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Abstract: Observable properties of a classical physical system can be modelled deter-
ministically as functions from the space of pure states to outcome values; dually, states
can be modelled as functions from the algebra of observables to outcome values. The
probabilistic predictions of quantum physics are contextual in that they preclude this
classical assumption of reality: noncommuting observables, which are not assumed to
be jointly measurable, cannot be consistently ascribed deterministic values even if one
enriches the description of a quantum state. Here, we consider the geometrically dual
objects of noncommutative operator algebras of observables as being generalisations of
classical (deterministic) state spaces to the quantum setting and argue that these gener-
alised state spaces represent the objects of study of noncommutative operator geometry.
By adapting the spectral presheaf ofHamilton–Isham–Butterfield, a formulation of quan-
tum state space that collates contextual data, we reconstruct tools of noncommutative
geometry in an explicitly geometric fashion. In this way, we bridge the foundations of
quantum mechanics with the foundations of noncommutative geometry à la Connes et
al. To each unital C∗-algebraAwe associate a geometric object—a diagram of topolog-
ical spaces collating quotient spaces of the noncommutative space underlying A—that
performs the role of a generalised Gel'fand spectrum. We show how any functor F from
compact Hausdorff spaces to a suitable target categoryC can be applied directly to these
geometric objects to automatically yield an extension F̃ acting on all unitalC∗-algebras.
This procedure is used to give a novel formulation of the operator K0-functor via a fini-
tary variant K̃ f of the extension K̃ of the topological K -functor. We then delineate a
C∗-algebraic conjecture that the extension of the functor that assigns to a topological
space its lattice of open sets assigns to a unital C∗-algebra the Zariski topological lattice
of its primitive ideal spectrum, i.e. its lattice of closed two-sided ideals. We prove the
von Neumann algebraic analogue of this conjecture.
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1. Introduction

The mathematical description of classical physical systems exhibits an elegant interplay
between algebraic aspects of observables and geometric aspects of states. A system can
be described in two (dually) equivalent ways depending on whether one takes states or
observables as primary. Adopting a realist or ontological perspective, one starts with
a space of states and constructs observables as (continuous) functions from states to
scalar values. Conversely, adopting an operational or epistemic perspective, one starts
with an algebra of observables and constructs states as (homomorphic) functions from
observables to scalar values. Such state-observable dualities are manifestations of the
duality between geometry and algebra that is a common thread running throughout
mathematics. We are particularly interested in the interplay described by the Gel'fand–
Naı̆mark duality [44] between the categories of unital commutative C∗-algebras (of
observables) and compact Hausdorff spaces (of states).

Quantumsystems are described by theirC∗-algebra of observableswhich, by theGel'-
fand–Naı̆mark–Segal construction [44,87], can be represented as an algebra of Hilbert
space operators. However, as quantum algebras are noncommutative, Gel'fand–Naı̆-
mark duality cannot be used to obtain a geometric description as in the classical case.
Indeed, pure quantum states do not ascribe deterministic values to all observables; rather,
a quantum state yields for each observable a probability distribution on the various
outcomes possible upon measurement.

The inherently probabilistic nature of quantummechanics has discomfited advocates
of physical realism since the theory’s inception. Einstein [37], in his famous founda-
tional debates with Bohr, argued that the quantum state does not provide a ‘complete
description’ of a system. These debates led to the study of hidden variable models of
quantum theory: models in which quantum states are represented as probability distri-
butions over a space of more fundamental ontic states that yield deterministic values
for all observables. Motivated by a desire to hold onto realism, one may insist that
a hidden variable model be noncontextual: that the values of the system’s observable
properties be independent of the precise method of observation, and, in particular, of
which other observables are measured simultaneously. However, the no-go theorem of
Bell–Kochen–Specker [12,68] rules out hidden variable models of this kind, showing
that contextuality is a necessary feature of any theory reproducing the highly-verified
empirical predictions of quantum mechanics.

The primary motivation of this work is to study a candidate geometric notion of state
space for quantum systems that maintains as closely as possible a realist perspective in
the sense alluded to above. In pursuing this, we identify and explore a connection with
the well-studied mathematical field of noncommutative geometry: our geometric notion
of state space will be the geometric dual of a noncommutative algebra of observables.
Our desired geometric construction must necessarily account for contextuality as an
obstacle towards a naively ontological quantum state space.

Our starting point is the spectral presheaf formulation of the Bell–Kochen–Specker
theorem. Hamilton, Isham, and Butterfield [52,60] associate to a von Neumann alge-
bra a presheaf of compact Hausdorff spaces, varying over contexts (commutative von
Neumann subalgebras representing sets of jointly measurable observables). The Bell–
Kochen–Specker theorem finds expression as the nonexistence of a global section of
points (i.e. a global point in the generalised ‘space’), whereas Gleason’s theorem [47]
can be expressed as a correspondence between quantum states and global sections of
probability distributions (i.e. a global probability distribution on the generalised ‘space’).
These observations strongly suggest the role that the spectral presheaf might play as a
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notion of quantum state space that fundamentally incorporates contextuality. Indeed, this
idea forms the basis of a considerable body of research into topos-theoretic approaches
to quantum physics by Isham, Butterfield, Döring, et al. [31–34,52,60–62] and by He-
unen, Landsman, Spitters, et al. [54–56]. More recent developments [11,28–30] pursue
the idea of regarding spectral presheaves as providing a generalised notion of space dual
to noncommutative von Neumann algebras.

We directly relate this body of research to the programme of noncommutative oper-
ator geometry of Connes et al. [20], in which mathematicians regard noncommutative
operator algebras as generalised geometric spaces. The result is a plethora of generali-
sations of geometric tools to the noncommutative algebraic setting that are constructed
indirectly via Gel'fand–Naı̆mark duality.

Our contribution is to associate diagrams of topological spaces, akin to the spectral
presheaf, to noncommutative algebras and to use them to give direct geometric formula-
tions of notions from noncommutative geometry. We argue this is necessary for any con-
cretely spatial object to be considered a quantum state space in the sense of being dual to
a noncommutative algebra. Physically, the topological spaces in the diagram associated
to an algebra can be thought of as state spaces for sets of compatible observables. Mathe-
matically, they are precisely those quotient spaces of the ‘noncommutative space’ repre-
sented by the algebra that are tractable in the sense of being (classical) topological spaces.

The general scheme is as follows: given a concept defined on (compact Hausdorff)
topological spaces (corresponding to unital commutative C∗-algebras), one lifts it from
the contexts to a global concept by taking a limit, thus yielding a corresponding extension
defined for all unital C∗-algebras. In order to support the connection between the global
concepts defined via direct extension and those defined indirectly via Gel'fand–Naı̆mark
duality, we apply this template to extend two different concepts: K -theory and open
sets. First, we show how a finitary variant of the extension K̃ of the topological K -
functor yields a novel formulation of the operator K0-functor. Secondly, we conjecture
a correspondence between the extension of the notion of topologically open sets and
closed two-sided ideals of the algebra, and prove the von Neumann algebraic version of
this conjecture.

Notation. For simplicity, given a functor F : A −→ B, we do not distinguish it nota-
tionally from the same map regarded as a functor Aop −→ Bop. The same applies to
G : Aop −→ B and G : A −→ Bop, since we treat (Aop)op as equal to A.

We shall also denote by F the lifting of a functor F : A −→ B to the categories
of diagrams introduced in Sect. 3.1, mapping A-valued diagrams to B-valued diagrams
(see the remarks at the end of that section for details).

Given functors F,G : A −→ B, wewrite F � G to denote that F andG are naturally
isomorphic.

For reference, Table 1 lists the categories mentioned throughout this article, and their
duals where applicable (see Sect. 2.1).

Wherever we consider a unital sub-C∗-algebra A′ of a unital C∗-algebra A, the
intended meaning is that A′ is a subobject of A in the category uC∗ of unital C∗-al-
gebras; that is, A′ is not simply a sub-C∗-algebra of A that happens to be unital, but
additionally the unit of A′ must be the same as the unit of A.

Summary of main results. We define the category Diag←−−−(C) whose objects are dia-

grams in the category C, i.e. functors from any small category to C. We then introduce
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lim←−: Diag←−−−(C) −→ C when C is complete. This generalises the usual limit functors

for diagrams of a fixed shape. These constructions have duals denoted Diag−−−→(C) and

lim−→: Diag−−−→(C) −→ C when C is cocomplete.

The spatial diagram functor G : uC∗op −→ Diag←−−−(KHaus) associates a diagram of

compact Hausdorff spaces to each unitalC∗-algebra: the objects in the diagramG(A) are
the Gel'fand spectra of unital commutative sub-C∗-algebras ofA, while the morphisms
arise from inner automorphisms of A. We shall also consider some variations (finitary
C∗-algebraic and von Neumann algebraic) of this construction.

For any functor F : KHaus −→ C to a complete target category, we define an
extension F̃ : uC∗op −→ C that acts on a unital C∗-algebra A by applying F (lifted to
diagrams) to the diagram G(A) and then taking the limit:

F̃ = lim←− ◦ F ◦ G : uC∗op −→ Diag←−−−(KHaus) −→ Diag←−−−(C) −→ C.

The functor F̃ extends F . By this, we mean that the two functors agree on unital com-
mutative C∗-algebras:

F̃ |ucC∗ � F ◦ Σ ,

where the functor Σ : uC∗op −→ KHaus maps a unital commutative C∗-algebra to its
Gel'fand spectrum.

We compare the extension of important topological concepts with their existing gen-
eralisation in noncommutative geometry. First, we consider the topological K -functor,
K : KHausop −→ Ab, and give a novel formulation of operator K -theory, K0 : C∗ −→
Ab via a finitary variant K̃ f of K̃ , the extension of the topological K -functor:1

Theorem 5.2. K0 � K0 ◦ K � K̃ f ◦ K as functors uC∗ −→ Ab. Consequently,
K0 : C∗ −→ Ab is naturally isomorphic to the extension via unitalisation of the functor
K̃ f ◦ K.

In the statement above, K : uC∗ −→ C∗ is the stabilisation functor and K̃ f is the
finitary version of K̃ , in the sense that the extension of K is obtained, for a unital C∗-
algebra A, via a diagram G f (A) of the Gel'fand spectra of its unital finite-dimensional
commutative sub-C∗-algebras. Since stable C∗-algebras are nonunital, this then needs
to be extended to all C∗-algebras, which is done via unitalisation.

We then consider the functor T : KHaus −→ CMSLat that maps a compact Haus-
dorff space to its lattice of closed sets ordered by reverse inclusion (which is isomorphic
to the lattice of open sets ordered by inclusion) and a continuous function to its direct
image map.2 Let I : uC∗ −→ CMSLat be the functor mapping a unital C∗-algebra to
its lattice of closed two-sided ideals (equivalently, the lattice of open sets of the C∗-
algebra’s primitive ideal spectrum) and a unital ∗-homomorphism to its preimage map.
We conjecture that T̃ � I and prove the von Neumann algebraic analogue:

1 The category Ab of abelian groups is cocomplete. So, K can be seen as a functor from KHaus to a
complete category, Abop. This can be extended as explained earlier to all unital C∗-algebras, yielding a
functor uC∗ −→ Ab. Note that a limit in the category Abop is a colimit in Ab. This is then extended to the
category C∗ of all (i.e. not-necessarily-unital) C∗-algebras via unitalisation, in the same fashion that K0 is.

2 Dealing with closed sets makes the action on morphisms easier to state, as it is given by the map taking
a set to its image, whereas for open sets one would have the map taking a set to the complement of the image
of its complement.
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Theorem 6.2. Let TW : HStonean −→ CMSLat be the functor assigning to a hyper-
stonean space its lattice of clopen sets ordered by reverse inclusion and to an open
continuous function its direct image map, and let IW : vNAop −→ CMSLat be the
functor assigning to a von Neumann algebra its lattice of ultraweakly closed two-sided
ideals and to an ultraweakly continuous (or normal) unital ∗-homomorphism its inverse
image map. Then T̃W � IW, where T̃W is the von Neumann algebraic extension of T.

Here, the extension T̃W is obtained, for each von Neumann algebraA, via a diagram
GW(A) whose objects are the spectra of its commutative sub-von Neumann algebras
and whose morphisms arise from inner automorphisms of A.

Outline. The remainder of this article is organised as follows:

– Section 2 surveys the main aspects of state-observable dualities, quantum contex-
tuality, the spectral presheaf, and noncommutative geometry, and expands on the
motivation for this work;

– Section 3 introduces the necessary technical machinery for functorially associating
diagrams of topological spaces to operator algebras;

– Section 4 defines the notion of an extension of a concept defined for compact Haus-
dorff topological spaces to one defined for all unital C∗-algebras;

– Section 5 considers the extension of topological K -theory and gives a novel geometric
formulation of operator K -theory;

– Section 6 explains the conjectured correspondence between the extension of open
sets and closed two-sided ideals, and proves the von Neumann algebraic analogue;

– Section 7 outlines future lines of research.

The appendices contain additional and background material:

– Appendix A presents an alternative explicit construction of the colimit functor of
Sect. 4.1;

– Appendix B contains background material on topological and operator K -theory,
expanding on the presentation in Sects. 5.1 and 5.2;

– Appendix C contains background material on the primitive ideal spectrum of a C∗-
algebra and some facts about von Neumann algebras needed in Sect. 6.

This article is basedon thedoctoral dissertationof thefirst author [24]. Earlier versions
of the main results have appeared in the unpublished manuscripts [23] (Sects. 3–5 and
Conjecture 6.1) and [25] (Sect. 6).

2. Background and Motivation

We survey the main background topics to make the results accessible to both mathe-
maticians and physicists and to expand on the motivation for our work.

2.1. (Classical) state-observable dualities. Observables, being representatives of quan-
tities that vary with state, are generally endowed with algebraic structure capturing the
arithmetic of quantities. States, on the other hand, are endowed with geometric structure:
states are close to each other when they share similar physical properties.

Important examples are those classical systems that can be modelled in terms of
Poisson geometry [75]. The collection of pure states is in fact a geometric space: a
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Table 1. Glossary of categories and their duals

Notation Objects Morphisms Dual

C∗ C∗-algebras ∗-homomorphisms
uC∗ Unital C∗-algebras Unital ∗-homomorphisms
ucC∗ Unital commutative C∗-algebras Unital ∗-homomorphisms KHaus
vNA von Neumann algebras Ultraweakly continuous (or nor-

mal) unital ∗-homomorphisms
cvNA Commutative von Neumann algebras Ultraweakly continuous (or nor-

mal) unital ∗-homomorphisms
HStonean

BA Boolean algebras Boolean algebra homomorphism Stone
cBA Complete Boolean algebras Complete Boolean algebra homo-

morphisms
Stonean

caBA Complete atomic Boolean algebras Complete Boolean algebra homo-
morphisms

Set

Set Sets Functions caBA
Top Topological spaces Continuous functions
KHaus Compact Hausdorff spaces Continuous functions ucC∗
Stone Stone spaces Continuous functions BA
Stonean Stonean spaces Open continuous functions cBA
HStonean Hyperstonean spaces Open continuous functions cvNA
Ab Abelian groups Group homomorphisms
AbMon Abelian monoids Monoid homomorphisms
CRng Commutative rings Ring homomorphisms
CMSLat Complete lattices Complete meet-semilattice ho-

momorphisms (meet-preserving
functions)

Cat Small categories Functors

Poisson manifold. This justifies the use of the terminology state space. Any smooth
real-valued map on this manifold can be taken to represent an observable quantity and,
taken together, these maps form a commutative algebra with pointwise operations. In
this case, the Poisson bracket provides the additional structure of a Lie algebra. Hence,
we refer to the algebra of observables.

In the above example, predictions for the outcomes of experiments are deterministic
and observables are explicitly represented as quantity-valued functions on the state space.
However, the fact that a pairing of a state with an observable results in a quantity means
that fixing a state yields a quantity-valued function on the collection of observables.
Identifying a state with the function on observables it defines allows realising the state
space as a space of functions from the algebra of observables to an algebra of quantities.

