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Abstract

Cancer development and progression is an evolutionary process, understanding

these evolutionary dynamics is important for treatment and diagnosis as how a can-

cer evolves determines its future prognosis. This thesis focuses on elucidating selec-

tive evolutionary pressures in cancers and somatic tissues using population genetics

models and cancer genomics data.

First a model for the expected diversity in the absence of selection was devel-

oped. This neutral model of evolution predicts that under neutrality the frequency

of subclonal mutations is expected to follow a power law distribution. Surprisingly

more than 30% of cancer across multiple cohorts fitted this model.

The next part of the thesis develops models to explore the effects of selection

given these should be observable as deviations from the neutral prediction. For this

I developed two approaches. The first approach investigated selection at the level of

individual samples and showed that a characteristic pattern of clusters of mutations

is observed in deep sequencing experiments. Using a mathematical model, infor-

mation encoded within these clusters can be used to measure the relative fitness of

subclones and the time they emerge during tumour evolution. With this I observed

strikingly high fitness advantages for subclones of above 20%. The second approach

enables measuring recurrent patterns of selection in cohorts of sequenced cancers

using dN/dS, the ratio of non-synonymous to synonymous mutations, a method

originally developed for molecular species evolution. This approach demonstrates

how selection coefficients can be extracted by combining measurements of dN/dS

with the size of mutational lineages. With this approach selection coefficients were

again observed to be strikingly high.
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Finally I looked at population dynamics in normal colonic tissue given that

many mutations accumulate in physiologically normal tissue. I found that the cur-

rent view of stem cell dynamics was unable to explain sequencing data from in-

dividual colonic crypts. Some new models were proposed that introduce a longer

time scale evolution that suppresses the accumulation of mutations which appear

consistent with the data.



Impact Statement

In this thesis I have developed mathematical methods to measure evolutionary and

population dynamics across different scales in human cancers and tissues. The prin-

cipal results concerned unravelling evolutionary dynamics using genetics and math-

ematical modelling. Cancer development and progression is now widely recognised

as an evolutionary system. Relapse and resistance to treatment can be viewed as

evolutionary events and thus a better understanding of the evolutionary rules that

govern cancer progression will likely have clinical impact in the future.

In terms of direct impact from this thesis, the results concerning neutral evolu-

tion in cancer, presented in Chapter 3 have somewhat surprisingly (at least to me!)

stimulated quite a lot of debate in the field. This is perhaps due to selection being

assumed to be pervasive and that the role of neutral evolution having been largely

ignored. This has brought a new way of analysing cancer genomic data into the

field. I hope that this work shows the importance of analysing data from cancers

with this in mind.

Chapters 4 and 5 concentrated on quantifying selection in cancer. I showed

a theoretical example where measuring selection coefficients allow for predicting

future evolutionary trajectories. While such an approach would need to be validated,

this potentially allows for patient specific approaches for rationalising treatment

strategies and prognostication.
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Chapter 1

Introduction

Cancers originate from somatic cells in the human body that have accumulated ge-

netic alterations. These mutations modify the phenotype of the cells, which allows

them to escape the precise homeostatic regulation of cells under normal conditions

in the body. Viewed though the lens of evolutionary biology the transformation of

normal cells into cancerous ones is evolution in action. Cancer initiation, progres-

sion, treatment resistance and subsequent disease relapse can and perhaps should all

be viewed as evolutionary events. Indeed the oft quoted Nothing in biology makes

sense except in the light of evolution comes to mind, and applies to cancer biology

equally well (Dobzhansky, 1983).

While survival rates in the UK have doubled in the previous 40 years, can-

cer still exerts a considerable burden on society. In the UK more than 150,000

people die of the disease each year and 350,000 new cases are reported annually

(Cancer Research UK). This is despite the considerable efforts of successive gov-

ernments, scientists and funding bodies over the previous 50 years. Understanding

how evolutionary forces shape cancer progression is likely to be key in new strate-

gies to combat the disease (Greaves & Maley, 2012). For example, recognising that

drug treatment introduces a selective pressure has recently led to the idea that long

term control of the disease may be achieved by managing the evolution of resis-

tance rather than attempting to completely eradicate the disease (Enriquez-Navas

et al., 2016). With this in mind, this thesis is principally concerned with evolution

in cancer and somatic tissues, and how to measure and quantify its contribution.
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I will argue that evolution is best described in terms of mathematical equations.

The combination of a mathematical framework with sequencing data from human

cancers allows for inferring and quantifying aspects of the evolutionary process in

vivo from a single time point. The remainder of this chapter will discuss relevant

concepts and questions related to this approach.

1.1 Cancer evolution

The current evolutionary perspective on cancer was first described by Nowell in the

1970’s (Nowell, 1976). In this paradigm, physiologically normal cells acquire a

growth advantage over their neighbours and clonally expand. Following this initi-

ating event, subsequent alterations may be acquired, inducing further clonal expan-

sions and increasing fitness. This process ultimately leads to a malignant tumour.

Viewed from this angle the evolutionary dynamics can be divided into 2 stages;

firstly, how the transformation of a normal cell to a neoplastic cell proceeds and

secondly, how the evolution within growing neoplasms progresses. From a patient

perspective, understanding the first stage is key to the early detection and possible

prevention of the disease. If we understand how the homeostatic regulation is hi-

jacked by cancer, it may provide clues as to how to spot early signs and possible

avenues for early intervention. The second stage is more relevant to later stage can-

cer, where key questions remain largely unanswered. Such as, how resistance to

treatment emerges and how primary tumours disseminate to other sites within the

body. Both questions are key to controlling the progression of the disease. Broadly,

this thesis will discuss the second stage of evolution: the evolution within tumours

in Chapters 3, 4 and 5. Chapter 6 discusses the evolutionary dynamics in the pre-

transformation stage and will explore approaches to measure stem cell dynamics

during normal homeostasis.

The advent of high throughput genomics and its application to cancer has val-

idated cancer progression as an evolutionary system. Applications of genomics in

cancer has revealed that complex genetic architectures are a feature of all cancer

types (Stratton, 2011). Cancers have been shown to harbour many thousands of
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point mutations (Lawrence et al., 2014), and in many cases, to be highly aneu-

ploid (Gordon et al., 2012). Furthermore, many studies have now demonstrated

that within tumours, genetic diversity is pervasive (Gay et al., 2016). Diversity is

the fuel on which Darwinian selection acts, hence understanding how this diver-

sity originates and develops is a key question. Furthermore, genetic diversity been

shown to have prognostic value in some cancer types (Andor et al., 2016; Mar-

tinez et al., 2016). This intra-tumour heterogeneity is evident at all genomic length

scales, from single nucleotide alterations through to whole chromosome losses and

gains. Moreover, as technologies have improved, genomic resolution has increased

and the degree of diversity uncovered continues to accelerate to the point that ev-

ery cell in a tumour is likely to be genetically distinct from all others, as has been

demonstrated in single cell sequencing studies (Wang et al., 2014b).

Cancers grow via bifurcating cell division where DNA in the cell is copied and

then passed on to daughter cells. While this process is relatively robust, it is far from

perfect and there remains some non-negligible probability that an error is made.

Due to somatic cells reproducing asexually, any errors will then be passed onto the

daughter cells and all subsequent descendants. Given a conservative estimate of the

base pair mutation rate of 10−9 and the size of the genome being 3∗109 it is likely

that every cell division will introduce new mutations. Furthermore, tumours are

often subject to genomic instability, either through increased point mutation rates,

due to defective DNA repair processes (Campbell et al., 2017) or chromosomal

instability, which can result in heterogeneous copy number states across the tumour.

Billions of cell divisions coupled with imperfect DNA copying makes intra-tumour

heterogeneity inevitable.

1.2 Components of the evolutionary system

Like every evolutionary system, clonal evolution in cancer is shaped by the fun-

damental evolutionary forces: (deterministic) selection, (stochastic) mutation and

(stochastic) genetic drift. Mutation and drift are by nature stochastic processes as

they depend on the chance acquisition of a mutation or in the case of drift, ran-
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dom birth and death events. Selection, meanwhile, is deterministic. Once a lineage

overcomes the genetic drift barrier (given when the strength of selection is of the

order of the inverse population size ∼ 1/N ), the expansion of the lineage becomes

predictable (Ewens, 2012).

The growing field of cancer evolution interrogates the relative and combined

contributions of these evolutionary components. Large sequencing studies such

as TCGA have uncovered many recurrent so-called driver mutations across cancer

types (mutations that lead to a positively selected phenotype, and so expansion of

the clone of cells carrying the driver mutation). These types of analysis particularly

highlight the importance clonal selection in cancer development . The mutation

rate itself has also received considerable attention. The mutation burden varies con-

siderably across cancers, suggesting large differences in the underlying mutation

rate between individual tumours and tumour types (Lawrence et al., 2013). The

realisation that different mutational processes (a combined term for the interrelated

processes of mutagenesis and defective DNA repair), such as damage from UV light

or defective mismatch repair, each leave distinctive (e.g. non-random) patterns of

mutation across the genome has been instructive in mapping genetic mutations to

underlying biological process (Alexandrov et al., 2013). On the other hand, the role

of stochastic drift in shaping tumour evolution has largely been neglected.

The field of population genetics provides a quantitative framework with which

to study evolution (Lynch, 2007), and has proved useful in organismal evolution. It

is perhaps the area of biology that has made the most use of mathematical theories

(Queller, 2017), and for good reason given the difficulty in conducting experiments

over evolutionary timescale. Population genetics can also be applied and is well

suited to applications in the study of cancer evolution (Hu et al., 2017). Cancer

evolution suffers from the same problem as organismal evolution in that the evolu-

tionary process cannot be observed across time. It can however be inferred from ge-

netic diversity at the time of observation. Population genetics provides a principled

way to approach this problem. The cancer genomics field has now accumulated a

wealth of data (which continues apace) with which to apply these approaches. Fur-
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thermore, recent technological advances in measuring biological parameters and

the development of sophisticated experimental systems with which to track evolu-

tion provides exciting opportunities to produce quantitative measurements of cancer

evolution across space and time.

1.2.1 Classifying tumour evolution

Many studies attempt to classify the evolution of cancers into distinct modes. Fre-

quently discussed modes include neutral, punctuated, branching and linear (Davis et

al., 2017). The conventional view of cancer evolution is that it proceeds in a linear

fashion where successively fitter mutant arise and sweep to fixation, replacing less

fit lineages. Neutral evolution on the other hand is a description of what happens in

the absence of selection where all cell lineages have equal fitness and grow at the

same rate (I’ll return to this in Chapter 3). The term effectively neutral is also used,

in this paradigm subclonal variants do not contribute substantially to the clonal ar-

chitecture even if they are under selection (Sun et al., 2017). Branched evolution

describes the scenario where multiple subclones with selective growth advantages

co-occur within the tumour (Gerlinger et al., 2014). A punctuated event can be

thought of as a catastrophic event which induces a radical change in phenotype

followed by strong selection for that phenotype (Baca et al., 2013) Possible exam-

ples of punctuated events in cancer progression included chromothripsis (Korbel &

Campbell, 2013) where many rearrangements of the genome occur simultaneously

and kateagis, localised hypermutation resulting in many single base pair changes

(Nik-Zainal et al., 2012a).

Classifying cancers in this way is an illusion in many respects. A single cancer

may go through distinct periods of evolution that may be described by all these

modes. How the evolutionary process appears a single time point will depend on

how and when the tumour is sampled as well as the resolution of the assay that

is used. For example, if a tumour is sampled right after a clone has swept, then

the evolution would appear ?linear?, but sampling at a time just before the fixation

event would appear ?branched? (Figure 1.1). Furthermore, how the samples are

taken in space could also lead to the appearance of linear (if only the swept clone
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Driver Mutation (Increased �tness)

Very fit clone, quickly sweeps
Punctuated event?

Branched evolution
coesistence of 3 subclones with

different fitness Neutral evolution
New mutations confer no fitness 

advantage, lineage size deter-
mined by time of emergence

Linear evolution
successive drivers sweep 

to  fixations

Figure 1.1: This schematic shows how it’s possible that many modes of evolution may occur
during the expansion of a single tumour

is sampled), branched (if the sweeping clone and residual tumour population is

sampled) or neutral evolution (if only the clone, or residual population, is sampled)

(Figure 1.1). Spatially biased sampling and limited genetic resolution can also mean

some clones are missed and others overrepresented in the samples.

A more informative approach is perhaps to think about the contribution of the

different evolutionary forces and how these may impact the future evolutionary tra-

jectory. Specifically, this would mean measuring the mutation rate (separately for

different types of mutations), the distribution of fitness effects of these mutations

(potentially also taking into the account the current microenvironment) and elu-

cidating the relative importance of stochastic effects (e.g. the prevalence of drift).

Here we can think of the evolutionary forces and their relative contribution as inputs

into the cancer ecosystem, the output is what we ultimately observe in the clinic or

laboratory - a tumour, see Figure 1.2. Understanding the relative contribution of

these inputs and how they relate to the output is in most cases unknown. For exam-

ple, we might like to know what are the different inputs that appear to be causative

for metastasis, aggressive tumours or resistance to treatment.

This introductory chapter will discuss how genomics can be used to infer and
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quantify evolution in cancer. In particular I will focus on the concept of lineage

tracing and how this together with quantitive models provides a powerful way to

study and measure evolutionary processes. I will also briefly mention other ways

genomics can be used to infer evolution in cancer, such as with the particular proper-

ties of mutations. First of all however, I will discuss in brief the different evolution-

ary forces and their peculiarities in cancer, and what measurements may be useful

in the goal laid out in this thesis of quantifying evolutionary forces in tumours.

1.2.2 Selection

Selection from a population genetics perspective is the increase in frequency of a

particular genotype due to increased fitness. Classically this is defined as more off-

spring per capita per generation. In tumours, fitness can be intuitively understood

as the net growth rate of lineages relative to other lineages. Despite this simple

framing, from a mechanistic point of view, selection can come in many different

flavours and in cancer is likely to be variable in time and space; a genotype that

is selected for in one environment, say in a pre-malignant lesion may not have a

fitness advantage for metastasizing cells. Treatment radically changes the selective

pressures in the tumour micro-environment. This means the fitness landscape is

radically altered, this will often lead to the emergence of resistant sub-populations

whose genotype may have conveyed no differential fitness pre-treatment. The eco-

Inputs
Outputs

Maligant/benign tumour
Metastasis
Resistance to treatment

Selection
 Positive
 Negative
 DFE

Mutation
 SNV
 CNA
 Indels
 SV

Tumour evolution

Predict?

Figure 1.2: The evolutionary forces can be thought of inputs into the progression of tu-
mours. We ultimately observe different kinds of tumours that may be malignant,
metastasise and be resistant to treatment. If we can characterise the inputs
(evolutionary forces) we may be able to predict the outputs.
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logical context within which mutations arise and how it changes over time is thus

likely to be important (Scott & Marusyk, 2017). That is the fitness landscape in

cancers is almost certainly a dynamic entity.

Positive selection, when subclones within a tumour grow more rapidly than

others is perhaps the dominant mode of selection during tumour initiation. Many

of the so called hallmarks of cancer result in increased proliferation or the abil-

ity of cells to evade the homeostatic regulation of physiologically normal tissues

(Hanahan & Weinberg, 2011). Sequencing of large cohorts has revealed recurrent

mutations in certain genes suggesting large fitness effects. Other driver mutations

are rarer, perhaps due to weaker selection and cancer requiring many small effect

drivers in the absence of strong drivers. An alternative mode of selection that may

be important in cancer is negative or purifying selection whereby subclones have a

negative fitness and are more likely to be lost from the population. This may be par-

ticularly important in immunotherapies for example, where one hypothesis for their

effectiveness in some cancer types is that the increased mutational load in some

cancers result in increased presentation of neoantigens on the cell surface which

can be detected by the immune system (McGranahan et al., 2016). Thus cells with

high numbers of neoantigens may be negatively selected.

Another curious property of selection in cancer is that because tumours are

growing populations (at least for a significant proportion of their life history), the

effects of selection are reduced (Korolev et al., 2012). Thus, subclones that have

fitness advantages may never reach an appreciable frequency to effect the evolution-

ary trajectory of tumours. In this case the dominant clone is what is important for

defining the biology of the tumour as selection may not be strong enough (given the

short timescales) to allow a new subclone to replace the dominant one. Related to

this point a pertinent question is firstly what types and strength of selection are we

able to observe? And how can we measure these effects. Some further interesting

questions related to selection in cancer are what is the distribution of fitness effects

of driver mutations? How frequent are punctuated events? How does ecological

context change selection pressure and to what degree? Is negative selection strong
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enough to mould the cancer genome? The answer to these questions have thus far

remained elusive.

1.2.3 Mutation

Mutation too comes in different flavours. The typical cancer genome is modified in

radically different ways. The most straightforward to identify are point mutations,

single base pair changes that can alter the protein coding region and render it non-

functional (eg tumour suppressive mutations) or alter its function (eg oncogenic mu-

tations). Slightly bigger changes such as deletions and insertions (collectively called

indels) can induce similar effects. Larger structural variation across the genome are

also common across cancer, including whole genome doubling, chromosomal loss

or gains and translocations (Beroukhim et al., 2010). Relatively little is known

about the rates of these distinct processes. It appears likely that the point mutation

rate is elevated in somatic tissue compared to germline (Seshadri et al., 1987), but

the degree with which it is elevated is unknown. Many recent studies have shown

that distinct processes can contribute different types of base pair changes. For ex-

ample the process of ageing has a distinct mutational signature characterised by an

abundance of C > T mutations (Alexandrov et al., 2015).

Meanwhile it is unknown whether chromosomal genomic instability is contin-

uous throughout some tumours lifetime or comes in bursts. Recent analyses suggest

that genome doubling is a common feature of cancer genome evolution (∼ 30% of

cases) and is a driver of copy number instability (Bielski et al., 2018). Furthermore

some tumours are found to be hypermutated (Campbell et al., 2017) due to inac-

tivating mutations in DNA repair pathways. Measuring the mutation rates of the

different types of mutations (passengers, drivers, structural variation, copy number

alterations) and how the various kinds of genomic instability modify the baseline

rate is a current gap in our understanding. There is also some speculation that the

average fitness of cancer cells may decrease over time due to the constant accrual

of slightly deleterious mutations (McFarland et al., 2013).
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1.2.4 Neutral drift

Another important aspect is the evolutionary dynamics in the absence of selection,

ie neutral drift processes. Understanding these processes is useful as it enables

quantifying the degree of diversity we would expect to see in a tumour if all cells

have the same fitness. Furthermore neutrality provides the natural null model for

molecular evolution (Wu et al., 2016). This is important as it enables distinguishing

selection from any variation that would be expected when there is no selection.

The peculiarities of cancer growth complicate how drift is manifested in can-

cer. Given that tumours are growing populations modifications to classical models

of drift may be needed and are being developed (Chen et al., 2017b). Furthermore,

the expected frequencies of new mutations entering the population is also affected

by the growth of tumours. For example mutations that appear early during tumour

growth will be at a higher frequency that those that appear late when the population

is large. High death rates can also lead to greater variability (Bozic et al., 2016),

but the death rate of cells particularly after transformation when the tumour is small

(where drift effects are likely to dominate) is unknown. Further non-Darwinian

variability may arise from spatial phenomenon such as gene-surfing where muta-

tions acquired on the expanding front of a population rise in frequency as has been

observed in bacteria (Fusco et al., 2016; Kostadinov et al., 2016).

1.3 Measuring cancer evolution
Despite the many unknowns and challenges raised thus far, quantifying these evolu-

tionary forces is becoming a more realistic goal. Recent advances in high through-

put assays enable precise measurements of biological parameters to be made. While

sophisticated experimental systems are also being developed to interrogate evolu-

tionary forces in cancer. Taken together this provides exciting opportunities to pro-

duce quantitative measurements of cancer evolution in both model systems and in

vivo across space and time (McPherson et al., 2017). Some of these approaches will

form the bulk of the rest of this introductory chapter and motivate the approaches

taken in the remaining chapters of this thesis.
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Attempting to unravel the complexity of the genomic landscape of cancer that

has been revealed in recent years may at first appear rather daunting. Intra tumour

heterogeneity by its very nature does provide opportunities to study cancer evolu-

tion. Due to the continual acquisition of genetic abnormalities and the unavoidable

intra-tumour genetic heterogeneity as the tumour progresses, the cancer genome, or

more accurately the differences between genomes of single cells in the cancer hold

a record of its evolutionary history. Each new mutation acquired by a single cell in

a cancer will be passed on to its daughter cells. These mutations thus record ances-

tral relationships between cells, and can be thought of as scars which label different

sub-populations. In summary the genome of every cancer cell is an imperfect copy

of another cancer cell that existed some time in the past. This simple observation,

that heterogeneity emerges from cell divisions coupled with mutations therefore al-

lows for inferring the past history of a cancer, or indeed any somatic tissue. This

circumvents one of the biggest issues facing the study of cancer as an evolutionary

system; the inability to follow cancers in vivo unperturbed over time, due to clinical

necessity and ethical issues.

Broadly this type of approach - using a label of some kind, in this case mu-

tations to track populations of cell - can be called lineage tracing and comes in

many different flavours. As will be shown in this thesis, lineage tracing coupled

with theoretical models provides a powerful method with which to study evolution

and population dynamics, and is the basis of the methodological approach taken.

The concept of lineage tracing also has been used extensively in model systems,

particularly in developmental biology and stem cell biology to track the progeny of

particular cell types of interest (Blanpain & Simons, 2013).

1.3.1 Lineage tracing

Lineage tracing is a powerful method to study evolution in populations of cells.

Defining a lineage as a group of cells who all share some common ancestor, the

idea is to follow or trace these lineages over space and/or time. To apply this prin-

ciple, a label of some kind needs to be induced or acquired in a single cell which

is then passed onto all of its progeny, and thus label that lineage. In experimen-
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tal systems, these labels can be introduced artificially, using fluorescent markers or

DNA barcodes for example. Labelling of cell population with fluorescent reports

has been used in mouse models of tumour growth for example, identifying stem

cell populations in squamous skin tumours (Driessens et al., 2012) and the clonal

dynamics required for the formation of skin tumours (Sánchez-Danés et al., 2016).

Lineage tracing principles can also be applied in vivo in human tissues by using mu-

tations as naturally occurring labels. The labelling of different populations within a

tumour with mutations lie at the heart of phylogenetic principles applied to cancer

for example.

1.3.2 Naturally occurring lineage markers

An early example of using lineage tracing in the context of cancer was to study

whether tumours were of single cell origin or not. The first genetic defect that was

found to be associated with cancer progression is the so-called Philadelphia chro-

mosome. Patients suffering from chronic myeloid leukaemia were found to have

an abnormally large chromosome 21. Later studies showed that this was due to

the translocation of genetic material between chromosome 21 and chromosome 9,

resulting in a fusion gene called BCR-ABL1. This fusion gene results in the uncon-

trolled proliferation of myeloid cells. This genetic defect was found to be pervasive

throughout all malignant cells in the tumour. Furthermore it was found that it was

always the same allele that was elongated, providing strong evidence for the single

cell of origin hypothesis. Other early studies used X-chromosome inactivation as

a clonal lineage marker. In females, only one of the two X-chromosome are ge-

netically active in somatic cells, the choice of which X-chromosome is active is

random but once decided upon early during embryogenesis is fixed and passed on

to all progeny. Female somatic tissue is therefore a mosaic of cells with either the

maternal or paternal X-chromosome being genetically active. A corollary of the

single cell of origin hypothesis would be that in tumours all cells would have the

same X-chromosome active. Across tumours from multiple different tissues sites

this was indeed found to be the case (Fialkow, 1979; Fialkow, 1974).

These early studies ultimately led the foundations of what become the clonal
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evolution theory of cancer, detailed in the seminal paper by Peter Nowell in 1976

(who was the first person to observe the Philadelphia chromosome) (Nowell, 1976).

These approaches could not however, probe the evolutionary dynamics within the

tumour, as at the resolution of these approaches, all cells look the same. Molecular

biology techniques developed later, do however enable researchers to distinguish

different lineages via divergent genomic events within tumours.

1.3.3 Multi-region sequencing

These early studies looked for conserved genetic markers across space as evidence

of single cell origin, differences in the genetics across space also hold valuable

information. As I have already discussed, due to the imperfect DNA copying ma-

chinery in cells, tumour cells inevitably harbour distinct mutations that make them

genetically different from other tumour cells. A relatively simple experiment is then

to measure these differences. One pioneering study from Shibata and colleagues

did exactly this by looking at non-coding microsatellite loci in spatially distinct re-

gions within microsatellite unstable colorectal tumours. Such tumours are deficient

in their mismatch repair (MMR) machinery which results in a hypermutator phe-

notype. Using the divergence (genetic distance between samples) as a summary

statistic between these spatially distinct regions and theoretical models of cancer

growth they were able to estimate tumour ages in terms of cell divisions and the

time at which the cancers diverged from their pre-curser lesions (adenomas) (Tsao

et al., 1999; Tsao et al., 2000). To conduct their inference Tsao et al. developed

a computational model of tumour growth with micro-satellite instability and then

could compare the simulations with the observed data to infer the ages of adenomas

vs cancers. Perhaps surprisingly, the adenomas and carcinomas were found to be of

similar ages. These studies were perhaps the first so called multi-region sequencing

study.

Another study taking a similar approach demonstrated that colorectal adeno-

mas were often of polyclonal origin (Thirlwell et al., 2010). This study revealed

multiple subclones within the same adenoma harboured different mutations in the

tumour suppressor APC. Further phylogenetic analysis of a limited number of mark-
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ers implicated in the progression of colon cancers (including mutations in KRAS

and TP53 and loss of heterozygosity on chromosomes 5, 11 and 18) also showed

the coexistence of different subclones within the same adenoma.

Since these early studies, multi-region sequencing studies have become com-

mon place, particularly in the current era of next generation sequencing technolo-

gies. These technologies allow simultaneously identifying mutations across the

whole genome of the tumour with whole genome sequencing, or selectively tar-

geting a region of the genome such as with whole exome sequencing. Multi-region

sequencing consists of taking “bulk” samples containing millions of cells and se-

quencing the aggregate genome of this bulk sample. Similarities and differences in

the mutations in these bulk samples can then be used for evolutionary inferences.

Studies using multi-region sequencing often use phylogenetics to interrogate the

evolutionary relationships between samples. In recent years many phylogenetic

methods have been developed to deal with the peculiarities of cancer evolution such

as the different types of mutations (SNVs vs CNAs), hypermutability and high het-

erogeneity (Schwartz & Schäffer, 2017).

One prominent study which used this approach was Gerlinger et al., 2012, here

they used whole exome sequencing of different tumour regions to profile clear cell

renal carcinomas, finding a large degree of intra-tumour heterogeneity. Later stud-

ies from the same group using a approach showed evidence of convergent evolution

with distinct putative driver mutations in SETD2 found on different branches of the

phylogenetic tree (Gerlinger et al., 2014). Further multi region sequencing studies

have shown intra-tumour heterogeneity is pervasive across cancer types including

lung (de Bruin et al., 2014; Zhang et al., 2014), breast (Yates et al., 2015), lym-

phoma (Okosun et al., 2014), brain (Sottoriva et al., 2013a) and colon (Sottoriva

et al., 2015) amongst others.

Multi-region sequencing has proved useful in elucidating the timing that mu-

tations are acquired. For example driver mutations are often found to be truncal on

the phylogenetic tree, that is found ubiquitously across all sampled regions. This

suggests that many of the important driver events are acquired early relative to the
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time patients present with symptoms of their disease. This is particularly true in

some cancer types such as colon and lung (Sottoriva et al., 2015; Zhang et al.,

2014), while kidney cancers for example often appear to have subclonal driver mu-

tations (Gerlinger et al., 2014). Multiregion sequencing together with phylogenetic

analysis has also been useful in determining how evolution is influenced by envi-

ronmental factors (de Bruin et al., 2014) and elucidating the seeding patterns of

metastasis (El-Kebir et al., 2018; Mcpherson et al., 2016). Studies such as the

TRACERx clinical trial are currently underway to determine the effects of intra tu-

mour heterogeneity on patient prognosis using multi region sequencing assays in

multiple cancer types (Jamal-Hanjani et al., 2017).

In general however, the evolutionary dynamics that produce most of the ob-

served ITH remain uncharacterised. In particular, how to accurately construct the

phylogenetic relationships between tumours sites and how best to interpret such

data remain uncertain (Schwartz & Schäffer, 2017). Issues include sampling bias,

where samples may not be taken uniformly across the tumour mass and may be con-

fined to sub regions. This can give the illusion of longer or shorter branch lengths.

Another issue is that the typical limited sampling (4-5 samples per tumour) can re-

sult in misclassifying truncal mutations (Werner et al., 2017). Also bulk tumour

samples potentially consist of multiple subclones and therefore ideally the phyloge-

netic relationships should be constructed based on the deconvolved clonal structure

(Alves et al., 2017). Deconvolving bulk tumour samples into its respective sub-

clones remains technically challenging however (Sun et al., 2017). Typically these

methods integrate copy number changes and mutation frequencies to calculate the

cellular prevalence (or cancer cell fraction - CCF) of mutations within the tumour

and then cluster mutations with similar cellular prevalence into distinct groups. The

logic is that these are subclones within the tumour, however this may not always

be the case. Correctly inferring CCF before clustering is also challenging, in par-

ticular inferring the relative timing of a point mutation vs a copy number gain or

loss is prone to error which will result in incorrect calculation of the CCF. Some

kind of clustering methodology is typically used to group mutations into clusters, a
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popular method being Bayesian Dirichilet Process clustering (Dunson, 2009). The

accuracy of these methods particularly with low depth sequencing is uncertain as

robust benchmarking on data where the ground truth is known is lacking.

