I used

the NABEC dataset to perform this analysis. This is because like the hippocampus

RNA-Seq data used to identify eQTLs, it had been generated using a cDNA library

construction protocol that would be expected to include pre-mRNA and it was clear

from the analysis of ER replication that many of the intronic ERs were likely to be de-

rived from pre-mRNA. However, it is important to note that the NABEC dataset was

generated using frontal cortex rather than hippocampus samples and that the library

construction protocol though similar in some respects was different (Illumina TruSeq

Stranded Total RNA versus Nugen ovation kit). Of the total SNP-ER pairs tested for
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replication in the NABEC dataset, 27.3% were replicated using a marginal significance

of p-value <0.05. However, replication rate substantially varies depending on the ER

annotation. When considering only eQTL targeting annotated ERs (i.e. exonic) the

replication rate is 31.1%. Replication rate increases when the eQTL targets ERs that

partially overlap exonic regions, 50.6% and 36.0% respectively for regions classified as

exonic-intergenic and exonic intronic. Surprinsingly, a high replication rate of 47.6% is

observed for eQTL targeting ERs located enterely in intergenic regions. Finally, eQTL

targeting ERs classified as intronic show the lowest replication rate of 19.7%. Overall,

eQTL that target unannotated ERs reached a 25.2% replication rate.

5.3.5 Reference-free annotation methods yield the improvements

GWAS interpretation

Given the evidence described above to suggest that novel ERs are common, can be

brain-specific in nature and can be targeted by eQTLs, I investigated the impact of

these findings on complex diseases. While I appreciate that novel ERs may be associated

with complex diseases either through i) the enrichment of risk SNPs within the novel

expressed regions or ii) the regulation of novel ERs by risk SNPs, I focused on the latter

possibility.

All eQTL classes were investigated for the enrichment of risk SNPs for neurological

and behavioural disorders as compared to all other risk SNPs within the STOPGAP

database. This analysis showed that all eQTL types (ge-eQTL, t-eQTL, s-eQTL, er-

eQTL) were significantly enriched for neurologically-relevant risk SNPs (Table 5.2).

While er-eQTLs had the lowest enrichment for neurologically-risk SNPs, in absolute

terms er-eQTLs provided the most information, given the higher number er-eQTLs

which were also reported to be risk SNPs (Table 5.2). Furthermore, a similar anlaysis

was performed focusing on er-eQTLs and subdividing them into those targeting anno-

tated regions (i.e. exonic ERs) and those targeting unannotated regions (i.e. intronic,
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intergenic, exonic-intronic and exonic-intergenic ERs). This analysis showed that both

types of er-eQTLs were enriched for risk SNPs for neurological and behavioural disor-

ders (the fisher exact test p-value: annotated = 3.82 x 10-²¹, unanntoated = 1.10 x

10-¹5). This would suggest that like annotated ERs, unannotated ERs can contribute

to an understanding of neurological and behavioural disorders.

GWAS category ge-eQTL t-eQTL s-eQTL er-eQTL GWAS
dataset

Neurological and
behavioural disorders 653 672 763 1,130 4,864
All other phenotypes 4,061 4,531 6,600 15,027 80,041
Fisher exact test p-value 4.4e-87 3.2e-77 5.8e-49 1.0e-9

Table 5.2: GWAS eQTL enrichment. Table to show the number of GWAS-eQTL
overlap as neurological and behavioural disorders and all other phenotypes with relative
Fisher exact test p-value to test the enrichment amongst neurological and behavioural
disorders.

I further explored the impact of annotation-free eQTLs on individual risk loci for

six different GWASs (PD Nalls et al. 2018, AD Lambert et al. 2013, SCZ Pardiñas et al.

2018, MS Beecham et al. 2013, ALS Rheenen et al. 2016, intelligence Savage et al. 2018

GWAS) using the coloc R software as per section 4.2.4.1. The annotation-free approach

implemented using derfinder, produced the highest number of signals colocalising with

risk loci (209 risk loci, Table 5.3).

Quantification AD ALS Intelligence MS PD SCZ Total
Gene (Salmon) 0 0 16 1 6 9 32
Transcript (Salmon) 0 1 26 1 9 13 50
Splicing (LeafCutter) 2 0 19 7 8 11 47
Expressed Region (derfinder) 5 0 85 7 35 77 209

Table 5.3: Summary of eQTL-GWAS colocalisation. GWAS eQTL enrich-
ment. Table to show a summary of eQTL-GWAS colocalisation hits divided by eQTL
class.