This perspective is common in duality theory. The simplest example is the Stone-type
duality between the categories Set of sets and functions and caBA of complete atomic
Boolean algebras and complete Boolean algebra homomorphisms [97]. In one direction,
a functor maps a set S to the Boolean algebra HomSet(S, 2) of functions to 2 = {0, 1}
and maps a function f : S −→ T to the caBA-morphism f ∗ : HomSet(T, 2) −→
HomSet(S, 2) given by f ∗(g) = g ◦ f . Similarly, in the opposite direction, one can use
the functor HomcaBA(−, 2), where 2 is the two-element Boolean algebra, to complete
the duality of these categories. This establishes a (dual) equivalence between a category
of geometric objects—sets can be seen as trivial geometries with no structure beyond
cardinality—and a category of algebraic objects.

A duality of the same form—defined by Hom functors to a dualising object 2—
exists between the categories Stone of Stone spaces and continuous functions and BA
of Boolean algebras and Boolean algebra homomorphisms [90,92,93]; see [46] as an
elementary reference and [63] for more general forms of this duality. The geometric
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nature of Stone spaces, which are particular kinds of topological spaces, is clearer in this
instance. This example also demonstrates a logical form of duality between semantics
and syntax: the algebraic category of Boolean algebras can be seen as the category of
propositional theories whereas the geometric category of Stone spaces is the category
of corresponding spaces of two-valued models [10,97].

A classic example of geometric-algebraic duality, which informs Sect. 6, is that
between unital commutative rings and affine schemes [53]. Given such a ring R, one
can define a topological space SpecR, called the prime spectrum (or just spectrum) of
R, whose points are the prime ideals of R and whose open sets are indexed by the ideals
of R. One can then define a sheaf of commutative rings on SpecR such that the stalk
at a prime ideal p is the localisation of R at p, turning SpecR into a locally ringed
space. The locally ringed spaces that arise in this way are called affine schemes. The
commutative ring giving rise to an affine scheme can be recovered by taking the ring
of global sections of the scheme. In this way, a geometric dual to the category of unital
commutative rings is constructed and geometric tools and reasoning can be brought to
bear on subjects that make use of commutative rings, such as number theory. Many other
examples of geometric-algebraic dualities can be found; see [67].

The most important example for our purposes is the Gel'fand–Naı̆mark duality be-
tween the category KHaus of compact Hausdorff spaces and continuous functions and
the categoryucC∗ of unital commutativeC∗-algebras andunital∗-homomorphisms [44].
Under this duality, a space X is mapped to the unital commutative C∗-algebra C(X) of
all the continuous complex-valued functions on X . The reversal of this process—going
from a commutative algebra A to the topological space whose algebra of functions is
A—is accomplished by the Gel'fand spectrum functor Σ . The points of the space Σ(A)

are the characters of A, i.e. unital homomorphisms from A to C, with topology given
by pointwise convergence (the weak-∗ topology). So, similarly to the Stone dualities
discussed above, Gel'fand–Naı̆mark duality arises from Hom functors to a dualising ob-
ject: in this case, C.3 HomucC∗(A, C) is topologised by pointwise convergence, using
the topology of C; HomTop(X, C) inherits (pointwise) the algebraic structure from C

and is given the uniform norm.4

Gel'fand–Naı̆mark duality has a clear interpretation as a state-observable duality. The
objects of the geometric category can be seen as state spaces of classical systems. Ob-
servables, in this analogy, are the continuous real-valued functions on the state space, i.e.
the self-adjoint elements of the algebra of observables. The Gel'fand spectrum functor
recovers the pure state space from the algebra of observables. We attribute a classi-
cal nature to these models since states are associated with well-defined values for all
observables simultaneously.

Von Neumann algebras constitute an important special class of C∗-algebras. The
topological spaces that arise as Gel'fand spectra of commutative von Neumann algebras
are hyperstonean spaces [26,48]. These are extremally disconnected compact Hausdorff
(or Stonean) spaces with sufficiently many positive normal measures; see [96, Definition
III.14] formore details. The appropriate notion ofmorphismwhen dealingwith vonNeu-
mann algebras is that of ultraweakly continuous (or normal) unital ∗-homomorphisms.
Corresponding to such morphisms between commutative von Neumann algebras are
open continuous maps between their spectra. Thus, Gel'fand–Naı̆mark duality restricts

3 There is also a real version of this duality, with R as the dualising object [63].
4 Note thatC is not in fact a compactHausdorff space, and thus does not live inKHaus. However, this duality

can be extended to one between locally compact Hausdorff spaces and (not-necessarily-unital) commutative
C∗-algebras.
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to a duality between the categories cvNA of commutative von Neumann algebras and
ultraweakly continuous (or normal) unital ∗-homomorphisms and HStonean of hyper-
stonean spaces and morphisms of Stonean spaces, i.e. open continuous functions. See
e.g. [96, Chapter III.1] for the objects part of this duality and [71, Lecture 14] for the
morphisms.

In all these instances, our algebraic categories consist of objects with commutative
operations. In quantum theory, the model of a system is specified by a noncommutative
algebra of observables. Understanding the geometric duals of these objects is essential to
completing our understanding of how quantummechanics revises the nature of classical
theories and, in particular, notions of states of systems. It is also a fundamental question
of purely mathematical interest.

2.2. Contextuality: the Bell–Kochen–Specker theorem. This theorem establishes that
quantum mechanics is contextual in the sense that it does not admit a hidden variable
model where (hidden) ontic states ascribe consistent values to all observables simul-
taneously, independent of the method of observation, i.e. of which other observables
are measured together with some observable. In fact, it shows that it is not possible to
construct even a single such consistent deterministic ontic state.

Suppose we have a quantum system modelled by a (noncommutative) von Neumann
algebra. Observables, or measurements, are given by the self-adjoint operators. An ontic
state as described above would then yield a valuation:

Definition 2.1. Avaluation on a vonNeumann algebraA is amap v from the self-adjoint
operators of A to R such that v(1) = 1 and for any pair of commuting observables A
and B, v(A + B) = v(A) + v(B) and v(AB) = v(A)v(B).

These conditions are necessary for such a potential hidden state to be consistent with
a quantum state in the sense that it does not predict the occurrence of any impossible
events. Note that when A and B are two commuting observables, then A + B and AB
also commute with both A and B. Therefore, in this case, A, B, AB, and A + B can all
be measured together. Upon performing these measurements on any quantum state, the
obtained joint outcomes satisfy the functional relations above.5

Theorem 2.2 (Bell–Kochen–Specker [12,68]). No valuations exist on B(H) if dimH >

2.

Observe that, restricted to projections, a valuation is a map that takes the values 0
or 1 and is additive on sets of orthogonal projections. Kochen and Specker proved that
such a valuation on projections is impossible to construct by providing a collection W
of 117 vectors in a Hilbert space of dimension 3 such that no subset ofW intersects each
orthogonal triple in W precisely once.

The result is extended to all separable von Neumann algebras without summands of
type I1 or I2 in [27], showing that no valuations exist for quantum systems described by
algebras of observables of these kinds.

The study of contextuality has enjoyed a revival in recent times. A number of abstract
formalisms to study contextuality in general physical theories have been developed

5 In some presentations (such as [81] for B(H) or [27, Lemma 6] for general von Neumann algebras), the
sum and product rules in the definition of valuations are derived from a different assumption, the functional
composition principle (or FUNC principle). This states the requirement that v( f (A)) = f (v(A)) for a class
of functions f : R −→ R, which in the case of valuations on general von Neumann algebras is taken to be
that of Borel functions.
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recently [1,2,17,91]. Also, recent work suggests that it might be considered a resource
conferring advantage in computational and information-processing tasks [59,80].

2.3. The spectral presheaf. The research programme known as the topos approach to
quantum theory aims to achieve a reformulation of quantum theory that resembles the
classical picture as closely as possible, but taking contextuality as a central feature. The
central idea is to study a quantum system via its contexts or classical perspectives.

Formally, a context may be taken to correspond to a commutative subalgebra of the
algebra of observables. Physically, this represents a set of properties that can be simul-
taneously measured with one experimental procedure. The idea to consider quantum
systems via classical contexts has a long history, in a sense going back to Bohr [15], and
appearing explicitly in Edwards [35].

Regarding contextuality as a central aspect of quantummechanics, Isham and Butter-
field [52,60–62] proposed the use of presheaves to assign data to these contexts and glue
it together in a consistent way in order to achieve a full description of a quantum system
via the pasting of all its partial classical perspectives. This idea was further developed by
Döring and Isham [31–34] and, along somewhat different lines, by Heunen et al. [54–
56]. The topos approach to quantum mechanics suggests a candidate geometric object
to take the role of the state space in analogy to the classical case: the spectral presheaf.
This object collects the classical partial state spaces of commutative subalgebras along
with morphisms used to consistently relate data from different classical perspectives.

Definition 2.3. A context of a von Neumann algebra A is a commutative sub-von Neu-
mann algebra of A. The context category C(A) is the subcategory of commutative von
Neumann algebras whose objects are the contexts of A and whose morphisms are the
inclusion maps between them.

For every context V , the Gel'fand spectrum functor can be used to construct a sample
spaceΣ(V )whose points represent the possible outcomes for a measurement procedure
jointly measuring all the observables in V . The elements o ofΣ(V ) are functions assign-
ing real numbers to the observables in V while preserving addition and multiplication.
These conditions are easily justified on physical grounds and are sufficient to guaran-
tee that o assigns to a self-adjoint operator a value from its spectrum. As explained in
Sect. 2.1, this collection of functions comes equipped with an extremally disconnected
compact Hausdorff topology (in fact, a hyperstonean topology) coming from pointwise
convergence, which is discrete in the case that A is finite-dimensional.

Definition 2.4 (Spectral presheaf ). LetAbe avonNeumannalgebra. Its spectral presheaf
is the functor of type C(A)op −→ HStonean that maps each object and morphism of
C(A) to its image under the Gel'fand spectrum functor.

An inclusion map ι : V ↪−→ V ’ corresponds to a coarse-graining, i.e. the context V
represents a procedure measuring a subset of the observables measured by the procedure
represented by V ′. The image under the Gel'fand spectrum functor of such an inclusion,
Σ(ι) : Σ(V ′) −→ Σ(V ), acts by restriction: an outcome map o ∈ Σ(V ′) is taken to
o|V .

Accordingly, a global section of the spectral presheaf ofA is a choice of oV ∈ Σ(V )

for all contexts V of A such that oV = oV ′ |V whenever V ⊂ V ′. Therefore, the Bell–
Kochen–Specker theorem can be reformulated in terms of the spectral presheaf:

Theorem 2.5 ([27,52]). Suppose A is a separable von Neumann algebra without type
I1 or I2 summands. Then its spectral presheaf has no global sections.
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This is simply a reformulation of the Bell–Kochen–Specker theorem for these von
Neumann algebras [27], since valuations on a von Neumann algebra A correspond to
global sections of its spectral presheaf.

Thus, the impossibility of providing a mathematical model in the classical sense
for quantum theory is expressed by constructing a geometric object associated to a
quantum system via collating the sample spaces associated to contexts, linked by a
simple consistency condition related to coarse-graining, and by demonstrating that said
object possesses no ‘global points’.

These geometries represented by spectral presheaves do, however, possess global
probability distributions. Remarkably, these distributions are in correspondence with
(possibly mixed) quantum states. Just as the lack of points of spectral presheaves is
equivalent to a landmark theorem of quantum foundations, the Bell–Kochen–Specker
theorem, the correspondence between distributions on spectral presheaves and quantum
states is equivalent to Gleason’s theorem [18,47,100,101] (see also [50,73]). This obser-
vation was first made by de Groote [22] and is succinctly expressed using the framework
described in this article (see Sect. 4.3).

2.4. The noncommutative geometry of C∗-algebras. Noncommutative geometry is the
mathematical study of noncommutative algebras by the extension of geometric tools that
have been rephrased in the language of commutative algebra to the noncommutative set-
ting [67]. Given a duality between geometric objects and commutative algebras, such
as Gel'fand–Naı̆mark duality, we can rephrase geometric concepts by expressing them
algebraically in terms of functions. For example, if we wish to algebraically express
the idea of an open set of a (locally compact Hausdorff) topological space X , we might
think about the set of functions that vanish outside of it and note that this is an ideal of
C(X). In fact, there is a bijective correspondence between closed ideals of C(X) and
open sets of X . As a more complicated example, the Serre–Swan theorem [94] allows
us to identify vector bundles over X with finitely generated projective C(X)-modules.
Remarkably, these algebraic descriptions of geometric concepts do not crucially rely on
the commutativity of C(X). Therefore, one can generalise geometric tools and intuition
to noncommutative algebrasA by using these same algebraic descriptions. This justifies
thinking of a noncommutative C∗-algebra as a noncommutative (locally compact Haus-
dorff) topological space. The elements of theC∗-algebraA are thought of as continuous
complex-valued functions on a metaphorical noncommutative space. Such a space de-
fies explicit description by conventional mathematical ideas about what a space is; for
example, it cannot be thought of as a collection of points, for such an object always has
a commutative algebra of functions.

One of the best examples of an extension of a topological tool to the setting of
noncommutative spaces is that of K -theory. The isomorphism classes of vector bundles
over a compact Hausdorff space X form a semigroup under direct sum and K (X) is
defined to be the Grothendieck group of this semigroup. The K -functor is an important
cohomological invariant in the study of topology. By using the geometry-to-algebra
dictionary described above, one defines an extension of K to unital C∗-algebras A in
terms of equivalence classes of finitely generated projective A-modules; in this way,
the operator K0-functor is constructed. It is an extension of K in the sense that when
A is commutative, i.e. A � C(X) for a space X , then K0(A) � K (X). In this way,
one obtains a powerful invariant of C∗-algebras which forms the basis of a classification
programme [38]. The modern account of operator K0 uses an equivalent formulation in
terms of equivalence classes of projections in matrix algebras over A [86].
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Table 2. Dictionary of concepts between geometry and algebra

Geometry Algebra

Continuous function from a space to C Element of the algebra (operator)
Continuous function from a space to R Self-adjoint element of the algebra
Range of a function Spectrum of an operator
Open set Closed two-sided ideal
Vector bundle Finitely generated projective module
Cartesian product Minimal tensor product
Disjoint union Direct sum
Infinitesimal Compact operator
Regular Borel probability measure State
Integral Trace
1-point compactification Unitalisation

With considerable effort, this process of translation from geometry to algebra yields a
conceptual dictionary covering a vast terrainwithinmathematics. It is not just topological
concepts that can be translated into the language of algebra; there are also noncommu-
tative extensions of measure theory, differential geometry, etc. [20]; see Table 2.

2.5. Motivation. The unreasonable effectiveness of topological tools and intuition in the
study ofC∗-algebras suggests the existence of a deeper principle at work. The method of
translating geometric ideas into algebra in order to generalise them is powerful but can
be somewhat ad hoc. Ideally, one may hope for a new conception of space, of which the
commutative/topological situation would be a special case, and which would constitute
(the objects of) a category dual to that of (noncommutative) C∗-algebras. That is, one
would be able to extend the notion of Gel'fand spectrum of a commutative algebra
to the noncommutative case by assigning to an algebra A such a ‘space’, whose set
of continuous functions would be, in some sense, A. As pointed out above, an explicit
description of (currently imaginary) noncommutative topological spaces is very difficult
since such spaces defymost contemporary ideas aboutmathematical spaces. It is difficult
to know how to begin defining such an object. However, we can imagine that equipped
with such an explicit description, should it not depart too far from the commutative
situation, one could find natural and intuitive methods of extending topological tools.