1.3.4 Single cell sequencing

Recent advances in single cell sequencing resolve some of the issues of multi-region

sequencing type studies, but introduce others. Single cell sequencing potentially

provides unparalleled resolution of tumour genetic diversity, identifying mutations

present in individual cells that would most likely be missed by conventional bulk se-

quencing. Single cell sequencing thus provides opportunities for fine grained anal-

ysis of cancer evolution. It also has the benefit that resolving the clonal structure

is not required as each cell is a pure sample by its very nature. This type of ap-

proach does however come with its own set of problems. In particular the degree of

technical noise is higher than with other sequencing approaches and issues of sam-

pling bias remain given that perhaps only a hundred cells of a tumour comprised of

billions are typically sampled.

Technical issues in single cell sequencing technology arise from the naturally

low quantity of DNA extracted from single cells meaning whole genome amplifi-

cation is generally required to generate sufficient DNA for sequencing. This addi-

tional step introduces technical artefacts such as non-uniform coverage and allele

dropout (Davis & Navin, 2016). SNVs are also difficult to accurately detect due

to the high technical error rates. This means true positives are often difficult to

distinguish from sequencing errors (which is of the order 1%) (Roth et al., 2016).

For this reason copy number profiling is generally preferred. This however is also

not without issues due to the aforementioned technical issues with whole genome

amplification. Sophisticated single cell specific algorithms have been developed for

analysing these data. Recent technical advances showed that single cell sequenc-

ing without whole genome amplification is possible (Zahn et al., 2017) and that by

pooling single cells together a “virtual” bulk could be generated which makes sin-

gle nucleotide variant calling more robust (Salehi et al., 2017). Further advances

in this area are likely to provide exquisite fine grained data with which to conduct
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evolutionary analyses.

The small number of large-scale studies using single cell sequencing have al-

ready revealed interesting aspects of the evolutionary process. Gao et al., 2016

used single cell sequencing to look at aneuploidy in triple negative breast cancer,

this technology allowed them to look at copy number alterations at very fine grained

resolution. Interestingly, copy number alterations appeared spatially and therefore

temporally stable, suggesting that large scale copy number changes are perhaps rare

events during tumour evolution.

Another interesting study that employed single cell sequencing investigated

the temporal dynamics of cancer evolution using a patient derived xenograft model

(Eirew et al., 2015). Interestingly, they found that minor clones (<5%) often come

to dominate the tumour population. Suggesting that some clones acquire large fit-

ness advantages, likely necessary to induce such large expansions.

1.3.5 Deep sequencing

An orthogonal approach to using sequencing from spatially distinct regions is to

leverage the information from deep sequencing of bulk tumour samples. This ap-

proach can be used to simultaneously measure mutations that are at different cellu-

lar proportions within the tumour. Given that bulk samples are composed of many

millions of cells, deep sequencing effectively sequences an aggregate genome of

these cells. While a particular mutation cannot be assigned to a particular cell in

the tumour or indeed the co-occurrence of mutations within the same lineage is

unknown, this approach does measure the frequency of cells with a particular mu-

tation. In other words, deep sequencing can measure the size of lineages within the

population. While copy number aberrations and low tumour purity can confound

these measurements methods exist to correct for these issues. Cancer cell fraction

(CCF) transformations are often used for this purpose. Alternatively using muta-

tions in diploid regions of the tumour provides a straightforward mapping between

lineage size and mutation frequency. Lineage size is the crucial piece of information

that is revealed by deep sequencing studies that enables the population dynamics to

be inferred. Furthermore in asexual evolution such as cancer cell populations where



38 Chapter 1. Introduction

there is no recombination, mutations hitchhike and a set of mutations at a particu-

larly frequency potentially allow identification of sub populations of cells (Fay &

Wu, 2000; Gillespie, 2000; Nik-Zainal et al., 2012b).

A useful way to summarise the information from a deep sequencing experi-

ment (of a bulk sample) is by plotting a histogram of the mutation frequencies (or

lineage sizes). This is commonly referred to as the variant allele frequency (VAF)

distribution. In population genetics this distribution is known as the “site frequency

spectrum”, and there is a considerable body of work devoted to exploiting it to

measure evolutionary dynamics (Ronen et al., 2013; Keinan & Clark, 2012). This

type of data is readily available, in particular due to large scale cancer sequencing

projects such as TCGA (the Cancer Genome Atlas) and ICGC (International Cancer

Genome Consortium) many thousands of tumours have been deep sequenced. For

this reason this type of data will be the primary focus of this thesis, a more thor-

ough discussion of this type of data and the methods associated with its analysis are

presented in Chapter 2.

1.3.6 Lineage tracing in stem cell biology

Lineage tracing has also been used in experimental systems to measure evolution

and population dynamics. The field of stem cell biology in particular has embraced

the use of experimental lineage tracing as it provides a robust way to interrogate the

stemness of different cell types. A common definition of a stem cell is a cell that

is long lived and that can give rise to multiple cell types. Following the progeny of

single (suspected) stem cell allows for identifying the different cell types that can

be derived from this labelled cell. Thus determining the potency of particular cells

as well as their potential for self-renewal. This type of approach is now deemed

the gold standard in stem cell identification (Wright, 2012). Typically, these ex-

perimental systems use cre-recombinase to induce fluorescent reporters that can be

followed over time. By targeting different cell-type specific promoters, reporters in

different sub-populations of cells can be induced and the stem-like capabilities of

these cells investigated (Blanpain & Simons, 2013). Not only do these approaches

allow for identification of stem cells, together with statistical modelling they can
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be used to investigate the population dynamics of stem cell self renewal. This has

uncovered that neutral competition of stem cells through stochastic loss and re-

placement as a universal phenomenon across tissues (Klein & Simons, 2011). This

has been demonstrated through the observation that the distribution of clone sizes

exhibits a property called “scaling” where the shape of the distribution is preserved

over time. Where the “scale” is defined by the average clone size. This scaling

property only arises in populations of equipotent stem cells undergoing stochastic

loss replacement and not alternate models such as populations of slow cycling cells

undergoing asymmetric division. That is, asymmetry of cell fate is maintained at a

population level rather than an individual cell level.

An archetypal system with which to study stem cells is the colonic crypt. The

colon is comprised of small finger like protrusions into the epithelia where cells

undergo constant turnover, so much so that the entire epithelia is replaced over

the course of a week (Vermeulen & Snippert, 2014). Numerous studies in mice

using fluorescent based lineage tracing have demonstrated that stem cells reside

in the bottom of the crypt and undergo stochastic loss and replacement with their

neighbours resulting in a neutral drift process (Ritsma et al., 2014; Lopez-Garcia et

al., 2010). This has also been demonstrated in humans using mitochondrial DNA as

a lineage marker (Baker et al., 2014). It has also been shown that genetic alterations

can disrupt the stem cell dynamics. Using genetically engineered mice, Vermeulen

et al., 2013 quantified the selective advantage of mutations introduced into stem

cells and found mutant KRAS and APC stem cells had between a 2-4 increased

probability of fixation in mouse intestinal crypts over what would be expected from

a neutral process. This process is thought to be the first step in the progression

of cancer in the colon. With this in mind, in the final chapter of this thesis I use

sequencing of individual crypts in an attempt to quantify stem cell dynamics in

humans using naturally occurring single nucleotide changes as labels to track the

dynamics.
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1.3.7 High throughput experimental lineage tracing

A major issue with experimental lineage tracing that rely on fluorescent reporters

for studying these processes is that they suffer from a lack of resolution, a limited

number of lineages can be followed at any one time. To circumvent such issues, high

throughput lineage tracing protocols have been developed via the use of multiplexed

genomic barcodes. These barcodes can be inserted via viral transfection into the

genomes of single cells and provide a unique tag for each cell. Many millions of

clones can be traced simultaneously with this approach via sequencing pools of

barcoded cells (Bhang et al., 2015). Barcode libraries are constructed such that

each transfected cell caries a unique label which can be used to measure its size.

Just as normal somatic mutations and deep sequencing of tumour cells measures

the size of lineages within a tumour, deep sequencing of a pool of barcoded cells

will also measure the lineage size. However as only a few base pairs of the genome

is needed to be sequenced (the barcodes), high depth coverage of the barcode is

employed which results in very high resolution tracking of individual lineages.

Levy et al., 2015 used this approach to measure lineage sizes in serial pas-

sages of yeast cells. Using this data, together with theoretical population genetics

they were able to quantify the time fitter lineages emerged and the distribution of

fitness effects. This was done by identifying lineages that increased in size faster

than could be expected from stochastic neutral drift. Similar experimental strategies

have recently been applied to cancer model systems. For example the fitness of 11

tumour suppressor pathways was measured using CRISPR-Cas9 genome editing to

introduce mutations followed by barcoding to measure tumour size in mouse mod-

els of human cancer (Rogers et al., 2017). Using this approach, Rogers et al. found

that mutations in SETD2 and LKB1 had the largest fitness effect and resulted in the

largest tumours. More complex experimental strategies are likely to provide further

insight, for example barcoding potentially allows for tracking the size of competing

lineages over time, which could be used to measure the relative fitness of subclones.

Quantitative theoretical approaches are also likely to be key to leveraging the power

of these experiments, just as the VAF distribution reported by traditional sequenc-
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ing approaches can be used to infer the population level dynamics, the lineage size

distribution from barcoding experiments can be similarly insightful. Indeed this ap-

proach was recently used by Lan et al., 2017 in barcoded glioblastoma models in

mice. They showed that intra-tumour heterogeneity in glioblastoma could be ex-

plained by stochastic fate of cells in a stem cell hierarchy, while treatment resistant

clones could be identified via deviations from this model.

1.4 Mutational identity and measuring evolution
The previous section discussed how the concept of lineage tracing can be used to

trace and map evolution through space and time, for these purposes mutations are

merely labels which track lineages. Mutations themselves can also elucidate aspects

of evolutionary processes in cancer.

1.4.1 Driver mutations

This type of approach is perhaps best exemplified by large cancer sequencing stud-

ies such as the Cancer Genome Atlas (TCGA) and the International Cancer Genome

Consortium (ICGC). The focus with these projects was that recurrent so called

driver mutations could be identified by sequencing large cohorts of cancers. Driver

mutations are those mutations which are thought to drive the progression of the

disease. There is great interest in identifying these alterations as they provide tar-

gets for the development of therapies, and for stratifying patients based on their

mutational profile. From an evolutionary perspective mutations that are frequently

mutated can be seen as evidence of convergent evolution. Such mutations may

have therefore have strong fitness effects on cells. Unfortunately these studies have

demonstrated that there are very few highly recurrent mutations and a long tail of

rare driver mutations. For example only a handful of mutations are found at appre-

ciable frequencies across all cancer types, Kandoth et al., 2013 for example only

found mutations in TP53 and PIK3CA to be above 10% across cancer types. By

looking at the occurrence of mutations across specific cancer types the results are

improved, for example mutations in APC are found in 80% if colorectal cancers

and VHL in 50% of renal carcinomas. Overall however these results demonstrated
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a large degree of heterogeneity in cancer drivers. Furthermore little is known about

epistatic interactions and how multiple driver mutations affect the fitness of cells.

Classifying mutations as drivers is also problematic and poses many chal-

lenges. For example merely looking at the frequency of hits across large cohorts

neglects important cofounders, such as the size of genes. The genomic context

of certain genes is also important, chromatin structure for example and in particular

regions of open chromatin have been shown to have higher mutation rates (Schuster-

Böckler & Lehner, 2012). Genes with high expression also tend to have more muta-

tions. Methods such as MutSigCV have therefore been developed to correct for the

variability of mutation rates across the genome and across tissues (Lawrence et al.,

2013). Such methods apply corrections based on the whole cohort and so variability

at a patient level may be masked.

Genomic changes other than point mutations also undoubtedly drive the pro-

gression of the disease. Indeed, the first driver mutation to be identified was

the BCR-ABL translocation in chronic myeloid leukaemia (Sandberg & Hossfeld,

1970). In general however, identifying structural variation that drives the disease

is even more technically challenging because many cancers display genomic in-

stability. Distinguishing changes that may modify fitness from mutations arising

from genomic instability is challenging. One class of structural variation that has

sound biological significance is loss of heterozygosity (LOH), coupled with point

mutations in tumour suppressors. For example LOH in chromosome 5 is commonly

observed in colon cancer coupled with a mutation in the APC gene. APC is a tumour

suppressor gene commonly found inactivated in colon cancer. One common route to

inactivation appears to be a mutation in one allele followed by LOH which removes

the remaining functional allele (Pino & Chung, 2010). Genome doubling is another

structural change commonly observed, it is thought that genome doubling enables

cells to tolerate genomic instability rather than providing a differential fitness effect

in of itself.
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1.4.2 Mutational signatures

Another aspect that has also become prominent in recent years is the context in

which mutations arise, both their environmental context and genomic context. In

a seminal study Alexandrov et al., 2013 found that mutations occurring in specific

mutational contexts could be assigned to different signatures. Some of these signa-

tures were found across cancer types and are likely age related where as others were

found to be cancer specific. Examples include tobacco specific mutational signa-

tures found in lung cancers (Alexandrov et al., 2016) or mutations due to defects in

DNA repair pathways. For example C > A mutations particularly when flanked by

a C and A base (ie CCA > CAA) is enriched in tobacco smoker. Other signatures

exhibit clock like properties (Alexandrov et al., 2015) making them ideal for the use

in evolutionary inferences. Many signatures remain of unknown biological origin

however, suggesting the presence of as yet unknown mutagens.

Mutational signatures potentially provide a window into past exposures which

may be useful for designing preventative strategies. There is also potential to shed

light on the relative contribution of mutation vs selection. Certain mutational pro-

cesses may predispose people to certain driver mutations. While other driver mu-

tations may be less likely but have higher fitness. Indeed, a mathematical treatise

of this kind of analysis showed that BRAF v600E a common driver in many cancer

types is unlikely to occur compared to other mutations but is highly selected (Temko

et al., 2018).

1.4.3 dN/dS

dN/dS is an alternate method that can be used to infer selection. Originally de-

veloped for comparative genomics in species evolution, dN/dS quantifies if there

are more protein changing mutations than would be expected by chance. This is

achieved by looking at the ratio of normalized non-synonymous mutations to syn-

onymous mutations, where synonymous mutations are assumed to be neutral and

thus provide a baseline rate. A ratio of 1 is expected if all mutations were neu-

tral, and ratios of <1 and >1 if there are abundance of negatively or positively
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selected variants. In organismal population genetics a dN/dS <1 is typically ob-

served, meaning the dominant form of selection observed at the genomic coding

level is negative or purifying selection. Interestingly, in cancer many studies report

dN/dS close to 1 (Martincorena et al., 2017; Wu et al., 2016), suggesting the ab-

sence of negative selection and that most mutations are neutral. Robustly measuring

dN/dS in cancer genomes however is challenging, mutations in cancer genomes ex-

hibit strong context dependence exemplified by mutational signatures which needs

to be corrected for as does other confounders such as chromatin accessibility and

transcription factor rates which are known to influence mutations rates. Two re-

cent studies, Martincorena et al., 2017 and Weghorn & Sunyaev, 2017 attempt to

account many of these confounding factors. Both studies showed strong selection

for many common driver mutations. Negative selection on the other hand appeared

much harder to observe. However one factor that has received little attention is how

population dynamics effects evolutionary inferences gained from dN/dS, and in

particular how and when dN/dS could be used in inferring selection within growing

tumours. In classical dN/dS, only mutations that are fixed within lineages are used

to measure selection pressures. In cancer however many mutations are subclonal

and intra tumour heterogeneity is widespread which may confound these measure-

ments. In Chapter 5 I explore some of these issues using a population genetics

based theory together with dN/dS. This enables a mapping between the selection

coefficient and dN/dS which has thus far been lacking in the application of dN/dS

in cancer.

1.5 What is a clone?

Since the clonal evolution model of cancer has gained traction Nowell, 1976, talk

of clones has become widespread, unfortunately many different meanings are used.

As the concept of a clone will be used heavily throughout this thesis and to avoid

any confusion I will spend a brief moment discussing how I will define a clone in

the context of cancer evolution throughout.

The Oxford Dictionary provides the following definition of a clone as is used
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in Biology “An organism or cell, or group of organisms or cells, produced asex-

ually from one ancestor or stock, to which they are genetically identical”. While

it is true that cancer cells produce asexually and are from a single ancestor, they

are far from being genetically identical. As already discussed cancers are very di-

verse populations of cells, potentially every cell is genetically distinct (Wang et al.,

2014b), so using this definition is not particularly useful. Such a definition would

result in a situation where there are millions of clones in a tumour. Perhaps a more

useful definition, and the one that I will employ here is that a clone is a group of

cells that share some phenotypic trait that make them functionally distinct from all

the other cells in the tumour but can also be labelled a clone via some shared genetic

alterations. As this thesis takes a population genetics perspective to the evolution

in cancer, this phenotypic trait should have some effect on the population dynam-

ics such as a higher birth or death rate or on increased mutation rate. I will not

in general attempt to infer or describe the mechanisms that may alter the popula-

tion dynamics of a clone, but simply talk about its effects on the overall population

dynamics. For example a cell in a cancer may acquire some phenotypic trait that

changes its metabolism meaning it can grow faster, from a population genetic per-

spective this clone can then be defined by an increased birth rate without regard to

what caused the increased birth rate. This is the approach I will take. I will also

commonly employ the term subclone to refer to clones that occupy a subfraction

of the tumour. For example, if we are looking at a sample of cancer cells, they

will all have a common ancestor some time in the past, any functionally distinct

cell that initiates a clonal expansions I will then refer to as a subclone of the an-

cestral clone. With these definitions in mind, Chapter 3 investigates the population

dynamics when there is only a single initiating clone, while Chapter 4 looks at the

dynamics when subclones arise within this ancestral clone.

One final additional comment is that sometimes it will be useful to refer to a

cells ancestry in terms of its relationship to other cells, particularly according to

what mutations they share. Rather than use the term clone here, I will use lineage,

any 2 cells that share some genetic alteration are part of the same lineage. Cells can
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be part of multiple lineages but only one clone. Cancers therefore will have millions

of lineages but a limited number of (sub)clones.

I will attempt to keep to the above definition throughout the thesis, however

in keeping with the literature I will sometimes refer to the clone size distribution in

Chapter 6.

1.6 Summary of thesis
In this introductory chapter I have discussed approaches to measure evolution and

population dynamics with a particular emphasis on how genomics and theoretical

models can be used for this. I will use deep sequencing of tissue samples as a read-

out of lineage size and by combining this data with theoretical models inspired from

population dynamics and stochastic processes will show how these measurements

encode the evolutionary history cancers. The next chapter will discuss in more de-

tail some of the methodological and technical approaches used for these purposes.



Chapter 2

Technical background and methods

The previous chapter laid the foundations and motivations of this thesis, which is

principally concerned with deciphering patterns of evolution and population dy-

namics in human cancers and somatic tissues. This chapter discusses some of the

technical background and the methods used. To begin, I will discuss how high

throughput-sequencing data is generated and analysed, and the challenges involved

with the analysis. I will also discuss how this data can be effectively summarised

and used for evolutionary analyses. Then I will discuss mathematical and computa-

tional methods that can be used to simulate evolutionary processes, and how these

have been applied to cancer. The final part of the chapter will discuss how methods

from Bayesian statistics can be used to integrate data with mathematical models and

together, can be used to extract mechanistic insight into the underlying evolutionary

processes that drive evolution in cancer.

2.1 Bioinformatics
In this section I will discuss the methods used to identify somatic changes in cancer

genomes, small changes such as single nucleotide variants (SNVs) and insertions

and deletions (indels) and larger structural variants. The data used in this thesis is

primarily deep sequencing of bulk tumour samples, where a piece of tumour tissue

is taken from the cancer, DNA is extracted and then fragmented into short reads for

next generation sequencing. By comparing sequencing data from the tumour with

a matched control sample from the same patient (either blood or physiologically
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normal tissue) it is possible to identify somatic mutations present exclusively in the

tumour sample, Figure 2.1 shows a screenshot from the integrated genome viewer

(IGV) which is used to visualise this type of data (Robinson et al., 2011). Here the

grey bars are sequencing reads and it can be seen that in a proportion of these reads,

one base has been mutated from a C to a G when compared to the reference. The

main methodological challenge in analysing this type of data is confidently identify-

ing these changes, and distinguishing them from sequencing errors, mapping errors

and germline polymorphisms.

Figure 2.1: Screenshot from the integrated genomic viewer of a suspected mutation in a
lung cancer sample. In a proportion of the reads (grey bars) the reference base
C has been mutated to a G.
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2.1.1 Sequencing preprocessing steps

The sequence data comes in the form of a fastq file which contains the sequences

for each read with associated quality scores for each base in the read. The first step

is to map these reads to the reference human genome (human genome reference 19

was used throughout unless stated otherwise) and produce a binary alignment map

file (BAM), the Burrows Wheeler Aligner (BWA) was used throughout for this pur-

pose and is one of the most popular tools for this step (Li, 2013). This produces

a sequence alignment map (SAM) file that contains the sequence reads and asso-

ciated genomic coordinates for each of the reads, as well as quality scores for the

mapping. With this SAM file, we then need to sort the file and convert it to a binary

representation, SAM files can be very large, so this compression reduces the file

size, this binary compressed SAM is called a BAM file. During library preparation,

it is often necessary to perform some amplification of the fragmented DNA so that

there is sufficient DNA for sequencing. This PCR based amplification step can lead

by chance, to the same DNA molecule being sequenced multiple times, as these

duplicate reads are generated during the library preparation step and are hence tech-

nical artefacts, these duplicate reads are removed. I used the Picard MarkDuplicates

tool for this purpose (Van der Auwera et al., 2013). The amount of duplicate reads

depends on the complexity (ie the information entropy) of the pre-amplified DNA

pool, starting with small amounts of DNA often results in higher amount of dupli-

cate reads. Following this duplicate marking the BAM file is then ready to be used

for somatic mutation calling. A summary of this pipeline is shown in Figure 2.2.

2.1.2 Somatic variant calling

Having processed the sequencing data via the steps described above, the next task

is identify somatic changes that are exclusive to the tumour. This is technically

challenging for numerous reasons. To illustrate the challenges it is instructive to

compare this to the similar problem of identifying germline polymorphisms from

high throughput sequencing data. In this case, a number of assumptions can be

made which makes distinguishing true mutations from sequencing noise easier.
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Input: Fastq files
Task : Map reads to 
reference with BWA
Output: Sequence 
Alignment Map (SAM) file

Input: SAM file
Task : Sort SAM file and 
convert to binary
Output: Binary 
Alignment Map (BAM) file

Input: BAM file
Task : Mark duplicates with 
picard
Output: BAM file

Input: BAM file
Task : Identify somatic 
mutations using variant 
caller
Output: Variant call format 
(VCF) file

Input: BAM file
Task :Identify somatic copy 
number changes
Output: Copy number 
segmentation

Figure 2.2: Overview of sequencing analysis pipeline

Due to humans having diploid chromosomes, heterozygous mutations would be

expected to have variant allele frequency 50% and homozygous mutations variant

allele frequency 100%. Mutations at low frequency can therefore be discounted as

sequencing noise, this is not so in the discovery of somatic mutations in cancer for

3 principal reasons. i) Genetic heterogeneity in cancer means that mutations that

are present in a small proportion of cells means there exist bone fide true mutations

with low read counts, ii) Copy number alterations results in frequency of mutations

being distorted and iii) tumour samples are rarely pure tumour tissue and will con-

tain stromal tissue as well as immune cells that can distort naive expectations of the

frequency of mutations.

Numerous tools have been developed to overcome these issues to confi-

dently identify somatic mutations in cancer samples. Among the most popular are

Varscan2 (Koboldt et al., 2012) and Mutect (Cibulskis et al., 2013). Mutect was

the primary tool used in this thesis, due to it being designed specifically to identify

low allelic frequency mutations with high confidence. Furthermore many indepen-

dent tests have consistently shown Mutect to be among the best performing somatic

variant caller in terms of sensitivity and specificity, and it can be considered the cur-

rent gold standard in terms of variant calling (Wang et al., 2013; Kim et al., 2014;

Goode et al., 2013; Griffith et al., 2015). Varscan 2 was used for variant calling of a

whole genome gastric cancer dataset in chapter 3.This was due to the BAM files ob-

tained from the original study being incompatible with Mutect. Mutect requires the
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sequencing reads to be processed in a specific manner to comply with the Genome

Analysis Toolkit best practices developed by the Broad institute, unfortunately this

was not the case for this data set. Varscan 2 uses a Fisher’s Exact Test to compare

candidate variants in the tumour and normal control sample while Mutect uses a

Bayesian classifier to identify variants. Both these tools are capable of identifying

small insertions or deletions as well as single nucleotide variants.

2.1.3 Somatic copy number calling

Acquisition of single nucleotide variants and indels is only one aspect of the genetic

changes observed in cancer. Another equally important observation is that cancers

often have larger structural changes in their genomes. Copies of whole chromo-

somes are often observed to have been lost or gained (Beroukhim et al., 2010), and

even doubling of the whole genome is thought to be common in some cancer types

(Carter et al., 2012). A common approach to detect these is to use SNP arrays,

where DNA molecules hybridise to probes for common human polymorphisms and

induce a fluorescent signal. The strength of the fluorescence between normal sam-

ples and tumour samples can be used to detect gains or losses of genetic material,

while comparing the strength of signal of polymorphisms at the same locus can be

used to determine which of the alleles has been lost or gained.

Recently, studies have moved away from SNP arrays to use next generation se-

quencing directly. Similar principles can be applied to this type of data, where the

difference in coverage between normal and tumour samples can help identify losses

or gains and utilising the frequency of germline SNPs reported by NGS at different

loci can help identify which of the alleles has been gained or lost. As in the case

of identifying SNVs, contamination from normal tissue can make this challenging,

as can the sparsity of coverage in targeted assays such as whole exome sequenc-

ing. One tool that attempts to circumvent these issues is Sequenza. Sequenza uses a

Bayesian hierarchical model to simultaneously estimate allele specific copy number

and tumour sample purity, from either whole exome sequencing or whole genome

sequencing (Favero et al., 2015). This method shows high concordance with results

from SNP array assays, and was used to analyse data in all results chapters. Fig-
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ure 2.3 shows the copy number profile of two gastric cancer samples showing the

depth of coverage (logR ratio) and SNP frequencies (B-Allele Frequencies). The

top panel shows a cancer with a highly aberrant genome with multiple copy number

alterations across different chromosome, while the bottom shows a relatively stable

cancer with the only observable change a gain on chromosome 8.

2.1.4 Summarising high throughput sequencing data

The above methods and tools will generate mutation calls (both point mutations and

structural changes) across the whole genome or exome depending on the sequencing

strategy. To make use of this data for population or evolutionary dynamic purposes

requires summarising this data in some way. Fortunately this is quite straightfor-

ward as it is possible to leverage the information on the size of mutational lineages

that is naturally reported in deep sequencing assays to produce a summary of the

size of cell lineages in a population.

In a deep sequencing experiment each mutation found by the variant calling

algorithm will have an associated variant allele frequency, VAF:

VAFi =
Ni

NT
(2.1)

Where Ni is the number of reads with a mutation (ie a C>T) at a particular locus i

and NT is the total number of reads at that locus. If we think of mutations as labels

of cell lineages, then the VAF of a mutation is related to the number of cells carry-

ing the label in the population of cells that were sequenced, ie the lineage size. For

example, in a diploid genome the lineage size is simply 2 times the VAF of a muta-

tion. Copy number changes and low purity can however make inferring the correct

lineage size from the VAF of a mutation cumbersome. In particular, if a region of

the genome is amplified inferring the true lineage size from the VAF requires know-

ing if the mutation occurred before or after the amplification which in general will

be unknown. These transformed VAFs which measure the lineage size are normally

referred to in the literature as as the cancer cell fraction (CCF). Due to issues with

making this transformation, for the most part I relied on using mutations that fell in
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Figure 2.4: Histogram of variant allele frequencies

diploid regions of the genome where the relationship between VAF and lineage size

is straightforward. Having acquired point mutations and their corresponding VAFs

from a cancer, a useful way to summarise the data is to generate a histogram of the

frequencies, that is count the number of mutations at a particular frequency. This

is equivalent to the site frequency spectrum in population genetics. An example of

this from a whole genome sequenced gastric cancer is shown in Figure 2.4. As will

become apparent over the remainder of this thesis this distribution holds a surpris-

ingly large amount of information on the population dynamics of the population

of cells under question. This information can be unravelled by using mathematical

models of what this distribution would be expected to look like under different cir-

cumstances. In the next section I will discuss approaches to model evolution and

how they have been applied to cancer.

2.2 Modelling tumour evolution
The analysis of high-throughput genomics in cancer has predominantly relied on

statistical methods to extract meaningful insight. This has proved fruitful in many

areas, for example such studies have revealed the complexity of cancer genomes

(Vogelstein et al., 2013), studies of large cohorts has enabled the identification of

driver mutations across many cancer types (Lawrence et al., 2014), and statistical

algorithms have elucidated that cancers often contain complex clonal architectures
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(Nik-Zainal et al., 2012a; Roth et al., 2014). Despite its success, this type of ap-

proach fails to provide mechanistic insight into how and why these changes occur.

For example some clinically relevant questions that were touched upon in the pre-

vious chapter might be i) how does a cancer genome change over time? ii) what is

the mutation rate in cancers? iii) at what rate do subclones evolve? iv) do any of the

above correlate with patient survival? Given that the data available is often a sample

from a single time point. a purely statistical model is insufficient to answer these

kind of questions and rather requires integration of the data with some (dynamical)

model.

The use of mathematical modelling has a long history in cancer research. Early

examples include the multistage theory of cancer progression that attempted to ex-

plain cancer age incidence curves through the use of mathematical models of cancer

progression (Armitage & Doll, 1957; Knudson, 1971). These models suggested that

a number of hits was necessary for a somatic cell in the body to initiate a cancer.