Of these 209 risk loci, 44.5% (93 risk loci) uniquely colocalised with er-eQTL signals.

Furthermore, 44 of the risk loci uniquely colocalised with er-eQTLs targeting unanno-
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tated ERs. There was evidence of splicing for eight of the uniquely co-localising eQTLs,

of which four targeted intronic ERs, three targeted exonic-intronic ERs and one tar-

geted an intergenic ER. For example, the risk SNP, rs2371214, which is associated with

an increased risk of schizophrenia (GWAS p-val = 1.15 x 10-7, Pardiñas et al. 2018), is

also an eQTL targeting an intronic ER (chr7:82867064-82867528) within PCLO (Pic-

colo Presynaptic Cytomatrix Protein) and that these signals colocalise with highest

colocalisation at rs10250881 suggested by coloc (PPH3+PPH4=0.93, PPH4/PPH3 =

4.91, the SNPs rs10250881 and rs2371214 are in high LD of R²=0.94). The intronic ER

target by the eQTL appears to be part of a novel isoform of PCLO, as evidenced by

the presence of a split read connecting to a coding exon of PCLO (Figure 5.11). PCLO

function has been implicated in the regulation of presynaptic proteins and synaptic vesi-

cles trafficking and has been proposed as fontamental for several neural types (Ahmed

et al. 2015) and it has been associated with major depressive disorder and bipolar dis-

ease (Bochdanovits et al. 2009; Choi et al. 2011). The risk SNP, rs2371214, did not

colocalise with any other form of eQTL. Therefore, the annotation-free eQTL analysis

performed provides a unique insight into the underlying mechanism through which the

risk SNP acts. Thus, these findings suggested that incomplete annotation of the brain

transcriptome might be limiting the interpretation of GWAS hits.
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Figure 5.11: er-eQTL targeting intronic ER in the PCLO gene. Top panel:
Colocalisation of the risk loci for schizophrenia colocalising rs2371214 and regulating
the intronic ER (chr7:82867064-82867528) of PCLO (ENSMEBL track). Bottom panel:
zoom into the intronic ER, showing a split read linking the coding region of PCLO and
the intronic ER. The colocalise SNP is located in an intron of PCLO and upstream of
the intronic ER regulated.
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5.4 Discussion

It is well-recognised that even now existing gene annotation has limitations (Jaffe et al.

2015; Clark et al. 2018; Pertea et al. 2018) with the evidence suggesting that rather

than there being many new genes to find, there is incomplete annotation of the full

structural variation in RNA transcripts produced by known genes. Furthermore, in

recent years splicing has been increasingly highlighted as an important mechanism

underlying disease pathogenesis (Arnold et al. 2013; Li et al. 2016b). However, there

has been relatively limited research on the impact of gene misannoation on disease

understanding at a genome-wide scale (Kremer et al. 2017; Bartonicek et al. 2017),

particularly within human brain. The findings reported in chapters 3 and 4 form the

basis for the work described in this chapter, in that these chapters re-enforce the view

that splicing is important in human brain disease and that even when considering novel

intergenic expression, misannotation of existing genes is likely to be a very important

component of the data.

In this chapter, I explore these themes further firstly by using a variety of methods

to estimate splicing complexity in human hippocampus. This analysis produced a num-

ber of key findings. Most importantly it suggested that some of the most commonly

used tools to capture and quantify splicing (Salmon and LeafCutter) are incompatible

with split read data (reads spanning exon-exon junctions) and underestimate splic-

ing even when considering annotated splicing. When considering unannotated splicing

events, while there is data to suggest the existence of intergenic transcription and post-

transcriptional processing, most novel gene expression and splicing relates to known

genes. This interpretation of the data is supported by reads spanning exon-exon junc-

tions and to a lesser extent the detection of ERs within introns or close to 3’ and

5’UTRs.

