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de la Cruz et al. Reply In our recent Letter [1], we study
the transitions out of an oscillatory state for stochastic
systems that can be described with a chemical Langevin
equation (CLE). As Meerson and Smith point out in the
preceding Comment [2], Langevin equations are sometimes
derived using the van Kampen expansion to the leading
order in the inverse of the population size in the master
equation (ME) [3]. We rather derive the CLE using results
dating back to early work by Kurtz regarding the Central
Limit Theorem for Markov chains [4—6] and later by
Gillespie [7]. The resulting CLE we use has multiplicative
noise and is not recovered, even using the generalized van
Kampen expansion [8]. The validity of this derivation does
not rely on large system-size asymptotics, and its higher
accuracy was analyzed by Grima et al. [8] for the first two
moments of the distribution. It requires the existence of a
timescale on which each reaction channel is triggered
multiple times and the propensity of each reaction stays
approximately constant [7]. To verify that such a condition
is met in the cases discussed in our Letter, we have run
exact stochastic simulation algorithm (SSA) simulations of
the ME. The results are shown in Fig. 1, where, on the
timescale of 7= 1077, each reaction channel is triggered at
least 100 times, and the maximal relative change in a
reaction rate is less than 10%.

To show the accuracy of the CLE to describe the
transition between a stable oscillation and a fixed point,
we compare the first passage time distributions from direct
Gillespie SSA simulations of the ME and numerical
solutions of our CLE. The results are shown in Fig. 1.

Applying the Kolmogorov-Smirnov test to the resulting
empirical cumulative distribution functions, the test cannot
reject the null hypothesis that the distributions are equal at a
significance level a = 0.05. Additionally, in the Letter we
predicted the minimal action path using three different
methods (minimizing the action, simulating the master
equation, and solving the CLE). We think it is extremely
unlikely that these three completely different methods
will yield matching numerical artefacts, as Smith and
Meerson imply.

Smith and Meerson point to references on the topic
[9-13]. While relevant, none of these references deal
with a comparable dynamical landscape to the one in our
Letter (in which there is a stable and an unstable limit
cycle). In these Letters, the dynamics are affected by a
saddle point or a focus, while our Letter deals with the
transition from a limit cycle crossing an unstable limit
cycle without saddles. Additionally, all of these refer-
ences make use of additive noise, while one of the
essential aspects of the CLE is the multiplicative noise.
Finally, we regret that we did not cite Smith and Meerson
[14]. Since they look at extinctions, the CLE approach
will not be accurate in their case, since death or
degradation propensities will become negligible close
to the extinction point. They suggest the use of the WKB
method in this case [15], which is very accurate in
predicting the quasistable distribution. The CLE, while
more accurate than the van Kampen Fokker Plank
equation, was inaccurate in the tails of the distributions,
where all of the probabilities are vanishingly small.
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(Left) Escape trajectories for three different realizations of the ME. (Top left) Minimum number of times that one of the four

reactions occurs (7;) in windows of time z = 10~ along the escape trajectory. (Inset) Trajectories for the three different realizations.
(Bottom left) Maximum relative change of the propensity (z;) among all the possible reactions in windows of time 7 = 107>.
(Right) cumulative distribution functions of the First Passage Time for different sets of 600 jumps of the ME and the CLE. Confidence
bands are created using the Dvoretzky-Kiefer-Wolfowitz inequality (confidence of 99%).
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