The use of mathematical modelling has become more popular in recent years

with the advent of high-throughput data technologies and the drive to understand

cancer as an evolutionary process (Altrock et al., 2015; Beerenwinkel et al., 2015).

Taken together this has opened up the door for cancer researchers to use population

genetics theory, a mathematical theory of evolution which models the evolution-

ary process in terms of changes in gene frequencies (Ewens, 2012), which has in

turn led to this type of analyses becoming common place in many cancer genomic

studies (Schwartz & Schäffer, 2017).

The simplest population genetic model is the Wright-Fisher model, in this

model generations are discrete, the population size stays constant and is well-mixed.

New generations are constructed by sampling from the previous one based on some

offspring probability distribution. In the absence of selection this process explains

the change in gene frequencies purely due to neutral drift, and quantities of inter-

est such as fixation times and probabilities of extinction are readily calculable. A

similar model is the Moran model, but rather than being discrete, generations are

overlapping so that at each time point a random cell is chosen to give birth and a
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random cell dies. The Wright-Fisher process has been applied to cancer evolution

with extensions to include mutation, selection and multiple cell types (S Datta et

al., 2013). Beerenwinkel et al., 2007 for example used a Wright-Fisher model to

estimate the waiting time to cancer using genetic data from colorectal cancers.

For modelling growing populations, stochastic branching processes have com-

monly been employed. In these types of models, individuals give birth or die ac-

cording to some rates, if the birth rate is greater than the death rate then the pop-

ulation will grow exponentially. Extensions to this simple model can be made to

include mutations (Griffiths & Pakes, 1988; Champagnat et al., 2012) or multi-

ple types where differential fitness can be modelled via different birth and death

rates (Antal & Krapivsky, 2011). Some applications of these types of models in

the context of cancer include modelling the emergence of resistance (Iwasa et al.,

2006), the speed of selective sweeps (Durrett & Schweinsberg, 2004), the expected

degree of heterogeneity (Durrett et al., 2011) and the shape of genealogies in an

expanding cancer cell population (Durrett et al., 2015). Bozic et al., 2010 used a

branching process model with genetic data to estimate the selection coefficient, es-

timating a small selection coefficient of the order 0.004 per driver. This model was

also used to assess the relative numbers of driver mutations to passenger mutations.

These types of models that use branching processes are closely related to the Luria-

Delbrück distribution, originally used to demonstrate that resistance to a particular

bacterial phage in bacterial colonies was pre-existing in the population rather than

in response to the introduction of the phage (Luria & Delbrück, 1943). The Luria-

Delbrück distribution describes mutation accumulation in growing populations, it

has received considerable attention from mathematicians since it was originally de-

veloped (Zheng, 1999). I will use some of these developments and extensions of

the original Luria-Delbrück model in Chapter 5.

Often more complex models are desired where no analytical solution is avail-

able. For example one might want to include spatial effects such as migration

of the cell population (Waclaw et al., 2015), the effects of the tumour micro-

environment (Anderson et al., 2006) or a hierarchical organisation of the tumour
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tissue (Poleszczuk & Enderling, 2014). In these cases where no analytical solution

is available, it is necessary to simulate the evolutionary process. Simulation also

allows recapitulating some of the experimental details or noise in the experimental

setup, which can be important when wanting to make inferences from the model

using data (Sottoriva et al., 2015; Sottoriva et al., 2017; Sievers et al., 2016). The

challenge then is how best to efficiently and accurately simulate such models. Many

simulation based approaches to cancer modelling use one of the above approaches

as a basis to model the birth and death of cells but add additional complexity de-

pending on the question. For example the underlying process maybe a branching

process with birth and death rates but the process evolves on a lattice to include

spatial effects.

In Chapters 3, 4 and 5 I took this type of approach and use branching type pro-

cesses to model the expansion of a tumour but increased the complexity by includ-

ing mutation accumulation, differential fitness and elements of the data generation

procedure. In Chapter 3 I use a discrete generation branching processes where birth

and death were specified by an offspring probability distribution. In Chapter 4 due

to the need to have multiple types and have more flexibility in expressing fitness

values a continuous time branching process is used. In the case of a discrete time

model as used in Chapter 2, simulation is straightforward as all that is required is

drawing random numbers according to the specified offspring probability distribu-

tion for each cell at each generation.

In the case of a continuous time branching process, the simulation method

needs more careful consideration. Broadly, methods to simulate these type of pro-

cesses where events are governed by rate parameters are called Kinetic Monte Carlo

methods. Of these methods, the most common approach is known as the Gillespie

algorithm (Gillespie, 1977), which is a rejection-free Kinetic Monte Carlo. Alter-

natively one can use rejection Kinetic Monte Carlo methods (Schulze, 2008). In the

context of a birth-death process with birth rate b and death rate d, the two algorithms

are described in Algorithms 1 and 2.

Often the rejection-free KMC is preferred as there are no redundant time steps
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Algorithm 1: Rejection kinetic monte carlo
input : birth and death rates b, d
output: Population size after time t

start with one individual, N = 1;
set r0 such that it is ≥ b+d ;

while t < tend do
randomly sample an individual ;
individual gives birth with probability b/r0, dies with probability d/r0;
get uniform random number u′ ∈ (0,1] ;
update time t = t +∆t, where ∆t = (Nr0)

−1 log(1/u′)

Algorithm 2: Rejection-free kinetic monte carlo (Gillespie)
input : birth and death rates b, d
output: Population size after time t

start with one individual, N = 1;
rates qn are birth and death rates b, d;

while t < tend do
calculate sum Q and partial sum Qn of rates Q = ∑

N
n=1 qn ;

get uniform random number r ∈ (0,Q] ;
find event n that satisfies Qn−1 ≤ r < Qn ;
select event n ;
choose random cell which undergoes event n ;
get uniform random number u′ ∈ (0,1] ;
update time t = t +∆t, where ∆t = Q−1 log(1/u′)

where no event occurs. In some applications however the rejection KMC method

is more computationally efficient. This can be the case if the rejection rate is low

in which case the rejection KMC avoids the (relatively) costly searching and sum-

mation steps in the rejection-free KMC. Simulating a basic birth-death process, I

found the rejection KMC to be approximately twice as fast, see Figure 2.5A. To

confirm the accuracy of the simulation method it is possible to derive the exact so-

lution of the probability distribution. Given the probability of any cell giving birth

in the interval (t, t +δ t) as bδ t, and the probability of dying is dδ t the differential
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difference equation for the birth-death process is as follows:

d p0(t)
dt

= d p1(t)

d pn(t)
dt

= b(n−1)pn−1(t)− (b+d)npn(t)+b(n+1)pn+1(t) , (n≥ 1)
(2.2)

The solution to this equation can be found in Bailey, 1964:

p0 = α

pn = (1−α)(1−β )β n−1 , (n≥ 1)
(2.3)

where

α =
d(e(b−d)t−1)
be(b−d)t−d

β =
b(e(b−d)t−1)
be(b−d)t−d

(2.4)

Figure 2.5B shows the result of 1000 simulations together with the theoretical ex-

pectation from equation (2.3) showing that the simulation and theoretical expecta-

tion are in good agreement.
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Figure 2.5: Left plot shows the distribution of simulation times for the Gillespie algorithm
and the rejection KMC algorithm. On average the rejection KMC algorithm
was found to be approximately twice as fast. Simulation parameters were b =
log(2), d = log(2)/2 and distributions shows the results for 100 simulations.
Right hand side show that the probability distribution described by equation
(2.3) agrees well with the simulation
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2.3 Statistical inference

As should already be apparent from Section 2.1, the type of data this thesis is prin-

cipally concerned with can appear very complex. High throughput sequencing of

tumour samples shows cancer genomes have mutations in varying proportions, with

large regions of the genome potentially lost or amplified. On top of this complexity

the data suffers from additional sources of noise such as contamination from normal

tissue and lack of resolution due to limited read depth. Furthermore as discussed

above, due to the complexity of the mechanistic models needed to describe these

kind of data, there is often no analytical solution available and they can only be

simulated. To be able to correctly infer the parameters from a model we need some

way to integrate data and a model. Fortunately, Bayesian statistics provides an an-

swer, in particular Approximate Bayesian Computation (ABC) methods allow the

full power of Bayesian statistics to be applied to simulation based models. We’ll

first discuss some preliminaries of Bayesian statistics, before introducing the basic

ABC algorithm and some of its extensions that were used later in this thesis.

2.3.1 Bayesian inference

Statistical inference is the process by which we can make quantitive conclusions

from data. For example we might want to draw some generalisable conclusions

from some sample of a population, or quantify how well some data we have col-

lected fits a particular scientific model. Statistical inference comes in two principal

flavours, Bayesian and frequentist. From a philosophical point of view, these two

approaches differ in their interpretation of probability, to a Bayesian, probability

is interpreted as a quantification of uncertainty. Frequentist inference on the other

hand, interprets probability strictly as the frequency of an event over a large num-

ber of trials, assuming that the frequency will converge to the true probability as

the number of trials increases. In practice these philosophical differences mean that

frequentists treat the parameter of interest as fixed and the data as varying, while a

Bayesian treats the data as fixed and parameters as random variables and attempts

to quantify the uncertainty in parameter values based on the data. There are many
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arguments for using one approach over the other which I will not go into, but I

will briefly discuss the merits of Bayesian statistics for analysing large complex

datasets, and the algorithms that have been developed over the last 20-30 years that

have made Bayesian inference a popular choice for many applications.

The quantity of interest in Bayesian methods is the posterior distribution,

p(θ |D) which quantifies the uncertainty in the inference of a particular parame-

ter or parameter set θ , given the data D. The posterior distribution is obtained by

combining any prior beliefs we may have about a particular parameter with how

well that parameter value explains the observed data. This is formally expressed via

Bayes rule:

p(θ |D) =
p(D|θ)p(θ)

p(D)
(2.5)

where θ is a vector of parameters for our model, p(θ) is the prior distribution, ie

our prior beliefs on θ , and p(D|θ) is the likelihood function. p(D) is the model

evidence or marginal likelihood. With the likelihood and prior distribution speci-

fied, any question can then be answered by constructing the posterior distribution,

p(θ |D). The simplicity in going from assumptions to conclusion makes Bayesian

inference an attractive methodology. For example a Bayesian probability interval

has the common sense interpretation of having a high probability of containing the

true parameter of interest, while a frequentist confidence interval should be inter-

preted in terms of repeated sampling, a 95% confidence interval means that 95% of

repeated sampling steps should contain the true value (Gelman et al., 2014).

Despite this apparent simplicity and ease of interpretation two challenges re-

main. First how best to choose the prior distribution, and second calculating the

posterior distribution via equation (2.5) often involves high dimensional integrals

and in most cases can only be solved numerically. In the past 30 years these prob-

lems have been overcome with the development of Markov Chain Monte Carlo

(MCMC) algorithms to sample from the posterior and the trend to use uninforma-

tive priors, which make Bayesian inference less subjective (Hastie et al., 2016), a

common criticism from frequentist schools of thought.

MCMC algorithms work by constructing a Markov Chain whose equilibrium
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distribution is the probability distribution of interest. Sampling from the equilib-

rium distribution (usually via a random walk) is then equivalent to sampling from

the probability distribution. One of the earliest and most widely used algorithms

that implements this is the Metropolis-Hastings algorithm (Metropolis et al., 1953;

Hastings, 1970). This algorithm contains two steps, a proposal step and a rejection

step. The proposal step perturbs the current state, while the rejection step rejects any

proposals that stray too far from regions of high probability. Although adequate for

many applications, these type of random walk Metropolis algorithms tend to scale

poorly for high dimensional probability distributions. Recently, to overcome this

problem of inefficient sampling, Hamiltonian Monte Carlo (HMC) methods have

become popular and are implemented in probabilistic programming tools such as

Stan (Carpenter et al., 2017). These algorithms construct a guided random walk by

exploiting information on the geometry of the probability distribution so that pro-

posals are made that follow contours of regions of high probability mass. This is

done by calculating the gradient of the field defined by the probability distribution,

and using formulations from classical physics known as Hamiltonian dynamics to

explore the probability distribution efficiently (Betancourt, 2017; Mackay, 2016).

Being able to efficiently calculate posterior distributions for complex hierarchical

probability models is one of the principal reasons Bayesian inference has gained

considerable in interest in an age where large datasets are commonplace, and many

parameters are required. In Chapter 4 I used MCMC to infer the degree of overdis-

persion our sequencing data by modelling it as a Beta-Binomial process. I also used

MCMC in Chapter 4 to implement Dirichilet process clustering, a popular cluster-

ing approach used to cluster mutation frequencies and uncover the clonal structure

of tumours (Roth et al., 2014; Nik-Zainal et al., 2012b).

2.3.2 Approximate Bayesian Computation

Despite its wide applicability, Bayesian inference using MCMC algorithms is not

suitable for all problems. For complex models involving multiple parameters or

based on a simulation, analytical forms for the likelihood are intractable or unavail-

able, such models can however often be simulated efficiently on a computer. A class
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of methods called Approximate Bayesian Computation (ABC) has been developed

to tackle this problem where calculation of the likelihood is not available. These

methods rely on comparison of simulated data with real data via some distance

measure and allow the full power of Bayesian inference to be applied to simulation

based models as used in this thesis in Chapter 4.

ABC methods were first developed for applications in the field population ge-

netics. Tavaré et al., 1997 was the first application of using ABC to approximate the

posterior distribution. In this article ABC was used to infer the most recent common

ancestor from samples of a population under different demographic models. ABC

methods were further developed for applications in population genetics (Beaumont

et al., 2002) and are now used in a wide range of applications in fields as diverse as

ecology and physics (Sunnåker et al., 2013; Lintusaari et al., 2016). The flexibility

in being able to construct models of arbitrary complexity and parameterise them

accurately makes ABC an attractive method for high throughput biological data in

particular. Recently, some studies have used genomic data from cancer together

with ABC to look at stem cell organisation (Sottoriva et al., 2013b), mutation ac-

cumulation (Zhao et al., 2017) and colon cancer growth dynamics (Sottoriva et al.,

2015; Sievers et al., 2016).

2.3.3 ABC rejection

The simplest ABC algorithm is the rejection algorithm (Pritchard et al., 1999;

Tavaré et al., 1997) which compares simulated data D∗ with parameters θ and the

target data D, and if they match sufficiently well accepts the parameters θ :

S1 Sample θ ∗ from p(θ)

S2 Simulate a dataset D∗ from model M(D|θ ∗)

S3 If d(D∗,D)≤ ε , accept θ ∗, otherwise reject

S4 Return to S1

As ε → 0, the estimates of θ will converge to the true posterior. In most cases,

rather than using the full data the distance is calculated based on a set of summary
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statistics.

In many applications we may have a number of competing models and would

like to infer the most probable model. For this we can turn to Bayesian model

selection. If m0 and m1 are two models, we would like to choose which model

provides the best support for the data, Bayes factors, the ratio of posterior odds to

prior odds of the two models provides a way to quantitively test which of these

models has the greater support. The Bayes factor in favour of m0 over m1 is defined

as:

B01 =
P(m1|D)/P(m2|D)

P(m1)/P(m2)
(2.6)

Where P(mn) is the prior probability of model n and P(mn|D) is the posterior prob-

ability.

Incorporating model selection into the ABC framework is relatively straight-

forward as we can effectively treat the model as an additional parameter in the

inference scheme, where each model mn will have a corresponding model specific

parameter vector θn. The ABC rejection with model selection then becomes (Gre-

laud et al., 2009):

S1 Sample m∗ from p(m)

S2 Sample θ ∗ from p(θ |m∗)

S3 Simulate a dataset D∗ from model M(D|θ ∗,m∗)

S4 If d(D∗,D)≤ ε , accept (m∗,θ ∗), otherwise reject

S5 Return to S1

It has been shown that use of ABC to calculate Bayes factors can result in incon-

sistent results due to the loss of information from using summary statistics (Robert

et al., 2011), these issues however can be overcome if the full data is used rather

than summary statistics (Barnes et al., 2012).

The downside of the ABC rejection algorithm is that the acceptance rate is

generally low, requiring a large amount of datasets to be simulated. A number of
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extensions of the basic ABC rejection approach exist such as ABC MCMC (Marjo-

ram et al., 2003), which uses a Metropolis Hastings step to sample more efficiently

from the posterior. Another approach is to use sequential importance sampling (Del

Moral et al., 2006) to propagate a set of parameter vectors through a sequence of

ever decreasing tolerances (ε) until it is small enough to provide an accurate esti-

mate of the posterior distribution. This algorithm, called Approximate Bayesian

Computation Sequential Monte Carlo (ABC SMC) also provides increased effi-

ciency over the basic ABC rejection and overcomes issues in ABC MCMC where

the sampler can get stuck in regions of low probability for extended periods of time.

Additionally the ABC SMC algorithm can be extended to perform Bayesian model

selection (Toni et al., 2009; Toni & Stumpf, 2010). For these reasons I implemented

an ABC SMC algorithm which was used in Chapter 4.

2.3.4 ABC SMC

In ABC SMC, parameter vectors, particles (mn,θn) are sampled from the prior dis-

tribution and then propagated through a series of distributions with decreasing tol-

erances, εi, until εi = εT the target tolerance. We therefore gradually evolve toward

the target posterior distribution p(θ |d(D∗,D)≤ εT ) as εi decreases. The ABC SMC

model selection algorithm is as follows (Toni & Stumpf, 2010):

S1 Set the population indiciator to t = 1

S2 Set the particle indiciator i = 1

S3 If t = 1, sample (m∗∗,θ ∗∗) from the prior distribution P(m,θ)

if t > 1, sample m∗ from Pt−1(m∗) and then perturb according to m∗∗ ∼

KMt(m|m∗). Sample θ ∗ from previous populations with weights wt−1 and

perturb parameter vector according to θ ∗∗ ∼ KPt,m∗∗(θ |θ ∗)

S4 If P(m∗∗,θ ∗∗) = 0, return to S3

S5 Simulate data D∗ for model m∗∗ and parameters θ ∗∗, then calculate d(D∗,D), if

d(D∗,D)> εt go to S3
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S6 Set (mi
t ,θ

i
t ) = (m∗∗,θ ∗∗) and calculate the weight of the particle wt . If i < N set

i = i+1 and go to S3

S7 Normalize the particle weights and calculate the marginal model probabilities,

Pt(mt = m) = ∑i,mi
t=m wi

t(m
i
t ,θ

i
t )

S8 Calculate the perturbation kernels and next tolerance value εt , if εt > εT , set

t = t +1 and go to S3.

The particle weights are calculated as follows:

wi
t(m

i
t ,θ

i
t ) =

1, if t = 1

P(mi
t ,θ

i
t )

S , if t > 1
(2.7)

where S is:

S =
M

∑
j=1

Pt−1(m
j
t−1)KMt(mi

t ,m
j
t−1)× ∑

k,mt−1−mi
t

wk
t−1KPi

t,mt
(θ i

t |θ k
t−1)

Pt−1(mt−1 = mi
t)

(2.8)

Here KM is the model perturbation kernel and KP is the parameter perturbation

kernel. Particles that have been sampled from the previous distribution are denoted

by a single asterisk, the perturbed particles are denoted with a double asterisk. To

implement the ABC SMC algorithm one needs to choose the perturbation kernels,

KM and KP. For the model perturbation kernel a simple approach is to assign

probabilities at the beginning for models to stay the same after perturbation, for

example:

KMt(m|m∗) =

α, if m = m∗

β , if m 6= m∗
(2.9)

where α and β are number between 0 and 1 and α +β = 1. For the particle per-

turbation kernel the simplest approach is to use the uniform distribution with limits

determined from the range of parameter values from the previous population (Fil-

ippi et al., 2013), for parameter k, KPt(k|k∗) =U(ki−σ ,ki +σ), where σ is given
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by:

σ =
1
2
(max(k)t−1−min(k)t−1) (2.10)

Other perturbation kernels are also possible such as using the normal distribution

or multivariate normal when it is known a priori that parameters may be correlated

(Filippi et al., 2013). Finally, the ABC SMC algorithm requires choosing the toler-

ance schedule, or alternatively implementing an adaptive tolerance schedule where

for example the tolerance is taken as the αth quantile of the distances of the previous

population.

2.3.5 Algorithm performance and accuracy

To illustrate the accuracy of the ABC approach and to demonstrate the increased

efficiency of the ABC SMC algorithm over the basic ABC rejection sampler I will

introduce a basic example where we can both estimate the underlying parameters

and perform Bayesian model selection. We will use an example (originally from

(Grelaud et al., 2009)) that takes advantage of conjugate priors so that calculation

of the Bayes factor is analytically tractable, in this way comparison between the

true Bayes factor and calculation of the Bayes factor via ABC is possible (Didelot

et al., 2011).

I’ll consider 2 models, in the first model (M1), observations are distributed

according to Poission(λ ) while in the second (M2) they are assumed to be

Geometric(µ). For these models the likelihoods are given by

p(x|θ1,M1) ∝ exp

(
n

∑
j=1

x jθ1−
n

∑
j=1

logx j!

)
(2.11)

p(x|θ2,M2) ∝ exp

(
n

∑
j=1

x jθ2

)
(2.12)

where θ1 = log(λ ) and θ2 = log(1− µ). I’ll assign equal probabilities to both

models and assign an Exponential(1) prior to λ in M1 and a Uni f orm(0,1) prior

to µ in M2. As these priors are conjugate to the likelihoods we can calculate the
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Figure 2.6: a, b Shows that the ABC rejction algorithm and the ABC SMC algorithm both
accurately identify the true parameter across 50 simulations, dashed line is
the true λ = 0.5 from model 1. c Both methods correctly calculate the Bayes
Factors (dashed line is x = y) while the ABC SMC algorithm shows increased
efficiency over the ABC rejection algorithm d

marginal probabilities of the models:

p(x|M1) =
s1!

exp(t1)× (n+1)s1+1 (2.13)

p(x|M2) =
n!s1!

(n+ s1 +1)!
(2.14)

It is often convenient to summarise data with 1 or 2 numbers, when the posterior

distribution of a parameter of interest depend on the data only through one of these

summary statistics then these statistics are said to be sufficient, that is they provide

the maximal amount of information. For the above models the sufficient statistics
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(s1, t1) are given by:

s1 = ∑
j

x j (2.15)

t1 = ∑
j

logx j! (2.16)

I will use these sufficient statistics as my summary statistics in the ABC, and so the

distance will be calculated based on these.

With the models set up it is now possible to assess how accurately the two

ABC algorithms introduced above infer the correct parameters and Bayes factors. I

generated 100 datasets from M1 with λ = 0.5 and applied both algorithms to these

datasets. Figure 2.6c shows a good agreement between the true Bayes factor and

approximate Bayes factor from ABC, while both algorithms also inferred the correct

model parameter, Figures 2.6a and 2.6b. For this example, the ABC SMC algorithm

exhibits an average 5 fold increase in efficiency see Figure 2.6d.

2.4 Software
All the bioinformatic analysis was done on a linux based high performance com-

puter, with the pipelines implemented in bash scripts. Any subsequent analysis was

done in the R statistical programming language, including plotting which was done

in base R or ggplot2 (R Core Team, 2016; Wickham, 2009). Simulations were writ-

ten in the Julia technical programming language (“Julia: A fresh approach to numer-

ical computing”), a relatively new programming language that has been designed

specifically for scientific technical applications. Julia uses just in time compilation

to achieve speeds comparable to statically typed languages such as C and Fortran

by inferring function types and aggressively specialising code based on the type

inference. The ABC algorithms described above where also implemented in Julia

and is available as a package at https://github.com/marcjwilliams1/

ApproxBayes.jl.

https://github.com/marcjwilliams1/ApproxBayes.jl
https://github.com/marcjwilliams1/ApproxBayes.jl




Chapter 3

Identification of neutral tumour

evolution across cancer types

3.1 Introduction

Despite much progress in understanding how selection and mutation shape the can-

cer genome, the role of neutral processes has largely been neglected. Given that

the vast majority of point mutations are thought to be passengers and the relative

paucity of putative driver mutations per cancer (Lawrence et al., 2014), it is conceiv-

able that tumours undergo periods of stable growth. Neutral evolution provides the

null model for intra-tumour genetic diversity, and provides the necessary theoretical

framework to identify selection via deviations from this neutral model.

Recent studies that have formally tested this assumption in colorectal cancer

and its precursor lesions have surprisingly shown no evidence of strong selection.

Siegmund et al., 2009 showed using methylation pattern diversity that the molecular

age of glands (clonal units within colon tumours) from different regions of the same

tumours were similar, consistent with a single expansion. Similar observations have

been made in adenomas, a precursor lesion to cancers of the colorectum (Humphries

et al., 2013). More recently, the Big Bang model of clonal evolution was proposed

and validated using genomic data from colon cancer (Sottoriva et al., 2015). This

Big Bang model of clonal evolution, posits that once a cell has acquired the genetic

alterations necessary for malignancy the resultant clonal expansion is effectively
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neutral, with the size of lineages within the expansion determined by the time they

appear rather than stringent strong selection. Sottoriva et al. found evidence for this

model of tumour evolution by observing mutations that were not pervasive (present

in all cancer cells) could be found on opposite sides of the tumour. A computational

model showed that these mutations must have appeared early when the cancer was

small suggesting that these cancers resulted from a single clonal expansion with a

lack of strong selection. Studies in mice have also suggested that intra-tumour het-

erogeneity can be explained by stochastic processes due to a proliferative hierarchy

rather than functional differences between sub populations of cells (Driessens et al.,

2012).

In this chapter I will develop a mathematical model of neutral tumour evolution

that can be applied to widely available sequencing data to test whether a neutral

model of cancer evolution is consistent with other cancer types.

3.2 Neutral tumour evolution

To test whether a neutral model of cancer evolution can plausibly explain the genetic

variation we observe in cancer cell populations I’ll take inspiration from population

genetics theory and apply a model that describes the theoretical expectation of a

neutral model to widely available cancer genomic data such as The Cancer Genome

Atlas (TCGA). To summarise and recap briefly some of the key points from Chap-

ter 2, deep sequencing of cancer cell populations measures the size of cell lineages

within the population and this data can be summarised via a histogram of these lin-

eage sizes. Developing a model of the expected distribution of lineage sizes will can

then be used to test whether these models fit the observed data and extract features

of the cancer cell population dynamics from data taken at a single time point. The

model I will now develop is a simple neutral growth model where all cells proliferate

at the same rate and accumulate mutations. I will derive the expected distribution of

lineage sizes and then apply this to large cohorts of both whole genome sequencing

data and whole exome sequencing data.
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3.2.1 Mathematical model of neutral tumour evolution

Beginning at time t = 0 with a single transformed cancer cell, the number of tumour

cells at time t will be N(t). Given a growth rate b, a mutation rate µ per chromo-

some set and the ploidy of the tumour (number of chromosomes per cell), π , the

differential equation describing the expected number of mutations at some time t,

M(t), can be written as
dM(t)

dt
= πbµN(t). (3.1)

Solving this equation requires integrating over some growth function N(t)

M(t) = πbµ

∫ t

t0
N(t). (3.2)

The simplest model of growth is exponential growth which is given by,

N(t) = ebβ t . (3.3)

Where β denotes the fraction of cells producing 2 viable offspring, it is only these

divisions that contribute to the growth of the population. Substituting this expres-

sions into equation (3.2) we arrive at

M(t) =
µπ

β

(
ebβ t− ebβ t0

)
. (3.4)

This equation is analogous to the Luria-Delbruck distribution, originally developed

to describe the accumulation of mutations in bacteria over time (Zheng, 1999). This

equation is however of little use for modelling cancer evolution as it is dependent

on time and obtaining time resolved sequencing data from human cancers is chal-

lenging for obvious reasons. What we do know however is that the frequency of a

mutation, f will be inversely proportional to the population size (or more accurately

the number of chromosome sets in the population) when it arose in the population

f =
1

πN(t)
=

1
πebβ t

. (3.5)



74 Chapter 3. Identification of neutral tumour evolution across cancer types

Crucially in the absence of selection or significant genetic drift the frequency will

remain (approximately) constant as the population grows. For example if a tumour

is comprised of 100 cells and 1 cell acquires a mutation its frequency will be 1/100,

if the tumour then doubles, the tumour will have 200 cells, with 2 of those cells

carrying the mutation giving a frequency of 2/200 = 1/100. Frequency and time

are therefore (approximately) equivalent under neutral growth dynamics. With this

we can finally substitute equation (3.5) into equation (3.4) with which we arrive at

M( f ) =
µ

β

(
1
f
− 1

fmax

)
, (3.6)

where fmax = e−bβ t0 . Given that the VAF distribution from high throughput se-

quencing data measures the frequency of mutations, equation (3.6) provides a means

to first test whether individual cancers are consistent with a neutral exponential ex-

pansion and secondly to measure the effective mutation rate µ̂ (= µ/β ), (the muta-

tion rate scaled by the death rate) on a sample by sample basis. To summarise, this

model predicts that cumulative number of mutations with frequency greater than f ,

M( f ) should be linear in 1/ f . With this it is then possible to fit a simple linear

model to the data and measure the goodness of fit. This result converges to re-

sults obtained in similar models in the population genetics and stochastic processes

literature (Durrett, 2013a; Griffiths & Tavaré, 1998). The probability density of mu-

tations in the VAF distribution (ie in non cumulative space) has also been derived

and follows a 1/ f 2 dependence (Keller & Antal, 2015; Kessler & Levine, 2013;

Ohtsuki & Innan, 2017; Nicholson & Antal, 2016), I will return to this in Chapter

5.