Although the reliability of reads spanning exon-exon junctions has been previously
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investigated, this feature of RNA-seq data has not been specifically analysed in human

brain before. Consistent with previous analyses, I found that, when detected, split read

data was extremely reliable. Most importantly, unannotated split reads consistently

mapped in identical genomic locations across multiple, independent brain tissue sam-

ple sets. The robustness of this portion of the data allowed me to confidently investigate

the tissue-specificity of unannotated split reads identified in human hippocampus. The

lower detection of unannotated split reads in GTEx whole blood as compared to brain

samples suggested not only the brain-specificity of the splicing events tagged by split

reads, but that they were also unlikely to be the product of systematic mapping er-

rors. Furthermore, hierarchical clustering of unannotated split read data showed that

split read detection clustered across brain regions in an anatomically expected manner,

implying that the splicing events captured could be functionally important. This view

was supported by the high, predicted splice site strength of the sites implied by unan-

notated split reads. I found that the distributions of predicted splice site strengths of

annotated and unannoated split reads were highly overlapping, suggesting that many

of the splice sites underpinning unannotated split reads would be recognised by the

splicing machinery and consistent with the functional significance of the splice sites

detected.

While reads spanning exon-exon junctions are highly informative, they are also rela-

tively sparse in short read RNA-seq datasets and transcriptome quantification methods

based on read density remain important. The most flexible of these approaches is

derfinder that can detect and quantify expressed genomic regions irrespective of exist-

ing annotation. Using this approach, I detected a large number of novel ERs of which

the majority were intronic. Since the library construction method used to generate the

hippocampus RNA-seq data was unselective in nature, I recognised that intronic ER

detection was likely to be driven by pre-mRNA sequencing.

In fact, comparing ER replication rates between total RNA-seq versus polyA-selected
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RNA-seq datasets confirmed this suspicion and as would be predicted the intronic ERs

replicated well in the former and poorly in the latter. However, this analysis suggested

that there is also likely to be a replicable pattern in pre-mRNA expression, which could

be potentially informative. In fact, it is being increasingly recognised that pre-mRNA

“noise” within RNA-seq datasets can provide useful information about transcriptional

rate (Sibley et al. 2015; La Manno et al. 2018). Given that to date most eQTLs are

thought to be driven by regulatory processes operating at the level of transcriptional

rate, this might suggest that intronic ERs may be particularly useful expression features

within eQTL analyses.

I specifically tested the value of intronic ER detection and quantification together

with other forms of novel annotation (exonic-intronic, exonic-intergenic and intergenic

ERs) in eQTL discovery. I found that using an annotation-free approach to iden-

tify expression features for eQTL analysis considerably increased the total number of

unique eQTLs detected as compared to reference-based methods (6.3 fold increase).

Furthermore, the eQTLs targeting unannotated ERs had similar replication rates to

those targeting annotated ERs (31.1% replication rate for exonic ERs against 25.2%

for all unannotated ERs). However, most importantly they were able to provide unique,

disease-relevant information. This was most evident using coloc analyses, which tested

not only a simple overlap between an eQTL signal and risk SNP, but specifically anal-

ysed signals for evidence of colocalisation. This approach showed that 44% of the risk

loci analysed from across 6 neurologically-relevant GWASs colocalised only with an

eQTL signal targeting an ER. Of the 209 colocalising eQTLs, 74 targeted an ER which

had evidence for novel splicing as well as novel transcription. Thus, this analysis sug-

gested that reference-free methods for identifying expression features in RNA-seq data

significantly increases the yield of eQTLs from a given data set and can provide novel

disease-relevant information. Taken together the analyses presented in this chapter

provide compelling evidence for both incomplete annotation of the human hippocam-
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pal transcriptome and the value of annotation-free approaches in the identification of

expression features of disease-relevance.
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Chapter 6

Conclusions and future directions

6.1 Fundamentals of the thesis

In this thesis I presented eQTL analyses performed with the aim of identifying regula-

tory regions in human brain that could help improve our understanding of neurological

disorders. Although discussions were included in each result chapter, this final chapter

consists of an overall discussion of the important issues to be considered when perform-

ing eQTL analyses in human brain and includes a discussion of the future approaches

that could provide further insights into gene regulation in human brain.

A major theme in this thesis is the importance of RNA splicing. RNA splicing is a

co-transcriptional process by which non-coding portions of the pre-mRNA sequence are

removed and exons are joined together to produce mRNA. While alternative splicing is

predominantly viewed as an efficient means of generating mRNA diversity from the same

sequence, its role in the regulation of mRNA stability is increasingly being recognised

(Xing, Xu, and Lee 2003; Garcia et al. 2004; Li et al. 2017a). Furthermore, there

is now considerable evidence to show the biological importance of this process in cell

differentiation, including within human brain (Su, D, and Tarn 2018). Finally, and

perhaps most importantly, alternative splicing is very common with 89% of multi-exon
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genes in the ENSEMBL database having the potential to express multiple transcripts.