Thus, our criterion for a successful explicit manifestation of noncommutative space
is that it naturally leads to extensions of topological concepts that agree with well-
known and useful noncommutative geometric concepts. In effect, we aim to complete
the conceptual diagram of Fig. 1. This diagram requires some explanation. The top
row describes the two dually equivalent mathematical formalisms for encapsulating the
operational content of a classical system: the topological picture, in which states are
taken as the primitive concept, and the commutative C∗-algebraic picture, in which
observables are taken as primitive.

The arrows represent methods for the translation and generalisation of concepts. The
Gel'fand spectrum functor allows for any notion or theorem phrased in terms of the
topological structure of spaces to be translated into algebraic terms; e.g. open sets of a
space become closed two-sided ideals of an algebra. Once a concept has been phrased in
terms of algebra, it can be applied without modification to the noncommutative case; e.g.
finitely generated projective modules of a commutative algebra (the equivalent of vector
bundles) becomefinitely generated projectivemodules of a not-necessarily-commutative
algebra. Thus, the composition of the top and right arrows can be seen as the usual process
of generating the basic entries of the noncommutative dictionary.
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Commutative
(Classical)

Noncommutative
(Quantum)

Geometry
(States)

Algebra
(Observables)

Topological
spaces

Commutative
C∗-algebras

Noncommutative
spaces

Noncommutative
C∗-algebras

Fig. 1. Here, we give a (nonrigorous) high-level diagram representing the heuristic processes by which topo-
logical concepts are generalised to the noncommutative setting. The top and right arrows correspond to the
usual method of translation: the top arrow represents translating a topological notion to an algebraic one
via Gel'fand–Naı̆mark duality and the right arrow represents applying this algebraic definition in the non-
commutative setting. Our aim is to generalise the Gel'fand spectrum functor Σ to a functor G that assigns
to each noncommutative algebra a noncommutative space. This requires proposing a candidate construction
of noncommutative space that is manifestly geometric. Further, we ask that this notion of noncommutative
space comes naturally equipped with processes corresponding to arrows completing the diagram—a left arrow
corresponding to a way of generalising topological concepts to these noncommutatively spatial objects, and a
bottom arrow corresponding to porting such (generalised) topological concepts to noncommutative algebraic
ones via the new association G—in such a way that reproduces the results of the usual translation process

Note, however, that there is some ambiguity in this translation process. A topological
concept can be translated in several different ways, which means that intuition and
judgement must be deployed when determining appropriate algebraic analogues. As a
very simple example, open sets of a space X are in correspondence with both the closed
left ideals of C(X) and the closed two-sided ideals of C(X) as these two collections
are identical in the commutative case. Thus, finding a completely automatic method of
translation that eliminates such ambiguities would in itself constitute an advance in the
structural understanding of noncommutative geometry.

Akemann and Pedersen [79] proposed to replace the translation process by working
directly with Giles–Kummer’s [45] and Akemann’s [5] noncommutative generalisations
of the basic topological notions of open and closed sets. In contrast, we do not employ
algebraic generalisations of basic topological notions. Instead, we work with objects
that slightly generalise the notion of topological space and come readily equipped with
an alternative to the translation process.

In addition to the work of Akemann–Pedersen and Giles–Kummer on noncommuta-
tive generalisations ofGel'fand–Naı̆mark duality, there have been a number of alternative
approaches by authors including Alfsen [6], Bichteler et al. [13], Dauns–Hofmann [21],
Fell [39], Heunen et al. [57], Kadison [64], Kruml et al. [69], Krusyński–Woronowicz
[70],Mulvey [78], Resende [82], Shultz [89], and Takesaki [95]. An excellent discussion
of many of these works is contained in a paper by Fujimoto [43].

Our goal with this work is to find, to a first approximation, a way of completing the
conceptual diagram of Fig. 1. That is, we aim to propose and study candidate definitions
of a categoryNCSpaces ofnoncommutative spaces and a generalisedGel'fand spectrum
functor G : uC∗op −→ NCSpaces acting on the category uC∗ of all unital C∗-al-
gebras and unital ∗-homomorphisms. The first motivation is to provide a geometric
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manifestation for a notion of noncommutative space (namely, the quantum state space
described above) whose existence is currently understood as being merely metaphorical.
The second is to exploit this geometric manifestation to obtain a canonical method for
importing concepts of topology to noncommutative algebra.

The primary desiderata of a guess for a notion of noncommutative space is that it
comes equipped with: (i) a natural method of generalising notions from topology (that is,
a left arrow in the informal diagram), and (ii) a functorial association of such a generalised
‘space’ G(A) to each noncommutative algebra A, which provides a way of translating
generalised topological concepts to noncommutative algebras by applying them to the
corresponding noncommutative ‘space’ (i.e. a bottom arrow). That the composition of
these two translationsmatch the usual noncommutative dictionarywould justify thinking
of G(A) as the geometric manifestation of a noncommutative algebra A.

Our proposal for a notion of noncommutative space and a functor G, as inspired by
Isham and Butterfield’s work, is to consider diagrams of topological spaces associated to
contexts. Our primary mathematical objectives are two-fold. First, we argue that a nec-
essary desideratum of a proposed geometric interpretation of a noncommutative algebra
is a precise account of the relationship between topological concepts and their noncom-
mutative analogues. Indeed, this requirement will be critical for fixing the structure of
our diagrams—specifically, the class of morphisms that are included. Second, we aim
to provide evidence that this is achievable.

We do not necessarily expect that this will immediately yield a full categorical duality,
i.e. a concrete category equivalent to uC∗op, but rather stimulate progress towards that
goal—or towards a better understanding of the obstacles to that goal. Finding such a
full duality would require characterising the objects and morphisms of NCSpaces that
are in the image of a functor G and establishing that that G is faithful and injective
on objects so that its image is a category and G an equivalence onto it. Note that the
particular first approximations to G that we consider in this article—which associate
diagrams of topological spaces to a noncommutative algebra—are faithful but not full,
and in particular not essentially injective.6 Instances of noncommutative concepts that
lack a commutative analogue could provide guidance on which additional data, such
as a group action, one might need to take into account when defining a G to achieve
a categorical duality. The failure of a particular guess for G to be essentially injective
may also provide such guidance; however, one might also be open to the possibility that
nonisomorphic algebras contain equivalent topological information and thus correspond
to the same (or homeomorphic) noncommutative space.

Evenwithout a complete categorical duality forC∗-algebras, the perspective outlined
in this article may prove to be useful. The extent to which noncommutative geometry
can be understood directly in topological terms is a wide open—and, in our estimation,
interesting—question.

The framework of extensions, developed in Sect. 4, formalises how certain ways
of associating diagrams of topological spaces to noncommutative algebras come with
left and bottom arrows, and in this way yield a noncommutative counterpart for every
topological concept. In Sect. 5, we determine the appropriateG such that the associated
extension of topological K -theory essentially matches the established noncommutative
K -theory. In Sect. 6, as a verification of this candidate construction ofG, we conjecture
that it can be used to extend the topological notion of open set to that of closed two-

6 This follows from the existence of a C∗-algebra A nonisomorphic to its opposite algebra [19]. As both
A andAop have the same commutative sub-C∗-algebras (contexts), both will be assigned identical diagrams
of topological spaces.
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sided ideal, and we prove the analogue of this conjecture in the setting of von Neumann
algebras.

3. Spatial Diagrams

We introduce the technical machinery necessary for contravariantly functorially associ-
ating diagrams of topological spaces, describing quotient spaces of a ‘noncommutative
space’, to noncommutative operator algebras. We consider functors that associate to a
unitalC∗-algebra a diagramwhose objects are spectra of contexts and whosemorphisms
are chosen to yield a natural method, described in the next section, of extending functors
that act on compact Hausdorff spaces to functors acting on all unital C∗-algebras. An
analogous method is applicable to extending functors that act on hyperstonean spaces
to functors acting on all von Neumann algebras.

3.1. The categories of all diagrams in C. We propose to associate to each unital C∗-
algebra A a diagram of topological spaces whose objects are the spectra of the unital
commutative sub-C∗-algebras of A. Given that this association should generalise the
Gel'fand spectrum functor, we would naturally expect it to be contravariantly functorial.

Typically, one thinks of a diagram D : A −→ C in a category C as living inside
the functor category CA. This is inadequate for our purposes as different algebras have
different sets of commutative subalgebras and will thus be mapped to diagrams of dif-
ferent shapes. We introduce a general construction that allows considering diagrams of
different shapes on the same footing.

Definition 3.1. For any category C, Diag−−−→(C), the covariant category of all diagrams in

C has as objects all the functors from any small category to C; and the morphisms from
a diagram D : A −→ C to a diagram E : B −→ C are pairs ( f, η) where f : A −→ B
is a functor and η is a natural transformation from D to E ◦ f .

The composition (g, μ) ◦ ( f, η) of two Diag−−−→(C)-morphisms

( f, η) : D1 −→ D2 and (g, μ) : D2 −→ D3

is given by (g ◦ f, (μ f ) ◦ η) where μ f is the natural transformation from D2 ◦ f to
D3 ◦ g ◦ f given by (μ f )a = μ f (a).

The contravariant categoryof all diagrams inC,Diag←−−−(C), is the categoryDiag−−−→(Cop)op.

Its objects are all contravariant functors from a small category to C; and the morphisms
from a diagram D : Aop −→ C to a diagram E : Bop −→ C are pairs ( f, η) where
f : B −→ A is a functor and η is a natural transformation from D ◦ f to E .

The categories defined above can be constructed by considering the colax-slice and
lax-slice 2-categories Cat/C [88] and forgetting the 2-categorical structure.

Note that a functor F : C −→ C′ naturally induces a functor from Diag−−−→(C) to

Diag−−−→(C′), which we will also denote by F . Explicitly, if D : A −→ C, then F(D) is

simply F ◦ D, while a Diag−−−→(C)-morphism ( f, η) is sent to the Diag−−−→(C′)-morphism

( f, Fη) where (Fη)a = F(ηa). In a similar fashion, the functor F also induces a
functor F : Diag←−−−(C) −→ Diag←−−−(C′). Note that, for contravariant functors, we get the
following: a functor G : Cop −→ C′ induces functors G : Diag←−−−(C)op −→ Diag−−−→(C′)
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andG : Diag−−−→(C)op −→ Diag←−−−(C′), since Diag−−−→(Cop) = Diag←−−−(C)op and Diag←−−−(Cop) =
Diag−−−→(C)op.

3.2. Semispectral functors. Having defined a category that simultaneously accommo-
dates diagrams of varying shape, we are ready to begin defining our contravariantly
functorial associations of diagrams of topological spaces to unital C∗-algebras. We will
define a class of such functorial associations. What all these contravariant functors from
the category of unital C∗-algebras to diagrams of compact Hausdorff spaces have in
common is that they will associate to each unital C∗-algebra a diagram (i.e. a functor)
whose domain is a subcategory of the category of unital commutative C∗-algebras. In
fact, in each case, the objects of the domain subcategory of the diagram associated to a
C∗-algebra are its unital commutative sub-C∗-algebras. The class of morphisms in this
domain subcategory, however, will be allowed to vary. There is an analogous version for
von Neumann algebras where one considers only their commutative sub-von Neumann
algebras; this will also be of interest to us.

Our motivating example is the spectral presheaf (see Definition 2.4). The recipe for
its construction, which we aim to generalise, is as follows:

1. take a von Neumann algebra A;
2. consider the subcategoryC(A) of cvNA whose objects are the commutative sub-von

Neumann algebras (contexts) ofA and whose morphisms are the inclusions between
such subalgebras;

3. consider the inclusion functor iC(A) ofC(A) incvNA: this is anobject ofDiag−−−→(cvNA);

4. compose the (vonNeumann)Gel'fand spectrum functorΣ : cvNAop −→ HStonean
with this inclusion functor to yield an object of Diag←−−−(HStonean), i.e. a functor

C(A)op −→ HStonean, called the spectral presheaf of A.

This association of spectral presheaves to von Neumann algebras can be made
functorial in a natural way. Given an ultra-weakly continuous, or normal, unital ∗-
homomorphism φ : A −→ B, we can define a Diag−−−→(cvNA)-morphism ( f, η) as fol-

lows: f : C(A) −→ C(B) sends a commutative sub-vonNeumann algebra V ofA to the
commutative sub-von Neumann algebra φ(V ) of B, and an inclusion V ↪−→ V ′ to the
inclusion φ(V ) ↪−→ φ(V ′); while η : iC(A) −→ iC(B) ◦ f is the natural transformation
with components ηV defined to beφ|V : V −→ φ(V ). This yields a functor s : vNA −→
Diag−−−→(cvNA), which will be our first example of a (von Neumann algebraic) semispec-

tral functor. The Gel'fand spectrum functor for vonNeumann algebras,Σ : cvNAop −→
HStonean, lifts to a functor from Σ : Diag−−−→(cvNA)op −→ Diag←−−−(HStonean), map-

ping ( f, η) to a Diag←−−−(HStonean)-morphism between the spectral presheaves of B and

of A. Overall, this yields a functor Σ ◦ s : vNAop −→ Diag←−−−(HStonean).

We will generalise this recipe to unital C∗-algebras. However, we will also want to
consider other choices of morphisms to include in our diagrams. In the next section, we
see that certain ways of associating diagrams of spaces to algebras automatically yield a
method for extending topological functors to functors that act on all unital C∗-algebras.
The family of morphisms we include in our diagrams determines the resulting method
of extensions. Thus, we will vary the family of morphisms in order to determine the
one whose method of extending functors matches up with the canonical generalisation
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process of noncommutative geometry. This was themotivation behind the reconstruction
of the definition of operator K -theory.

Definition 3.2. A functor σ : uC∗ −→ Diag−−−→(ucC∗) is called semispectral if:

1. For any unital C∗-algebra A, σ(A) is the inclusion functor of a subcategory dom
(σ (A)) of ucC∗ whose objects are unital commutative sub-C∗-algebras of A;

2. For a unital ∗-homomorphism φ : A −→ B, σ(φ) is the Diag−−−→(ucC∗)-morphism

( f, η) : σ(A) −→ σ(B), where f : dom(σ (A)) −→ dom(σ (B)) takes a unital
commutative sub-C∗-algebra V ⊂ A to the unital commutative sub-C∗-algebra
φ(V ) ⊂ B, and η is the natural transformation with components ηV being the unital
∗-homomorphisms φ|V : V −→ φ(V );

3. If A is commutative, then it is the terminal object of dom (σ (A)).

Similarly, a functor σ : vNA −→ Diag−−−→(cvNA) is called semispectral if the analo-

gous conditions hold, with “sub-von Neumann algebras” and “normal unital
∗-homomorphisms” substituted as appropriate.

The third condition will be required below to ensure agreement in the commutative
case between a functor and its extension.

3.3. Spatial diagrams. Our primary objects of study will be spatial diagrams, which
are ways of associating diagrams of topological spaces to unital C∗-algebras (or von
Neumann algebras), determined by a semispectral functor. Given a semispectral functor,
the corresponding spatial diagram functor is obtained via Gel'fand–Naı̆mark duality:

Definition 3.3. Given a semispectral functor σ : uC∗ −→ Diag−−−→(ucC∗), its correspond-
ing spatial diagram functor Gσ : uC∗op −→ Diag←−−−(KHaus) is given as

Gσ = Σ ◦ σ : uC∗ −→ Diag−−−→(ucC∗) −→ Diag←−−−(KHaus)op,

where Σ is the Gel'fand spectrum functor uC∗op −→ KHaus lifted to diagrams.
Analogously, given a (von Neumann) semispectral functor σ : vNA −→ Diag−−−→

(cvNA), its corresponding spatial diagram functor Gσ : vNAop −→ Diag←−−−(HStonean)

is given as

Gσ = Σ ◦ σ : vNA −→ Diag−−−→(cvNA) −→ Diag←−−−(HStonean)op,

where Σ is the (von Neumann) Gel'fand spectrum functor cvNAop −→ HStonean
lifted to diagrams.