3.2.2 Stochastic simulations

Before proceeding to apply equation (3.6) to real sequencing data I first confirm its

prediction via a stochastic simulation of tumour growth and investigate how selec-

tion causes deviations from the predicted distribution. The simulation scheme used

here is a simplified version of the one presented in the next chapter so I will discuss

it briefly here.
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The approach taken was to generate synthetic data sets that capture the char-

acteristics of NGS data, and by exploring various evolutionary histories of tumour

growth verify the predictions of the model. NGS data is plagued by various sources

of noise, these include tumour sampling, contamination of the sample with non-

tumour cells, limited sequencing depth and difficulties in mutation calling, particu-

larly at low frequencies. The model I implemented models tumour growth using a

branching type process in discrete generations and then generates synthetic datasets

from the model output using a empirically motivated sampling procedure.

The simulation begins with a single “transformed” cancer cell that gives rise

to the malignancy. Cells then die and proliferate at each generation by sampling

from an an offspring probability distribution The offspring probability distribution

can be written as P = (p0, p1, p2), where pn is the probability of having n offspring.

Therefore assuming exponential growth the population at time t will be given by

N(t) = X t = eln(X)t , (3.7)

where X is the average number of offspring per cell (expectation of P) and t is in

units of generations. X = 2 is the case where there is no cell death and every division

produces 2 viable offspring. At each division, cells acquire mutations at a rate µ and

it is assumed every mutation is unique (infinite sites approximation) (Ewens, 2012).

The number of mutations acquired by a newborn cell at division is a random number

drawn from a Poisson distribution. I record the evolutionary history of the popu-

lation by recording the parent of each newborn cell, this allows reconstructing the

entire history of the tumour and calculate the variant allele frequencies of all muta-

tions in the population. Selection can be incorporated into the model by introducing

populations of cells with a different offspring probability distribution, populations

of cells with positive selection will for example have on average a larger number

of offspring per generation than wildtype cells (E[Pmutant ] > E[Pwildtype]. Finally,

the output of the simulation - cells with associated mutations - undergoes a process

of Binomial sampling to produce synthetic data that mimic the characteristic noise

associated with sequencing.
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Given a simulated data set we can then fit the analytical model and asses the

goodness of fit of the model and extract the effective mutation rate. To fit the an-

alytical model to the synthetic data I used the same methodology that I use later

for fitting the real sequencing data. I fitted the model using subclonal mutations

in the frequency range ( fmin = 0.12, fmax = 0.24). The lower limit was chosen to

mitigate against the resolution limit of moderate depth (50-100X) sequencing data

which was empirically observed to be 0.05− 0.1. The upper limit was chosen to

ensure that only subclonal mutations were interrogated, for a diploid genome we

would expect to observe mutations at a frequency 0.5 while in a tetraploid genome

these clonal mutations would be expected to be at frequency 0.25, therefore muta-

tions < 0.25 would be expected to be subclonal. Exploiting the constraint on the

intercept of the linear model given by equation (3.6) the model y = m
(

x− 1
fmax

)
+0

can be fitted using ordinary least squares, where y = M( f ), x = 1/ f and the value

extracted from the fit being the effective mutation, which is known a priori for the

simulations. The R2, coefficient of determination statistic was used to assess the

goodness of fit, where values closer to 1 are indicative of good fits. The ability to

recover the true value for the mutation rate was also assessed.

3.2.3 Simulation results

3.2.3.1 Neutral tumour growth

Figure 3.1 shows an example synthetic dataset generated from the model, qualitative

comparisons between real data shown in Figure 2.4 from the previous chapter and

this synthetic data confirm that the model is able to generate synthetic datasets that

have similar characteristics to real NGS data. Applying the fitting methodology

described above, Figure 3.1B shows that under neutrality, the simulation validates

the prediction of equations (3.6) of a linear relationship between M( f ) and 1/ f .

To assess the robustness of the inferences from fitting equation (3.6), a cohort

of 10,000 synthetic tumours was generated and the ability to recover the input mu-

tation rate and the R2 values was assed. Analysis of these simulations confirmed

that the model is robust to the noise introduced from sequencing. On average we

recover the input mutation rate to within average error of 1% (Figure 3.2) and the
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Figure 3.1: A We were able to produce realistic synthetic NGS data using a stochastic sim-
ulation of tumour growth that accounts for neutral accumulation of mutations
in the tumour as well as the different sources of noise of sequencing (sampling,
sequencing depth and normal contamination). B The prediction of the analyti-
cal model on the cumulative distribution of subclonal allelic frequencies agrees
with the stochastic simulation.
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Figure 3.2: Over 10,000 simulations, the interquartile range of the percentage error in the
estimates of the mutation rate is <5%, demonstrating the ability of the analytic
model to accurately estimate tumour growth parameters from NGS data. The
R2 values of the fits are consistently high over 10,000 simulations. Unless oth-
erwise stated the input parameters for the simulation and subsequent sampling
were µ = 100 mutations/cell division, b = ln(2), detection limit = 10%, normal
contamination = 0%, depth = 100X and number of clonal mutation = 200.

R2 of the model fit is consistently high (> 0.98), see Figure 3.2.
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3.2.4 Effect of selection on the allelic frequency distribution

To confirm that NGS data that follows the allelic frequency distribution of equa-

tion (3.6) is indeed dominated by neutral tumour evolution we would predict that

including selection in the model results in synthetic data that deviates from (3.6).

Introducing a second fitter population early during tumour growth causes an over-

representation of variants at high frequency compared to what we would expect

from a model of neutral tumour growth. This is evident in Figure 3.3A with the

appearance of an intermediate peak between the clonal peak and the 1/ f tail. This

causes the cumulative distribution to deviate from the linear relationship predicted

by neutral growth. An overrepresentation of variants at high frequency, as compared

to what we would expect from our null model is caused by the selection of the fitter

subclones. These variants that cluster at higher frequency than would be expected

from a neutral model will primarily be passenger mutations that hitchhike to higher

frequency on the back of the fitter subclone (Fay & Wu, 2000; Gillespie, 2000).

These high frequency clusters are consistent with previous studies that have shown

that selected subclones produce distinct clusters in the VAF distribution (Nik-Zainal

et al., 2012b).

Simulations also demonstrate that a change in mutation rate early during tu-

mour growth results in deviations from the predicted distribution, see Figures 3.3C

& 3.3D.

3.3 Neutral evolution across cancer types
Having validated that neutral evolution should be observable and not obscured by

sequencing noise in synthetic datasets, next I applied the model to large publicly

available datasets.

3.3.1 Data & Data Processing

A large cohort of gastric cancers sequenced to high depth across the whole genome

from a study by Wang et al., 2014a was acquired, which was used to test the pre-

diction of the neutral null model. We also tested the model on data from the TCGA

and Sottoriva et al., 2015.
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VAF∼ 0.2 (A) and a bend in the cumulative distribution plot (B). A new phe-
notypically distinct clone introduced with a 10-fold higher mutations rate (20
per division to 200 per division) also produces a deviation from neutrality (C
& D).

The gastric cancer data was acquired in the BAM format which then required

point mutation calling as well as copy number calling. Point mutations were called

using the VarScan2 software package (Koboldt et al., 2012) and then annotated

using ANNOVAR (Wang et al., 2010). Using the output from Varscan, mutations

were filtered out if the depth of coverage was below 10X in either the tumour and

normal sample and fewer than 3 reads reported the variant in the tumour sample.

The Sequenza software package was used to produce allele specific copy number

segmentations across the whole genomes (Favero et al., 2015).

A pan-cancer cohort from the TCGA and 2 colon cancer cohorts (one from

TCGA and one from Sottoriva et al.) were examined. As these cohorts consisted of
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exome sequencing data there were fewer mutations called. For this reason an addi-

tional filtering criteria requiring that there must be at least 12 subclonal mutations

in the range of interest ( fmin, fmax) for a sample to be included in the analysis was

included. Additionally, across all cohorts only samples with tumour purity ≥ 70%

were included in the analysis (as determined by inspection from a pathologist and

reported in the TCGA metadata), this is because low tumour purity can confound

the results resulting in clonal mutations being present in the integration range.

3.3.2 Gastric cancer results

An allelic frequency distribution as measured by NGS whole-genome sequencing of

a gastric cancer is shown in Figure 3.4A (this is the same data presented previously

in Figure 2.4. This exhibits all the characteristics predicted from the analytical

model and the stochastic simulation of tumour growth. Transforming this data and

plotting as the cumulative distribution, M( f ) shows that subclonal mutations in this

tumour follow the distribution predicted by equation (3.6), Figure 3.4B. The high

goodness of fit measure R2 indicating that the growth dynamics of this tumour was

dominated by neutral evolutionary dynamics.

Examining all 78 samples from the gastric cancer cohort shows that a large

proportion are dominated by neutral evolutionary dynamics. We classify tumours

as being dominated by neutral evolutionary dynamics if the model fit produces a R2

value > 0.98. Stratifying according to micro-satellite stability, 57/68 (76.9%) MSS

(micro-satellite stable) cancers were classified as neutral compared to 3/10 (30%)

for MSI cases (micro-satellite unstable). We also stratified according to coding and

non-coding regions, due to a smaller number of mutations in coding regions fewer

samples were classified as neutral, although those that were, were also classified as

neutral when considering mutations across the whole genome Figure 3.4C.

The model also allows us to estimate the effective mutation rate of subclonal

mutations for those samples that grow as neutral clonal expansions (R2 > 0.98).

Cancers were stratified into micro satellite stable (MSS) and micro-satellite unsta-

ble (MSI). Micro satellite unstable cancers have defects in their mismatch repair

machinery which result in elevated mutational loads. Mutation rate estimates for
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Figure 3.4: Variant allele frequency A and corresponding cumulative distribution B for
sample pfg144. C R2 model fit across the whole-genome gastric cancer cohort
separated into MSS and MSI cancers as well as exonic and non-coding SNVs.
Exonic SNVs are mutations found in the exome (coding region of the genome).
60/78 samples (76.9%) of samples were consistent with neutral evolution (R2 >
0.98). D Mutation rates across the gastric cohort for the 60 samples that are
consistent with neutral evolution. MSI cases exhibit a 4-fold higher mutation
rate.

MSI cancers were over 4-fold higher than MSS cases, consistent with this known

biological mechanism (Figure 3.4D).

3.3.3 Colon cancer cohort

Given that colon cancer was the first cancer type where neutral evolution was ob-

served and explained the observed intra-tumour heterogeneity, next I examined 2

colon cancer cohorts, one from TCGA and one from Sottoriva et al., 2015. Figures

3.5 A & B show an example VAF distribution and corresponding cumulative dis-

tribution, which again shows the characteristics predicted by the neutral evolution

model. As in the gastric cancer cohort a large proportion of tumours fit the neutral

model well, 4/7 in the Sottoriva et al., 2015 cohort, 31/82 in CIN (copy number

unstable) TCGA colon cancers and 3/19 MSI positive TCGA colon cancers, see

Figure 3.5C. Again, as would be expected MSI colon cancers had higher mutation

rates, Figure 3.5D.
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3.3.4 Pan-cancer cohort results

The final data-set included 819 exome sequenced samples from 14 tumour types,

again from the TCGA consortium (Figure 3.6). Again a high proportion of samples

fitted the neutral evolution model (259/819, 31.6%). Interestingly, some cancers

types exhibited a consistently high model fit (R2 > 0.98), while others showed a

poorer fit suggesting that in some cancer types neutral evolution is more promi-

nent. Good model fits were seen in stomach, lung, bladder and colon consistent

with multi-region sequencing studies of these cancer types that find most putative

driver mutations to be truncal (Sottoriva et al., 2015; Zhang et al., 2014). Mean-

while tumour types that were predominantly non-neutral include renal, pancreatic

and thyroid. Multi-region sequencing of renal cancers has previously shown dis-

tinct putative drivers affecting the same pathway in different regions from the same

tumour (Gerlinger et al., 2014) consistent with the emergence of selected subclones.

Analysis of the mutation rates shows high mutation rates in lung cancers and

melanoma consistent with known carcinogens driving these diseases and producing

elevated point mutation rates. The lowest mutation rates were seen in low grade
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Figure 3.6: A 259/819 (31.6%) of cases from a cohort of 14 different types were consistent
with neutral evolution (R2 > 0.98). Stomach and lung adenocarcinoma had the
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cancer. Lung adenocarcinoma and lung squamous cell exhbited the highest
mutation rates - B.

glioma and in prostate.

3.3.5 Validation

3.3.5.1 Copy number changes

To discount the possibility that copy number changes could influence the identifi-

cation of neutral evolution, the gastric cancer dataset was re-analysed following the

removal of any mutations falling in non-diploid regions. This reduced the size of the

cohort to 46 due to some samples having < 12 mutations remaining after filtering

for copy number changes. Nevertheless, a similar proportion (74%) of cases were

classified as neutral, see Figure 3.8
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Figure 3.7: Proportion of mutations in each mutation channel as a function their frequency
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Figure 3.8: Analysis of the proportion of gastric cancers called as neutral and their muta-
tion rates for mutations in diploid regions only, mitigating any effects of copy
number alterations.

3.3.5.2 Sequencing errors

To discount the possibility that mutation calling errors, particularly at low frequen-

cies could effect the inference we confirmed that the proportion of mutation types

across the frequency range was consistent. Reasoning that if sequencing or PCR

errors were prominent at the low frequency range then the proportion of particular

types of mutations would be different from those observed at high frequency. No

difference in the gastric or pan cancer cohort was observed, see Figure 3.7.

3.4 Discussion
The results in this chapter have demonstrated that cancer genome sequencing is of-

ten dominated by a signature of neutral growth, characterised by an abundance of
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low frequency mutations, where the expectation from a theoretical model is that

we find evermore mutations at ever lower frequencies. This was found to be true

across cancer types and was robust to different cohorts and sequencing strategies.

This null model of tumour evolution provides a means to quantitively test whether

intra-tumour heterogeneity routinely observed can be explained by a simple neu-

tral model rather than perhaps more complicated models involving selection of sub

populations of cells.

The model described here also provides a means to estimate the mutation rate

in vivo in human cancers, a measurement that has previously relied on in vitro ex-

periments (Araten et al., 2005; Rouhani et al., 2016), or assuming growth rates and

ages of tumours (Bozic et al., 2010). In the approach presented here the mutation

rate is naturally encoded in the distribution reported in the frequency spectrum of

sequencing data. Further work is needed however to decouple the effect of cell

death from the true per division rate. Being able to both identify neutrally evolving

tumours, and measure their mutation rates provides fundamental insight into the

evolutionary process, and has potentially utility in estimating the number of cells

harbouring treatment resistant mutations or calculating the expected diversity of the

whole tumour population. Much theoretical work has been done in this area (Iwasa

et al., 2006), but calculations often rely on assuming rates and evolutionary dynam-

ics, these results show that evolutionary dynamics and their rates can be quantified

on a patient by patient basis using routinely available sequencing data. Recently

neutral evolution has been demonstrated to be predictive of clinical outcome in

myeloma, demonstrating the potential clinical utility of evolutionary analyses of

cancer genomes (Johnson et al., 2017).

Although a large proportion of tumours were consistent with a neutral model of

tumour evolution, a large proportion were not (70% in the pan-cancer cohort). This

suggests that other evolutionary dynamics may be in play in these cases, such as the

presence of functionally distinct sub-clones which lead to deviations from the null

model as in Figure 3.3. In the next chapter I will explore in detail this scenario, and

show how clusters of mutations that are characteristic of this type of dynamics can
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elucidate further the evolutionary dynamics in these non-neutral tumours. It may

also be the case that the quality of the data may be restrictive in some cases, exome

sequencing in particular only reports a small subset of the mutations present in the

cancer genome, when the model was applied to a whole genome cohort a larger

proportion of cases were shown to be consistent with a neutral model. Other factors

may also contribute to miss-classification such as low tumour content or misiden-

tified copy number changes, the latter in particular can be challenging in exome

sequencing data and estimating cellularity often shows large discordance between

pathologist estimated values and values estimated from bioinformatic measures. In

the next chapter I will also devote further effort to mitigate these effects.
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Chapter 4

Quantifying sub clonal selection in

human cancer

4.1 Introduction

In the previous chapter the focus was on understanding the expected allele fre-

quency distribution under a neutral evolutionary model. In this chapter I will ex-

plore what this distribution would look like when sub-populations within a tumour

are selected for. I will show that using a model of tumour evolution where pop-

ulations within the tumour can have different fitnesses (expressed via differential

growth rates between subclones), that we can measure the relative fitness differ-

ences between different subclones and the time when subclones appear. This is

achieved using a combination of theoretical models inspired by population genet-

ics, stochastic simulations which generate synthetic data and Bayesian inference.

Clonal selection during tumour evolution naturally leads to the outgrowth of

a (sub)population of cells, ultimately leading to a subclone increasing in frequency

relative to its frequency when it appeared. Due to the constant accumulation of

mutations during division, any clonal outgrowths should be visible from the mu-

tations present in the subclone (assuming a high enough mutation rate). What is

sometimes observed in genome sequencing of bulk cancer tissues samples is then

clusters of mutations at different variant allele frequencies, which are thought to

arise from such clonal expansions. One of the first and perhaps most compelling
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observations (due to the ultra high depth sequencing the study deployed) of this

phenomenon is in Nik-Zainal et al., 2012b. In this study a single breast cancer

sample was deeply sequenced to 188X depth. This data is shown in Figure 4.1, mu-

tations clearly cluster into different groups based on their frequencies. The highest

frequency peak at frequency just below 0.4 represents the clonal mutations, that is

mutations present in every cell in the tumour sample, while the clusters at lower fre-

quencies are assumed to be a consequence of clonal expansions as described above.

While the original study identified 3 clusters, I will show that in fact the lowest fre-

quency cluster that can be seen by eye is not due to a clonal expansion but rather is

a consequence of all within clone neutral mutations. In other words this is the 1/ f

tail interrogated in the previous chapter that is a natural consequence of mutation

accrual during population growth.

Recognising that subclonal populations present as clusters in VAF space, many

bioinformatic approaches have been developed to identify such clusters (Qiao et al.,

2014; Roth et al., 2014; Miller et al., 2014; Fischer et al., 2014). However, none

of these methods account for the accumulation of mutations within subclones to-

gether with identification of mutational clusters. Furthermore, no work has been

done in attempting to explain how and when such subclones arise, from an evo-

lutionary perspective what fitness advantages do subclones have relative the host

tumour population and when did they emerge?

In this chapter I will show how integrating both neutral and non-neutral pro-

cesses within the same framework allows us to measure these evolutionary param-

eters directly from the VAF distribution. Before proceeding to elucidate how this

information is encoded I will summarise briefly the approach. The time a clone

emerges can be inferred from both the number of mutations in the first cell that

gave rise to the clone and the mutation rate in the tumour, dividing the former by

the later gives us the number of divisions this founder cell of the clones experi-

ences. Then extrapolating from the time the clone emerges to the time it takes to

reach a certain frequency f it is possible to estimate the selective advantage of the

clone. Fortunately these parameters are all available from the VAF distribution, I
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Figure 4.1: Distribution of variant allele frequencies of a deeply sequenced breast cancer
from Nik-Zainal et al

showed in the previous chapter how the the mutation rate is encoded and here I will

demonstrate that even when the VAF distribution displays subclonal clusters, it is

still possible to accurately measure the mutation rate. The number of mutations in

the founder cell of the clone is the number of mutations in the cluster, and the fre-

quency of the clone is the mean frequency of the cluster. Taking all this together,

it is then possible to estimate the age of a subclone and the relative fitness of the

subclone compared to the host tumour population.

4.2 Simulating selected sub populations
In the previous chapter I used a discrete time stochastic simulation to demonstrate

what the VAF distribution looks like under a neutral evolutionary model and then

showed that when a fitter population is introduced we observe clusters of mutations

in the VAF distribution, as in Figure 4.1. This simulation framework is somewhat

limited for multiple reasons; at most 2 populations can be considered at one time,

only relatively small fitness advantages can be considered (1+ s < 2) and finally,

because the simulation is discrete in time mutants can only be introduced at discrete
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Algorithm 3: Grow tumour via continuous time birth-death process
input : mutation rate - µ

maximum population size - Nmax
number of subclones
time subclones introduced tsubclone
fitness advantage of subclones - si
birth rates for clone i - bi
death rates for clone i - bi

output: Frequency of mutations in the population

start with one cell, N = 1

while N < Nmax do
celli← sample random cell
r←Uni f orm(0,bmax +dmax)
if r < bi then

cell birth event
new cell inherits parents genotype
# of mutations in new cells← sample from Po(µ)
N = N +1
t = t +∆t
if t == tsubclone then

one daughter cell forms a new subclone with different growth
rates

if bi < r < di then
cell death event
N = N−1
t = t +∆t
break

if r < bi +di < r then
no event
N = N
t = t +∆t
break
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Algorithm 4: Generate synthetic sequencing data from simulations
input : cells and mutations assigned to each cell, output from Algorithm 1

read depth, D
ploidy, π

Population size Nmax
Detection limit, d (often use d = 5/D)
Over dispersion parameter, ρ

cellularity, c
output: Depth (Di), read counts (Ri) and VAFs (VAFi) for each mutation

calculate frequency of all mutations, f
for i in mutations do

Sample depth: Di ∼ Bo(n = Nmax, p = D/Nmax)
Adjust frequency: fi = fi× c/π

if fi < d then
remove mutation i

Sample read counts: Ri BetaBin(n = Di, p = fi,ρ)
Calculate VAF: VAFi = Ri/Di

generations rather than at any time or any population size. To investigate these non-

neutral dynamics further the simulation framework from the previous chapter was

modified such that it is continuous in time and has the ability simulate any number of

subclones. A kinetic Monte Carlo algorithm as described in chapter 2 was used. The

simulation algorithm is described in Algorithm 3, the output of which is mutations

assigned to individual cells. This output then undergoes a process of empirically

motivated sampling such that the sequencing of cancer samples is mimicked, (see

Algorithm 4).

This simulation strategy produces synthetic data that mimics real sequencing

data that can then be used to investigate what subclones that arise due to differential

fitness effects should look like in typical sequencing data. As in the example from

Nik Zainal et al. shown in Figure 4.1, we observe clusters of mutations correspond-

ing to distinct subclonal populations, see Figure 4.2. These can be seen clearly with

a comparison to the case where there is an absence of subclonal populations (ie

neutral evolution).
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Figure 4.2: Example of simulated sequencing data for the case of 0 subclones(neutral evo-
lution), 1 subclone and 2 subclones

4.3 Detecting subclonal clusters
Before proceeding to develop the framework which I will use to infer the evolution-

ary dynamics of non-neutrally evolving tumours, it is instructive to get a sense of

what parameters of the evolutionary process lead to observing mutational clusters

and thus deviations from that predicted from a neutral model. To do this I will show

how some simple extensions to the model and statistical methodology of the previ-

ous chapter can lead to more robust metrics and enable identification of parameters

that produce subclonal clusters, but first I’ll demonstrate how current clustering

methods are inadequate for this process.

4.3.1 Dirichlet process clustering

Many methods have been developed to identify subclonal clusters, all these meth-

ods however neglect the accumulation of within sub-clone mutations. This violates

some important assumptions of these approaches, firstly that mutations with the

same frequency are in the same sub-population and secondly that mutations can

always be assigned to a particular sub-population. This invariably results in over-

clustering of VAF distributions. To demonstrate this, I implemented one of the

most popular clustering approaches, Dirichlet Process clustering (Dunson, 2009;

Nik-Zainal et al., 2012a; Roth et al., 2016) and applied it to simulated data from the

above model. Dirichlet process clustering is a Bayesian non-parametric clustering

approach where the number of clusters is inferred directly from the data rather than

specified a priori, further details of the statistical model can be found in Appendix

A. Even accounting for the possibility that the low frequency 1/ f may be identified
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Figure 4.3: Example fits of the dirichlet clustering algorithm for a neutral tumour, a tumour
with a single subclone and a tumour with 2 subclones

as a cluster, many more clusters are identified than are actually present, with 5 being

identified in the neutral case, 7 in the 1 clone case and 5 in the 2 clone case, Figure

4.3. This is because these mutations are not drawn from a distribution with a single

true underlying frequency as is assumed in this clustering approach but rather the

true underlying frequencies of these mutations are genuinely different and cannot

be assigned with a single underlying cluster. Applying Dirichlet clustering to 20

neutrally simulated tumours and 20 tumours with a single subclone finds that the

average number of inferred subclones is 5.05 and 5.6 respectively, see Figure 4.4.

For these methods to be improved upon, knowledge of the neutral growth processes

needs to be integrated within these statistical frameworks, however a simple method

to comparing the null distribution to data as described in the next section performs

well when the aim is simply identifying deviations from the neutral distribution.

Due to limitations in sequencing technologies, not all subpopulations of cells

that have fitness advantages will produce subclonal clusters in the VAF distribu-

tion. In 100X sequencing, mutations below a VAF of 5% are challenging to detect

(Cibulskis et al., 2013), thus often it is impractical to observe populations that are

smaller than 10% of the tumour. Furthermore observing a cluster of mutations re-

lies on a clone having accumulated a sufficient number of passenger mutations to

produce clusters in the VAF distribution. Observing such mutational clusters will

then necessarily depend on the evolutionary parameters in the tumour, principally

the mutation rate, the relative growth rate of the subclone and the time the subclone

emerges. With this in mind, I simulated many tumours with different parameters
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and could then identify those parameters that lead to subclonal clusters and devi-

ations from the neutral model. The approach taken here is similar to the previous

chapter, where large deviations from the null neutral model are taken as evidence

of subclonal clusters. In an attempt to increase the sensitivity of detecting such

deviations I developed and evaluated the performance of 3 additional test statistics.

4.3.2 Metrics for detecting deviations from neutrality

First, recapping the null neutral model from the previous chapter, the model predicts

that the cumulative number of mutations, M( f ) with a frequency, f is given by,

M( f ) =
µ

β

(
1
f
− 1

fmax

)
(4.1)

This equation can be transformed into an equation that is invariant to the mutation

rate and death rate by dividing equation (4.1) by the maximum of M( f ) which

occurs when f = fmin, that is the largest value of M( f ) occurs when f is small and

given that we constrain the range of frequencies with which we integrate over, we

know the smallest value of f . This gives us a normalized version of M( f ) which I
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Figure 4.4: The number of clusters identified by dirichlet clustering is always greater than
the true number of clusters.
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will refer to as M( f ),

M( f ) =
µ

β

(
1
f
− 1

fmax

)/
µ

β

(
1

fmin
− 1

fmax

)
M( f ) =

(
1
f
− 1

fmax

)/(
1

fmin
− 1

fmax

)
(4.2)

By normalising any dataset so that the maximum value of M( f ) is equal to 1, any

dataset can be compared with equation (4.2). I tested 3 test statistics based on this

formulation of the model.

1. The Kolomogorov distance between the data and M( f ), Dk

2. The area between the data and M( f ), A

3. The euclidean distance between the data and M( f ), d

I first evaluated the performance of these test statistics along with the R2 test statis-

tic from a linear model fit with equation (4.1) as described in the previous chapter.

To do this, I ran a large number of neutral simulations and non-neutral simula-

tions and then evaluated how different the distribution of the metrics were between

neutral and non-neutral cases. The distributions were significantly different for all

these metrics, see Figure 4.5, showing that detecting deviations from the neutral

model enables identifying non-neutral tumours. Additionally, by framing the prob-

lem as a classification problem between classifying a simulated cancer as neutral or

non-neutral it is possible to evaluate the performance using receiver operator char-

acteristic curves. This showed unsurprisingly, that the ability to identify cancers

with selected subpopulation depends on the size of the selected subclones, with

subclones in the centre of the distribution causing larger deviations and hence were

easier to detect, see Figure 4.6. This analysis indicated that the area test statistic

had the highest AUC but the difference was minimal.

4.3.3 Evolutionary parameters of non-neutral tumours

Having shown that the area test statistic is the most performant, it was then used

to characterise the range of evolutionary parameters that would lead to detectable
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Figure 4.5: Distribution of the 4 metrics for neutral and non-neutral tumours.

subclonal mutational clusters. A large number of simulations with different muta-

tion rates, different growth advantages and different times subclones emerge were

generated, these simulations were than sampled using algorithm 4 to produce syn-

thetic datasets equivalent to 100X sequencing. This showed that subclones must

emerge early and have large fitness advantages to be observable in typical sequenc-

ing data, see Figure 4.7. Futhermore, if the subclone becomes dominant (greater

than 90% frequency) then the tumour will appear neutral once again due to the VAF

distribution then reporting on all neutral mutations within the subclone.

We see from this analysis that it is neutral passengers that are most informa-

tive for measuring evolution in the cancer genome as it is the neutral passenger

mutations present in the founder cell of a subclone that will expand to a higher fre-

quency and present as mutational clusters, while passenger mutations that accrue

in cells during growth cause the characteristic 1/ f tail that can be used to measure

the mutation rate. This hitchhiking phenomenon in asexual populations is crucial in

these approaches to quantify evolution in cancer (Fay & Wu, 2000; Gillespie, 2000)



4.4. Mutational clusters encode evolutionary dynamics 99

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00
False positive rate (1 − specificity)

Tr
u

e
 p

o
s
iti

ve
 r

a
te

 (
s
e

n
s
iti

v
ity

)

Subclone fraction = [0,1]

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00
False positive rate (1 − specificity)

Tr
u

e
 p

o
s
iti

ve
 r

a
te

 (
s
e

n
s
iti

v
ity

)

Subclone fraction = [0.05,0.95]

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00
False positive rate (1 − specificity)

Tr
u

e
 p

o
s
iti

ve
 r

a
te

 (
s
e

n
s
iti

v
ity

)

Subclone fraction = [0.1,0.9]

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00
False positive rate (1 − specificity)

Tr
u

e
 p

o
s
iti

ve
 r

a
te

 (
s
e

n
s
iti

v
ity

)

Subclone fraction = [0.2,0.8]

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00
False positive rate (1 − specificity)

Tr
u

e
 p

o
s
iti

ve
 r

a
te

 (
s
e

n
s
iti

v
ity

)

Subclone fraction = [0.3,0.7]

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00
False positive rate (1 − specificity)

Tr
u

e
 p

o
s
iti

ve
 r

a
te

 (
s
e

n
s
iti

v
ity

)

Subclone fraction = [0.4,0.6]

Figure 4.6: ROC curves for all 4 metrics with different subclone sizes. When the subclones
were centred toward the middle of the VAF distribution the metrics performed
best.