Over the course of my PhD, there has been growing evidence to suggest the impor-

tance of alternative splicing in complex diseases. Through the identification of splicing

eQTLs in lymphoblastoid cell lines, Li and colleagues have shown that loci regulating

alternative splicing are enriched for systemic lupus erythematosus risk SNPs (Odhams

et al. 2017).

Since the highest fraction of alternatively spliced genes is found in brain (Yeo et al.

2004), alternative splicing might be expected to be particularly important in human

brain diseases. In fact, aberrant splicing is already functionally linked to ALS, where

mutations in the gene TDP-43 have been shown to result in missplicing of RNA and

contribute to neuronal loss (Chabot and Shkreta 2016). Similarly, Raj and colleagues

examined alternative splicing in the dorsolateral prefrontal cortex, and found evidence

that Alzheimer’s Disease risk loci may operate by affecting alternative splicing of key

genes (Raj et al. 2018). These findings are consistent with the analysis I presented

in chapter 3. By investigating the genetic regulation of gene expression with RNA

processing in mind, I found evidence to suggest that alternative splicing may be a key

process in mediating PD risk.

Taken together, these findings suggest that alternative splicing and more specifi-

cally transcripts rather than genes should be considered as the fundamental unit of

information in transcriptomic analyses. This raises two important issues: firstly, the

accuracy of current transcript annotation in human brain; and secondly, the extent to

which we are currently able to interpret the importance of differential transcript usage

biologically. While the latter is outside the scope of this thesis, the former was ex-

tensively explored and additional pipelines were implemented to overcome some of the

limitations of current transcriptome annotation.

Since the discovery of splicing in the late 1970s, the challenge of generating correct

definitions of intron-exon boundaries has been recognised. While missing exons or splic-
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ing annotation might seem like a relatively minor problem given that most annotations

are correct, the absence of annotation features could result in the mis-assignment of

reads to transcripts or splicing events even when those specific annotations are accurate.

This will create a wider, systematic bias in splicing/transcript measurements (Soneson

et al. 2018).

Thanks to advances in sequencing technologies, in the last decade the identification

of correct intron-exon boundaries has become more achievable. The output of commonly

used RNA-Seq technologies provides different types of information that can be used

to identify intron-exon boundaries. Read-coverage can be used to identify intron-exon

boundaries by defining exons. Conversely, split reads provide direct definitions of intron-

exon boundaries by defining introns. Both types of data have been studied extensively in

this thesis. Although methods relying on read-coverage benefit from a larger proportion

of sequence data, my analyses suggest that split reads are more informative and are

key for RNA-Seq based analyses of splicing. The nucleotide resolution and reliability

provided by split reads allows highly sensitive analyses to be performed. The data

generated in section 5.3.3 suggested that even when sophisticated methods are used,

the information provided by split reads is not superseded, meaning that split reads

represent valuable, and potentially, novel information. While the proportion of split

reads in RNA-Seq is currently limited, the increases in the read length even when using

short-read sequencing technology will result in a higher proportion of split reads in the

data (Chhangawala et al. 2015) and, subsequently more sensitive splicing analyses.

Furthermore, this also implies that RNA-Seq analyses should increasingly prioritise

the information contained in split reads. One possibility is to use split reads to first

identify precise intron-exon boundaries and then use read-coverage to quantify splicing

event, an approach which has driven the creation of LeafCutter.

One of the most interesting findings in this thesis is that misannotation is sur-

prisingly widespread across the genome. Although there is evidence for a significant
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quantity of novel transcription and splicing within intergenic regions, it appears to be

most prevalent within known genes. A possible explanation for widespread misannota-

tion of alternative splicing might be that modern human biology and genome annotation

has largely been performed using too much focus on the gene as the functional unit.

For the last 50 years scientists have been attempting to estimate the correct number

of protein-coding genes in a given tissue and in fact this task has been complicated

by splicing and the complexity this process generates. These considerations led me to

study misannotation and, more broadly, transcriptome complexity by using transcripts

as units of information. I found that currently the commonly used software tools are

very limited to accurately capture let alone quantify transcript information.