As explained in the previous section, the first example (for von Neumann algebras)
of a spatial diagram functor is the spectral presheaf functor, which is obtained from the
semispectral functor s : vNA −→ Diag−−−→(cvNA) that sends a von Neumann algebra to

the diagram consisting of its von Neumann subalgebras and inclusions between them.
An analogous definition of spectral presheaf can also be given for C∗-algebras.

For our main results, however, we will need to consider other semispectral func-
tors (and corresponding spatial diagram functors), which also take into account unitary
equivalences between subalgebras. We now give these definitions.
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Definition 3.4. Given a unital C∗-algebra A, its unitary subcategory S(A) of ucC∗
has as objects the unital commutative sub-C∗-algebras of A, and as morphisms the
restrictions of inner automorphisms of A. That is, the morphisms between two unital
commutative sub-C∗-algebras V, V ′ ⊂ A are precisely those Adu |V ′

V : V −→ V ′ of the
form Adu |V ′

V (v) = uvu∗ for some unitary u ∈ A such that uVu∗ ⊂ V ′.

The composition of two such morphisms is given as conjugation by the product of
their respective unitaries, which is also a unitary, and so S(A) is indeed a subcategory
of ucC∗. Note that any morphism Adu |V ′

V : V −→ V ′ can be decomposed as ι ◦ r where
r is the isomorphism Adu |uVu∗

V between V and uVu∗ defined by conjugation by u and
where ι is the inclusion uVu∗ ↪−→ V ′.

Definition 3.5. The unitary semispectral functor g : uC∗ −→ Diag−−−→(ucC∗) sends a

unital C∗-algebra A to the inclusion functor iS(A) : S(A) −→ ucC∗. The action of
g on unital ∗-morphisms is fixed by Condition 2 in Definition 3.2: given a unital ∗-
homomorphism φ : A −→ B, its image g(φ) is ( f, η) where f : S(A) −→ S(B) is
the functor taking a unital commutative sub-C∗-algebra V ⊂ A to φ(V ) ⊂ B and
η is the natural transformation whose component at V is the unital ∗-homomorphism
φ|V : V −→ φ(V ).

We denote by G the corresponding spatial diagram functor Gg = Σ ◦g : uC∗op −→
Diag←−−−(KHaus).

Note that whenA is commutative, the morphisms in S(A) are simply the inclusions,
which is why Condition 3 of Definition 3.2 holds.

The topological spaces in the diagram G(A) should be thought of as being those
that arise as quotient spaces of the hypothetical noncommutative space underlying A.
To see this, note that a sub-C∗-algebra V of C(X) yields an inclusion ι : V ↪−→ C(X)

which corresponds to a continuous surjection Σ(ι) : X −→ Σ(V ). This surjection
is a quotient map since both spaces are compact and Hausdorff [98, p. 12]. Thus, in
accordance with the central tenet of noncommutative geometry, unital sub-C∗-algebras
of a unital noncommutative algebra A are to be understood as having an underlying
noncommutative space that is a quotient space of the noncommutative space underlying
A. By considering only the commutative subalgebras, we are restricting our attention to
the tractable quotient spaces: those that are genuine topological spaces. The morphisms
of the diagram serve to track how these quotient spaces fit together inside the larger
noncommutative space.

We will require in our analysis of operator K0 a slight modification of the unitary
subcategory:

Definition 3.6. Given a unital C∗-algebra A, its finitary unitary subcategory S f (A) of
ucC∗ has as objects the unital finite-dimensional commutative sub-C∗-algebras of A,
and as morphisms the restrictions of inner automorphisms of A.

This is used to define a functor g f , which is a finitary version of the unitary semi-
spectral functor g:

Definition 3.7. The finitary version of the unitary semispectral functor g f : uC∗ −→
Diag−−−→(ucC∗) sends a unital C∗-algebra A to the inclusion functor iS f (A) : S f (A) −→
ucC∗. For a unital ∗-homomorphism φ : A −→ B, its image g f (φ) is defined to be



392 N. de Silva, R. S. Barbosa

( f, η) where f : S f (A) −→ S f (B) is the functor taking a unital finite-dimensional
commutative sub-C∗-algebra V ⊂ A to φ(V ) ⊂ B and η is the natural transformation
whose component at V is the unital ∗-homomorphism φ|V : V −→ φ(V ).

We denote by G f the corresponding spatial diagram functor

Gg f = Σ ◦ g f : uC∗op −→ Diag←−−−(KHaus).

Note that we are abusing terminology here as the functor g f is not semispectral. In
particular, it fails to obey condition 3 of Definition 3.2. Thus, strictly speaking, G f is
not a spatial diagram functor as in Definition 3.3. However, in Sect. 5, we will employ
G f just as if it were a spatial diagram functor in order to reproduce operator K -theory.

For the main result of Sect. 6, we will be dealing with von Neumann algebras only,
and as such we require an analogous version of the spatial diagram functor G in this
setting:

Definition 3.8. Given a von Neumann algebra A, its unitary subcategory SW(A) of
cvNA has as objects the commutative sub-vonNeumann algebras ofA and asmorphisms
the restrictions of inner automorphisms of A.

The (von Neumann) unitary semispectral functor gW : vNA −→ Diag−−−→(cvNA) sends

a von Neumann algebra A to the inclusion functor iSW(A) : SW(A) −→ cvNA and is
defined on a normal unital ∗-homomorphism f : A −→ B in a manner analogous to
Definition 3.5.

We denote by GW the corresponding spatial diagram functor

GgW = Σ ◦ gW : vNAop −→ Diag←−−−(HStonean).

4. Extensions of Topological Functors

We give a generalisation of limit and colimit functors that act on certain functor cate-
gories to ones that act on categories of diagrams. This allows us to define the extension of
a topological functor to a noncommutative algebraic one, given a semispectral functor as
described in the previous section. The extension process is interpreted as decomposing
a noncommutative space into tractable quotient spaces, applying a topological functor
to each one, and pasting the results together. We illustrate this construction by present-
ing formulations of (generalised versions of) the Bell–Kochen–Specker and Gleason’s
theorems in this framework.

4.1. The generalised limit and colimit functors. When a category C is cocomplete, it
admits a colimit functor lim−→: CA −→ C for diagrams over any fixed shape A.

A key feature of the construction of Diag−−−→(C) in the case whereC is cocomplete is the

existence of a generalised colimit functor lim−→: Diag−−−→(C) −→ C. It assigns to a diagram

D : A −→ C the same C-object that is assigned to D by the usual colimit functor for
A-shaped diagrams, of type CA −→ C. If η is a natural transformation between D and
a diagram D′ : A −→ C of the same shape, i.e. a CA-morphism, then the generalised
lim−→ functor maps the Diag−−−→(C)-morphism (idA, η) between D and D′ to the same C-

morphism that is assigned to η by the usual colimit functor CA −→ C. What is novel is
the ability to assign C-morphisms between colimits of diagrams of different shapes to
Diag−−−→(C)-morphisms between these diagrams.
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In this section, we give a concise description of the generalised colimit functor; in
Appendix A, we present a more direct and explicit construction in terms of coequalisers
and coproducts. Everything in this section applies equally well—that is, all dual state-
ments hold true—whenC is complete, in which case we have a generalised limit functor
lim←−: Diag←−−−(C) −→ C.

First, note that a Diag−−−→(C)-morphism ( f, η) between diagrams D : A −→ C and

E : B −→ C can be decomposed as

( f, η) = ( f, idE◦ f ) ◦ (idA, η) : D −→ E ◦ f −→ E (1)

where idE◦ f is the identity natural transformation from the diagram E ◦ f : A −→ C
to itself.

We shall show in detail how to define the (functorial) action of lim−→: Diag−−−→(C) −→ C

on morphisms of the form ( f, idE◦ f ) : E ◦ f −→ E for f : A −→ B and E : B −→ C.
The action on morphisms of the form (idA, η) for η a natural transformation between di-
agrams D, E : A −→ C simply reduces to that of the usual colimit functor lim−→: CA −→
C on the CA-morphism η. The action for a general morphism ( f, η) is then determined
by decomposition (1) and the need to obey functoriality.

Recall that a cocone of a diagram E : B −→ C is a pair (K , k) consisting of a C-
object K together with a natural transformation k from E to the constant diagram to
the fixed object K . In other words, a cocone is an association to each B-object b of a
C-morphism kb : E(b) −→ K such that for every B-morphism h : b −→ b′ we have
that kb = kb′ ◦ E(h), i.e. the following diagram commutes:

E(b)
E(h) ��

kb ���
��

��
��

� E(b′)

kb′����
��
��
��

K

A cocone (L , l) of E is a colimit of E if, for any other cocone (K , k) of E , there is
a unique C-morphism m : L −→ K satisfying kb = m ◦ lb for every B-object b. The
situation is summarised in the following diagram:

When a colimit of a diagram exists (as is the case for E since we are assuming C to be
cocomplete), it is unique up to isomorphism. We can therefore speak of the colimit of
E and write lim−→(E) for the object L above.
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Given a Diag−−−→(C)-morphism of the form ( f, idE◦ f ) : E ◦ f −→ E , we must define

a C-morphism from lim−→(E ◦ f ) to lim−→(E). The fact that (lim−→(E), l) is a cocone for E
implies that (lim−→(E), l f ) is a cocone for E ◦ f , where for an object a ofA, (l f )a = l f (a).
The definition of colimit for the diagram E ◦ f provides a uniquely determined C-
morphism m : lim−→(E ◦ f ) −→ lim−→(E) that maps the cocone constituting the colimit
of E ◦ f to the cocone (lim−→(E), l f ). We can therefore define lim−→( f, idE◦ f ) to be this
morphism m. The universal property is then used to show functoriality of lim−→ on the
class of morphisms of the form ( f, idE◦ f ).

If we additionally have a natural transformationμ : E −→ E ′, by a similar argument,
any cocone (K , k) of E ′ yields a cocone (K , (k ◦μ) f ) of E ◦ f . In particular, this is the
case for the colimit of E ′, the cocone (lim−→(E ′), l ′). Universality then implies that there

is a unique morphism from lim−→(E ◦ f ) to lim−→(E ′) that maps the cocone constituting the

colimit of E ◦ f to the cocone (lim−→(E ′), (l ′ ◦ μ) f ) obtained as we just described. We
thus conclude that

lim−→(idB, μ) ◦ lim−→( f, idE◦ f ) = lim−→( f, idE ′◦ f ) ◦ lim−→(idA, μ f ), (2)

where lim−→ is only being applied to morphisms of each of the two classes from decom-
position (1), for which it has already been defined. Together with functoriality of the
colimit on each of these two classes, this suffices to demonstrate that the entire action
of the colimit is functorial: if for diagrams Di : Ai −→ C with i ∈ {1, 2, 3} we have
morphisms ( f, η) : D1 −→ D2 and (g, μ) : D2 −→ D3, then

lim−→(g, μ) ◦ lim−→( f, η)

= {by definition of lim−→ on a general morphism}
lim−→(g, idD3◦g) ◦ lim−→(idA2 , μ) ◦ lim−→( f, idD2◦ f ) ◦ lim−→(idA1 , η)

= {by (2)}
lim−→(g, idD3◦g) ◦ lim−→( f, idD3◦g◦ f ) ◦ lim−→(idA1 , μ f ) ◦ lim−→(idA1 , η)

= {by functoriality of lim−→ on each class}
lim−→(g ◦ f, idD3◦g◦ f ) ◦ lim−→(idA1 , μ f ◦ η)

= {by definition of lim−→ on a general morphism}
lim−→(g ◦ f, μ f ◦ η)

= {by definition of composition in Diag−−−→(C)}
lim−→((g, μ) ◦ ( f, η)).

We give an explicit description of this generalised colimit construction for the case
of diagrams of abelian groups, which will be needed in Sect. 5. This is computed as
the instantiation of the construction of colimits in terms of coequalisers and coproducts
given in Appendix A to the category Ab of abelian groups and group homomorphisms.

Let D : A −→ Ab and E : B −→ Ab be two diagrams of abelian groups and ( f, η)

be a Diag−−−→(Ab)-morphism from D to E .

First, we describe the colimit of D in Ab, and thus its image under the functor
lim−→: Diag−−−→(Ab) −→ Ab. Consider the direct sum of the groups D(a) over all objects a
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inA. If g is an element of the group D(a), we use the notation (g)a to indicate the element
of this direct sumwith g in the a-th component and 0 in all the others. The colimit of D is
this direct sum modulo the identifications along the morphisms in the diagram D; more
precisely, modulo the subgroup generated by the elements (g)a − (D(h)(g))a′ where
g ∈ D(a) and h : a −→ a′ is an A-morphism.

We now describe the image of ( f, η) under the functor lim−→: Diag−−−→(Ab) −→ Ab. It

is enough to indicate how the group homomorphism lim−→( f, η) acts on elements of the
colimit of D of the form [(g)a]. It does so bymapping [(g)a] to the element [(ηa(g)) f (a)]
of the colimit of E . This is well-defined for if an A-morphism h : a −→ a′ identifies,
over D, (g)a with (D(h)(g))a′ , then the B-morphism f h : f (a) −→ f (a′) identifies,
over E , (ηa(g)) f (a) with (E( f h)(ηa(g))) f (a′), which is equal to (ηa′(D(h)(g))) f (a′) by
naturality of η, i.e. by (E ◦ f )(h) ◦ ηa = ηa′ ◦ D(h).

4.2. Extensions of functors. For a fixed semispectral functor σ , we define a natural
method for extending functors F : KHaus −→ C when C is complete. The idea is to
use σ to turn an algebra A into a diagram of commutative algebras, apply the Gel'fand
spectrum functor contextwise to this diagram to yield a diagram of topological spaces,
apply F contextwise to yield a diagram inC, and finally, apply the extended limit functor
lim←−: Diag←−−−(C) −→ C. This procedure is also described for the von Neumann algebraic
case.

Intuitively, one should think of the extension process as decomposing a noncom-
mutative space into its quotient spaces, retaining those which are genuine topological
spaces, applying the topological functor to each one of them, and pasting together the re-
sults. Varying the semispectral functor effectively changes the precise method of gluing
together the topological data into a single C-object.

Definition 4.1. Given a semispectral functor σ : uC∗ −→ Diag−−−→(ucC∗), a complete cat-

egoryC, and a functor F : KHaus −→ C, theσ -extension of F, denoted F̃σ : uC∗op −→
C, is given by

F̃σ = lim←− ◦ F ◦ Gσ

: uC∗op −→ Diag←−−−(KHaus) −→ Diag←−−−(C) −→ C.

Note that F in the right-hand side of the above expression stands for the functor
from Diag←−−−(KHaus) to Diag←−−−(C) induced by the given F : KHaus −→ C (see the last

paragraph of Sect. 3.1), while Gσ is the spatial diagram functor corresponding to σ

(Definition 3.3).
Extensions are analogously defined with respect to von Neumann algebraic semi-

spectral functors σ : vNA −→ Diag−−−→(cvNA), with a functor F : HStonean −→ C to a

complete category C yielding a σ -extension F̃σ : vNA∗op −→ C.
In some applications (notably, in the case of the topological K -functor that we shall

consider in the next section), we are interested in extending a contravariant functor F
from KHaus to a cocomplete category C. This is naturally covered by the definition
above by applying it to Cop as the target category. The process yields an extension
F̃σ : uC∗ −→ C, whose last step—taking a limit in Cop—corresponds to taking a
colimit in C. Explicitly, in this instance, we have
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F̃σ = lim←−Cop ◦ F ◦ Gσ

: uC∗op −→ Diag←−−−(KHaus) −→ Diag←−−−(Cop) −→ Cop,

but we could also write

F̃σ = lim−→C ◦ F ◦ Gσ

: uC∗ −→ Diag←−−−(KHaus)op −→ Diag−−−→(C) −→ C,

with F in this expression standing for the contravariant functor from Diag←−−−(KHaus) to

Diag−−−→(C) induced by F : KHausop −→ C (see the last paragraph of Sect. 3.1).