4.4 Mutational clusters encode evolutionary dynam-

ics

Having demonstrated that selection of subclones within growing tumours produces

subclonal clusters in the frequency distribution, and explored what evolutionary pa-
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Figure 4.7: Regions where we have detectable deviations from neutrality

rameters lead to this observation in typical sequencing data, next I wanted to try and

measure these values directly from the data. In this section I’ll show how we can use

passenger mutations in the subclonal cluster and passenger mutations from the 1/ f

tail to measure the fitness advantage of subclones and the time they appear. To do

this I’ll develop a mathematical model that describes the accumulation of mutations

in a growing tumour followed by the expansion of a single cell in the tumour, and

demonstrate how this can be used to infer the selective advantage and emergence

time of subclones from properties measurable in the VAF distribution. In summary

the mutation rate can be inferred from the low frequency 1/ f tail, this together with

the number of mutations in the cluster tells us the age of a subclone, as the muta-

tion rate allows us to calibrate how long it should have taken for a single cell to

accumulate the number of mutations we see in the cluster. Finally, the frequency of

the subclone cluster tells us how much the subclone has expanded in the population

allowing us to estimate the relative growth rate.

We begin at time t0 = 0 with a single cell carrying a set of Mc, clonal mutations.

This single cell is the most recent common ancestor of the sampled tumour. I will

assume that the tumour grows exponentially growth and will measure time in units

of tumour doublings. Therefore at each tumour doubling, a cell will acquire µ new

mutations, which is the mutation rate per tumour doubling. This is equivalent to the
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effective mutation rate discussed in the previous chapter. If a random cell is chosen

from the tumour at some time t1 it will have Msc additional subclonal mutations

which will be given by the product of the mutation rate, µ and the number of cell

divisions, Γ1,

Msc = µΓ1. (4.3)

As we’re interested in time rather than the number of divisions we first need to

convert Γ1 to the time, t1. If we were considering discrete generations these would

be equivalent, in the more realistic case of overlapping generations this is however

not true. Let’s consider Ni(t) as the total number of cells that have completed i

divisions at time t, we can then write a set of differential equations where Ni(t)

increases or decreases based on the birth and death rates b and d.

dN0(t)
dt

=− (b+d)N0(t)

dNi(t)
dt

=− (b+d)Ni(t)+2bNi−1(t) (4.4)

Intuitively we can think of each Ni being a compartment, and b and d being the rates

with which cells move from one compartment to another or are lost from the system.

Cells can be lost from a compartment via death or via a birth event, where for each

birth event in compartment i− 1, 2 cells are gained in compartment i. Equations

(4.4) have the following solution, given the initial condition N0(0) = 1.

N0(t) =e−(b+d)t

Ni(t) =
(2bt)i

i!
N0(t) (4.5)

The pdf of this system can easily be found by recognising that the total population

grows as e(b−d)t , and dividing equation (4.5) by this expression.

Pi(t) =
(2bt)i

i!
e−2bt (4.6)

This is a poisson distribution with mean 2bt. Figure 4.8 shows the distribution of
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Figure 4.8: Distribution of number of divisions for a tumour growing to size 220. Red line
is the theoretical distribution predicted by (4.6)

the number of divisions from a stochastic simulation where a tumour is grown to

size 220 along with the theoretical predictions from equation (4.6). If t is in units

of tumour doublings then b = log(2), we can write the expected mean number of

divisions, Γ1 experienced by a cell after time t1 as:

Γ1 = 2log(2)t1 (4.7)

Therefore in our framework where we measure the number of divisions experienced

by the founder cell of a subclone, we can measure the most probable time (in tumour

doublings) that the subclone emerged. Returning to equation (4.3), we can now

write down an expression that relates the number of mutations present in a cell

picked at random from an exponentially growing population at time t1.

Msc = µ×2log(2)t1 (4.8)

Thus equation (4.8), solves the first part of our problem, how to measure the time

a subclone emerges, next I’ll move onto the second problem, how to measure the

relative fitness of the subclone.

With the knowledge of when a subclone emerges, we can then attempt to quan-

tify its fitness advantage. The VAF distribution provides one further piece of useful
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information; the mean VAF of the cluster tells us the frequency of the subclone in

the tumour population. Assuming the subclone starts out as a single cell in the tu-

mour mass, we then know the initial frequency fi of the subclone and the frequency

of the subclone at sampling time tend , which we will call fsc. How fast the sub-

clone expands from fi to fsc then informs us about the relative growth rates of the

host tumour population and the subclonal population, or in other words the relative

fitness.

Defining the fitness advantage of the subclone as the ratio of net growth rates

we have:

1+ s =
λsc

λhost
(4.9)

The subclone will then grow with a rate (1+ s)λhost . With this we can write down

how the subclone frequency ( fsc) changes over time, which is the ratio of subclone

population size vs total tumour population size.

fsc(tend) =
eλ (1+s)(tend−t1)

eλ (1+s)(tend−t1)+ eλ tend
(4.10)

We can solve fsc for s (by recognising that equation (4.10) is of the form y = x/(x+

c)), which gives:

s =
log( fsc

1− fsc
)+λ t1

λ (tend− t1)
(4.11)

Here I have demonstrated that we can infer t1 using equation (4.8) and also that we

can measure fsc, unfortunately however the VAF distribution contains no informa-

tion on tend . However we can estimate tend from estimating the population size of

the tumour, which for a 5cm tumour will be≈ 1010 cells. tend can then be calculated

via 2tend = (1− f )1010. In fact provided we assume a sufficiently (and realistically)

large population size of > 109 then the choice has minimal impact.

Taken together the VAF distribution allows us to measure the mutation rate

of the tumour (µ), the frequency of a subclone ( fsc) and the number of mutations

present in the first cell of a subclone (Msc) and, using equations (4.3) and (4.11), in-

fer the time the subclone emerges and the relative fitness advantage of the subclone
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Figure 4.9: Summary of how the VAF distribution encodes information on the evolutionary
dynamics.

compared to the host tumour population. A summary of how these measurements

are acquired from the VAF distribution is provided in Figure 4.9.

4.4.1 Multiple subclones

The above model only applies to the case of a single subclone, some cancers may

however have multiple subclonal populations. In the case where we have multiple

subclones, these can be nested, ie one subclone emerges from within another or

independent, see Figure 4.10 for an illustration.

First of all I’ll consider the simpler case where clones are not nested, ie two

clones arise independently within the host population. We will then have 2 equa-

tions describing how the frequency of the 2 clones increases in time.

f1(tend) =
eλ s1(tend−t1)e−λ t1

eλ s1(tend−t1)e−λ t1 + eλ s2(tend−t2)e−λ t2 +1
(4.12)

f2(tend) =
eλ s2(tend−t2)e−λ t2

eλ s1(tend−t1)e−λ t1 + eλ s2(tend−t2)e−λ t2 +1
(4.13)
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Figure 4.10: A case of nested subclones is shown on the left, independent subclones are
shown on the right.

We then arrive at the following for s1 and s2:

s1 =
log( f1

1− f1− f2
)+λ t1

λ (tend− t1)
(4.14)

s2 =
log( f2

1− f1− f2
)+λ t2

λ (tend− t2)
(4.15)

In the case of nested subclones, one subclone will grow inside the other thereby

increasing the frequency of the major subclone. We define subclone 1 as the major

subclone (t1 < t2) with subclone 2 growing inside, this also necessitates (s1 < s2) .

The frequency of subclone 1 will therefore be given by:

f1(tend) =
N1(tend− t1)+N2(tend− t2)

N1(tend− t1)+N2(tend− t2)+NH(tend)
(4.16)

Proceeding as before we get:

s1 =
log( f1− f2

1− f1
)+λ t1

λ (tend− t1)
(4.17)

s2 =
log( f2

1− f1
)+λ t2

λ (tend− t2)
(4.18)
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We also have a modified equation for the time the subclones emerged.

M1 = µΓ1 (4.19)

M2 = µΓ2 (4.20)

Here Γ2 is the number of divisions between t1 (time subclone 1 appears) and t2 (time

subclone 2 appears). Meanwhile as subclone 1 is growing faster by a factor 1+ s1,

converting the number of divisions requires including this factor for the second

subclone.

Γ2 = t1 +(1+ s1)×2log(2)t2 (4.21)

While for t1, we have as before:

Γ1 = 2log(2)t1 (4.22)

4.5 Statistical inference to measure s and t1

To be able to measure s and t1 in sequencing data from human cancers we need

some way to extract all relevant parameters from the VAF distribution. One ap-

proach would be to use some kind of clustering approach as is commonly employed

to this type of data, however these approaches are often prone to over clustering

as was shown at the beginning of this chapter. An alternative approach that I take

here is to use the simulation framework together with Approximate Bayesian Com-

putation to fit the data and extract the relevant parameters. This has the benefit

of directly modelling all within clone passenger mutations that can skew traditional

clustering approaches and it is also straightforward to directly model the sequencing

noise. Furthermore, using a stochastic simulation to fit the data means we can cap-

ture any stochastic effects in tumour growth, this is potentially important as tumour

formation is a single realisation of a stochastic process, fitting some distribution that

reflects average dynamics may miss out on some of these effects. Specifically, the

algorithm used was Approximate Bayesian Computation Sequential Monte Carlo
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(ABC SMC) with model selection, which is described in detail in Chapter 2. Us-

ing the model selection algorithm allows us to remain agnostic about the clonal

structure of the tumour and to infer this directly from the data while simultaneously

estimating the parameters governing the evolution of each subclone (s and t1) and

the parameters of the tumour as a whole (µ , Mc). I give equal prior probabilities

to the number of subclones, however the more complex models with subclones are

naturally penalised in this approach due to models with selected subclones having

larger numbers of parameters.

ABC approaches often require a large amount of simulations to be performed

to get good fits to the data. A number of choices and simplifications were made

with the aim of making the simulations as computationally efficient as possible.

4.5.1 ABC SMC implementation

As our distance measure I used the euclidean distance between the cumulative dis-

tributions (unnormalized) of the target data and the simulated data. The cumulative

distribution holds information on the shape of the distribution and also applies some

degree of smoothing to mitigate sampling noise, making it an appropriate choice.

Implementing the ABC SMC with model selection algorithm requires choosing the

model perturbation kernel, the particle perturbation kernel and the prior distribu-

tions for parameters. The kernel ensures that the algorithm explores the space of

both models and parameter values fully by perturbing the model and model param-

eters at each step. For the model perturbation kernel I used the following, where m∗

is the sampled model and m is the perturbed model.

KMt(m|m∗) =

0.6, if m = m∗

0.4, if m 6= m∗
(4.23)

I used uniform parameter perturbation kernels with limits determined from the range

of parameter values from the previous population (Filippi et al., 2013), for parame-
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ter k, KPt(k|k∗) =U(ki−σ ,ki +σ), where σ is given by:

σ =
1
2
(max(k)t−1−min(k)t−1) (4.24)

Prior distributions and constants for all the parameters are shown in table 4.1.

Finally, the ABC algorithm stops when one of the following criteria has been met.

1. εt−εt−1
εt

< 0.05

2. Completed 5×106 simulations

3. 200 hours of computation time

I found that the type of data (WXS vs WGS) and the maximum number of

clones I attempted to fit had a large effect on the computational cost and the time

needed to get good fits. The above criteria were found to be sufficient for fitting

WGS data with up to 2 subclones. Fitting WXS data with up to 1 subclone may for

example only need 105 simulations to converge to a reasonable fit.

4.5.2 Computational efficiency

One of the challenges of ABC simulation based inference is being able to simulate

the model efficiently enough so that potentially many millions of simulations can

be performed in order to explore the parameter space fully. In an attempt to make

the simulation as computationally efficient as possible I made a number of simpli-

fications. Firstly, I neglected cell death in the model, as high cell death means a

larger number of time steps are needed to reach a certain tumour size when com-

pared to setting cell death to 0. As units of the parameters affected by cell death (the

mutation rate and time) are all normalized by tumour doubling time this does not

affect the inference on these parameters. Neglecting cell death does however reduce

the stochasticity in the model, but despite this I found that the fitting methodology

1+s µ clonal mutations t1 Nmax birth rate death rate

[1, 26.0] [0.1, 500] [1, 5000] [3, 20] 104 log(2) 0.0

Table 4.1: Limits on prior distributions and constant values for all parameters
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could appropriately capture the noise. Another simplification that was made was to

simulate only small tumours when fitting. When fitting to the data, the aim is to

infer all parameters that are encoded in the VAF distribution, tumour size is one pa-

rameter that cannot be inferred directly from the distribution and must be assumed.

The only requirement in terms of population size is that the tumour grows large

enough for enough mutations to accumulate prior to the expansion of any selected

for subclone, the initial exploration of the parameter space indicated that subclones

generally emerge early during tumour growth. Simulating large tumours with rel-

atively small relative fitness advantages is equivalent to simulating small tumours

with large fitness advantages. Opting for the latter vastly reduces the computational

cost per simulation and selection coefficient values can be scaled appropriately us-

ing equation (4.11). In summary, the fitting methodology is then to use the ABC

inference to measure the mutation rate, the number of clonal mutations and the

number of mutations in any subclone and then to use equations (4.8) and (4.11) to

construct posterior distribution for 1+ s and t1 for realistically large tumours.

The final simplification that was made was to include at most 2 subclones in the

inference scheme as the addition of each subclone results in an ever larger parameter

space to search. By eye all the data that was used appeared to have at most 2

subclonal populations. Furthermore I found that identifying 2 subclones with high

confidence required ultra high-depth sequencing of >100X, identifying more than

2 subclones is likely therefore to require even higher depths, so restricting model to

2 subclones was deemed appropriate given the quality of data available.

4.5.3 Accurate recovery of parameters from simulated data

To confirm that the inference methodology correctly identifies the clonal compo-

sition of a tumour and the parameters of interest in what can be noisy sequencing

data I first assessed the ability to accurately recover input parameters and the clonal

composition from datasets generated from the model. First, I generated a virtual

cohort of tumours with a single subclone, tumours were all grown to a size of 106

cells, with different mutation rates, different death rates, different selective advan-

tages and subclone emergence times. The above fitting methodology was applied
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Figure 4.11: % Error for all inferred parameters from a cohort of synthetic datasets where
the ground truth is known.

and the percentage error on inferred vs known parameter values was calculated.

This showed that the inference scheme on average accurately recovers the input

parameters despite some of the simplifications made, Figure 4.11.

Next, I confirmed that the the inference scheme could correctly infer the clonal

structure of tumours, suspecting that the depth of coverage could in particular have

an effect on the ability to resolve distinct subclones. Again I generated a virtual

cohort of tumours, this time for 3 clonal architectures (neutral, 1 and 2 clones) at

different depths (25X, 50X, 100X, 200X, 300X) and sequencing strategies (whole

genome sequencing (WGS) vs whole exome sequencing (WXS)). 10 simulations for

each of the different clonal architectures were generated and the same simulations

then subjected to differing sampling procedures for a total of 300 virtual tumours at

the prescribed sequencing depths and strategies. The parameters for sampling for

the sequencing strategies were tuned so that the observed mutation burdens were of

the order 100/exome and 10,000/whole genome at 100X depth respectively which

is consistent with my observations of such data.

Figure 4.12 shows an example simulated dataset for each of the clonal archi-

tectures (neutral, 1 and 2 clones) with fitted distributions in red. This demonstrates

that the inference scheme accurately fits the data and can infer the correct subclonal

composition (inset shows posterior probabilities for the number of subclones). Ap-
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plying the methodology to all 300 simulated datasets it was possible to accurately

recover the clonal structure provided the depth of sequencing was sufficiently high.

This is perhaps not surprising given that the subclonal peaks that are a readout of

the clonal structure become progressively obscured as the depth decreases, shown

in Figure 4.13.

4.6 Application to multiple cancers from different

types

Having validated the ability to resolve evolutionary dynamics from the VAF distri-

bution of sequenced tumours and explored the limitations of the approach, next I

applied the method to a blood cancer, a lung cancer, a breast cancer, a cohort of

metastases and the cohort of colon and gastric cancers from the previous chapter.

The blood cancer sample was an acute myeloid leukaemia sample subjected to 300X

whole genome sequencing with extensive validation of mutation calls. The muta-

tion calls for the original study were used for the analysis (Griffith et al., 2015). The

lung cancer samples came from a multiregion sequencing study of lung adenocarci-

noma, where multiple samples from the same tumours were subjected to high depth

exome sequencing (Zhang et al., 2014). The breast cancer sample is the sample dis-

cussed at the beginning of this chapter and shown in Figure 4.1. The colon cancer

cohort and gastric cancer cohort are the same data used for the previous chapter.
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Figure 4.12: Model fits to a neutral tumour, a tumour with 1 subclone and a tumour with
2 subclones. Red lines show the mean value and shaded red area the 95%
credible interval, showing the model accurately recapitulates the data. In-
sets show the posterior probabilities for each of the subclones showing the
inference framework accurately recovers the correct clonal structure.
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Figure 4.13: A cohort of 30 synthetic tumours with 0, 1 and 2 subclones were generated and exposed to different sequencing strategies and depths. Left
panels show how the clonal strcuture become progressively obscured as the depth decreases. Right panel shows the results of applying the
statistical inference framework to these data demonstrating that high depth sequencing is required to resolve clonal structures in many
cases.
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Data from the metastases study were kindly provided by the authors (Robinson et

al., 2017).

4.6.1 Data analysis

Mutect2 was used to call mutations in the breast cancer sample and lung cancer

samples. The sequenza algorithm was used to infer allele specific copy number

profiles for the breast cancer, lung cancers and gastric cancers. This allowed us to

remove mutations falling in non-diploid regions of the genome, therefore mitigat-

ing the effects of copy number aberrations on the measured mutation frequencies.

Sequenza also provides estimates of the cellularity of the sample, this was used to

correct the VAF of mutations, such that a clonal mutation would be expected to be

observed at VAF = 0.5. No copy number alterations were observed in the AML

sample and cellularity estimates were provided in the original analysis. To remove

copy number aberrations from the colon cancer cohort, paired SNP array data was

used to identify non-diploid regions. For the lung cancers, colon cancers and gastric

cancers samples with cellularity < 50% or where the number of mutations was less

than 20 following filtering for diploid regions were removed. All other data was

obtained from the original publications. For the metastases cohort the cellularity

of the sample was fitted using the ABC approach. To further refine the cellularity

estimates and measure the degree of dispersion in the data, both Binomial and Beta-

Binomial models were fitted to the clonal cluster in the VAF distribution. Given a

mutation i has a read count fi, depth Di then the Beta-Binomial model is given by,

fi = BetaBin(n = Di, p = 0.5,ρ). (4.25)

p = 0.5 as we are fitting the clonal cluster, from fitting this model I could estimate

the degree of dispersion ρ and tweak the cellularity estimates such that p = 0.5.

Fitting was performed using Markov Chain Monte Carlo. I fitted these models to

all our data and used the dispersion parameter ρ in the sampling algorithm.
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4.6.2 Results

I first applied the method to the AML, lung and breast cancer cases. Figures 4.14A-

H shows the data and model fits for the most probable model. Bayesian model

selection showed that the AML and breast cancer samples had evidence of 2 sub-

clones, while 1 lung cancer sample had evidence of a subclone with the other 4

showing higher probability for the neutral model (0 subclones), Figure 4.14H. From

the posterior distribution of the parameters, see Figure 4.16, subclones in these data

all emerged relatively early (during the first 15 tumour doublings) and had relative

fitness advantages of greater than 20%, with some as high as 100% ie a two fold in-

crease in growth rate. Inferred mutation rates were variable, in particular the AML

samples showed a mutation rate 100 fold less than the breast cancer. These obser-

vations are consistent with AML having a low mutation burden compared to breast

and lung cancers (Lawrence et al., 2014). For the AML case, putative subclonal

drivers in FLT3, IDH1 and FOXP1, all known drivers of carcinogenesis were found

in the subclonal clusters providing a genetic mechanism for the increased fitness of

these subclones. In the breast cancer case, the original study showed that one of

the clusters had a subclonal deletion of chromosome 13 (Nik-Zainal et al., 2012b).

Meanwhile in the lung cancer case, the sample from patient 4990 that appeared to

harbour a fitter subclone showed evidence of copy neutral LOH on chromosome 13,

see Figure 4.17 for copy number profiles for all 5 samples.

Next I applied the model to the whole exome sequenced colon cancer cohort,
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Figure 4.17: Copy number profile of the lung adenocarcinoma samples showing sample
4990-12 appears to have a subclonal loss on Chr3.
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Figure 4.18: Proportions of each type identified as neutral or non-neutral, A. For non-
neutral cases the inferred time subclones emerged and their fitness is shown
in B and C

the whole genome sequenced gastric cancer cohort and the whole exome sequenced

metastases cohort. Data and model fits are shown in Figures 4.19, 4.20 and 4.21.

6/17 of the gastric cancers, 16/70 colon cancers and 58/113 of the metastasis cohort

showed evidence of subclonal selection, again with subclones emerging early and
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Figure 4.19: Colon cancer model fits. Grey histograms are empirical VAF distributions,
line is mean value from 500 simulations that fitted the data and shaded area
is 95% interval. Blue tumours are those identified as neutral and red as those
with subclonal selection. For those with a subclone, dashed line shows the
mean of the subclonal cluster. Title of each panel shows sample name and
probability of the assigned subclonal structure.
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having high fitness advantages 4.18. A higher proportion of the colon and gastric

cancer samples were called as neutral with this method in comparison to the previ-

ous chapter. The principal reason for this is likely that using a stochastic simulation

as was done here can capture deviations from the deterministic model presented in

the previous chapter that are due to stochastic effects, ie neutral drift rather than

selection, this phenomenon is more likely when the death rate in the tumour is high.

These results suggest the possibility that tumours that are classified as non-neutral

with the deterministic model but as neutral with the stochastic model have higher

death rates, and also demonstrates that the emergence of subclonal clusters may not

always be due to selection. Making the connection between the two approaches

I found a significant correlation between the posterior model probabilities derived

from the ABC approach and the R2 and area between curves metric, while inference

on the mutation rates were also highly correlated, Figure 4.15.

4.6.3 Predicting tumour evolution

Given that the effects of selection are deterministic, being able to measure the fitness

advantage means we should be able to predict how the size of subclones might

change over time. If one population in the tumour is growing at a faster rate than

the rest of the tumour we can say with some confidence that given sufficient time and

in the absence of further perturbations, that population will become the dominant

clone. Mutations and drift on the other hand are stochastic process and are thus more

difficult or even impossible to predict. For example imagine we have sampled a

tumour at some time t1 and found a subclonal population at a frequency f1 within the

tumour and have measured its fitness, we can then ask how long before that tumour

becomes dominant and reaches a frequency f2. This time ∆T can be expressed

mathematically by the following (found from solving equation (4.10) for time),

∆T =
log( f2

1− f2
)− log( f1

1− f1
)

λ s
(4.26)

I implemented this idea using a simulated tumour. Here I sampled the tumour and

measured the fitness and time the subclone emerged and then predicted how the
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Figure 4.20: Gastric cancer model fits. Grey histograms are empirical VAF distributions,
line is mean value from 500 simulations that fitted the data and shaded area
is 95% interval. Blue tumours are those identified as neutral and red as those
with subclonal selection. For those with a subclone, dashed line shows the
mean of the subclonal cluster. Title of each panel shows sample name and
probability of the assigned subclonal structure.
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Figure 4.21: Metastases model fits. Grey histograms are empirical VAF distributions, line
is mean value from 500 simulations that fitted the data and shaded area is
95% interval. Blue tumours are those identified as neutral and red as those
with subclonal selection. For those with a subclone, dashed line shows the
mean of the subclonal cluster. Title of each panel shows sample name and
probability of the assigned subclonal structure.
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subclone frequency would change over time. Figure 4.22B shows that the predic-

tion and ground truth match well, Figure 4.22A shows the model fits to the tumour

when it was sampled. The question then is how might these measurements be use-

ful? One application might be in measuring the time scales of treatment resistance.

Suppose a genetic screen has found a suspected treatment resistant population, mea-

suring the fitness of the treatment resistant subpopulation could allow us to infer the

length of time before this population sweeps through the population and becomes

dominant. Another utility would be in implementing ecological or evolutionary in-

spired treatment strategies such as adaptive therapy. Here the goal is to maintain the

coexistence of (potentially treatment resistant) subclones rather than to eradicate

the tumour completely, and avoid selecting for the most aggressive cells (Gatenby,

2009; Enriquez-Navas et al., 2016). With the kind of measurements described here,

these type of treatments could be exactly optimised to based on the relative fitnesses

of competing subclones.

4.7 Discussion

In this chapter I’ve shown how the frequency distribution of mutations from bulk

sequencing data can be used to measure the evolutionary dynamics of subclones.

Using a mathematical model of cancer growth I confirmed that subclonal clusters of

mutations in the frequency distribution do arise due to selection and furthermore that

properties of these clusters can be used to measure the time they emerge and their

relative fitness advantage. This was validated using synthetic data generated from

the model and then applied to sequencing data from human cancers. Importantly,

the model demonstrates that a low frequency peak, or 1/ f tail is a pervasive feature

of bulk cancer genome sequencing due to the constant accumulation of mutations

within all clones as the tumour grows.

The relative fitness advantages I measured at first appear strikingly high, par-

ticularly in relation to classical population genetics. The high values reported here

are however, perhaps not unprecedented. Mutant KRAS and APC stem cells in the

mouse intestine have been shown to have a 2-4 fold increase in the probability of
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fixing in the stem cell niche compared to wild types (Vermeulen et al., 2013), while

TP53 mutants in mouse epidermis show 10% bias toward self renewal (Klein et al.,

2010). Recently, TP53 mutants in cultured embryonic stem cells were measured to

have double the growth rate of their wild type counterparts (Merkle et al., 2017).

Furthermore the values reported here at the extreme end of the values measured in

experimental evolution systems where most values are measured to be small (Lenski

& Travisano, 1994; Kassen & Bataillon, 2006). Thus, it may be the case that cur-

rent sequencing standards only allow the detection of highly selected clones, and

that many so called mini-drivers are present in a tumour but have minimal effect on
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Figure 4.22: A VAF of in silico tumour sampled at 105 cells was used to measure the fit-
ness and time of emergence of a subclone. B These values were then used to
predict the spread of the subclone as the tumour grew to 107 cells, showing
the predictions matched the ground truth. Predictions were made by extrap-
olating the posterior distribution of 1+ s using equations in the main text. C
Using the same approach in the AML sample, where I measured 1+ s, t1 and
t2, the model would predict that clone 2 would become dominant within 3-4
further tumour doublings while clone 1 may be too small to be detected.
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the clonal composition, and large effect subclones are required to dramatically al-

ter the subclone architecture (Castro-Giner et al., 2015). Indeed, modelling results

show that if selection is too weak it is unlikely to be observable in bulk sequencing

data, corroborating other studies (Sottoriva et al., 2015; Sun et al., 2017). A limi-

tation of the approach is therefore that only those subclones that appear in a narrow

window can be accurately measured as exemplified in Figure 4.7.

The model presented here is of course an abstraction of the dynamics during

tumour growth. In particular, the model does not include spatial effects of the evo-

lutionary process which may effect the accuracy of our measurements (Fusco et

al., 2016). In particular our framework cannot be used to quantify the degree of

mixing within the tumour cell population, a phenomenon which has been shown

to be a signature of effectively neutral dynamics (Sottoriva et al., 2015). Our re-

sults however do demonstrate heterogeneity in the evolutionary process, multiple

samples from the same tumours showed different evolutionary dynamics with one

sample from the lung cancer dataset appearing to harbour a subclone while 4 oth-

ers were consistent with a neutral model. Integrating spatial information into this

type of approach could potentially lead to better estimates and more power to de-

tect subclones, however given little is known on the dynamics of growth at a spatial

scale this is currently challenging to implement. I also neglected the effect of cell

death and assumed a small population size when fitting to data using the simulation.

This was deemed an appropriate compromise between computational efficiency and

model complexity. In future the ABC algorithm could be parallelised to enable more

simulations per tumour or alternatively a statistical model which includes all rele-

vant aspects such as the 1/ f tail could be implemented that extracts all relevant

parameters. This would overcome certain limitations of the ABC approach such as

the large computational cost required to run the analysis. A statistical model which

takes into account neutral 1/ f distributed mutations together with an approach such

as Dirichlet clustering would likely be orders of magnitude faster and would allow

the approach to be applied in a wide range of circumstances.

This work also demonstrates the potential importance of stochastic effects dur-
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ing tumour growth. Deviations from the deterministic model of neutral tumour

growth can arise due to drift, and can in some cases lead to subclonal clusters, in

particular if the death rate is high. This leads to a high proportion of colon and

gastric cancers being classified as neutral compared to when only the deterministic

model was applied to the data.

In summary this chapter has shown how integrating dynamical models of can-

cer evolution with genomic data enables quantifying the evolutionary process during

tumour growth and facilitates mechanistic prediction with many potential applica-

tions.

4.8 Acknowledgements
This project was conducted in collaboration with Trevor Graham and Chris Barnes

(my PhD supervisors), Andrea Sottoriva and Benjamin Werner as well as Timon

Heide and Christina Curtis. I developed the mathematical framework, analysed the

data and fitted the models with support from the above people. This chapter is a

version of the work first presented in the following publication:

Williams MJ, Werner B, Heide T, Curtis C, Barnes CP, Sottoriva A, Graham

TA. Quantification of subclonal selection in cancer from bulk sequencing data. Na-

ture Genetics. 2018 Jun;50(6):895?903.