As the availability of public genomic datasets continues to increase, there are new

challenges for effective and informative data analysis. These new challenges require

(besides physical resources) the careful consideration and implementation of two pro-

cesses. Firstly, to obtain biological insights, analysts need to consider the issues around

integration of data of varying types. Whether this is data generated in different fields

or by different technologies, integration is required to perform more efficient and com-

prehensive studies. Secondly, the multiplicity of research questions implies the need

for tailored pipelines, which have been designed and optimised to answer a specific hy-

pothesis. Data integration and the use of optimised, tailored pipelines both featured in

this thesis. eQTL analysis by definition requires the integration of two types of data,

namely genetic and trasncriptomic data. In addition, several independent datasets,

such as CAGE-Seq and multiple GWAS datasets, were integrated to produce robust

results and identify disease-specific information.

Furthermore, optimisation steps were constantly implemented to overcome the chal-

lenges of using inherently noisy data and to maximise the information obtained from

RNA-Seq data. For example, this revealed that, by capturing pre-mRNA, we can en-

hance eQTL yields and improve our understanding of gene regulation. Thus, the work
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contained in this thesis is a step towards the generation of more innovative types of

RNA-seq analyses, which have the capacity to integrate different types of data more

effectively and which take full advantage of the information provided by RNA-Seq data.

6.1.1 Medical implications

One of the major outputs of this thesis was the generation of a large eQTL resource,

covering eQTL analyses in three tissues of key importance for human neurodegenerative

and neuropsychiatric disease, namely the substantia nigra, putamen and hippocampus.

This thesis provides a large resource for the neuroscientist community which can be

adopted as a first step to formulate hypothesis of disease mechanisms. While this is

not the only eQTL resource available for brain, it is valuable. Replication data sets are

important for the assessment of reliability and it is amongst the only reference-agnostic

eQTL resource currently available across all human tissues. This feature of the data

will mean that despite the inevitable changes in transcriptome annotation it will retain

its utility.

Although the generation of eQTL resources has traditionally been driven by the de-

sire to improve the interpretation of disease risk variants identified through GWAS and

this was certainly pursued in this thesis, eQTL datasets have other applications. Most

importantly, rapid progress in the identification of pathogenic variants contributing to

monogenic diseases has made it possible to test the effect of regulatory variants on the

penetrance of known pathogenic mutations (Castel et al. 2018). This results in a model

of disease which integrates rare and common variation. In fact, combining data relating

to complex and rare disease is likely to be a new frontier in clinical genetics and will

inevitably lead to increasing attention on modifiers of rare disease.

The identification of widespread transcriptome misannotation is also likely to have

medical implications. Over the past ten years next-generation sequencing technologies

have reduced sequencing costs and so allowed the introduction of whole exome sequenc-
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ing (WES) as a standard approach for clinical diagnostics. However, even with WES

only 25-50% patients will receive a genetic diagnosis (Yang et al. 2014; Taylor et al.

2015). One possibility is that the exons where the pathogenic variants lie are excluded

from the analysis because of the exome capture kit design. The reference-agnostic

approach to RNA-seq analysis pursued in this thesis makes it possible to identify unan-

notated transcribed regions and particularly those linked to known genes. Thus, this

thesis may provide additional information for the design of exome capture kits. There is

also reason to believe that this would be particularly valuable for the diagnosis of neu-

rogenetic disorders, which are amongst the disorders with the lowest diagnostic rates.

A recent report estimate that the rate of diagnosis for patients of this type is only 26%

(Fogel et al. 2016) and it is already well-established that splicing in human brain is

particularly complex.

The reduction in cost of using whole genome sequencing (WGS) means that the use

of WES will decrease in the next future. The potential of WGS of additionally identify

non-coding variants, has motivated projects, such as the UK 100,000 Genomes Project,

to use this sequencing approach. However, the advantage of WGS over WES can only be

gain if only pathogenic variants outside known exon annotation are correctly identified.

Therefore, accurate transcriptome annotation is required to take advantage of WGS

potentila, and more importantly, to facilitate diagnosis.

Finally, a complementary approach for diagnostics is the use of transcriptomic data

to test the effect of potential pathogenic variants (usually non-coding) on RNA processes

(Kremer et al. 2017; Cummings et al. 2017) such as splicing. A direct application for

the findings of this thesis is the use of expressed regions and split reads as reference to

identify aberrant transcription or splicing in human brain.
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6.2 Limitations and future directions

While this study represents a valuable resource in terms of the data and methods

generated, there are several limitations of the work.