The third property in the definition of semispectral functor—that the category picked
out by σ(A) has A as a terminal object when A is commutative—is crucial in ensur-
ing that F̃σ does indeed extend F . As a consequence of this condition, the diagram
(F ◦ Σ ◦ σ)(A) has F(Σ(A)) as an initial object, which is therefore equal to its limit
(up to isomorphism). Hence, we have that F̃σ (A) � (F ◦ Σ)(A) for every commu-
tative A. The second property then ensures that given a homomorphism φ : A −→ B
between commutative algebras, F̃σ (φ) completes the commutative square formed by
these isomorphisms and (F ◦ Σ)(φ), i.e.

F̃σ (A)

F̃σ (φ)

��

� �� (F ◦ Σ)(A)

(F◦Σ)(φ)

��
F̃σ (B)

� �� (F ◦ Σ)(B)

commutes. Thus, these isomorphisms define a natural equivalence between F̃σ |uCC∗op
and F ◦ Σ . We have thus proved that:

Theorem 4.2. For a semispectral functor σ , a complete category C, and a functor
F : KHaus −→ C, F̃σ |ucC∗op � F ◦ Σ .

We are primarily interested in the case that σ is the unitary semispectral functor g
(Definition 3.5): we shall reserve the notation F̃ to denote the g-extension F̃g of F .
Similarly, we will write F̃ f for the finitary restriction of the g-extension of F , i.e. for its
g f -extension,which uses the finitary version of the unitary semispectral functor g f (Defi-
nition3.7). Finally,wewrite F̃W for the gW-extensionof a functor F : HStonean −→ C,
using the unitary semispectral functor for von Neumann algebras gW (Definition 3.8).

4.3. Theorems of quantum foundations. Having established the framework of exten-
sions, we demonstrate how they can be used to succinctly express two fundamental
theorems of quantum foundations: the Bell–Kochen–Specker theorem [12,68] andGlea-
son’s theorem [47].

The first of these reformulations is due to Hamilton, Isham, and Butterfield [52],
here similarly stated for the generalised version of the Bell–Kochen–Specker theorem
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by Döring [27]. The second was given by de Groote [22], and is a reformulation of
the generalised version of Gleason’s theorem to most von Neumann algebras, due to
Christensen [18], Yeadon [100,101], and others (see [50,73]).

In this section, we consider the spectral presheaf functor Σ ◦ s : vNAop −→
Diag←−−−(HStonean) obtained from the semispectral functor s : vNA −→ Diag−−−→(cvNA)

as described after Definition 3.3. We write F̃s = lim←− ◦ F ◦ Σ ◦ s for the s-extension of
a functor F : HStonean −→ C whose target C is a complete category. We also restrict
our extensions to the full subcategory of those von Neumann algebras that are separable
and contain no type I2 direct summands. In the statement of the Bell–Kochen–Specker
theorem, we also have to exclude abelian (type I1) summands.

Theorem 4.3 (Reformulation of the Bell–Kochen–Specker theorem [27,52]). The s-
extension Ũs of the forgetful functor U : HStonean −→ Set yields the empty set on
separable von Neumann algebras without type I1 or I2 summands.

This can be interpreted as saying that the notion of ‘points’ cannot be extended (in our
sense) from the commutative to the noncommutative world, or that a ‘noncommutative
space’ is not a geometry in the usual sense: a collection of ‘points’ with some additional
structure.

Let D : HStonean −→ Set be the regular Borel probability distribution functor
which assigns to a hyperstonean topological space X the set of all regular7 Borel prob-
ability measures on X and to a continuous function f the corresponding pushforward
map f∗ on measures, defined by f∗μ(e) = μ( f −1(e)).

Theorem 4.4 (Reformulationof theGleason–Christensen–Yeadon theorem [22]). The s-
extension D̃s of the regularBorel probability distribution functor is naturally isomorphic,
on the full subcategory of separable von Neumann algebras without type I2 summands,
to the contravariant functor mapping a von Neumann algebra to its set of states (positive
linear functionals of unit norm) and a normal unital ∗-homomorphisms φ : A −→ B to
the corresponding pullback that takes a state ρ of B to the state ρ ◦ φ of A.

These two theorems can be read as indicating that while the ‘noncommutative space’
Σ ◦ s (A) has no points, it nonetheless admits globally consistent probability distribu-
tions, and that these distributions correspond to quantum states.

5. Reconstructing Operator K -Theory

Topological K -theory, defined in terms of vector bundles, is an extraordinary cohomol-
ogy theory. Its C∗-algebraic generalisation, operator K -theory, is similarly defined in
terms of the noncommutative analogue of vector bundles, i.e. finitely generated projec-
tivemodules, and plays an important role in the study ofC∗-algebras, e.g. as a classifying
invariant [38].

7 A Borel measure μ is said to be regular if, for any Borel set X ,

μ(X) = inf {μ(U ) | X ⊂ U,U open} = sup {μ(K ) | K ⊂ X, K compact} .
Note that for compact spaces, these coincide with the (in general, weaker) notion of Radon measure [42,
Corollary 7.6]. By the Riesz–Markov–Kakutani representation theorem [66,74,85] (see e.g. [42, Theorem
7.2]), regular Borel measures on a compact Hausdorff space X are in one-to-one correspondence with positive
linear functionals of unit norm, i.e. states, of the commutative C∗-algebra C(X).
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In this section, we consider the extension of the topological K -theory functor,
K : KHausop −→ Ab. The most natural conjecture is that this extension yields op-
erator K -theory on unital C∗-algebras, K0 : uC∗ −→ Ab:8

Conjecture 5.1. ([23]) K0 � K̃ : uC∗ −→ Ab.

The extension via unitalisation of K̃ would then yield operator K -theory on arbitrary
C∗-algebras, K0 : C∗ −→ Ab, as this is theway the latter is obtained from K0 : uC∗ −→
Ab (see Definition 5.10 below).

As detailed in Sect. 5.2, operator K -theory is stable. That is, we have K0 � K0 ◦K,
where K is the stabilisation functor (see Definition 5.11 below). Therefore, one could
think of operator K -theory as being defined only for the stabilisations of unital C∗-
algebras. The K -theory of unital C∗-algebras can be obtained by first stabilising the
algebra and then applying the K0-functor restricted to this class of algebras; moreover,
the K -theory of arbitrary C∗-algebras can then be obtained as usual via unitalisation.

This justifies weakening the conjecture to require only that K0 and K̃ agree on the
stabilisations of unital C∗-algebras (and of unital ∗-homomorphisms). Note that, since
stable algebras are nonunital, this necessitates extending K̃ to nonunital C∗-algebras,
which can be done via unitalisation, following the same procedure used to extend K0
from unital to all C∗-algebras. This weakened conjecture would require that K0 �
K0 ◦ K � K̃ ◦ K as functors uC∗ −→ Ab (and consequently, that the extension via
unitalisation of K̃ ◦ K be naturally isomorphic to the functor K0 : C∗ −→ Ab).

In fact, we encounter the need to further modify this conjecture by limiting our spatial
diagrams of stableC∗-algebras to include only the finite quotient spaces. Themain result
proven in this section is:

Theorem 5.2. K0 � K0 ◦ K � K̃ f ◦ K as functors uC∗ −→ Ab. Consequently,
K0 : C∗ −→ Ab is naturally isomorphic to the extension via unitalisation of the functor
K̃ f ◦ K.

Here, K̃ f is defined for unital C∗-algebras as the g f -extension of K , where g f is
the finitary version of the unitary semispectral functor given in Definition 3.7; see also
Definition 4.1 of the general extension process and the subsequent remarks regarding
contravariant functors. Explicitly,

K̃ f = lim−→ ◦ K ◦ G f

: uC∗ −→ Diag←−−−(KHaus)op −→ Diag−−−→(Ab) −→ Ab.

Note that as stable C∗-algebras are not unital, we need to extend K̃ f to all C∗-algebras
via unitalisation (see Definition 5.17 below) to yield K̃ f : C∗ −→ Ab.

We thus find that operator K -theory, K0, can be defined as a colimit of topological
vector bundles over finite quotient spaces of a noncommutative space. This result sug-
gests fixing the appropriate class of morphisms in our ansatz semispectral functor, i.e.
the diagrams associated to C∗-algebras, to be the restrictions of inner automorphisms.

8 This would be sufficient to recover operator K -theory on arbitrary C∗-algebras, since the functor
K0 : C∗ −→ Ab is obtained from its unital version via unitalisation, as we shall see.
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5.1. Technical background: topological K -theory. We introduce the basic background
on topological and operator K -theory, focusing on the minimum required to follow the
proof of Theorem 5.2. A slightlymore detailed presentation can be found inAppendix B;
or see e.g. [40,86,99].

Definition 5.3. For a compact Hausdorff space X , its vector bundle monoid, V (X),
is the set of isomorphism classes of complex vector bundles over X with the abelian
addition operation of fibrewise direct sum: [E]+ [F] = [E ⊕ F]. A continuous function
f : X −→ Y yields a monoid homomorphism V ( f ) : V (Y ) −→ V (X) by the pullback
of bundles, V ( f )([E]) = [ f ∗E]. This defines a functor V : KHausop −→ AbMon,
where AbMon is the category of abelian monoids and monoid homomorphisms.

Definition 5.4. For an abelian monoid M , its Grothendieck group, G(M), is the abelian
group (M × M)/∼ where ∼ is the equivalence relation given by

(a, b) ∼ (c, d) iff ∃ e ∈ M, a + d + e = b + c + e.

For amonoidhomomorphismφ : M −→ N , the grouphomomorphismG(φ) : G(M) −→
G(N ) is givenbyG(φ)([(a, b)]) = [(φ(a), φ(b))]. This defines a functorG : AbMon −→
Ab.

Intuitively, an element [(a, b)] of G(M) can be thought of as a formal difference a−b
of elements of M . With this interpretation in mind, it is easy to see that G(M) is indeed
a group, with addition given componentwise, neutral element [(0, 0)], and the inverse of
[(a, b)] equal to [(b, a)]. Moreover, there is a monoid homomorphism i : M −→ G(M)

given by a −→ [(a, 0)]. As an example, the Grothendieck group of the additive monoid
of natural numbers (including zero) is the additive group of integers.

TheGroethendieckgroup functorG is an explicit presentation of the group completion
functor, the left adjoint to the forgetful functor fromAb toAbMon. Thismeans thatG(M)

is the ‘most general’ group containing a homomorphic image of M , in the sense that it
satisfies the universal property that any monoid homomorphism from M to an abelian
group factors uniquely through the monoid homomorphism i : M −→ G(M).

Definition 5.5. The topological K -functor K : KHausop −→ Ab is G ◦ V .

5.2. Technical background: Operator K -theory. Following the usual method of non-
commutative geometry, in order to generalise a topological concept to the noncommuta-
tive case, one must begin with a characterisation of the topological concept in question
in terms of commutative algebra. In the case of K -theory, this requires phrasing the
notion of a complex vector bundle over X in terms of the algebra C(X) of continuous
complex-valued functions on X :

Theorem 5.6 (Serre–Swan [94]). The category of complex vector bundles over a com-
pact Hausdorff space X is equivalent to the category of finitely generated projective
C(X)-modules.

Finitely generated projective A-modules can be identified with (equivalence classes
of) projections in matrix algebras Mn(A) over the C∗-algebra A, which are more con-
venient to work with. We are now ready to define operator K0 for unital C∗-algebras.

Definition 5.7. Let A be a C∗-algebra. Two projections p ∈ Mn(A) and q ∈ Mm(A)

with n,m ∈ N areMurray–von Neumann equivalent, denoted p ∼M q, whenever there
is a partial isometry v ∈ Mm,n(A) such that p = vv∗ and q = v∗v.
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Definition 5.8 (The Murray–von Neumann semigroup for unital A). Let A be a uni-
tal C∗-algebra. Its Murray–von Neumann semigroup, V0(A), is the set of Murray–von
Neumann equivalence classes of projections in matrices over A:

⊔

n∈N
{p ∈ Mn(A) | p is a projection}

/
∼M .

It is equipped with the abelian addition operation

[p] + [q] =
[(

p 0
0 q

)]
,

for which the equivalence class of the zero projection is a neutral element. Therefore,
V0(A) is an abelian monoid. A unital ∗-homomorphism φ : A −→ B yields a monoid
homomorphism V0(φ) : V0(A) −→ V0(B) given by [p] −→ [Mn(φ)(p)] for each
n ∈ N and p a projection in Mn(A), where Mn(φ) acts on elements of Mn(A) by
entrywise application of φ. This defines a functor V0 : uC∗ −→ AbMon.

Definition 5.9. The operator K0-functor for unital C∗-algebras, K0 : uC∗ −→ Ab, is
G ◦ V0.

We now describe the extension of K0 to all C∗-algebras. The same recipe will later
be used to extend other functors from unital to all C∗-algebras.

Let A be a C∗-algebra (which may or may not be unital). By minimally adjoining
a unit element to A, one obtains the unitalisation A+ (see Definition B.10) and a short
exact sequence

0 −→ A ι−−→ A+ π−−→ C −→ 0.

Moreover, (−)+ is a functor from C∗ to uC∗.

Definition 5.10. The K0 group of a C∗-algebra A is the subgroup of K0(A+) given by
the kernel of K0(π). A ∗-homomorphism φ : A −→ B yields a homomorphism from
kerK0(A+ π−−→ C) to kerK0(B+ π−−→ C) by restriction of K0(φ

+) to the kernel of
K0(A+ π−−→ C). This defines the operator K0-functor, K0 : C∗ −→ Ab.

We now consider stability, a key property of the operator K0-functor.

Definition 5.11. The stabilisation functor K : C∗ −→ C∗ maps a C∗-algebra A to the
C∗-algebra A ⊗ K where (in an abuse of notation) K is the C∗-algebra of compact
operators on a separable infinite-dimensional Hilbert space (see Definition B.14). A
∗-homomorphism φ : A −→ B is mapped to φ ⊗ idK.

We also denote the restriction of the stabilisation functor to the category of unital
C∗-algebras by K : uC∗ −→ C∗.

Since the C∗-algebra K ⊗ K is isomorphic to K, the stabilisation functor is an
idempotent operation, i.e. K ◦ K � K.

Definition 5.12. A C∗-algebra A is called stable if it is isomorphic to its stabilisation,
i.e. A � K(A) = A ⊗ K.

Theorem 5.13. Operator K -theory is stable. That is, K0 � K0 ◦ K.
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Consequently, the operator K0-functor is determined by its restriction to stable C∗-
algebras (in fact, by its restriction to stabilisations of unital C∗-algebras and of unital
∗-homomorphisms).

TheMurray–von Neumann semigroup, and thus the K0-group, of a unitalC∗-algebra
A can be expressed in a rather simple fashion in terms of projections of its stabilisa-
tion [86, Exercise 6.6]. We require this definition in the proof of Theorem 5.2 and thus
describe it in explicit detail.

Definition 5.14. Let A be a C∗-algebra. Two projections p and q in A are unitarily
equivalent, denoted by p ∼u q, whenever there is a unitary u ∈ A+ such that p = uqu∗.
We write [p] for the unitary equivalence class of p.

Given projections p1, . . . , pk ∈ K(A), one can find pairwise orthogonal representa-
tives of their unitary equivalence classes, i.e. there exist projections q1, . . . qk ∈ K(A)

such that pi ∼u qi (i ∈ {1, . . . , n}) and all the qi are pairwise orthogonal [86, Exercise
6.6].