Chapter 5

Population dynamics of dN/dS

5.1 Introduction

In this chapter I will take a different approach to the previous chapters and explore

dN/dS as a method to identify selection in cancer genomes, although, as will be-

come apparent, results from the previous two chapters can help inform value of

dN/dS and how they should be interpreted. dN/dS has its roots in comparative

species evolution as a method to uncover genetic loci under selection. In recent

years the approach has been adapted and applied to data from somatic human tis-

sues (both cancer and non-cancer) in an attempt to uncover signatures of selection

(Martincorena et al., 2015; Wu et al., 2016; Martincorena et al., 2017; Greenman

et al., 2006; Yang et al., 2003; Weghorn & Sunyaev, 2017). The intuitive idea is

that synonymous mutations can be used to estimate the rate of neutral substitutions

(dS) and then by quantifying the abundance of non synonymous substitutions (dN)

relative to this baseline, positive or negative selection at the level of the genome can

be inferred. An over representation of non-synonymous mutations (dN/dS >1) is a

signature of positive selection as these are mutations that are expected to have func-

tional consequences at the protein level. Meanwhile an under representation of non

synonymous mutations (dN/dS<1) is indicative of negative or purifying selection.

dN/dS = 1 is the neutral expectation where the rate of non-synonymous and syn-

onymous mutations are equivalent. dN/dS is an alternative approach to identifying

selection in cancer that in theory does not rely on using the size of lineages and
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their expectation under various evolutionary models. However I will show in this

chapter how the population dynamics can influence measurements of dN/dS and

confound its interpretation in cancer genomes. Another difference to the approach

I have taken thus far is that dN/dS in cancer genomics is generally applied to co-

horts of tumours and genome wide dN/dS or gene-level dN/dS across the cohort is

reported. This differs from inferring levels of selection or the lack of it thereof on a

sample by sample basis as was done in the previous two chapters.

dN/dS was originally developed to investigate evolutionary pressures on the

genomes of divergent species (Goldman & Yang, 1994). Importantly, in this case

dN/dS is a measure of the rate of substitutions across divergent lineages, or in other

words the rate at which mutations arise and subsequently fix. Consideration of a

Wright-Fisher process at long time limit then provides a straightforward mapping

of values of dN/dS to the selection coefficient s (Nielsen & Yang, 2003):

dN
dS

=
2Ns

1− e−2Ns (5.1)

Where N is the population size and s is the selection coefficient. Equation (5.1)

is derived by considering the fixation probabilities of new neutral and non-neutral

mutations and thus is appropriate for species evolution where genetic differences

represent fixation events.

Later work used the same methodology to look at sequence evolution within

the same species, such as polymorphisms within humans. However it has been

shown that the interpretation and inference of selection with dN/dS when applied

to segregating polymorphisms within the same species is not straightforward (Mu-

gal et al., 2013; Kryazhimskiy & Plotkin, 2008; Peterson & Masel, 2009). Over

shorter time scales the dynamics of the process of fixation/loss ie the population

genetics of the process becomes important. Kryazhimskiy & Plotkin, 2008 found

that this means inferring the intensity of selection from dN/dS is problematic. That

is the straightforward mapping between dN/dS and s given by equation (5.1) no

longer hold. This is particularly striking in the case of large fitness effects and high

mutation rates where dN/dS can be < 1 even for strong positive selection. The intu-
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ition behind this contradictory result is that if an allele is undergoing a rapid sweep

through a population then two individuals sampled randomly are likely to carry the

allele (same dN in both samples) while neutral synonymous mutations may have

accumulated independently in the two individuals (different dS).

This cautionary tale should serve as a warning in applying dN/dS in cancer

cell populations given that time scales are short and that many mutations in cancer

are only found in a subset of the cancer cells. This makes the process more qualita-

tively similar to segregating polymorphisms within species than fixed substitutions

in distantly related species. Furthermore, peculiarities of evolution unique to cancer

may introduce further difficulties (as well as advantages) with regard to the appli-

cation of dN/dS to infer selection in cancer genomes. In particular, cancers grow,

which as has been discussed in the previous chapters dilutes the effect of selection

and much of the theoretical work devoted to dN/dS assume a fixed size Wright-

Fisher model (Yang & Bielawski, 2000). Despite some of these concerns, using

dN/dS in cancer also has some properties that make it appealing. Firstly there is no

recombination in cancer so this does not need to be taken into account. Secondly,

the ancestral genome is always known, as mutations in cancer are found by compar-

ing to a normal reference sample. In species evolution this must be inferred from

phylogenetic methods.

This chapter will focus on developing a model of dN/dS that takes into account

the population dynamics of cancer. I will use stochastic simulations and theoreti-

cal models based on branching processes to to derive the expected distribution of

dN/dS. In other words the goal is to derive an equivalent expression to equation

(5.1) applicable to cancer. I will then apply this model to data from TCGA.

5.2 Methods

To investigate the role of population dynamics in the interpretation of dN/dS in

cancer I modified and extended the simulation presented in the previous chapter so

that driver mutations (s 6= 0) occur stochastically at rate µd , while the passenger

mutations (s = 0) occur with rate µp. Driver mutations provide an increased fitness
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advantage for cells and fitness effects combine multiplicatively, such that a cell with

n drivers has fitness advantage (1+s)n. Similarly to the model in the previous chap-

ter, at time 0 a single cell (with no mutations) begins a birth death process which

terminates when the population has reached some size N. A measure of dN/dS can

then be obtained by counting the numbers of each type (Nd , Np) of mutation in the

cancer and scaling by their respective mutation rates.

dN
dS

=
Nd/µd

Nd/µd
(5.2)

This represents an idealised scenario where all non-synonymous mutations are

drivers (ie they provide a fitness advantage), while this is almost certainly not true

in cancer it represents a straightforward scenario with which to explore these dy-

namics. It is also possible with this model to explore negative selection by setting

the fitness effect of mutations to be < 0. This simulation based model will be used

to verify the prediction of a theoretical model of dN/dS for cancer evolution and to

test its assumptions which I’ll now derive in the next section.

5.3 Results

5.3.1 dN/dS for exponentially growing populations

Here I’ll develop a theoretical model for dN/dS which is applicable to cancer evo-

lution. The aim is to derive an equivalent equation to equation (5.1). Such a model

needs to take into account the population growth dynamics and the existence of sub-

clonal mutations which may rise and fall in frequency over time due to selection or

drift. Fortunately, the theoretical framework of these dynamics (the Luria-Delbrück

distribution and its extensions) has been well studied and can be adapted for cancer

evolution. We have already encountered this distribution in Chapter 3 where using

a deterministic model we showed that for neutral mutations, the cumulative number

of mutations with a frequency > f follows a 1/ f power law. It is also possible to de-

rive the expected distribution for non-neutral mutations under certain assumptions.

Here I’ll follow closely the model outlined in Kessler & Levine, 2014.
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Kessler & Levine use branching processes to derive expressions for what they

refer to as the clone size distribution for both neutral and non-neutral mutations (un-

der certain limiting assumptions), however these expressions may more accurately

be called the site frequency spectrum, as these expressions represent the expected

number of mutants at a given clone size and depend on the mutation rate, and are

therefore equivalent stochastic expressions to the model in Chapter 3. The deriva-

tion of some of these expressions is rather lengthy so I will discuss without proof

the most relevant results. Briefly, solutions can be obtained for the relevant master

equations using generating functions. I will call Cneut
N (m) the expected number of

lineages (or clones in the nomenclature of Kessler & Levine) of size m, given a total

population size N for neutral mutations. Here m is an integer valued number, rather

than a frequency as in Chapter 3. This exhibits a fat-tailed 1/m2 dependence which

is well known in literature concerned with the Luria-Delbrück distribution (Zheng,

1999):

Cneut
N (m) =

µpN
β

1
m2 (5.3)

Here, µp is the neutral passenger mutation rate per division and as before β is

the probability of a lineage surviving. In terms of a birth rate b and death rate d,

β = (b−d)/b. Note that we recover the 1/m (or equivalently 1/ f ) dependence of

Chapter 3 by integrating the above lineage size distribution over m,
∫

Cneut
N (m)dm∼

1/m. Kessler & Levine also derive expressions for the case when mutants have

different growth rates compared to wild types. As in the previous chapter I’ll define

s as the ratio of net growth rates (λ ) between wild type and mutants (or drivers)

1+s = λm/λw. The site frequency spectrum for this two-type process with different

growth rates is also found to be power law tailed but with exponent dependent on

the relative fitness of the mutant population s.

Csel
N (m) =

Nµd

β

1
1+s

d

bp

bd

Γ(2+s
1+s)

m
2+s
1+s

(5.4)

Where Γ(x) is the gamma function, and bp is the birth rate of the wildtype (ie

the neutral passengers) lineages and bd is the birth rate of lineages with a driver
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Figure 5.1: Theoretical site frequency spectrum from equations (5.4) and (5.3) compared
with simulations. Solid lines are theoretical results, points are simulations.
1,000 simulations were performed and the mean number of clones of each size
m calculated. Theoretical results match simulations well for µN ∼ 1 (left).
Simulation parameters: N = 500 and µ = 0.004 on the left and µ = 0.1 on the
right.

mutation. As a sanity check we note the following:

lim
s→0

Csel
N (m)≈Cneut

N (m) (5.5)

For neutral mutations equation (5.3) is valid for all mutation rates, however this is

not the case for equation (5.4). When s 6= 0 and the mutation rate is high there is a

significant probability of double mutants which are not accounted for in the above

model. For µN ∼ 1 and smaller equation (5.4) is a good approximation of the clone

size distribution, but not for µN � 1. I checked the validity of these limits via

simulations, see Figure 5.1. Assuming small mutation rates is not an unreasonable

assumption for the emergence of driver mutations in cancer as the population size

is large and the small number of driver mutations per tumour (<10) suggests the

driver mutation rate is small.

Note that there is a dependence on the mutation rate in equations (5.3) and

(5.4). The goal of dN/dS approaches is to quantify the excess or deficiency of

mutations due to selection taking into account mutation rate variability. In dN/dS
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Figure 5.2: A Simulations recapitulate predictions from Equations (5.6) and (5.7) that
dN/dS should increase as a function of VAF. Each point is dN/dS calculated
from a cohort of 5,000 tumours. Lines are regressions through the points. Sim-
ulation parameters: passenger mutation rate: 1/division driver mutation rate:
0.01/division, maximum population size: 104, birth rate of host = log2. Driver
mutations increase birth rate of clone. B Extracting the regression coefficient
enables accurately estimating the selection coefficient, apart from when s is
strongly negative. Error bars are 95% confidence intervals from the regres-
sions.
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methods, care is taken to accurately account for variability of mutation rates across

the genome and the number of sites in order to isolate the role of selection from mu-

tation. To address this in this theoretical approach we can take the ratio of equations

(5.3) and (5.4) and normalize for the mutation rate to derive our dN/dS formula:

dN
dS

=
Csel

N (m,s)/µd

Csel
N (m,s = 0)/µp

=
bw

bm

βw

β

1
1+s

m

Γ

(
2+ s
1+ s

)
m

s
1+s (5.6)

The expected excess increases as a function of clone size for positive selection and

decreases for negative selection. For neutral mutations (s = 0), dN
dS = 1 as would be

expected. Thus in cancer we would expect dN/dS to increase as a function of the

lineage size for positively selected mutations and decrease for negatively selected

mutations.

A straightforward way to modify equation (5.6) so that it can be directly ap-

plied to data is to linearize it by taking the log of both sides:

log
(

dN
dS

)
=

s
1+ s

log(m)+C (5.7)

This makes the gradient of the slope between when dN/dS is plotted against mu-

tation lineage size a readout of the relative fitness advantage s. The intercept C

meanwhile is a combination of many other parameters.

To confirm the predictions of equation (5.7) I used the simulation based model

to generate a number of synthetic cohorts of 5000 tumours with varying fitness

coefficients and then measured the dN/dS ratio at different lineage sizes across the

cohort. Then I could test if the predictions of equation (5.7) were valid and that

it is possible to accurately recover the selection coefficient. Figure 5.2 shows that

this was indeed the case and a positive correlation between dN/dS and cancer cell

fraction exists for positive selection and a negative correlation for negative selection.

This model neglects some potentially important features of cancers, it assumes

all mutants have the same fitness, that double (or higher order) mutants do not occur

and also neglects passengers hitchhiking to higher frequency on the back of driver

mutations. So to confirm that the excess of drivers should increase as a function of

lineage size when these simplifications are not held true and to investigate the accu-
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racy of inferring the selection coefficient when fitness is drawn from a distribution

rather than fixed I relaxed some of the assumption. I modified the simulation to gen-

erate another cohort of tumours while relaxing the assumption. The fitness effect

of a new driver mutation is now drawn from an exponential distribution with mean

given by s and multiple driver mutations can accumulate within a lineage where the

effect is multiplicative.

Figure 5.3 shows the results of using this more realistic model. In this case

we see that there is a tendency to overestimate the selection coefficient but that

this overestimation is within 20-30% of the true value suggesting that the model

represents a reasonable approximation even with some limiting assumptions.

Having developed the theory and tested it on a cohort of simulated data next I

wanted to test the theory on data. First of all however it will be instructive to discuss

one particular aspect of cancer evolution not included in the theory. The theory only

takes into account mutations that appear as the cancer grows and not any mutations

that are present in the first cancer cell that gives rise to the tumour that is ultimately

sampled. In reality cancers will have many clonal mutations (mutations present in

every cell), and given that this first cancer cell by definition has a higher fitness

and clonally expands we would expect these mutations to have dN/dS>1. This

therefore will exacerbate the trend that our theory predicts of high dN/dS at high

mutation frequencies.

Taking these two things together we can summarise how we would expect

the dN/dS ratio to change over the VAF spectrum reported by deep sequencing of

cancers. In summary we would expect high frequency mutations to have the highest

dN/dS as this is where we would expect to see clonal mutations and mutations

that have risen to a high frequency via selection. Low frequency mutations on the

other hand would be expected to have the lowest dN/dS as these mutations will be

dominated by neutral mutations where selection has not had enough time to act (as

discussed in the previous chapter). In some tumours where the fitness advantage of

a mutant is high enough and it emerges early enough we would observe mutational

clusters which would inflate dN/dS at intermediate and higher frequencies when



5.3. Results 137

over a whole cohort. We would also therefore expect that mutational clusters have

dN/dS>1.

5.3.2 TCGA data

Data from the Cancer Genome Atlas was used to test the theoretical results. It is

worth noting that this approach - looking for a correlation between lineage size and

dN/dS - is attractive for reasons related to robustness of dN/dS measurements in

addition. dN/dS measurements can be influenced by many confounding factors

which influence the baseline mutation rate, in particular mutational biases such as

those described in Alexandrov et al., 2013 will alter the baseline expectation and

need to be corrected for. This is a difficult challenge for sparse mutational data

where assigning the correct mutational bias is difficult, however as we are looking

for a trend this should be robust any such biases given that any errors associated

with them should be consistent across the VAF spectrum.

In the previous 2 chapters, to ensure there was a straightforward mapping be-

tween the size of mutational lineages and the variant allele frequency I removed

mutations falling in non-diploid regions. For this analysis however, utilising all the

mutations is important because driver mutations are known to be rare and therefore

it is likely to be important to use as much of the data as possible. This raises the

problem that in regions of the genome where there are copy number gains or losses

the straightforward mapping between VAF and lineage size is lost. Furthermore

different purity of samples across a cohort will influence any analysis done across

the whole cohort. Therefore for this analysis I converted VAF to cancer cell frac-

tion (CCF) using copy number data and cellularity estimates. For mutation i with

with variant allele frequency fi, copy number CNi at the locus and cellularity of the

tumour cT the CCF was calculated as follows:

CCFi =
CNi× fi

cT
(5.8)

TCGA data was downloaded using the TCGAbiolinks R package (Colaprico

et al., 2016). Mutation files from the Mutect2 mutation calling algorithm and copy
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number segmentation data for 9950 cancers were downloaded. Cellularity estimates

were obtained from Aran et al., 2015. I then filtered for > 2 reads reporting the

variant and > 9 reads coverage at each locus in both the tumour and normal sample

and then calculated the CCF of mutations using equation (5.8). I removed samples

where cellularity estimates were unavailable or where the cellularity was estimated

to be < 50% so that there was good power to detect low frequency variants. I also

removed cancer types that had < 100 samples. This led to 6694 samples from 17

cancer types suitable for analysis.

For all the analysis that follows mutations were binned into CCF bins so that

dN/dS as a function of mutation frequency could be investigated. For inferring

dN/dS values I used the dndscv R package (Martincorena et al., 2017). The dndscv

package applies corrections based on many potential confounding factors such as

chromatin state, gene expression level and mutational signatures. To test the theory,

dN/dS was calculated per bin and values plotted against average CCF values of

mutations within the bins on a log-log scale where we would expect to see a linear

relationship as in equation (5.7).

5.3.2.1 dN/dS across the whole genome and in cancer genes

Figure 5.4 shows this analysis for all mutations across the genome, for the majority

of cancer types there is no significant correlation (using linear regression) between

dN/dS and CCF, the only cancer types with a significant correlation are low grade

glioma (LGG) and prostate adenocarcinoma (PRAD). Next I redid the analysis re-

stricting dN/dS measurements to a set of of putative cancer genes (550 genes from

the COSMIC cancer gene census), reasoning that this should result in increased

power to detect signatures of positive selection as in (Martincorena et al., 2017).

For this restricted set of genes we do observe the predicted increase of dN/dS as a

function of CCF for all cancer types except for kidney renal papillary cell carcinoma

(KIRP), kidney renal clear cell carcinoma (KIRC) and melanoma (SKCM). From

the regressions we can extract an estimate of the selection coefficient. A summary

of this estimate across cancer types is shown in Figure 5.6. Following multiple com-

parison correction (Benjamini-Hochberg) of the p-values associated with the linear
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Figure 5.4: Exome wide dN/dS calculated as a function of CCF across cancer types. Val-
ues plotted on a log-log plot. Black line shows the linear regression line be-
tween dN/dS and CCF.

regression only 2 cancer types retained a significant (q < 0.1) correlation. However

given the regressions were performed over only 5 data points it is perhaps not sur-

prising. The fact that there appears to be a positive correlation in 14/17 cancer types

suggests that this is a genuine phenomenon.

5.3.2.2 dN/dS for cell essential genes

Recent results from both Martincorena et al., 2017 and Weghorn & Sunyaev, 2017

suggest that cancers can tolerate almost all mutations and negative selection is rare

in cancer genomes. Both these papers look for an absence of mutations as a signa-
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Figure 5.5: dN/dS calculated as a function of CCF across cancer types for 550 putative
driver mutations. Values plotted on a log-log plot. Black line shows the linear
regression line between dN/dS and CCF.

ture of negative selection. Deleterious mutations however do not necessarily cause

cell death, but rather may retard the growth compared to other cancer cells. Equation

(5.6) would predict that deleterious mutations that retard growth would be on av-

erage at lower frequencies compared to neutral mutations, thus negatively selected

mutations should decrease in frequency as a function of dN/dS as observed in the

simulation based model. To look at this, as in Martincorena et al., 2017 I looked

at dN/dS for genes classified as cell essential in Wang et al., 2015 as a function of

their lineage size. For most cancer types, this analysis revealed no significant cor-

relations, except in liver hepatocellular carcinoma (LIHC) and lung squamous cell
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Figure 5.6: Values from linear regression coefficients were used to estimate the selection
coefficient based on equation (5.7) for all cancer types in Figure 5.5, colours
donate the q-value from multiple testing of the regression p-values. Confidence
intervals show +/- standard deviation from linear regression model.

carcinoma, see Figures 5.9 and 5.10. This suggests that negative selection plays

a less important role than positive selection in line with recent result from Mart-

incorena et al., 2017 and Weghorn & Sunyaev, 2017. Summarising the estimated

selection coefficients for all cancer types across the whole exome, the cancer gene

census panel and the cell essential gene panel show that only the cancer gene panel

shows a clear departure from neutrality, Figure 5.7.

Restricting the analysis to haploid regions (logR < 1.5) does however reveal

patterns of negative selection, see Figure 5.8 which compares dN/dS for mutations

falling in diploid vs haploid regions. With this restricted set of mutations we do ob-

serve the expected decrease in dN/dS as a function of CCF for truncating mutations

in cell essential genes.
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Figure 5.7: Summary of the selection effects measured across cancer types in different sets
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Figure 5.8: Restricting the analysis to mutation in cell essential genes in haploid regions
of the genome shows the effects of negative selection across the TCGA cohort.

5.4 Discussion
Recent applications of dN/dS to cancer have shown that dN/dS is approximately

1 across the genome with a small number of genes with large dN/dS values (Wu
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Figure 5.9: dN/dS calculated as a function of VAF across cancer types for 1100 cell essen-
tial genes. Red line shows the linear regression line between dN/dS and VAF,
each plot is annotated with R2 and p-values of the linear regression coefficient.

et al., 2016; Martincorena et al., 2017; Weghorn & Sunyaev, 2017). These papers

also showed that positive selection was far more evident than negative selection

in cancer genomes. These studies however failed to consider the population ge-

netic consequence of positively or negatively selected mutations, which results in

lineages rising to higher frequency (or decreasing in frequency) than would be ex-

pected under neutral evolution and provides another layer of information that can

be incorporated into these analyses to uncover patterns of selection.

In this chapter I showed that combining comparative genomics with population

genetics can provide further insight into patterns of cancer evolution across large
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Figure 5.10: Linear regression coefficients for all statistical test from Figure 5.9, colours
donate whether regressions was significant or not. Confidence intervals show
+/- standard deviation from linear regression model.

cohorts of sequenced tumours. This approach allows for estimating the selection

coefficients of non-neutral mutations which has so far been neglected in dN/dS

approaches in cancer. These results also show that the clonality of mutations can

influence measurements of dN/dS due to the population genetics of selection during

tumour growth.

Nonetheless using dN/dS in the study of cancer evolution is a powerful method

because (rather than despite) of some of the peculiarities of cancer as an evolution-

ary system. Unlike in species evolution where two or more diverged lineages are

compared to calculate dN/dS, in cancer evolution the ancestral genome is always

known because mutations in the cancer are identified by comparing to a normal

tissue or blood sample. Another peculiarity is that there is no recombination and

therefore mutations hitchhike. Together these mitigate some peculiar dynamics that

can materialise when classical dN/dS approaches are applied to closely related lin-
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eages. For example the observation by Kryazhimskiy & Plotkin, 2008 that it is

possible to observe dN/dS < 1 for strong positive selection in some scenarios is

mitigated in cancer because the comparison is between the present day genome and

its ancestor not between the genomes of two present day lineages. Both the ana-

lytical results and simulated cohorts show that dN/dS maintains a monotonically

increasing relationship as a function of s, but considerations of the clonality of mu-

tations is important for its interpretation.

Despite these appealing properties some difficulties remain however. dN/dS

cannot elucidate evolutionary pressures on a sample by sample basis and only re-

veals properties in cohorts of cancers. Other approaches such as using the site

frequency spectrum are likely more powerful for these type of questions as demon-

strated in the previous chapter. Also as others have shown, correctly accounting

for mutational biases across the genome is important for having unbiased esti-

mates which can be challenging. Also some care is needed in interpreting selec-

tion coefficients like we measure here, firstly not all non-synonymous mutations are

pathogenic so the inferred selection coefficients are averages across both pathogenic

and non-pathogenic mutations. Furthermore synonymous mutations may in some

cases be pathogenic and non-neutral (Bailey et al., 2014). Nevertheless the results

here demonstrate that a combination of population genetics and comparative ge-

nomics results can help identify signatures of selection across cancer genomes.





Chapter 6

Stem cell dynamics in the human

colon

6.1 Introduction

Thus far in this thesis I have used models of population cell dynamics to measure

evolutionary processes in cancer. In particular the focus has been on the dynam-

ics post transformation, ie how do evolutionary processes shape the cancers we

ultimately observe in the clinic or lab given that they descend from a single ances-

tor some time in the past. This however says little about the population dynamics

pre-transformation and in particular how mutations in physiologically normal tissue

(may) alter the population dynamics as the tissue progresses to a malignant state.

This chapter will explore these processes, with a focus on the architecture of stem

cell populations in the colon. Understanding how stem cells in the colon regulate

cell turnover in homeostasis is crucial for understanding how this process is dysreg-

ulated as tissues progress to cancer.

The colon is an ideal tissue system to investigate the population dynamics in

normal tissue as it has a well characterised stem cell population. During normal

physiological conditions the colonic epithelium is made up of small invaginations

in the lining of the epithelium. These finger like protrusions contain cells respon-

sible for the uptake of nutrients and the transport and extrusion of waste, the two

principal functions of the intestine. Due to the harsh environment encountered in



148 Chapter 6. Stem cell dynamics in the human colon

the intestine, the tissue undergoes continuous renewal. The entire epithelia is re-

placed over the course of a week (Vermeulen & Snippert, 2014). This renewal is

facilitated by a population of intestinal stem cells that reside at the base of the crypt.

Colonic stem cells were first identified in vivo using lineage tracing experiments in

mice, where a genetic marker such as a fluorescent protein is induced in a candidate

stem cell and then followed over time (Blanpain & Simons, 2013). These lineage

tracing experiments, showed that cells residing at the bottom of the crypt expressing

the LGR5 marker, were capable of self renewal and were multipotent, that is their

progeny could give rise to all cell types within the crypt (Barker et al., 2007), thus

satisfying the necessary condition of stemness. Later lineage tracing experiments

demonstrated that multiple stem cells reside at the bottom of the crypt and that these

cells are all equipotent, and stochastically replace each other in a process analogous

to neutral drift in population genetics (Lopez-Garcia et al., 2010; Snippert et al.,

2010).

Colonic stem cells have gained considerable interest in the context of cancer in

recent years as stem cells are thought to be the cell of origin for colorectal cancer

(Barker et al., 2009), and driver mutations such as mutations in the tumour suppres-

sor APC in colorectal cancer have been shown to disrupt the WNT signalling path-

way which is of known importance in maintaining the stem cell niche. Colorectal

cancers and their precursor lesions adenomas, are made up of glandular structures,

reminiscent of the crypts in physiologically normal tissue, suggesting a similar cel-

lular hierarchy in these lesions and the existence of a cancer stem cell population

(Medema & Vermeulen, 2011). LGR5 positive cells can also be found in adenomas

and cancers although these cells have been found to be more diffuse in the glandular

structures and not as localised (Baker et al., 2015). If the existence of cancer stem

cells is bone fide then it has profound implications for the progression and treatment

of the disease, as due to their self-renewal capacity eradicating the CSC pool is the

crucial task.

Controversy remains however over whether a cancer stem cell is an intrinsic

property of a cell and that self renewal is a property exclusive to a subset of cells
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(Wright, 2012) or alternatively that CSC is a plastic phenotype that requires a sup-

portive niche and that non-CSC can become CSC if in the right place at the right

time.

6.2 Mutations as a clonal lineage marker

Experiments that have been used to quantify stem cell dynamics have generally

been some variant of a pulse chase experiment, where a pulse is given to induce a

label such as a fluorescent protein, and the label is then followed over time. Daugh-

ter cells retain the label of their parent cell and the change in clone size can then be

tracked over time. Analysis of the results of these experiments showed that these

dynamics were consistent with a small number, 5-10 of equipotent stem cells resid-

ing at the bottom of the crypt undergoing stochastic loss and replacement (Lopez-

Garcia et al., 2010; Snippert et al., 2010). Similar experiments showed that if one

of the stem cells carried an oncogenic mutation in the KRAS gene, then the dynam-

ics conformed to a biased drift, where the KRAS mutants were more likely to take

over the whole stem cell population, the possibility of stochastic loss of the mutant

remains however (Vermeulen et al., 2013). Using naturally occurring mitochondrial

mutations as a mechanism of labelling lineages, it was later shown that stem cells in

human colonic crypts also exhibited the characteristic neutral drift process (Baker

et al., 2014). Interestingly, neutral drift dynamics of stem cell populations appears

to be a conserved phenomenon across multiple tissue types, suggesting a univer-

sal mechanism that tissues use to renew their cellular population and suppress the

accumulation of mutations (Klein & Simons, 2011).

While shedding light on the stem cell architecture, these lineage tracing exper-

iments have some limitations. Generally, they cannot be applied to human tissues

and tissues cannot be followed for extended periods of time. Another approach as

used in Baker et al., 2014 is to use naturally occurring labels in human tissues, such

as mutations in mitochondrial DNA that encode cytochrome c-oxidase, these muta-

tions can be visualized in tissue with histo-chemical staining. As discussed at length

in the previous chapters, mutations in genomic DNA can also serve as clonal marks



150 Chapter 6. Stem cell dynamics in the human colon

and serve as an alternative naturally occurring label with which to track population

dynamics. Such an approach has been used in physiologically normal human tissue

to measure stem cell dynamics in the skin (Simons, 2016).

Using mutations in genomic DNA together with deep sequencing as a read out

of the lineage size distribution has a number of appealing features for measuring

stem cell dynamics. It can be applied to (any) human tissue, a record is kept of

the dynamics across the whole lifespan of the tissue and multiple lineages can be

followed simultaneously. This is the approach I take in this chapter.

6.2.1 Sequencing data

With the aim of assessing the stem cell dynamics in the colon, single crypts from

physiology normal tissue were isolated and DNA extracted. 2 crypts each from 2

healthy individuals were obtained. One individuals crypts were subjected to whole

exome sequencing and the other individual to whole genome sequencing. This data

was processed as described in Chapter 2. To extract mutation calls and call copy

number states across the genome Mutect2 and sequenza were used respectively.