The analyses I performed in this thesis are restricted to data generated by the UK

Brain Expression Consortium, which uses brain samples from a relatively small number

of individuals, though that number is comparable to other consortia given the specific

brain regions being tested (e.g. GTEx). For this reason, the eQTLs discovered in this

thesis represent those with the largest effect sizes. Although the number of samples

could be increased as new brain samples become available in brain banks, the batch

effects generated by the collection of post-mortem brain samples by different brain

banks and/or at different time points will have to be carefully addressed.

Furthermore, the RNA-seq data in this study was generated using a library con-

struction method, which would be expected to capture pre-mRNA. Therefore, a more

extensive analysis will be required to improve the understanding of transcriptome com-

plexity and its characteristics in human brain, in particular the extent to which novel

transcribed regions are part of mature mRNAs. I anticipate that with the use of 3rd

generation sequencing technologies (e.g. Oxford Nanopore Technologies Pacific Bio-

sciences) which have the capability to capture full-length transcript structures, tran-

scripts rather than genes will become the core unit of information in such analyses and

will provide a more comprehensive view of transcriptome complexity. The integration

of 2nd and 3rd generation sequencing technologies represents an important new phase

in transcriptomic analysis, including in the context of eQTLs.

Another limitation of this study is that eQTLs were identified in bulk RNA-Seq data,

which means that I was most likely to capture the strongest signals across different cell

types rather than regulatory signals specific to a cell type. Analyses included in section

3.3.4, suggested that at least some eQTLs may act in a cell-specific manner and this is
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consistent with the literature (Fairfax et al. 2012; Westra and Franke 2014).

eQTL mapping studies have been performed on purified cells (Fairfax et al. 2012;

Naranbhai et al. 2015) or using deconvolution methods (Westra et al. 2015). While the

former is biased towards easily available cell types precluding brain-relevant analyses,

the latter approach depends on the availability of high quality cell-specific transcrip-

tomic data (Zhernakova et al. 2017).

Single-cell and single-nuclear RNA-Sequencing (scRNA-Seq and snRNA-seq) has

the potential to address this issue (Lacar et al. 2016; Wijst et al. 2018). The fact that

snRNA-Seq protocols can be applied to frozen tissue means that despite its limitations

this is likely to dominate analyses for human brain. However, even isolating individual

nuclei at scale from adult human brain remains challenging and to date the majority

of the single cell studies have been performed using animal models (Zeisel et al. 2018;

He et al. 2018). Induced pluripotent stem cell (iPSC) technology represents another

way of addressing the problem of cellular purity. Through re-programing fibroblasts

(or other cell types) stem cells can be used to generate a range of disease-relevant cell

types. Subsequently eQTL mapping studies can be performed and in fact a study of this

kind has been published focusing on sensory neurons (Schwartzentruber et al. 2018).

This has the potential to make it easier to identify regulatory sites in the cell types

where the specific disease phenotype manifests (Alasoo et al. 2015). Furthermore, the

use of iPSC-derived cell types may make it easier to analyse state-specific regulation

of gene expression. For Example, Salih and colleagues proposed that Alzheimer’s dis-

ease vulnerability depends an individual’s response to amyloid deposition (Salih et al.

2018). Using iPSC-derived cell types, it would be possible to test the association be-

tween genetic variability and gene expression within cells in a highly defined state or

environment.

In summary, the combination of larger sample sets as well as new technologies from

the fields of sequencing to cell biology are likely to overcome many of the limitations of
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this project to provide novel insights in the context of brain disease.

6.3 Concluding remarks

While it may be hard to identify a specific landmark, the cumulative progress of ge-

nomics and related omics research have changed the entire landscape of biomedical

research by shifting the field towards data-driven approaches. In this thesis, the po-

tential of genomics is demonstrated through the flexibility of RNA-Seq technology to

capture different aspects of transcriptome complexity and integrate that information

with other types of data. This results not only in the ability to rapidly test hypothe-

ses, but also to generate hypotheses which can be investigated in the laboratory. This

makes genomics a potentially disruptive force in biomedical research – a force, which

has the potential to complicate, but also to improve the lives of individual patients.
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