The Murray–von Neumann semigroup for unital C∗-algebras admits the following
alternative characterisation:

Definition 5.15 (The Murray–von Neumann semigroup for unital A, alternative defini-
tion). Let A be a unital C∗-algebra. The elements of V0(A) are the unitary equivalence
classes of projections inK(A). The abelian addition operation is given by orthogonal ad-
dition. That is, if p and p′ are two projections inK(A), then [p]+[p′] = [q+q ′]where q
and q ′ are orthogonal representatives of [p] and [p′], respectively (i.e. p ∼u q, p′ ∼u q ′,
and q ⊥ q ′). The equivalence class of the zero projection is a neutral element for this
operation, making V0(A) an abelian monoid. A unital ∗-homomorphism φ : A −→ B
yields a monoid homomorphism V0(φ) : V0(A) −→ V0(B) by [p] −→ [K(φ)(p)].
This defines a functor V0 : uC∗ −→ AbMon.

Through this reformulation of the Murray–von Neumann semigroup functor V0, we
automatically get a new description of K0. Recall that this is obtained by composition
with the Grothendieck group functor, as K0 = G ◦ V0. Then, K0(A) is simply the
collection of formal differences

[p] − [q]
of elements of V0(A) with

[p] − [q] = [p′] − [q ′]
precisely when there exists [r ] such that

[p] + [q ′] + [r ] = [p′] + [q] + [r ].
Composing the action on morphisms of the Grothendieck group functor after the

action of V0 just defined, we find that a unital ∗-homomorphism φ : A −→ B between
unital C∗-algebras yields a group homomorphism between the K0 groups of A and B
given by

[p] − [q] −→ [K(φ)(p)] − [K(φ)(q)].
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5.3. Main theorem. We now prove the main theorem of this section (Theorem 5.2): that
the functors K0 : uC∗ −→ Ab and K̃ f ◦ K : uC∗ −→ Ab are naturally isomorphic.
It follows that the K0 : C∗ −→ Ab functor can be reconstructed in terms of K̃ f , the
stabilisation functor of unital C∗-algebras K : uC∗ −→ C∗, and unitilisation.

Recall that the functor K̃ f is defined on the category of unital C∗-algebras as

K̃ f : uC∗ −→ Ab = lim−→ ◦ K ◦ G f

= lim−→ ◦ K ◦ Σ ◦ g f .

We will prove the main theorem in three steps:

1. Give a simple presentation of the K̃ f group of a unital C∗-algebra A in terms of its
unitary equivalence classes of projections (Lemma 5.16).

2. Extend the domain category of K̃ f from uC∗ to the category C∗ of all C∗-alge-
bras and ∗-homomorphisms via unitalisation in the same way that K0 is extended
from unital to all C∗-algebras, and give a similar presentation of the K̃ f group of an
arbitrary C∗-algebra. This is necessary to make sense of the composition K̃ f ◦K as
all stable C∗-algebras are nonunital.

3. Construct a natural isomorphism between K0 : uC∗ −→ Ab and K̃ f ◦K : uC∗ −→
Ab (Theorem 5.2).

Lemma 5.16. For a unital C∗-algebra A,

K̃ f (A) = 〈[p]u | [p]u = [p1]u + [p2]u whenever p = p1 + p2〉
is the group generated by the unitary equivalence classes of projections in A modulo
the relations coming from addition of orthogonal projections. Moreover, for a unital
∗-homomorphism φ : A −→ B between unital C∗-algebras A and B,

K̃ f (φ)([p]u) = [φ(p)]u.
Proof. We will first compute the action of K̃ f on objects before computing its action
on unital ∗-homomorphisms. Recall Definitions 3.6 and 3.7. The objects of the finitary
unitary subcategory S f (A) are the unital finite-dimensional commutative sub-C∗-alge-
bras of A. The morphisms are given by the restrictions of inner automorphisms. These
morphisms are all of the form ι ◦ r where ι is an inclusion between subalgebras and r
is an isomorphism Adu |uVu∗

V : V −→ uVu∗ between subalgebras given by conjugation
by a unitary u ∈ A.

Under the Gel'fand spectrum functor, the image of such an object V is a finite discrete
space Σ(V ) whose points are in correspondence with the atomic projections of the sub-
algebra V . The images of the inclusions ι : V ↪−→ V ′ are surjectionsΣ(ι) : Σ(V ′) −→
Σ(V ) with the property that whenever a point s ∈ Σ(V ) corresponds to a projection
p atomic in V , then p is the sum of the atomic projections in V ′ that correspond to the
points of (Σ(ι))−1(s). In turn, an isomorphism r , arising from conjugation by a unitary
u, is sent by Σ to a bijection that connects points whose corresponding projections are
related by conjugation by u.

Under the topological K -functor, each object Σ(V ) of the diagram of G f (A) yields
a direct sum of copies of Z, one for each point. That is, one gets a trivial vector bundle
of every possible dimension (and formal inverses) over each point. Each of these copies
of Z is generated by the trivial bundle of dimension 1. Taking the colimit of the diagram
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K ◦ G f (A) = K ◦ Σ ◦ g f (A) then yields, as described at the end of Sect. 4.1, a direct
sum of the abelian groups K ◦ Σ(V ) indexed by the objects V of S f (A) modulo the
relations generated by the morphisms of S f (A). In our case, this is a quotient of the
direct sum of copies ofZ, one for each pair (V, p)where V is a finite-dimensional unital
commutative sub-C∗-algebra of A and p is an atomic projection in V .

The images under K ◦ Σ of the inclusions result in identifying the generator of the
copy of Z associated to a pair (V, p) with the sum of the generators associated to pairs
{(V ′, pi )}i whenever V ⊂ V ′ and

∑
i pi = p. Every nonzero projection p ∈ A is an

atomic projection in the subalgebra Cp + C(1 − p), which is included in every subal-
gebra that contains p. Consequently, the generators associated to the same projection p
atomic in different subalgebras are all identified in the colimit. Hence, we may speak
of the element of the colimit group [(p)] associated to p without reference to which
subalgebra it appears in. Thus, the abelian group K̃ f (A) can be viewed as a quotient of
the free abelian group generated by the elements [(p)]. The isomorphisms in the diagram
ensure that the elements associated to unitarily equivalent projections are identified. We
may thus denote the elements of the colimit group associated to projections unitarily
equivalent to p by [p]u . The second class of identifications consists of those between
elements [p]u and ∑

i [pi ]u whenever the pi (are mutually orthogonal and) sum to p.

We now consider the action of K̃ f = lim−→◦ K ◦Σ ◦ g f on a unital ∗-homomorphism
φ : A −→ B. By Definition 3.7, g f (φ) is defined to be ( f, η) where f : S f (A) −→
S f (B) is the functor taking an object V ⊂ A to φ(V ) ⊂ B and η is the natural
transformation whose component at V is the unital ∗-homomorphism φ|V : V −→
φ(V ).

Suppose [p]u ∈ K̃ f (A)with p a projection inA. The element [p]u of the colimit can
be identified with a trivial vector bundle Bp of dimension one over the point correspond-
ing to p in the space associated byΣ◦g f (A) to the subalgebra Vp = Cp+C(1− p) ofA.
The natural transformation η of the morphism of diagrams g f (φ) includes a component
ηVp = φ|Vp : Vp −→ Vφ(p) that maps p to φ(p) and 1 − p to 1 − φ(p).

Under the image of the lifting of Σ to diagrams, this component becomes
Σ(φ|Vp ) : Σ(Vφ(p)) −→ Σ(Vp) that maps the point corresponding to φ(p) to the one
corresponding to p (and the point corresponding to 1 − φ(p) to the one corresponding
to 1 − p).

Then, under the topological K -functor, this becomes K ◦Σ(Vφ(p)) : K ◦Σ(Vp) −→
K ◦Σ(Vφ(p)), which pulls back vector bundles along themapΣ(φ|Vp ). The bundle Bp is
pulled back to the trivial vector bundle of dimension one over the point corresponding to
φ(p) in the discrete space Σ(Vφ(p)). The pulled-back bundle is identified with [φ(p)]u
in the colimit K̃ f (A) and we conclude that K̃ f (φ)([p]u) = [φ(p)]u . ��

We now extend the functor K̃ f to all C∗-algebras via unitalisation in the same way
that K0 is extended.

Definition 5.17. The K̃ f group of a C∗-algebra A (unital or not) is the subgroup of
K̃ f (A+) given by the kernel of K̃ f (π), where π : A+ −→ C is the projection map
in the unitalisation short exact sequence (c.f. Definition 5.10). A ∗-homomorphism
φ : A −→ B yields a homomorphism from kerK̃ f (A+ π−−→ C) to kerK̃ f (B+ π−−→ C)

by restriction of K̃ f (φ
+) to the kernel of K̃ f (A+ π−−→ C). This defines the K̃ f functor,

K̃ f : C∗ −→ Ab.
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To check that this extended map is well-defined on morphisms, we must show
that for any ∗-homomorphism φ : A −→ B, the unital ∗-homomorphism K̃ f (φ

+) :
K̃ f (A+) −→ K̃ f (B+) carries kerK̃ f (A+ πA−−→ C) into kerK̃ f (B+ πB−−→ C). Functori-
ality then follows immediately from that of K̃ f ◦ (−)+ : C∗ −→ uC∗ −→ Ab. This is
done by noting that the following diagram in uC∗ commutes:

A+ π ��

φ+

��

C

B+

π

����������

and, therefore, so does its image under K̃ f : uC∗ −→ Ab:

K̃ f (A+)
K̃ f (π)

��

K̃ f (φ
+)

��

Z

K̃ f (B+)

K̃ f (π)

�����������

Aparticular consequence of the following lemma is that the new functor K̃ f : C∗ −→
Ab agrees with the original functor K̃ f : uC∗ −→ Ab on unital C∗-algebras. This
justifies not distinguishing notationally between them.

Lemma 5.18 For an arbitrary C∗-algebra A,

K̃ f (A) = 〈 [p]u | [p]u = [p1]u + [p2]u whenever p = p1 + p2 〉
is the group generated by the unitary equivalence classes of projections in A mod-
ulo the relations coming from addition of orthogonal projections. Moreover, for a ∗-
homomorphism φ : A −→ B between C∗-algebras A and B,

K̃ f (φ)([p]u) = [φ(p)]u.
Proof. Let A be a C∗-algebra. We need to determine the kernel of K̃ f (π) with π the
canonical projection from A+ to C. Note that K̃ f in the previous sentence refers to
the functor K̃ f : uC∗ −→ Ab defined for unital C∗-algebras. Therefore, we can use
Lemma 5.16 to perform this calculation.

All projections in A+ are of the form p or 1 − p for p a projection in A. From
the lemma, the colimit group K̃ f (A+) is generated by elements of the form [p]u and
[1 − p]u for projections p ∈ A. As

[1 − p]u = [1]u − [p]u ,
we see that all elements of K̃ f (A+) can be expressed as Z-linear combinations of ele-
ments of the form [p]u with p a projection inA or [1]u . Such an element is in the kernel
of K̃ f (π) if and only if the coefficient for [1]u is 0. Hence, kerK̃ f (π) is the subgroup
of K̃ f (A+) generated by the elements [p]u for p a projection in A.

The action for a ∗-homomorphism φ is clear as its image is defined as a restriction
of K̃ f (φ

+). ��
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Theorem 5.2. K0 � K0 ◦ K � K̃ f ◦ K as functors uC∗ −→ Ab. Consequently,
K0 : C∗ −→ Ab is naturally isomorphic to the extension via unitalisation of the functor
K̃ f ◦ K.

Proof. We are now ready to define the natural isomorphism η : K0 −→ K̃ f ◦ K as
functors uC∗ −→ Ab. For a unital C∗-algebra A, the component ηA of this natural
transformation sends [p] − [q] ∈ K0(A), where p and q are projections in K(A) (see
Definition 5.15), to [p]u − [q]u ∈ K̃ f (K(A)), i.e. in the kernel of K̃ f (π : K(A)+ −→
C). This is well-defined, for if [p] − [q] = [p′] − [q ′], i.e. (by Definition 5.15) if there
is an r such that

[p] + [q ′] + [r ] = [p′] + [q] + [r ],
then we can find pairwise orthogonal representatives of all these equivalence classes of
projections by the remark after Definition 5.14, and show that

[p]u − [q]u = [p′]u − [q ′]u .
Preservation of addition follows by a similar argument.

We define an inverse map to demonstrate bijectivity of ηA. A generator [p]u of
K̃ f (K(A)) is sent by η−1

A to [p]. Since the relations from Lemma 5.18 (between [p]u
and

∑
i [pi ]u whenever p = ∑

i pi and between [p]u and [q]u whenever p and q are
unitarily equivalent) are also satisfied by the elements [p] in the K0 group of A, η−1

A is
a well-defined map.

To demonstrate the naturality of these isomorphisms, we show that for any unital
∗-homomorphism φ : A −→ B, the following diagram commutes:

K0(A)
ηA ��

K0(φ)

��

(K̃ f ◦ K)(A)

(K̃ f ◦K)(φ)

��
K0(B)

ηB
�� (K̃ f ◦ K)(B)

Suppose [p] − [q] is an arbitrary element of K0(A).

((K̃ f ◦ K)(φ) ◦ ηA)([p] − [q]) = ((K̃ f ◦ K)(φ)([p]u − [q]u)
= K̃ f (K(φ))([p]u − [q]u)
= [K(φ)(p)]u − [K(φ)(q)]u
= ηB([K(φ)(p)] − [K(φ)(q)])
= (ηB ◦ K0(φ))([p] − [q])

This calculation can be seen diagramatically:

[p] − [q] � ηA ��
�

K0(φ)

��

[p]u − [q]u�

(K̃ f ◦K)(φ)

��
[K(φ)(p)] − [K(φ)(q)] �

ηB
�� [K(φ)(p)]u − [K(φ)(q)]u

��
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We have thus shown that K0 : uC∗ −→ Ab and K̃ f ◦K : uC∗ −→ Ab are naturally
isomorphic functors. Consequently, the extension of K̃ f ◦ K to all C∗-algebras via
unitalisation yields a functor K̃ f ◦ K : C∗ → Ab that is naturally isomorphic to
K0 : C∗ −→ Ab. Therefore, the complete operator K0-functor is reconstructed solely
in terms of topological K -theory, the finitary version of the unitary semispectral functor,
stabilisation, and unitalisation.

6. Noncommutative Topology

Anatural step in using extensions to directly obtain noncommutative analogues from ba-
sic topological concepts would be to establish the conjecture that extending the topolog-
ical notion of closed subset leads to its algebraic generalisation: closed two-sided ideal.
Background information and definitions for this section can be found in Appendix C.

We now formalise this idea. Write CMSLat for the category of complete meet-
semilattices: its objects are complete lattices and its morphisms are complete meet-
semilattice homomorphisms, i.e. functions that preserve arbitrary meets. Let
T : KHaus −→ CMSLat be the functor that assigns to a compact Hausdorff space its
complete lattice of closed sets ordered by reverse inclusion (with C1 ≤ C2 if and only if
C1 ⊃ C2) and to a continuous function the complete meet-semilattice homomorphism
mapping a closed set to its image under the function.9 Let T̃ be its g-extension, using the
unitary semispectral functor g of Definition 3.5. Moreover, let I : uC∗op −→ CMSLat
be the functor that sends a unital C∗-algebra to its complete lattice of closed two-sided
ideals and a unital ∗-homomorphism φ : A −→ B to the homomorphism of complete
meet-semilattices I(φ) : I(B) −→ I(A) mapping an ideal I ⊂ B to the ideal φ−1(I )
ofA. In the commutative case, there is a correspondence between closed sets and closed
ideals via Gel'fand duality: I|ucC∗op � T ◦ Σ . This suggests the following conjecture:

Conjecture 6.1. ([23]) T̃ � I.
The principal theorem proved in this section is the von Neumann algebraic analogue

of this conjecture:

Theorem 6.2. Let TW : HStonean −→ CMSLat be the functor assigning to a hyper-
stonean space its lattice of clopen sets ordered by reverse inclusion and to an open
continuous function its direct image map, and let IW : vNAop −→ CMSLat be the
functor assigning to a von Neumann algebra its lattice of ultraweakly closed two-sided
ideals and to an ultraweakly continuous (or normal) unital ∗-homomorphism its inverse
image map. Then T̃W � IW, where T̃W is the von Neumann algebraic extension of T.