A summary of the data, showing the mean depth of coverage and the number of

mutations called is shown in Table 6.1. To reduce false positive mutations but retain

a large number of true positives, different filtering of mutations was done in the

two sequencing strategies due to the large differences in depth, particularly in the

normal sample. For the whole exome sequencing, mutations were filtered based on

the following criteria:

1. ≥ 20X coverage in both test and control samples

2. ≥ 5 reads reporting the variant in the test sample

3. ≤ 2 reads reporting the variant in the control sample

4. ratio of VAF between crypt and normal > 10

5. Mutations removed if the change was C > A

Mutations in the C > A channel were removed given there was an abundance of

low frequency C > A mutations (see Figure 6.1), these are likely to be errors arising
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Sample ID Mean Coverage (Tissue) Coverage (Blood) # mutations # exonic mutations

450 A2 120 280 96 57
450 A6 75 280 127 80
452 R1 32 30 2063 28
452 R2 38 30 3284 31

Table 6.1: Summary of sequencing data from normal crypts
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Figure 6.1: Frequency distribution of mutations in 2 whole exome sequenced crypts strati-
fied by mutation channel. There is an abundance of low frequency C > A mu-
tations which are likely to be errors arising from the library preparation and
were removed from further analysis.

due to DNA damage during library preparation (Chen et al., 2017a; Costello et al.,

2013) and hence were removed. For the whole genome sequencing the following

filtering criteria was used:

1. ≥ 20X coverage in both test and control samples

2. ≥ 5 reads reporting the variant in the test sample

3. 0 reads reporting the variant in the control sample

6.3 Neutral drift of equipotent stem cells
Given there is a substantial amount of experimental and theoretical work looking

at the stem cell dynamics in normal tissue during homeostasis, particularly in mice
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I first looked at the whether the sequencing data from normal crypts conforms to

models of stem cell dynamics in the literature. In particular whether a model of

neutral drift of an equipotent pool of stem cells fits this data. I’ll first discuss and

develop some small extensions to this theory before returning to the data to see

whether this model can explain the sequencing data.

The neutral drift model of stem cells at the crypt base was originally demon-

strated in Lopez-Garcia et al., 2010. Much of the theoretical work was also de-

veloped here and has been applied subsequently with some modifications to other

studies in mice (Ritsma et al., 2014; Kozar et al., 2013; Snippert et al., 2013) and

in humans (Baker et al., 2014). I’ll begin by introducing this theoretical model, and

then will introduce some extensions to the model given that new lineages can be

stochastically labelled over time by acquiring mutations.

In the original work presented in Lopez-Garcia et al., 2010, stem cells are

assumed to be equipotent and are orientated in such a why that they can only replace

their nearest neighbours. This 1D arrangement can be thought of as a ring of stem

cells where the loss of a stem cell results in one of its nearest neighbours replacing

it with equal probability, these dynamics result in the number of stem cells staying

constant throughout. Following the labelling of a single stem cell at time t = 0, we

will define the probability of the clone having acquired a size n stem cells after a

time t due to neutral drift of the stem cell population as Pn(t), with loss-replacement

rate λ . The master equation describing the time-evolution of this process can then

be written as follows

dPn(t)
dt

= λ (Pn+1 +Pn−1−2Pn)−λ (δn,1 +δn,−1−2δn,0)P0+

λ (δn,Ns+1 +δn,Ns−1−2δn,Ns)PNs +δn,1δ (t) (6.1)

Where Ns is the number of stem cells occupying the niche. Here the first term

describes the random walk of the clone size, while the second and third term express

the potential for the clones to be lost and flushed out of the crypt or fix in the stem

cell pool and hence the whole crypt population. The final term expresses the initial
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condition of a single labelled stem cell at time t = 0. The solution to the above

equation is given by (Lopez-Garcia et al., 2010):

P0(t) =
2
Ns

Ns=1

∑
k=1

cos2
(

πk
2Ns

)(
1− e−4λ t sin2( πk

2Ns )
)

(6.2)

Pn(t) =
2
Ns

Ns=1

∑
k=1

sin
(

πkn
Ns

)
sin
(

πk
Ns

)
e−4λ t sin2( πk

2Ns )

PNs(t) =
2
Ns

Ns=1

∑
k=1

(−1)k+1 cos2
(

πk
2Ns

)(
1− e−4λ t sin2( πk

2Ns )
)

At times 1� λ t � N2
s the clone size distribution exhibits a particular property

termed scaling, in this scaling regime the shape of the clone size distribution scaled

by the average clone size is conserved over time, and the above equations collapse

to a simple exponential form. This scaling property has been shown to provide a

quantitive test of stochastic loss and replacement of stem cells, as for example a

strict hierarchical architecture with a master stem cell does not lead to scaling be-

haviour (Lopez-Garcia et al., 2010). We would not expect the clone size distribution

we measure from the variant allele frequency of mutations to conform to this sim-

ple scaling behaviour as the time scales over a human lifespan will be λ t � N2
s ,

where λ has been measured to be of the order 0.2 per day in humans (Baker et al.,

2014). Furthermore, the VAF distribution should provide a readout of the number

of fixed mutations within the crypt, meaning we can leverage information on both

the number of fixed mutations and the number of partial mutations to infer the stem

cell dynamics. This means the solution for the full clone size distribution is neces-

sary. Furthermore, the above model only considers a single label in the crypt, we

are interested in the case were labels (or rather mutations) are continuously gener-

ated. Kozar et al., 2013 made some progress in this direction, however the question

I wish to ask is slightly different, we wish to know how many mutations would we

expect to see at a particular frequency, where as Kozar et al. where interested in

the expected number of partial crypts vs fixed crypts. In the language of population

genetics language, the number of mutations would we expect to see at a particular

frequency is known site frequency spectrum which I will refer to as C(t). To derive
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C(t) requires integrating the above clone size distributions over time, weighted by

the mutation rate per division µ , and the loss/replacement rate, λ .

Cn(t) =
∫ t

0
λ µNsPn(t− τ)dτ. (6.3)

Performing this integral for the above we arrive at the following.

Cn(t) = µ

Ns−1

∑
k=1

sin
(

πkn
Ns

)
tan
(

πk
2Ns

) (1− e−4λ t sin2( πk
2Ns )
)

(6.4)

CNs(t) = µλ t +
µ

2

Ns−1

∑
k=1

(−1)k

tan2
(

πk
2Ns

) (1− e−4λ t sin2( πk
2Ns )
)

To confirm that the above solution is accurate, a Monte Carlo simulation of the

above dynamics was implemented and compared it to the predictions of the above

equations. Figure 6.2 shows there is excellent agreement between the theory and

simulation.

These equations can be simplified at long times, λ t� N2
s :

Cn(t) = µ(Ns−n) (6.5)

CNs(t) = µ(λ t−κ)

Where κ = 1
6

(
N2

s −1
)
. Finally, we can turn this into the probability distribution

function by dividing by ∑
Ns
n=1Cn(t) =

µ

2 Ns(Ns− 1). Simulations compared with

this theoretical result are shown in Figure 6.2.

Pn(t) =
2(Ns−n)
Ns(Ns−1)

(6.6)

Arriving at a result first presented in Simons, 2016. Additionally, we can calculate

the mean clone size which is given by:

n̄ =
Ns−1

∑
n=1

nPn(t) =
1+Ns

3
(6.7)
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Figure 6.2: Simulation and theory agree. Simulation parameters: λ = 1, µ = 1, Ns = 10,
t = 10 for the top panel and t = 200 for the bottom panel.

This neutral drift model makes some simple predictions on what we would

expect to observe in the sequencing data of crypts. i) A linear increase in the number

of fixed mutations over time ii) A linear decrease in the number of partially fixed

mutations as a function of frequency. Interestingly, the clone size distribution at

long times only depends on the the number of stem cells Ns, and is invariant to the

mutation rate, the loss replacement rate and time. Thus, given a sufficient amount of

time, the clone size distribution for subclonal mutations reaches an equilibrium state

where subclonal mutations are in effect lost through fixation but are compensated

by the acquisition of new mutations.
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Figure 6.3: Theory predicts that the distribution of partial mutation follows a linear depen-
dence in clone size but that to identify the linear dependence requires averaging
over many simulations.
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Figure 6.4: Number of simulations needed to identify neutral drift dynamics. R2 is the
coefficient of determination for a linear model, so higher R2 is a better fit for the
neutral drift model. Averaging over more than 50 simulations robustly captures
the neutral drift dynamics given the high R2 values.
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Unlike previous lineage tracing experiments using fluorescent reporters that

could build up the clone size distribution by averaging over many hundreds of re-

peats, sequencing data collected from a single crypt is a single realization of the

underlying (stochastic) process, and captures the clone size distribution of one of

these realisations at a single time point. Simulations of the process show that the

data from a single crypt is unlikely to exhibit the features predicted by the analyti-

cal model of neutral drift. Simulations of the process vs the average behaviour over

many simulations demonstrate that single realisations can look very different, while

the average behaviour follows the predictions of the analytical results, ie a linear

decrease in the number of mutations as a function of frequency, see Figure 6.5. To

resolve the clone size distribution will therefore require averaging over many sin-

gle crypts. Simulating the process N times then averaging the simulations shows

that the linear relationship can only be identified robustly by averaging over 10’s of

simulations, Figure 6.4.

6.3.1 Expected number of mutations

Despite the limitations of requiring data from multiple crypts to resolve the clone

size distribution, we can nevertheless get a sense of what the data from a single

crypt would be expected to look like given some reasonable parameters. Table 6.2

shows inferred neutral drift parameters from 5 studies. Based on these values I used

λ = 0.1/day and Ns = 8 to simulate the neutral drift process with a mutation rate

of µ = 10−9 per bp per division in equivalent whole exome sequencing and whole

genome sequencing. Single realisations and the average behaviour are shown in

Figure 6.5, demonstrating that we would expect to see many more clonal (fixed)

mutations compared to subclonal mutations. Simulations were implemented using

a Monte Carlo simulation of the neutral drift model where at each division mutations

can accumulate followed by synthetic sequencing of the simulated mutation data as

described in the previous chapter.
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Figure 6.5: Expected VAF distribution based on the classic neutral drift model with the
following parameters: Ns = 10, µ = 10−9 per bp per division and λ = 0.5
per day (parameters based on previous estimates, see Table 6.2. Top figures
are for whole exome sequencing data and bottom figure is for whole genome
sequencing data. Average is over 100 equivalent simulations.

6.3.2 Single crypt data

With some intuition on what we would expect the data to look I’ll now return to

the crypt sequencing data. In summary from the analytical derivation of the neutral

drift model and simulations of the process we would expect to observe the following

features in the sequencing data.

1. Large number of clonal mutations

2. Small number (relative to clonal mutations) of sub clonal mutations
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Ns λ (/day) Ref. Info

16 1.0 Lopez-Garcia et al., 2010 Mouse model
5-7 0.1-0.3 Kozar et al., 2013 Mouse model
8 0.24 Ritsma et al., 2014 Mouse model
6 0.3 - 2.0 Baker et al., 2014 Human tissue
- 0.1 Blokzijl et al., 2016 Calculation

Table 6.2: Inferred number of stem cells (Ns) and loss/replacement rate (λ ) of neutral drift
process from various studies. λ from Blokzilj study was inferred based on the
reported value of 30 mutations per genome per year in the colon, a conservative
estimate of the mutation rate of 3 per genome per division and equation [ref
equation]

3. Linear decrease in the number of subclonal mutations as a function of VAF

4. Linear increase of clonal mutations over time

Figure 6.6 shows the sequencing data from 2 crypts from 2 people with a

healthy colon. Exome sequencing was used for sample 450 and whole genome

sequencing was used for sample 452. The ages of the individuals were 45 and

50 respectively. Intriguingly none of the above predictions from the neutral drift

model seem to be confirmed in this data. In particular there appear to be almost

no clonal mutations (expected to be at VAF=0.5) and there are a large amount of

subclonal mutations, the exact opposite of what would be expected from the neutral

drift model.

There may be some technical issue due to the low quantity of DNA extracted

from such a small tissue sample that could account for this. However this seems

unlikely given that in these two samples, two different sequencing strategies were

observed. We also observe similar mutation burdens across all of the crypts in

exonic regions, see Figure 6.7.

Another explanation is that there are copy number changes which distort the

relationship between lineage size and VAF (ie lineage size 6= 2×VAF). The se-

quencing data however shows that crypts from both the whole exome sequencing

experiment and the whole genome sequencing experiment are in a normal diploid

state, see Figure 6.9. Furthermore the B-Allele Frequency (BAF) from germline

SNPs cluster around 0.5 which also discounts the possibility of preferential capture
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Figure 6.6: VAF distribution for normal crypts from 2 patients

of some alleles which may also result in skewed VAF distributions.

Low purity could account for the apparent low number of clonal mutations,

where what appear to be subclonal mutations are in fact fixed mutations. Low purity

could arise from large amounts of stromal tissue or immune cells being sequenced

at the same time resulting in DNA from epithelial cells being reduced. The degree

of contamination necessary such that most of the mutations that appear subclonal

are in fact clonal in the crypt is >50% which also seems unlikely.

Assuming there are no technical issues with this data the other possibility

which I will now explore in more detail is whether in fact the neutral drift model is

inadequate. In all previous studies that have demonstrated neutral drift dynamics in
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Figure 6.7: Mutation burden in the 4 crypts. We would expect the higher depth exome
sequencing to pick up more low frequency mutations, if we consider only mu-
tation above frequency 10% which should be detected equally in both assays
then then mutation burdens are highly similar across assays and patients.

the colon, only a small number of labels (< 4) in a single crypt have been utilized, in

a sense this is only informative on the expected clone size distribution at time scales

over which these labels are lost or fixed. If for example there is some underlying

dynamics that occur over longer time scales, then these methods may not have the

temporal resolution to challenge the neutral drift model. One way that we could

imagine altering the neutral drift dynamics so that the dynamics is altered at long

times compared to short times is by introducing a population of slow cycling stem

cells that are at the tip of the stem cell hierarchy. The contribution from these cells

would be minimal over short times, but at long times such as the lifetime of a crypt

may be significant. A slow cycling stem cell population could sporadically purge

the crypt of mutations as due to the limited number of divisions a slow cycling stem

cell would experience it would accumulate a limited number of mutations. This

would therefore provide a powerful mechanism to further reduce the accumulation

of mutations within the crypt which appears to be what we observe in the data; in

homeostasis crypts seem to be able to minimise the acquisition of fixed mutations

within the crypt.
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6.4 Slow cycling stem cells
I’ll consider two models of slow cycling stem cells, the first will consider a single

master stem cell which divides infrequently. In the second model I’ll consider a

model with multiple slow cycling stem cells which themselves undergo neutral drift,

see Figure 6.10 for a schematic.

6.4.1 Single slow cycling Master stem cell

In the case of a model with a master stem cell the number of master stem cell

division after a time t will follow a Poisson distribution with mean λM, the turnover

rate of the master stem cell.

Pm(t) =
(λmt)ne−λmt

n!
(6.8)

The expected number number of mutations accumulated in the master stem cell

lineage Cm is then simply the product of the mutation rate per division µ and the

mean of the above distribution (= λmt).

Cm(t) = µλmt (6.9)

Thus we would expect a linear increase in mutations over time. As the master

stem cell will never be lost this equation will describe the dynamics over long time

scales. However over short time scales we would expect mutations to accumulate

Slow cycling cell Fast cycling cell Replacement

Figure 6.10: Schematic of two alternate stem cell models. Brown cells are equipotent fast
cycling stem cells, red cells are slow cycling cells which periodically replace
the fast cycling cells. The model on the left has a single slow cycling cell, the
model on the right has a number of slow cycling cells which can replace each
other.
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Algorithm 5: Master stem model
input : Turnover rate of master stem cell (λM) loss/replacement rate of

drifting population of stem cells (λs, λ f ), mutation rate per division
µ and numbers of cells in slow and fast cycling population (Ns,
N f ). Time when simulation ends tend

output: List of mutations present in each cell

Initiate simulation with a single master stem cell and Ndri f t drifting stem
cells. set time to t = 0

while t < tend do
1. randomly sample a cell

2. cell divides and replaces one of its neighbours with probability λ

3. if cell divides, daughter cells acquires Po(µ) new mutations

4. if master stem cell divides, one of the daughter cell displaces a randomly
chosen cell from the drifting compartment

5. update time t = t +∆t, where ∆t is an exponentially distributed random
variable

in the faster cycling neutral drift compartment. Any mutations exclusive to the

neutral drift compartment will then be sporadically purged from the population so

that mutation accumulation is determined by equation (6.9) over long times, the rate

of these purges will depend on the ratio, R between the loss replacement rate in the

neutral drift compartment and the turnover rate of the master stem cell: R = λ

λm
. We

can see this in Figure 6.11, which shows the mutation accumulation over time in a

simulation of this process (simulation is described in Algorithm 5) , the thick black

line show the predictions of equation (6.9) and the lighter coloured lines are single

realisations of the simulation.

It is clear that this type of model can indeed provide an additional mechanism

to suppress the accumulation of mutations but the questions remains whether it can

explain the crypt sequencing data. Figure 6.12 which shows what we would expect

data from this model to look like suggests not. While the total number of mutations

is decreased, the number of clonally fixed mutations again far outweighs the number

of subclonal partially fixed mutations, thus the master stem cell model also seems
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Figure 6.11: Dynamics of mutation accumulation over time in the master stem cell model.
Mutations accumulate in the fast cycling population of cells but are sporad-
ically purged from the population when the slow cycling cell divides and re-
places a fast cycling cell. If this cell drifts to fixation mutations accumulated
in the fast cycling population are purged from the crypt.
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Figure 6.12: Simulation parameters µ = 10−9 per bp (multiplied by 45×106 for WGS and
3× 109 for WGS.Ndri f t = 8. Time of simulation = 45years. λmaster = 0.005
per day, λdri f t = 0.1 per day. Average simulations are from 1000 repeat runs.
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Algorithm 6: Hierarchical drift model
input : Loss replacement rate of slow and fast cycling population (λs, λ f ),

mutation rate per division µ and numbers of cells in slow and fast
cycling population (Ns, N f ). Time when simulation ends tend

output: List of mutations present in each cell

Initiate simulation with Ns slow cycling stem cells and N f fast cycling stem
cells. set time to t = 0

while t < tend do
1. randomly sample a cell

2. cell divides and replaces one of its neighbours with probability λ

3. if cell divides, daughter cells acquires Po(µ) new mutations i

4. f slow stem cell is displaced from slow compartment, the cell displaces a
randomly chosen cell from the fast compartment

5. update time t = t +∆t, where ∆t is an exponentially distributed random
variable

to be unable to explain the patterns observed in the real data. Although it is possible

to imagine a scenario that produces patterns more similar to what we observe by

tweaking the mutation rate and replacement rates of the respective populations.

6.4.2 Hierarchical drift model

Rather than having a single slow cycling stem cell we’ll now consider a two com-

partment model with a slow cycling population of cells and a fast cycling population

of cells where both cell types undergo neutral drift to stochastically replace each

other. It is straightforward to recognise that this could provide a further mechanism

to restrict the accumulation of mutations as mutations would first need to fix in the

slow cycling stem cell population before fixing in the fast cycling population. If the

loss replacement rate in the slow cycling population is very slow this process can

take a very long time. Furthermore we could still see similar dynamics as with the

master stem cell model with mutations being sporadically purged when a division in

the slow cycling population introduces a cell with limited mutations into the fast cy-

cling population. Details of the algorithm used to simulate this process is described
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in Algorithm 6.

Figure 6.13 shows what we would expect data from this model to look like, this

model does show a reduction in clonal mutations while maintaining a reasonable

number of subclonal mutations, this suggests that different stem cell architectures

to the current standard view may be able to explain the data we observe. More data

will be needed to resolve these models. Here, I have only demonstrated expectations

from the model using a single set of parameters, the model will be sensitive to

the choice of parameters. In particular the loss/replacement rates in the respective

compartments can have a large effect on the distribution of mutation frequencies.

6.5 Discussion

In this chapter I’ve investigated stem cell dynamics in the human colonic crypt

using sequencing data from two individuals of similar ages with healthy bowels.

Intriguingly the clone size distribution reported by deep sequencing of crypts from

these individuals did not conform to a model where a handful of equipotent stem

cells reside at the bottom of the crypt and stochastically replace each other. This

represents a paradox with previous studies which have demonstrated these dynam-

ics in mice (Lopez-Garcia et al., 2010) and humans (Baker et al., 2015). However

one mechanism that can reconcile these observations is the introduction of a pop-

ulation of slow cycling stem cells such that over short times the dynamics in the

fast cycling population is important while at long times, ie over the life time of the

crypt the dominant feature is the contribution of the slow cycling cells. Two recent

studies support the idea that the long term dynamics of stem renewal in the colon

are controlled by a slow cycling population of stem cells. Both studies estimated

a loss/replacement rate of less than once per year (Nicholson et al., 2018; Stamp

et al., 2018), which is a similar value to what was used in my alternative models for

the slow cycling stem cell population. It is perhaps not unsurprising that stem cell

dynamics in the human colon differs radically from the its murine counterpart given

the large difference in life spans.

Further data will likely enable us to further refine these models, in particular
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Figure 6.13: Simulation parameters µ = 10−9 per bp (multiplied by 45×106 for WGS and
3×109 for WGS.Ns = 8,N f = 30. Time of simulation = 45 years. λs = 0.002
per day, λ f = 0.1 per day. Average simulations are from 1000 repeat runs.
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collecting samples from individuals of different ages will provide another means

to test the predictions of the models. With this it will then be possible to probe

how these dynamics change across disease states as the tissue progresses toward

cancer which will be the focus of future work. With more data it should be possible

to fit the models to the data and estimate plausible value for the parameters of the

model such as the number of stem cells in the different compartments and their

replacement rates. Furthermore sequencing of crypts across diseases states may

elucidate how particular mutations change these dynamics and prime tissues for

cancer initiation.
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Chapter 7

Summary and outlook

7.1 Summary

The aim of this thesis was to investigate evolutionary dynamics in the somatic evo-

lution of human tissues with a particular focus on elucidating the role of selection

in carcinogenesis. While there is little doubt that selection for certain phenotypes,

or hallmarks of cancer (Hanahan & Weinberg, 2011) is what causes physiologically

normal tissue to transform and become malignant, selection is often assumed rather

than formally tested in cancer evolution. Furthermore, little is known about how

and when natural selection operates in cancer evolution. Given that such alterations

are the crucial determinants of how cancers evolve and adapt to their environment a

better understanding of these dynamics critically important.

The field of population genetics provides a natural way to test for and quan-

tify signatures of selection and has been applied successfully in species evolution.

Population genetics, in simple terms is a mathematical description of how allele

frequencies are expected to change due to the fundamental evolutionary forces se-

lection, drift, mutation and recombination (not applicable in asexual evolution such

as cancer). The field of population genetics is one of the few areas of biology whose

foundations are quantitive theories. This is partly due to necessity, evolution pro-

ceeds over long times and cannot in most cases be observed directly. Similar issues

exists in cancer where due to obvious ethical issues it is impractical to observe can-

cer evolution proceeding over time. In both scenarios the use of population genetics
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allows for inferences on the past evolutionary dynamics from present day genomes.

The aim of this thesis was to translate concepts and approaches that have proved

successful in traditional population genetics to cancer evolution, in particular using

the VAF distribution, the analog to the site frequency spectrum to uncover signa-

tures of selection and therefore signatures of neutrality.

Despite this long history and the wealth of theoretical models with which to

draw upon, for the most part traditional population genetics cannot be directly

applied to the cancer setting due to cancer evolution not satisfying a number of

assumptions commonly employed in classical population genetics. Much of the

theoretical models assume fixed size populations while tumours evolve through a

process of clonal evolution where the population grows over time. Furthermore

because cancer evolution is asexual there is no recombination and mutations can

hitchike (Gillespie, 2000; Fay & Wu, 2000). Thus a population genetic description

of cancer evolution requires the theories to be adapted to account for these differ-

ence. Fortunately much of these models can be developed by drawing upon theories

of branching processes and the Luria-Delbrück distribution.

In molecular species evolution, neutrality is the null hypothesis. In this

paradigm it is assumed that neutrality (evolution in the absence of selection) ad-

equately explains genetic diversity and changes in allele frequencies unless this

null can be rejected. In cancer evolution, selection is often assumed rather than

formally tested in this way, but neutrality can also provide a useful null in cancer

evolution (Wu et al., 2016). Having a null model to explain the genetic diversity

which is observed across all cancer types is useful because it is a rigorous way to

identify genetic alterations under selection, these being the important alterations

that drive the disease and are responsible for resistance to treatment. With this in

mind we developed a null model of cancer evolution which could be applied to the

frequency spectrum of single nucleotide variants reported by deep sequencing ex-

periments in cancer. Our null neutral model (described in detail in the first results

chapter) assumes all mutations are neutral, exponential growth of the tumour and

Poissonly distributed mutations. The expression we arrive at, that under neutrality
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the cumulative number of mutations at a frequency f follows a 1/ f distribution has

been derived by others previously (Griffiths & Tavaré, 1998; Keller & Antal, 2015;

Durrett, 2013b), these results are closely related to the Luria-Delbrück distribution

(Kessler & Levine, 2014). Somewhat surprisingly this neutral model appeared to be

a good description of the data in approximately 30% of the cancers we investigated.

Other studies have also been unable to reject neutrality as a description of the avail-

able data in multi region sequencing studies (Ling et al., 2015; Sun et al., 2017),

and a previous study showed that selection is suppressed in growing populations

where the dynamics become effectively neutral (Sottoriva et al., 2015). Hopefully

the recognition that neutral evolutionary dynamics may often be a plausible expla-

nation of genomic data in cancers will result in the research community testing for

signatures of neutral evolution which is the natural null model rather than assum-

ing selection. Selection for malignant phenotypes is what drives cancer so caution

is warranted in ascribing selection to patterns of genomic diversity. I hope that a

rigorous framework rooted in population genetics would enable more robust identi-

fication of patterns of selection.

What appeared initially as a somewhat surprising result begs the question, why

do we find such a large proportion of cancers to be consistent with the neutral

model? Firstly we must recognise some limitations of the data, bulk sequencing

data will only report on mutations that are at high frequency and present in a num-

ber of cells on the order of a million. Thus there may well be interesting non-neutral

evolutionary dynamics below this scale. In other words neutral dynamics may be

a very good description at a macro scale of millions of cells but at a lower micro-

scale of thousands or fewer cells selection may be in important force. Single cell

sequencing technologies will be useful in unravelling these micro-scale dynamics

in the future. Another reason for the preponderance of neutral tumours related to

this and touched upon in Chapter 4 is that in growing populations, selection is atten-

uated. For a lineage to reach an appreciable frequency new mutational lineages are

always playing catch up with pre-existing lineages. Put differently, the time scale

of evolution is important, where mutations that appear late during tumour evolution
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will start at a very small frequency in the population and may not have enough time

to reach a detectable frequency even if highly selected. Another hypothesis is that

the tissue structure has a role in suppressing selection. Colon cancers for exam-

ple are composed of glands which contain on the order of 10,000 cells and colon

cancers are thought to grow via gland fission. For mutations that possess a fitness

advantage to spread in the population they must first fix in the gland before expand-

ing via gland fission. This presents multiple barriers for mutations to spread and

may suppress the effects of selection. Stomach and breast tissues amongst others

have similar glandular architectures.

Although a sizeable number of tumours were found to be neutral in Chapter

3, a large number did not fit this model. This led to the natural question, what is

happening in the other 70% of cancers. Could we learn something more about the

process of natural selection in these cancers? To tackle this question I developed

two approaches, one which could uncover selection on a sample by sample basis

and a second which leverages data from cohorts of sequenced cancers to look at

population level selection.

For the first approach I again used population genetics results from asexual

organisms (Hartl & Clark, 2007) and developed a model of how the frequency of a

selected subclone would be expected to change over time depending on its relative

fitness advantage and the time the subclone emerged. By linking these dynamics

to mutations accumulating in different lineages within the tumour I observed there

would be characteristic patterns of subclonal selection observable in deep sequenc-

ing experiments. These patterns result in the frequency distribution deviating from

the neutral prediction. Using a branching process simulation of cancer evolution

and fitting this to the frequency spectrum using Bayesian inference I was then able

to extract the necessary information to infer the relative fitness and time of emer-

gence of subclones for non-neutral tumours. This approach measured strikingly

high fitness advantages (>20%) for subclones under selection.

For the second approach I turned my attention to another method developed

in molecular species evolution used to identify signatures of selection that has re-
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cently been adapted for cancer (Weghorn & Sunyaev, 2017; Martincorena et al.,

2017), dN/dS the ratio of non-synonymous to synonymous mutations. The theoret-

ical foundation of dN/dS assumes long evolutionary time and fixed size populations

and does not take into account subclonal mutations of which there are many in can-

cer. By adapting the Luria-Delbrück distribution and taking the ratio of the expected

distribution for selected mutations and neutral mutations I showed how dN/dS val-

ues would be expected to change across the frequency spectrum. This also allows

for estimating the fitness effect across cohorts of cancers and uncovers how dN/dS

is related to the relative fitness in growing populations. Differently from the first

method this approach allows for identifying recurrent patterns of selection across

cohorts of cancers but is limited in terms of quantifying evolutionary dynamics on

a sample by sample basis. Future work may be able to combine these somewhat

distinct approaches, by linking repeated evolutionary trajectories at the cohort level

to selection for certain mutational lineages in individual patients.

The first 3 results chapters all point to selection for subclones in the cancers we

ultimately observe being rare, much of the genetic alterations most likely occur in

physiologically normal and pre-malignant tissue. With a view to this the last results

chapter investigated population dynamics and mutation accumulation in physiologi-

cally normal tissue, in particular the colonic crypt. Given that cancer can be thought

of as a perturbation of these dynamics, it is important to get a good understanding of

how homeostasis is orchestrated and how genetic alterations may perturb this. Sur-

prisingly, the data appeared at odds with the traditional view of stem cell dynamics

within intestinal crypts. Evidence from lineage tracing in mouse models and in

humans suggests that 6-8 stem cells reside at the base of the crypt and undergo a

process of neutral drift. The sequencing data appeared at odds with this model given

the abundance of partially fixed mutations and lack of fixed mutations, the opposite

of what would be predicted from the neutral drift model. Other models were pro-

posed that provide mechanisms for fixation of mutations to be strongly suppressed,

however more data is required as these observation came from a limited number of

samples and technical issues with the assay cannot completely be ruled out. The
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approach outlined in this chapter provides a quantitative methodology to infer stem

cell dynamics from sequencing data. In future this approach can be extended to

study the effects of tumorigenic mutations and across disease states and understand

how stem cell dynamics is modified.