Note that by vonNeumann algebraic extension herewemean the gW-extension, using
the (von Neumann) unitary semispectral functor functor of Definition 3.8 that assigns to
a von Neumann algebra the diagram consisting of its abelian von Neumann subalgebras
and restrictions of inner automorphisms.

We begin by recasting Conjecture 6.1 in purely algebraic terms as a correspondence
between what we call total and invariant partial ideals of unital C∗-algebras. We then
formulate the analogous correspondence for von Neumann algebraic ideals, obtaining a
statement equivalent to our principal theorem, and prove it.

9 Note that a continuous function between compact Hausdorff spaces is closed, hence the direct image map
preserves arbitrary meets of closed sets

∧
Ai = cl(

⋃
Ai ).
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6.1. Partial and total ideals. To prove Conjecture 6.1 would essentially be to demon-
strate a bijective correspondence between closed two-sided ideals of a unital C∗-al-
gebra A and certain functions 
 that map unital commutative sub-C∗-algebras V of
a unital C∗-algebra A to closed ideals of V . To see this, note that the limit lattice
T̃(A) = (lim←− ◦ T ◦ G)(A) is the terminal cone over the diagram (T ◦ G)(A).

Moreover, the category CMSLat is monadic over Set, as it is the Eilenberg–Moore
category of algebras of the powerset monad [3, Examples 20.5(3) and 20.10(3)]. Con-
sequently, the forgetful functor U : CMSLat −→ Set creates limits [3, Proposition
20.12(10)]. This means that the limit of a diagram inCMSLat can be obtained by taking
its limit inSet—where it is given as a subset of a Cartesian product defined by equations
corresponding to compatibility conditions—and equipping it with the componentwise
partial order or componentwise lattice operations.

Hence, the elements of T̃(A) are precisely what we will call the invariant partial
ideals of A: choices of elements 
(V ) from each I(V ) subject to the condition of Eq.
(4) below. We can thus recast Conjecture 6.1 (and, analogously, Theorem 6.2) in terms
of a correspondence between total ideals and invariant partial ideals.

6.1.1. Partial and total ideals of C∗-algebras. By a total ideal of a C∗-algebra A, we
mean a norm-closed two-sided ideal of A.

Definition 6.3. A partial ideal of a unital C∗-algebra A is a map 
 that assigns to
each unital commutative sub-C∗-algebra V of A a closed ideal of V such that 
(V ) =

(V ′) ∩ V whenever V ⊂ V ′.

Note that the last conditions can be rephrased as requiring that for any inclusion mor-
phism ι : V ↪−→ V ′, we have 
(V ) = I(ι)(
(V ′)), i.e. the following diagram com-
mutes:

V ′ {∗} ∗−→
(V ′) ��

∗−→
(V )

���
��

��
��

��
��

��
��

��
I(V ′)

I(ι)::I −→I∩V

��
V
��

ι

��

I(V )

(3)
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The concept of partial ideal was introduced by Reyes [83] in the more general context
of partialC∗-algebras. His definition differs slightly but is equivalent in our case: a subset
P of normal elements ofA such that P∩V is a closed ideal ofV for all unital commutative
sub-C∗-algebras V of A.

Partial ideals exist in abundance: every closed left (or right) ideal I of A gives rise
to a partial ideal 
I in a natural way by choosing 
I (V ) to be I ∩ V .

For example, in a matrix algebra Mn(C), the right ideal pMn(C), for p ∈ Mn(C) a
nontrivial projection, yields a nontrivial partial ideal of Mn(C) in this way. As matrix
algebras are simple, it cannot be the case that these nontrivial partial ideals also arise as

I from a total ideal I . This raises a natural question:

Question 6.4. Which partial ideals of unital C∗-algebras arise from total ideals?

Some partial ideals do not even arise from left or right ideals: for example, choosing
arbitrary nontrivial ideals from every nontrivial unital commutative sub-C∗-algebra of
M2(C) yields, in nearly all cases, nontrivial partial ideals of M2(C). However, a hint
towards identifying those partial ideals that arise from total ideals is given by a simple
observation. If u is a unitary of A, then uIu∗ = I for any total ideal I ⊂ A. This
imposes a strong condition on the partial ideal 
I that arises from I .

Definition 6.5. An invariant partial ideal 
 of a unital C∗-algebra A is a partial ideal
of A such that, for each unital commutative sub-C∗-algebra V ⊂ A and any unitary
u ∈ A, the conjugation by u of the ideal associated to V is the ideal associated to the
conjugation by u of V . That is,

u
(V )u∗ = 
(uVu∗)

Equivalently, if we write Adu : A −→ A for the inner automorphism given by conjuga-
tion by u, i.e. a −→ uau∗, the condition above reads

Adu(
(V )) = 
(Adu(V )).

Imposing this invariance condition on partial ideals is equivalent to extending the
requirement on
 of Diagram (3) from inclusions ι : V −→ V ′ to all ∗-homomorphisms
Adu |V ′

V : V −→ V ′ arising as a restriction of the domain and codomain of an inner
automorphism. An invariant partial ideal is precisely a choice of 
(V ) ∈ I(V ) for each
unital commutative sub-C∗-algebra V of A such that whenever there is a morphism
Adu |V ′

V : V −→ V ′ as above, then


(V ) = I(Adu |V ′
V )(
(V ′)) = Adu∗(
(V ′)) ∩ V = u∗
(V ′)u ∩ V ; (4)

i.e. the following diagram commutes.

V ′ {∗} ∗−→
(V ′) ��

∗−→
(V )

���
��

��
��

��
��

��
��

��
I(V ′)

I(Adu |V ′
V )

��
V

Adu |V ′
V

��

I(V )

Thus, we arrive at the following reformulation of our original C∗-algebraic conjec-
ture:
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Conjecture 6.6 (Reformulation of Conjecture 6.1). A partial ideal of a unital C∗-algebra
arises from a total ideal if and only if it is an invariant partial ideal. Consequently, the
map I −→ 
I is a bijective correspondence between total ideals and invariant partial
ideals.

Note that the first part of the statement says that the map I −→ 
I is surjective onto
the invariant partial ideals. The second part of the statement follows immediately, since
injectivity of this map is easily demonstrated: the left inverse is given by mapping an
invariant partial ideal of the form 
I to the linear span of

⋃
V 
(V ), which is equal to

I itself.

6.1.2. Partial and total ideals of von Neumann algebras. A total ideal of a vonNeumann
algebra is, as in Definition C.15, an ultraweakly closed two-sided ideal. One may define
partial ideal (resp. invariant partial ideal) for a von Neumann algebra by replacing
in Definition 6.3 (resp. Definition 6.5) the occurrences of “unital commutative sub-
C∗-algebra” with “commutative sub-von Neumann algebra” and “closed ideal” with
“ultraweakly closed ideal”. As before, a total ideal I determines an invariant partial
ideal 
I in the same way, and the map I −→ 
I is injective.

The rest of this section is devoted to establishing the followingvonNeumannalgebraic
analogue of Conjecture 6.6:

Theorem 6.7 (Reformulation ofTheorem6.2). A partial ideal of a vonNeumannalgebra
arises from a total ideal if and only if it is an invariant partial ideal. Consequently, the
map I −→ 
I is a bijective correspondence between total ideals and invariant partial
ideals.

Besides its intrinsic interest, establishing this theorem provides some measure of
evidence for the verity of Conjecture 6.6. It may be the case that the proof of the theorem
may be adapted to show that the original conjecture holds for a large class of—or perhaps
all—C∗-algebras.

Total ideals of a von Neumann algebraA are in bijective correspondence with central
projections z ofA: every total ideal I is of the form zA for a unique z (Theorem C.17).
This allows us to rephrase the theorem in terms of projections, which are vastly more
convenient to work with.

Definition 6.8. A consistent family of projections of a von Neumann algebraA is a map
Φ that assigns to each commutative sub-von Neumann algebra V of A a projection
Φ(V ) in V such that:

1. for any V and V ′ such that V ⊂ V ′, Φ(V ) is the largest projection in V which is less
than or equal to Φ(V ′), i.e.

Φ(V ) = sup
{
q is a projection in V | q ≤ Φ(V ′)

}
.

An invariant family of projections is such a map further satisfying:

2. for any unitary element u ∈ A, Φ(uVu∗) = uΦ(V )u∗.

The correspondence between total ideals and central projections yields correspon-
dences between partial ideals (resp. invariant partial ideals) and consistent (resp. invari-
ant) families of projections. Therefore, we shall establish Theorem 6.7 by proving the
equivalent statement below. Just as was the case for ideals, any projection p determines
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a consistent family of projections Φp defined by choosing Φp(V ) to be the largest pro-
jection p in V which is less than or equal to p. For a central projection z, Φz turns out
to be an invariant family. In the opposite direction, any consistent family of projections
Φ gives a central projection Φ(Z(A)) where Z(A) is the centre of A.

Theorem 6.9 (Reformulation of Theorems 6.2 and 6.7). A consistent family of projec-
tions of a von Neumann algebra arises from a central projection if and only if it is an
invariant family of projections. Consequently, the maps z −→ Φz andΦ −→ Φ(Z(A))

define a bijective correspondence between central projections and invariant families of
projections.

6.2. Technical preliminaries.

6.2.1. Little lemmata. In proving our main result, we shall make use of some simple
properties of consistent families of projections which we record here as lemmata for
clarity.

Lemma 6.10. LetA be a von Neumann algebra and Φ be a consistent family of projec-
tions in A. Suppose V and V ′ are commutative sub-von Neumann algebras of A with
V ⊂ V ′. Then:

(i) Φ(V ) ≤ Φ(V ′);
(ii) if p ∈ V and p ≤ Φ(V ′), then p ≤ Φ(V );
(iii) in particular, if Φ(V ′) ∈ V , then Φ(V ′) = Φ(V ).

Proof. Properties (i) and (ii) are simple consequences of the requirement in the definition
of consistent family of projections that Φ(V ) is the largest projection in V smaller than
Φ(V ′). Property (iii) is a particular case of (ii). ��

Given a commutative subset X of a von Neumann algebra A, denote by VX the
commutative sub-von Neumann algebra of A generated by X and the centre Z(A), i.e.
VX = (X ∪ Z(A))′′. Note that V∅ = Z(A). Given a nonempty finite commutative set
of projections {p1, . . . , pn}, we write Vp1,...,pn for V{p1,...,pn}.

Lemma 6.11. LetA be a von Neumann algebra andΦ a consistent family of projections
in A. Let M be a commutative set of projections in A and let s be the supremum of the
projections in M. If Φ(Vm) ≥ m for all m ∈ M, then Φ(Vs) ≥ s.

Proof. For all m ∈ M , since Vm ⊆ VM , we have

Φ(VM ) ≥ Φ(Vm) ≥ m

by Lemma 6.10-(i) and the assumption that Φ(Vm) ≥ m. Hence, Φ(VM ) is at least the
supremum of the projections in M , i.e. Φ(VM ) ≥ s. Now, note that s ∈ VM as it is a
supremum of projections in VM , hence Vs ⊂ VM . From this and s ∈ Vs , we conclude
by Lemma 6.10-(ii) that s ≤ Φ(Vs). ��
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6.2.2. Partial orthogonality. We introduce the following notion, whichwill prove useful
in establishing our main result. Note that, given a projection p, we write p⊥ for the
projection 1 − p.

Definition 6.12. Two projections p and q in a von Neuman algebra are partially orthog-
onal whenever there exists a central projection z such that zp and zq are equal while
z⊥ p and z⊥q are orthogonal.

A set of projections is said to be partially orthogonalwhenever any pair of projections
in the set is partially orthogonal.

Note that partially orthogonal projections necessarily commute. Moreover, if p1 and
p2 are partially orthogonal, then so is the pair zp1 and zp2 for any central projection z.
We will require in the sequel the following simple lemma:

Lemma 6.13. Let p1 and p2 be projections and z be a central projection in a von
Neumann algebra such that zp1 and zp2 are partially orthogonal and z⊥ p1 and z⊥ p2
are partially orthogonal. Then p1 and p2 are partially orthogonal.

Proof. As zp1 and zp2 are partially orthogonal, there exists a central projection y such
that

yzp1 = yzp2 and y⊥zp1 ⊥ y⊥zp2.

Similarly, as z⊥ p1 and z⊥ p2 are partially orthogonal, there exists a central projection x
such that

xz⊥ p1 = xz⊥ p2 and x⊥z⊥ p1 ⊥ x⊥z⊥ p2.

Summing both statements above, we conclude that

(yz + xz⊥)p1 = (yz + xz⊥)p2 and (y⊥z + x⊥z⊥)p1 ⊥ (y⊥z + x⊥z⊥)p2,

where yz + xz⊥ is a central projection and (yz + xz⊥)⊥ = y⊥z + x⊥z⊥. So, p1 and p2
are partially orthogonal. ��

6.2.3. Main lemma. When comparing projections, we write ≤ to denote the usual order
on projections, �M for the order up to Murray–von Neumann equivalence, and �u for
the order up to unitary equivalence.

The following lemma is one of the main steps of the proof. The idea is to start with
a projection q in a von Neumann algebra and to cover, as much as possible, its central
carrier C(q) by a commutative subset of the unitary orbit of q. The lemma states that,
in order to cover C(q) with projections from the unitary orbit of q, it suffices to take a
commutative subset, M , and (at most) one other projection, uqu∗, which is above the
remainder C(q) − supM . In other words, the remainder from what can be covered by
a commutative set M is smaller than or equal to q up to unitary equivalence.

Lemma 6.14. Let q be a projection in a von Neumann algebra A. There exists a set M
of projections in A such that:

(i) q ∈ M;
(ii) M is a subset of the unitary orbit of q;
(iii) M is a commutative set;
(iv) the supremum s of M satisfies sR �u q where sR = C(s) − s = C(q) − s.
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Proof. Let O be the unitary orbit of q. The partially orthogonal subsets of O that
contain q form a poset under inclusion. Given a chain in this poset, its union is partially
orthogonal: any two projections in the union must appear together somewhere in one
subset in the chain and are thus partially orthogonal. Hence, by Zorn’s lemma, we can
construct a maximal partially orthogonal subset M of the unitary orbit of q such that
q ∈ M . Clearly, M satisfies conditions (i)–(iii).

Denote by s the supremum of the projections in M . Its central carrier C(s) is equal
to the central carrier C(q) of q. This is because C(−) is constant on unitary orbits and
C(supm∈M m) = supm∈M C(m). We now need to show that sR �u q.

By the comparison theoremfor projections in avonNeumannalgebra (TheoremC.14),
there is a central projection y such that

ysR �M yq and y⊥sR �M y⊥q. (5)

We show that this central projection can be taken to be below C(q). Consider the central
projection z = y C(q). Then, for any projection r ≤ C(q), i.e. C(q)r = r , we have

zr = yC(q)r = yr and z⊥r = r − zr = r − yr = y⊥r .