In summary this thesis can be viewed as an investigation of the evolutionary

dynamics of cancer at multiple scales. Firstly I looked at the scale of a bulk tu-

mour, finding that many cancers exhibit patterns of neutral evolution in Chapter 3

and measuring the fitness advantage of detectable subclones in Chapter 4. Chapter

5 looked at a population scale, using dN/dS across cohorts of cancer samples as a

readout of selection. Finally the last chapter, Chapter 6 investigated the dynamics

of stem cells in the colon, ie looking at the dynamics at cellular resolution. Under-

standing evolution at all these scales, the tumour level, population level and cellular

level will be required for a deeper understanding of tumour evolution. In the next

and final section of the thesis I’ll discuss a few avenues that I think may be fruitful

in utilising quantitative measurements of these evolutionary dynamics in a clinically

impactful way.

7.2 Outlook

This thesis has shown how quantitive theories together with genomics can be used

to study evolution and population dynamics in human cancers and tissues. For evo-

lutionary theory to have an impact clinically, quantitative approaches will likely be

paramount. A small number of studies have already shown that evolutionary theory

can help guide clinical decision making. Zhang et al., 2017 showed that adaptive

therapy, a treatment strategy inspired by ecology and evolution where the goal is

to maintain the coexistence of resistant and susceptible cancer population so that

they mutually repress each other significantly increases survival in prostate cancer

therapy. A number of clinical trials along similar lines are currently in progress for

different cancer types. Łuksza et al., 2017 showed that using a model to measure the

fitness of subclones based on their neoantigen burden was able to predict patient re-

sponse to immunotherapy, and predictions were better for the model based approach
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compared to solely using the mutation burden. Such studies suggest that applica-

tion of evolutionary principles to treatment may be effective. Both these studies

used quantitive models of cancer evolution. For such approaches to realise their

potential, being able to quantitively measure the evolutionary dynamics in tumours

will be paramount as these studies demonstrated. For the remainder of this chap-

ter and thesis I’ll discuss some areas where the application of theoretical models to

cancer genomics might be fruitful.

A longstanding goal in evolutionary biology is to measure the distribution of

fitness effects, this has been relatively unexplored in cancer where the importance

of mutations tend to be ranked by their frequency in large cohorts. Recent applica-

tions of dN/dS to cancer go some way toward this goal and showed that mutations

in some genes are highly selected (Martincorena et al., 2017; Weghorn & Sunyaev,

2017). These studies however did not uncover much signal of negative selection,

which appears at odds with the presentation of neo-antigens resulting in increased

immune predation (McGranahan et al., 2016) and that the burden of neo-antigens

correlates with the efficacy of immunotherapies (Yarchoan et al., 2017). Further-

more consideration of the population dynamics is important for interpreting dN/dS,

particularly for subclonal mutations as discussed in Chapter 5. Further work is

needed to unravel these complexities, experimental model systems may be useful

here. Rogers et al., 2018 for example used CRISPR/Cas9 constructs to engineer

tumours with particular mutations in mice and measured their fitness with deep

barcode sequencing. Extensions to this approach to quantify fitness of additional

mutations and epistatic interactions between different driver mutations would be in-

triguing avenues to pursue. Another important aspect to consider is that fitness ef-

fects of mutations undoubtedly change under different environments, particularly in

the context of treatment. Measuring how fitness effects change in different environ-

ments, particularly under treatment may provide novel insight into how treatment

changes the fitness landscape in tumours. It would then be possible to elucidate if

mutations that induce resistance tend to be pre-existing in the cancer and possibly

the number and mechanism of resistance of these mutations. More complex models
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are likely needed to unravel the complexities of these dynamics fitness landscapes

or seascapes.

One way of viewing personalised medicine is how to predict and thus modify

the treatment of an individuals cancer. From an evolutionary point of view this can

be thought of as how to predict the evolutionary trajectory of a cancer and then cru-

cially how this can best be perturbed for the benefit of the patient. The degree of

predictability of evolutionary systems remains an open question in much of evolu-

tionary biology (including cancer) (Lässig et al., 2017). Being able to predict and

then modify the treatment of an individuals cancer will require progress on all of

the fronts discussed so far. From quantifying the distribution of fitness effects of

mutations and how this changes across environments, to elucidating how resistance

emerges and its mechanism. Such questions are perhaps beginning to be achievable.

As an illustration of how the work in this thesis may fit into this paradigm,

in Chapter 4 I demonstrated how measuring the fitness of subclones in theory al-

lows for predicting which subclone will come to dominate at some point in the fu-

ture. This was only demonstrated in an in silico tumour however, so further work is

needed to validate this approach in an experimental system. Furthermore, this type

of analysis is somewhat limited as it assumes a constant environment and does not

take into account the effects of treatment or the emergence of newer subclones. This

type of approach could in theory be adapted to take into account changes in selec-

tive pressures due to treatment. Another interesting avenue may be to combine the

population level dN/dS selection measures discussed in Chapter 5 with the tumour

level selection measures from Chapter 4. The first approach provides an indica-

tion of how repeatable mutations in certain genes at a population scale, while the

second approach enables estimating the selection coefficient in individual tumours.

Combining these approaches may be more powerful than the approaches in isola-

tion. Furthermore the approach outlined in Chapter 5 could be further developed

to quantify selection pressures in normal and pre-malignant tissue and ultimately

compared to results from malignant tissues as in Chapters 4 and 5.

In summary I hope that mathematical descriptions of tumour evolution together



7.2. Outlook 181

with genomic data will facilitate a deeper understanding of genetic heterogeneity of

cancers and enable strategies to treat and diagnose tumours inspired by evolutionary

thinking to come to fruition. I hope that this thesis demonstrates in some small way

how this approach can be utilised.





Appendix A

Dirichlet Process Clustering

In Chapter 4 I used a commonly used clustering approach to see how well the clonal

composition of simulated tumours could be inferred from synthetic sequencing data.

This method was first used in Nik-Zainal et al., 2012b and is a form of Dirichlet

Process clustering (Dunson, 2009). Subsequently many tools have been developed

which use similar methodologies (Roth et al., 2014; Miller et al., 2014). I will

outline the statistical model here following closely how it was originally described

in Nik-Zainal et al., 2012b. The assumptions are that mutations observed in a deep

sequencing experiment are derived from an unknown number of subclones with

unknown frequencies where the number of mutations associated with each subclone

is also unknown. The goal is then to jointly estimate all these variables.

It is assumed that the number of reads, yi reporting the ith mutation is Binomi-

ally distributed.

yi ∼ Bo(Ni,πi) (A.1)

Where Ni is the total number of reads covering the locus and pii is the fraction of

tumour cells carrying the mutation. π can be any number between 0 and 1 and is

modelled as coming from a Dirichlet process. Using the stick breaking representa-

tion of the Dirichilet process:

P =
∞

∑
h=1

ωhδh,with πh ∼ P0 (A.2)

Here, ωh is the weight of the hth mutation cluster, or equivalently the proportion of
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Figure A.1: Dirichlet process clustering applied to Nik-Zainal data set. As in the original
analysis my implementation of the statistical model found 4 clusters.

mutations associated with that cluster, δh is a point mass at π . The stick-breaking

formulation of the Dirichlet process can be captured using a Beta distribution as

follows.

ωh =Vh ∏
i<h

1−Vi with Vh ∼ Beta(1,α) (A.3)

Gibbs sampling can then be used to estimate the posterior distributions given

the model above. This was implemented in Julia and the code is available here:

https://github.com/marcjwilliams1/DPclustering.jl. As in

Nik-Zainal et al, for the prior distributions I used P0∼U(0,1) and α ∼Γ(0.01,0.01)

and set an upper limit for h of 30. To confirm that my implementation works as ex-

pected, I ran the inference on one of the original datasets from Nik-Zainal et al and

as in the original analysis found 4 clusters at the same frequency as was found in

Nik-Zainal.

https://github.com/marcjwilliams1/DPclustering.jl
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Publications

I have mentioned publications that I have contributed to during my PhD throughout

where appropriate, this Appendix includes a full list.

B.1 First author publications
I obtained two first author publications during my PhD. These were presented in

modified form in Chapter 4 and Chapter 5:

1. Williams MJ, Werner B, Barnes CP, Graham TA, Sottoriva A. Identifica-

tion of neutral tumor evolution across cancer types. Nature Genetics. 2016

Mar;48(3):238?44.

2. Williams MJ, Werner B, Heide T, Curtis C, Barnes CP, Sottoriva A, Gra-

ham TA. Quantification of subclonal selection in cancer from bulk sequencing

data. Nature Genetics. 2018 Jun;50(6):895?903.

In addition to these primary research papers, I contributed to a number of dis-

cussions arising from Williams et al. 2016 which are listed below.

1. Williams MJ, Werner B, Barnes CP, Graham TA, Sottoriva A., Reply: Is

the evolution of tumors Darwinian or non-Darwinian? NSR 2018 Jan

17;5(1):17?9.

2. Williams MJ, Werner B, Barnes CP, Graham TA, Sottoriva A. Reply: Uncer-

tainties in tumor allele frequencies limit power to infer evolutionary pressures.

Nature Genetics; 2017 Sep 1;49(9):1289?91.
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3. Heide T, Zapata L, Williams MJ, Werner B, Caravagna G, Barnes CP, Graham

TA, Sottoriva A. Reply to ?Neutral tumor evolution?.? Nature Genetics.2018

Oct 23;48:1?9.

4. Williams MJ, Werner B, Heide T, Barnes CP, Graham TA, Sottoriva A. Reply

to ?Revisiting signatures of neutral tumor evolution in the light of complexity

of cancer genomic data.? Nature Genetics. 2018 Dec 1;50(12):1628?30.

5. Werner B, Williams MJ, Barnes CP, Graham TA, Sottoriva A. Reply to ?Cur-

rently available bulk sequencing data do not necessarily support a model of

neutral tumor evolution.? Nature Genetics; 2018 Oct 19;48:1?8.

B.2 Other papers
Below are some other papers to which I have contributed to by providing bioinfro-

matics support.

1. Baker A-M, Cross W, Curtius K, Bakir Al I, Choi C-HR, Davis HL, Temko D,

Biswas S, Martinez P, Williams MJ, Lindsay JO, Feakins R, Vega R, Hayes

SJ, Tomlinson IPM, McDonald SAC, Moorghen M, Silver A, East JE, Wright

NA, Wang LM, Rodriguez-Justo M, Jansen M, Hart AL, Leedham SJ, Gra-

ham TA. Evolutionary history of human colitis-associated colorectal cancer.

Gut. 2018 Jul 10;:gutjnl?2018?316191?11.

2. Temko D, van Gool IC, Rayner E, Glaire M, Makino S, Brown M, Cheg-

widden L, Palles C, Depreeuw J, Beggs A, Stathopoulou C, Mason J, Baker

A-M, Williams M, Cerundolo V, Rei M, Taylor JC, Schuh A, Ahmed A,

Amant F, Lambrechts D, Smit VT, Bosse T, Graham TA, Church DN, Tom-

linson I. Somatic POLE exonuclease domain mutations are early events in

sporadic endometrial and colorectal carcinogenesis, determining driver mu-

tational landscape, clonal neoantigen burden and immune response. The Jour-

nal of Pathology. 2018 Jul;245(3):283? 96.



Bibliography

1. Alexandrov, L. B. et al. Clock-like mutational processes in human somatic

cells. English. Nature Genetics 47, 1402–1407 (Dec. 2015).

2. Alexandrov, L. B. et al. Mutational signatures associated with tobacco smok-

ing in human cancer. English. Science 354, 618–622 (Nov. 2016).

3. Alexandrov, L. B. et al. Signatures of mutational processes in human cancer.

English. Nature 500, 415–421 (Aug. 2013).

4. Altrock, P. M., Liu, L. L. & Michor, F. The mathematics of cancer: integrat-

ing quantitative models. English. Nature Reviews Cancer 15, 730–745 (Nov.

2015).

5. Alves, J. M., Prieto, T. & Posada, D. Multiregional Tumor Trees Are Not

Phylogenies. English. Trends in Cancer 3, 546–550 (Aug. 2017).

6. Anderson, A. R. A., Weaver, A. M., Cummings, P. T. & Quaranta, V. Tumor

morphology and phenotypic evolution driven by selective pressure from the

microenvironment. English. Cell 127, 905–915 (Dec. 2006).

7. Andor, N. et al. Pan-cancer analysis of the extent and consequences of intra-

tumor heterogeneity. English. Nature Medicine 22, 105–113 (Jan. 2016).

8. Antal, T. & Krapivsky, P. L. Exact solution of a two-type branching process:

models of tumor progression. English. Journal of Statistical Mechanics: The-

ory and Experiment 2011, P08018 (Aug. 2011).

9. Aran, D., Sirota, M. & Butte, A. J. Systematic pan-cancer analysis of tumour

purity. English. Nature communications 6, 8971 (Dec. 2015).



188 BIBLIOGRAPHY

10. Araten, D. J. et al. A quantitative measurement of the human somatic muta-

tion rate. English. Cancer Research 65, 8111–8117 (Sept. 2005).

11. Armitage, P & Doll, R. A two-stage theory of carcinogenesis in relation to

the age distribution of human cancer. English. British journal of cancer 11,

161–169 (June 1957).

12. Baca, S. C. et al. Punctuated Evolution of Prostate Cancer Genomes. English.

Cell 153, 666–677 (Apr. 2013).

13. Bailey, N. The elements of stochastic processes with applications to

the natural sciences 1964. <http : / / books . google . com /

books ? hl = en & lr = &id = yHPnwl4QOfIC & oi = fnd & pg =

PA1 & dq = The + Elements + of + Stochastic + Processes +

with + Applications + to + the + Natural + Sciences & ots =

DzjbVSVn1F&sig=UIcrNuxp1USRTHRQevh_UqtlW-w>.

14. Bailey, S. F., Hinz, A. & Kassen, R. Adaptive synonymous mutations in an

experimentally evolved Pseudomonas fluorescens population. English. Na-

ture communications 5, 4076 (June 2014).

15. Baker, A.-M., Graham, T. A., Elia, G., Wright, N. A. & Rodriguez-Justo, M.

Characterization of LGR5 stem cells in colorectal adenomas and carcinomas.

English. Scientific Reports 5, 25–8 (Mar. 2015).

16. Baker, A.-M. et al. Quantification of crypt and stem cell evolution in the

normal and neoplastic human colon. English. Cell Reports 8, 940–947 (Aug.

2014).

17. Barker, N. et al. Crypt stem cells as the cells-of-origin of intestinal cancer.

English. Nature 457, 608–611 (Jan. 2009).

18. Barker, N. et al. Identification of stem cells in small intestine and colon by

marker gene Lgr5. Nature 449, 1003–1007 (Oct. 2007).

19. Barnes, C. P., Filippi, S., Stumpf, M. P. H. & Thorne, T. Considerate ap-

proaches to constructing summary statistics for ABC model selection. En-

glish. Statistics and Computing 22, 1181–1197 (2012).

http://books.google.com/books?hl=en&lr=&id=yHPnwl4QOfIC&oi=fnd&pg=PA1&dq=The+Elements+of+Stochastic+Processes+with+Applications+to+the+Natural+Sciences&ots=DzjbVSVn1F&sig=UIcrNuxp1USRTHRQevh_UqtlW-w
http://books.google.com/books?hl=en&lr=&id=yHPnwl4QOfIC&oi=fnd&pg=PA1&dq=The+Elements+of+Stochastic+Processes+with+Applications+to+the+Natural+Sciences&ots=DzjbVSVn1F&sig=UIcrNuxp1USRTHRQevh_UqtlW-w
http://books.google.com/books?hl=en&lr=&id=yHPnwl4QOfIC&oi=fnd&pg=PA1&dq=The+Elements+of+Stochastic+Processes+with+Applications+to+the+Natural+Sciences&ots=DzjbVSVn1F&sig=UIcrNuxp1USRTHRQevh_UqtlW-w
http://books.google.com/books?hl=en&lr=&id=yHPnwl4QOfIC&oi=fnd&pg=PA1&dq=The+Elements+of+Stochastic+Processes+with+Applications+to+the+Natural+Sciences&ots=DzjbVSVn1F&sig=UIcrNuxp1USRTHRQevh_UqtlW-w
http://books.google.com/books?hl=en&lr=&id=yHPnwl4QOfIC&oi=fnd&pg=PA1&dq=The+Elements+of+Stochastic+Processes+with+Applications+to+the+Natural+Sciences&ots=DzjbVSVn1F&sig=UIcrNuxp1USRTHRQevh_UqtlW-w


BIBLIOGRAPHY 189

20. Beaumont, M. A., Zhang, W. & Balding, D. J. Approximate Bayesian com-

putation in population genetics. English. Genetics 162, 2025–2035 (Dec.

2002).

21. Beerenwinkel, N., Schwarz, R. F., Gerstung, M. & Markowetz, F. Cancer

evolution: mathematical models and computational inference. English. Sys-

tematic Biology 64, e1–e25 (Jan. 2015).

22. Beerenwinkel, N. et al. Genetic progression and the waiting time to cancer.

English. PLOS Computational Biology 3, e225 (Nov. 2007).

23. Beroukhim, R. et al. The landscape of somatic copy-number alteration across

human cancers. English. Nature 463, 899–905 (Feb. 2010).

24. Betancourt, M. A conceptual introduction to Hamiltonian Monte Carlo.

arXiv (2017).

25. Bezanson, J, Edelman, A, Karpinski, S & Shah, V. Julia: A fresh approach

to numerical computing. SIAM. doi:10.1137/141000671. <https:

//epubs.siam.org/doi/abs/10.1137/141000671>.

26. Bhang, H.-e. C. et al. Studying clonal dynamics in response to cancer ther-

apy using high-complexity barcoding. English. Nature Medicine 21, 440–

448 (May 2015).

27. Bielski, C. M. et al. Genome doubling shapes the evolution and prognosis of

advanced cancers. Nature Genetics, 1–11 (June 2018).

28. Blanpain, C. & Simons, B. D. Unravelling stem cell dynamics by lineage

tracing. English. Nature Reviews Molecular Cell Biology 14, 489–502 (Aug.

2013).

29. Blokzijl, F. et al. Tissue-specific mutation accumulation in human adult stem

cells during life. Nature, 1–17 (Oct. 2016).

30. Bozic, I. et al. Accumulation of driver and passenger mutations during tumor

progression. English. Proceedings of the National Academy of Sciences of

the United States of America 107, 18545–18550 (Oct. 2010).

http://dx.doi.org/10.1137/141000671
https://epubs.siam.org/doi/abs/10.1137/141000671
https://epubs.siam.org/doi/abs/10.1137/141000671


190 BIBLIOGRAPHY

31. Bozic, I., Gerold, J. M. & Nowak, M. A. Quantifying Clonal and Subclonal

Passenger Mutations in Cancer Evolution. English. PLOS Computational Bi-

ology 12, e1004731 (Feb. 2016).

32. Campbell, B. B. et al. Comprehensive Analysis of Hypermutation in Human

Cancer. Cell, 1–26 (Oct. 2017).

33. Carpenter, B. et al. Stan: A Probabilistic Programming Language. English.

Journal of Statistical Software 76, 1–32 (2017).

34. Carter, S. L. et al. Absolute quantification of somatic DNA alterations in

human cancer. English. Nature biotechnology 30, 413–421 (May 2012).

35. Castro-Giner, F., Ratcliffe, P. & Tomlinson, I. The mini-driver model of poly-

genic cancer evolution. Nature Reviews Cancer, 1–6 (Oct. 2015).

36. Champagnat, N., Lambert, A. & Richard, M. Birth and Death Processes

with Neutral Mutations. English. International Journal of Stochastic Anal-

ysis 2012, e569081–20 (Dec. 2012).

37. Chen, L., Liu, P., Evans, T. C. & Ettwiller, L. M. DNA damage is a perva-

sive cause of sequencing errors, directly confounding variant identification.

English. Science 355, 752–756 (Feb. 2017).

38. Chen, Y., Tong, D. & Wu, C.-I. A New Formulation of Random Genetic Drift

and Its Application to the Evolution of Cell Populations. English. Molecular

biology and evolution 34, 2057–2064 (Aug. 2017).

39. Cibulskis, K. et al. Sensitive detection of somatic point mutations in impure

and heterogeneous cancer samples. English. Nature biotechnology 31, 213–

219 (Mar. 2013).

40. Colaprico, A. et al. TCGAbiolinks: an R/Bioconductor package for integra-

tive analysis of TCGA data. English. Nucleic Acids Research 44, e71–e71

(May 2016).



BIBLIOGRAPHY 191

41. Costello, M et al. Discovery and characterization of artifactual mutations in

deep coverage targeted capture sequencing data due to oxidative DNA dam-

age during sample preparation. English. Nucleic Acids Research 41, e67–e67

(Mar. 2013).

42. Davis, A. & Navin, N. E. Computing tumor trees from single cells. Genome

Biology, 1–4 (May 2016).

43. Davis, A., Gao, R. & Navin, N. Tumor Evolution: Linear, Branching, Neutral

or Punctuated? BBA - Reviews on Cancer, 1–58 (Jan. 2017).

44. De Bruin, E. C. et al. Spatial and temporal diversity in genomic instability

processes defines lung cancer evolution. English. Science 346, 251–256 (Oct.

2014).

45. Del Moral, P., Doucet, A. & Jasra, A. Sequential Monte Carlo samplers. En-

glish. Journal of the Royal Statistical Society: Series B (Statistical Method-

ology) 68, 411–436 (June 2006).

46. Didelot, X., Everitt, R. G., Johansen, A. M. & Lawson, D. J. Likelihood-free

estimation of model evidence. English. Bayesian Analysis 6, 49–76 (Mar.

2011).

47. Dobzhansky, T. Nothing in biology makes sense except in the light of evolu-

tion 1983. <https://philpapers.org/rec/DOBNIB>.

48. Driessens, G., Beck, B., Caauwe, A., Simons, B. D. & Blanpain, C. Defining

the mode of tumour growth by clonal analysis. English. Nature 488, 527–530

(Aug. 2012).

49. Dunson, D. B. in Bayesian Nonparametrics (eds Hjort, N. L., Holmes, C.,

Muller, P. & Walker, S. G.) 223–273 (Cambridge University Press, Cam-

bridge, 2009). ISBN: 9780511802478. doi:10.1017/CBO9780511802478.

008. <http : / / ebooks . cambridge . org / ref / id /

CBO9780511802478A058>.

50. Durrett, R. & Schweinsberg, J. Approximating selective sweeps. English.

Theoretical population biology 66, 129–138 (Sept. 2004).

https://philpapers.org/rec/DOBNIB
http://dx.doi.org/10.1017/CBO9780511802478.008
http://dx.doi.org/10.1017/CBO9780511802478.008
http://ebooks.cambridge.org/ref/id/CBO9780511802478A058
http://ebooks.cambridge.org/ref/id/CBO9780511802478A058


192 BIBLIOGRAPHY

51. Durrett, R. Population genetics of neutral mutations in exponentially growing

cancer cell populations. English. The Annals of Applied Probability 23, 230–

250 (2013).

52. Durrett, R. POPULATION GENETICS OF NEUTRAL MUTATIONS IN

EXPONENTIALLY GROWING CANCER CELL POPULATIONS. En-

glish. The Annals of Applied Probability 23, 230–250 (2013).

53. Durrett, R., Wai-Tong & Fan. Genealogies in Expanding Populations. arXiv:

1507.00918. <http://arxiv.org/abs/1507.00918> (July

2015).

54. Durrett, R., Foo, J., Leder, K., Mayberry, J. & Michor, F. Intratumor hetero-

geneity in evolutionary models of tumor progression. English. Genetics 188,

461–477 (June 2011).

55. Eirew, P. et al. Dynamics of genomic clones in breast cancer patient

xenografts at single-cell resolution. Nature 518, 422–426 (Feb. 2015).

56. El-Kebir, M., Satas, G. & Raphael, B. J. Inferring parsimonious migration

histories for metastatic cancers. Nature Genetics, 1–13 (Apr. 2018).

57. Enriquez-Navas, P. M. et al. Exploiting evolutionary principles to prolong

tumor control in preclinical models of breast cancer. English. Science Trans-

lational Medicine 8, 327ra24–327ra24 (Feb. 2016).

58. Ewens, W. J. Mathematical Population Genetics 1: Theoretical Introduction

ISBN: 9780387218229. <https://books.google.co.uk/books?

id=ZobfBwAAQBAJ> (Springer New York, 2012).

59. Favero, F et al. Sequenza: allele-specific copy number and mutation profiles

from tumor sequencing data. English. Annals of oncology : official journal

of the European Society for Medical Oncology 26, 64–70 (Jan. 2015).

60. Fay, J. C. & Wu, C. I. Hitchhiking under positive Darwinian selection. En-

glish. Genetics 155, 1405–1413 (July 2000).

http://arxiv.org/abs/1507.00918
http://arxiv.org/abs/1507.00918
https://books.google.co.uk/books?id=ZobfBwAAQBAJ
https://books.google.co.uk/books?id=ZobfBwAAQBAJ


BIBLIOGRAPHY 193

61. Fialkow, P. J. Clonal origin of human tumors. English. Annual review of

medicine 30, 135–143 (1979).

62. Fialkow, P. J. The origin and development of human tumors studied with cell

markers. English. The New England journal of medicine 291, 26–35 (July

1974).

63. Filippi, S., Barnes, C. P., Cornebise, J. & Stumpf, M. P. H. On optimality

of kernels for approximate Bayesian computation using sequential Monte

Carlo. English. Statistical applications in genetics and molecular biology

12, 87–107 (Mar. 2013).

64. Fischer, A., Vázquez-Garcı́a, I., Illingworth, C. J. R. & Mustonen, V. High-

definition reconstruction of clonal composition in cancer. English. Cell Re-

ports 7, 1740–1752 (June 2014).

65. Fusco, D., Gralka, M., Kayser, J., Anderson, A. & Hallatschek, O. Ex-

cess of mutational jackpot events in expanding populations revealed by spa-

tial Luria-Delbrück experiments. English. Nature communications 7, 12760

(Oct. 2016).

66. Gao, R. et al. Punctuated copy number evolution and clonal stasis in triple-

negative breast cancer. Nature Genetics, 1–15 (Aug. 2016).

67. Gatenby, R. A. A change of strategy in the war on cancer. English. Nature

459, 508–509 (May 2009).

68. Gay, L., Baker, A.-M. & Graham, T. A. Tumour Cell Heterogeneity. English.

F1000Research 5, 238–14 (Feb. 2016).

69. Gelman, A, Carlin, J. B., Stern, H. S. & Rubin, D. B. Bayesian data analysis

2014. <http://amstat.tandfonline.com/doi/full/10.

1080/01621459.2014.963405>.

70. Gerlinger, M. et al. Genomic architecture and evolution of clear cell renal cell

carcinomas defined by multiregion sequencing. English. Nature Genetics 46,

225–233 (Mar. 2014).

http://amstat.tandfonline.com/doi/full/10.1080/01621459.2014.963405
http://amstat.tandfonline.com/doi/full/10.1080/01621459.2014.963405


194 BIBLIOGRAPHY

71. Gerlinger, M. et al. Intratumor heterogeneity and branched evolution re-

vealed by multiregion sequencing. English. The New England journal of

medicine 366, 883–892 (Mar. 2012).

72. Gillespie, D. T. Exact stochastic simulation of coupled chemical reactions.

English. The Journal of Physical Chemistry 81, 2340–2361 (Dec. 1977).

73. Gillespie, J. H. Genetic Drift in an Infinite Population: The Pseudohitchhik-

ing Model. English. Genetics 155, 909–919 (June 2000).

74. Goldman, N & Yang, Z. A codon-based model of nucleotide substitution for

protein-coding DNA sequences. English. Molecular biology and evolution

11, 725–736 (Sept. 1994).

75. Goode, D. L. et al. A simple consensus approach improves somatic mutation

prediction accuracy. English. Genome Medicine 5, 90 (2013).

76. Gordon, D. J., Resio, B. & Pellman, D. Causes and consequences of aneu-

ploidy in cancer. English. Nature Reviews Genetics 13, 189–203 (Jan. 2012).

77. Greaves, M. & Maley, C. C. Clonal evolution in cancer. English. Nature 481,

306–313 (Jan. 2012).

78. Greenman, C., Wooster, R., Futreal, P. A., Stratton, M. R. & Easton, D. F.

Statistical analysis of pathogenicity of somatic mutations in cancer. English.

Genetics 173, 2187–2198 (Aug. 2006).

79. Grelaud, A., Robert, C. P., Marin, J.-M., Rodolphe, F. & Taly, J.-F. ABC

likelihood-free methods for model choice in Gibbs random fields. English.

Bayesian Analysis 4, 317–335 (June 2009).

80. Griffith, M. et al. Optimizing Cancer Genome Sequencing and Analysis. En-

glish. Cell Systems 1, 210–223 (Sept. 2015).

81. Griffiths, R. C. & Pakes, A. G. An infinite-alleles version of the sim-

ple branching process. Advances in applied probability. doi:10.2307/

1427033. <http://www.jstor.org/stable/1427033> (1988).

http://dx.doi.org/10.2307/1427033
http://dx.doi.org/10.2307/1427033
http://www.jstor.org/stable/1427033


BIBLIOGRAPHY 195
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