Since both sR, q ≤ C(q), one can rewrite (5) as

zsR �M zq and z⊥sR �M z⊥q,

where z = y C(q) ≤ C(q).
By Proposition C.12, as q and sR are orthogonal, there are unitaries that witness these

order relationships. That is, there are unitaries u and v such that

zsR ≥ z(uqu∗) and z⊥sR ≤ z⊥(vqv∗). (6)

We will show that z vanishes and thus conclude that sR ≤ vqv∗.
Define uz to be the unitary zu + z⊥1 which acts as u within the range of z and as the

identity on the range of z⊥. We first establish that uzqu∗
z and m are partially orthogonal

for every m ∈ M .
Let m ∈ M . As M was defined to be a partially orthogonal set of projections and

q ∈ M , we know that q and m are partially orthogonal, and thus that z⊥q and z⊥m are
partially orthogonal. However, as z⊥uz = z⊥, we may express this as: z⊥(uzqu∗

z ) and
z⊥m are partially orthogonal. Additionally, on the range of z, we have that

z(uzqu
∗
z ) = z(uqu∗) ≤ zsR and zm ≤ zs,

implying that z(uzqu∗
z ) and zm are orthogonal, hence partially orthogonal. Putting both

parts together, we have that z⊥uzqu∗
z and z

⊥m are partially orthogonal and that z(uzqu∗
z )

and zm are partially orthogonal.Wemay thus applyLemma6.13 and conclude thatuzqu∗
z

and m are partially orthogonal as desired.
Having established that uzqu∗

z is partially orthogonal to all the projections in M , it
follows by maximality of M that uzqu∗

z ∈ M . Hence,

zuzqu
∗
z ≤ uzqu

∗
z ≤ supM = s.

Yet, by construction,

zuzqu
∗
z = zuqu∗ ≤ zsR ≤ sR ,
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and so zuzqu∗
z must be orthogonal to s. Being both contained within and orthogonal to s,

zuzqu∗
z must vanish. Therefore, the unitarily equivalent projection zq must also vanish.

Now, zq = 0 implies that z⊥ covers q. But since z⊥ is a central projection, it must also
cover the central carrier of q, i.e. C(q) ≤ z⊥. We thus have z ≤ C(q) ≤ z⊥, forcing z
to be zero.

We may finally conclude, by (6), that sR ≤ vqv∗. ��

6.3. Main theorem. Theorem 6.9, and thus our principal result, Theorem 6.7 or Theorem
6.2, will follow as an immediate corollary of the following theorem:

Theorem 6.15. In a von Neumann algebra A, any invariant family of projections Φ

arises from a central projection, i.e. Φ is equal to Φz for the central projection z =
Φ(Z(A)).

Proof. Let Φ be an invariant family of projections. Suppose W is a commutative sub-
von Neumann algebra ofA which contains the centre Z(A), and let q be the projection
Φ(W ). We claim that q is, in fact, equal to its own central carrier C(q), and thus central.
As q ≤ C(q) is true by definition, we must show that q ≥ C(q).

We start by applying Lemma 6.14 to q. Let M be the resulting commuting set of
projections in the unitary orbit of q, s be the supremum of the projections in M , and sR

be C(q) − s = C(s) − s. From the lemma, we know that sR �u q, i.e. there exists a
unitary u such that sR ≤ uqu∗.

First note that, since Vq ⊂ W and q ∈ Vq , by Lemma 6.10-(iii), we have that
Φ(Vq) = q. Then, by unitary invariance of the family of projections, for every m ∈ M
wehave thatΦ(Vm) = m. Hence, we can apply Lemma 6.11 to conclude thatΦ(Vs) ≥ s.
We also conclude, again by unitary invariance of Φ, that Φ(Vuqu∗) = uqu∗ ≥ sR .

Now, note that uqu∗ and sR commute. Moreover, Vs = VsR since sR = C(q) − s,
hence sR is in the algebra generated by s and the centre, and vice-versa. So, there is a
commutative sub-von Neumann algebra Vs,uqu∗ ⊇ Vs, Vuqu∗ . By Lemma 6.10-(i) and
the two conclusions of the preceding paragraph, we then have

Φ(Vs,uqu∗) ≥ Φ(Vs) ∨ Φ(Vuqu∗) ≥ s ∨ sR = C(q).

But, since C(q) ∈ Vuqu∗ by virtue of it being contained in the centre, we can apply
Lemma 6.10-(ii) to find that Φ(Vuqu∗) ≥ C(q), i.e. uqu∗ ≥ C(q). Finally, by unitary
invariance,

q = u∗(uqu∗)u ≥ u∗C(q)u = C(q),

concluding the proof that q is central.
We have shown that the projection Φ(W ) is central for every commutative sub-von

Neumann algebra W containing the centre Z(A). By Lemma 6.10-(iii), this means that
Φ(W ) is equal to Φ(Z(A)), the projection chosen at the centre, for all such W . In turn,
this determines the image of Φ on all commutative sub-von Neumann algebras W ′ as

Φ(W ′) = sup
{
p is a projection in W ′ | p ≤ Φ(VW ′) = Φ(Z(A))

}
,

and we find that Φ must be equal to ΦΦ(Z(A)). ��
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7. Conclusions

In this work, we have argued that a nonstandard—but nevertheless foundationally
important—notion of quantum state space is the dual object of a noncommutative alge-
bra with respect to state-observable duality, and noted that such spaces are the objects
of study within noncommutative geometry of C∗-algebras. In noncommutative geom-
etry [20], Gel'fand–Naı̆mark duality justifies interpreting noncommutative C∗-algebras
as representing the algebra of observables on a hypothetical geometric space; it further
provides a heuristic method of translating topological concepts into algebraic language.
We further argued that an explicitly geometric construction of this notion of quantum
state space should provide simple means for the direct extension of topological concepts
to noncommutative generalisations in a manner coinciding with the constructions of
noncommutative geometry.

Our ansatz for a geometric space associated to a noncommutative algebra comes
from the spectral presheaf construction of Hamilton–Isham–Butterfield [52], which
accounts for the essential nonclassicality of quantum theory expressed by the Bell–
Kochen–Specker theorem [12,68] by associating a classical state space to each context
(commutative subalgebra) of the algebra of observables. We offer an alternative inter-
pretation of this collection of classical state spaces as the collection of tractable quotient
spaces of the noncommutative space represented by the algebra of observables.We show
how functorial associations of spatial diagrams to algebras yields automatic methods of
extending functors defined on topological spaces to ones defined on C∗-algebras. After
modifying the spectral presheaf by including data related to inner automorphisms, we
consider the extensions of two functors: the topological K -functor [8] and the functor
T that assigns to a space its lattice of closed subsets.

In the former case, we give a novel definition of operator K -theory, K0, in terms
of a colimit of vector bundles over the finite quotient spaces of stable noncommutative
spaces. This formally aligns very closely with the extension K̃ of the topological K -
functor. Specifically, we have shown that operator K0 of a C∗-algebra A corresponds
to the extension of the topological K -functor from the spaces corresponding to finite-
dimensional subalgebras of the stabilisation of A. While K0 � K̃ holds for finite-
dimensional C∗-algebras, whether it holds in general (or whether K0 � K̃ ◦K) remains
an open question.

In the latter case, we establish a bijective correspondence between ideals of a von
Neumann algebra and what could be thought of as clopen subsets of its associated spatial
diagram.More formally,wedisplay anatural isomorphismIW � T̃W between the functor
IW that assigns to a von Neumann algebra its lattice of ultraweakly closed two-sided
ideals and the extension of the functor TW mapping a (hyperstonean) topological space
to its lattice of clopen sets. This theorem is the von Neumann algebraic analogue of the
conjecture that I � T̃ where I is the ideal lattice functor and T the functor mapping a
topological space to its lattice of closed sets.

As a consequenceof the vonNeumannalgebraic theorem, theC∗-algebraic conjecture
holds for all finite-dimensionalC∗-algebras. The question of whether it holds for allC∗-
algebras remains open. An immediate question is whether the conjecture holds for AF-
algebras, i.e. those that arise as limits of finite-dimensionalC∗-algebras [16]. This would
follow immediately from a proof of the continuity of T̃. Another approach would be to
prove the whole conjecture directly by using the proof of the von Neumann algebraic
version as a guide. Indeed, one might still be able to reduce the question to one about
projections by working in the enveloping von Neumann algebra A∗∗ of a C∗-algebra
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A. In this setting, the total ideals of a C∗-algebra A correspond to certain total ideals
of the enveloping algebra A∗∗ [7]: those that correspond to open central projections.
One would have to find a correspondence between open central projections of A∗∗ and
certain families of open projections obeying a restricted form of unitary invariance. This
might also be formulated directly at the C∗-algebraic level by considering approximate
identities for ideals as playing the role of central projections.

Proving that I � T̃ would establish a strong relationship between the topologies
of the geometric object G(A) and Prim(A), the primitive ideal space of A: we would
be able to recover the lattice of the hull-kernel topology on Prim(A) as the limit of
the topological lattices of the object G(A). Establishing this conjecture would allow
considering G to be an enrichment of Prim. Prim is a C∗-algebraic variant of the ring-
theoretic spectrum whose hull-kernel topology provides the basis for sheaf-theoretic
methods in ring theory.

Our proposal for a notion of noncommutative spectrum bears structural similarity
with related functional and order-theoretic constructions that represent noncommutative
algebras as a commutative fragment augmented with a unitary group action [11,28,
51,58,76]. Novel abstract frameworks for understanding noncommutative algebras in
terms of commutative subalgebras have appeared since our starting to work on this line
of research, notably [41,58], which include some results with a similar flavour to ours.
Understanding the relationships between these approaches, and the question of whether
some synthesis of them might better clarify noncommutative geometry is an important
line of future work.

As discussed in more detail in Sect. 2.5, to establish a concrete duality, it would be
important to characterisewhichdiagramsof spaces arise as spatial diagramsof a noncom-
mutative algebra andwhichmaps between them correspond to unital ∗-homomorphisms.
To facilitate computations, some notion of a sub-spatial diagram ‘cover’, analogous to
a tractable choice of charts for a manifold, may be needed. Another key step would be
to recover a noncommutative algebra from its spatial diagram together with some extra
data.

There are some topological concepts that are usually understood to be inextendable
to the commutative setting. The simplest example is provided by the notion of points.
We have seen that the forgetful functor to the category Set, which associates to a space
its set of points, has a trivial extension to the noncommutative setting, and that this fact
corresponds to the Bell–Kochen–Specker theorem from quantum foundations. So, the
topological notion of points does not survive our process of translation, in agreement
with the common intuition that noncommutative spaces have no points. On the other
hand, there are interesting concepts in the noncommutative setting that become trivial
when restricted to the commutative case, e.g. Tomita–Takesaki theory. Clearly, such
intrinsically noncommutative concepts cannot be obtained by the process of extension
outlined in this article, via diagrams of topological spaces corresponding to commu-
tative subalgebras. However, they can provide valuable guidance in determining what
extra data must be adjoined to the diagram of topological spaces in order to recover a
noncommutative algebra, since that data must be used in an essential way to define those
concepts.

It would also be interesting to calculate the spatial diagram explicitly for some special
examples. One promising possibility is the canonical commutation relations algebra,
which is closely connected with quantisation and thus physically very significant. In this
case, the Krichever–Mulase classification [77] of certain commutative subalgebras of
C[[x]][∂] provides a potentially highly useful roadmap. Another possibly tractable class
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of algebras for computations are those that arise as crossed product algebras, wherein
a group action on a C∗-algebra is embedded in a larger C∗-algebra where the action is
realised as a group of inner automorphisms. This class includes within it the important
example of noncommutative tori, the computation of whose K -theory was considered a
very difficult problem [84].

The idea of looking at commutative quotients is a very general one and could perhaps
be applied to analyse other sorts of noncommutative algebras other thanC∗-algebras. The
ideas outlined above might be applied to any duality involving a category of geometric
objects and a category of commutative algebras.
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A. Concrete Colimit Construction

Here, we give a concrete construction of the generalised colimit functor
lim−→: Diag−−−→(C) −→ C in terms of coequalisers of coproducts.

Recall that the colimit of a functor D from a category A to a cocomplete category C
can be expressed as a coequaliser of two coproducts [72, p. 355]:

∐
u : i−→ j D(domu)

θ ��
τ

��
∐

i D(i)

The first coproduct is over all morphisms u : i −→ j of A and the second is over all
objects i of A. We denote the canonical injections for these coproducts by

λv : D(domv) −→
∐

u : i−→ j

D(domu)

and

κ j : D( j) −→
∐

i

D(i).

http://creativecommons.org/licenses/by/4.0/
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The morphisms θ and τ can be defined by specifying their compositions with the λv:

θ ◦ λv = κdomv and τ ◦ λv = κcodv ◦ D(v)

The advantage of this coequaliser presentation of the colimit is that we may determine
a C-morphism between the colimits of two functors D : A −→ C and E : B −→ C
by specifying a natural transformation between their coequaliser diagrams. That is,
by giving its components, C-morphisms N and M such that the following diagrams
commute:

∐
u : i−→ j D(domu)

θ ��

N
��

∐
i D(i)

M
��∐

u′ : i ′−→ j ′ E(domu′)
θ ′

�� ∐
i ′ E(i ′)

∐
u : i−→ j D(domu)

τ
��

N
��

∐
i D(i)

M
��∐

u′ : i ′−→ j ′ E(domu′)
τ ′

��
∐

i ′ E(i ′)

where i ′ and u′ range over all objects and all morphisms of B, respectively, while i and
u are as above. We denote the canonical injections into the coproducts for E by λ′

v′ and
κ ′
j ′ .
Given a Diag−−−→(C)-morphism ( f, η) between D and E we define N and M by giving

their compositions with the canonical injections:

N ◦ λv = λ′
f (v) ◦ ηdomv and M ◦ κ j = κ ′

f ( j) ◦ η j ,

It is straightforward to verify that the above diagrams commute, that is, that θ ′ ◦ N =
M ◦ θ and that τ ′ ◦ N = M ◦ τ , by computing the composition of these maps with the
λv . The C-morphism assigned by lim−→ to ( f, η) is then defined to be the morphism that
is induced by the natural transformation (whose components are N and M) between the
coequaliser diagrams for the colimits of D and E .

Functoriality of lim−→ is then straightforwardly verified by computing the compositions
of the components of the natural transformations induced by ( f, η) and (g, μ) and seeing
that the resulting natural transformation is the same as the one induced by (g◦ f, μ f ◦η).

B. Topological and C∗-Algebraic K -Theory

B.1. Topological K -theory. Topological K -theory, invented by Atiyah–Hirzebruch [8]
after Grothendieck [49], is an extraordinary cohomology theory, i.e. satisfies the
Eilenberg–Steenrod axioms [36] except the dimension axiom. It is determined by a
sequence of contravariant functors from KHaus to Ab. After early successes, including
the solution to the classical problem of determining how many linearly independent
vector fields can be constructed on Sn [4], the subject blossomed to include algebraic
and analytic versions. The core idea is to describe the geometry of a space by algebraic
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information about the possible vector bundles over it. Here, we briefly review its defi-
nition. Its generalisation to C∗-algebras, operator K0, is a key tool of noncommutative
geometry and will be outlined in the next subsection.

Definition B.1. For a compact Hausdorff space X , its vector bundle monoid, V (X),
is the set of isomorphism classes of complex vector bundles over X with the abelian
addition operation of fibrewise direct sum: [E]+ [F] = [E ⊕ F]. A continuous function
f : X −→ Y yields a monoid homomorphism V ( f ) : V (Y ) −→ V (X) by the pullback
of bundles. That is, if p : E −→ Y is a bundle over Y , the bundle f ∗E is a bundle over
X given by the projection to X of

{(x, v) ∈ X × E | f (x) = p(v)}
and V ( f )([E]) = [ f ∗E]. This defines a functor V : KHausop −→ AbMon.

Definition B.2. For an abelian monoid M , its Grothendieck group, G(M), is the abelian
group (M × M)/∼ where ∼ the equivalence relation given by

(a, b) ∼ (c, d) iff ∃ e ∈ M, a + d + e = b + c + e.

For amonoidhomomorphismφ : M −→ N , the grouphomomorphismG(φ) : G(M) −→
G(N ) is given by by G(φ)([(a, b)]) = [(φ(a), φ(b))]. This defines a functor
G : AbMon −→ Ab.

Intuitively, an element [(a, b)] of G(M) can be thought of as a formal difference a−b
of elements of M . With this interpretation in mind, it is easy to see that G(M) is indeed
a group, with addition given componentwise, neutral element [(0, 0)], and the inverse of
[(a, b)] equal to [(b, a)]. Moreover, there is a monoid homomorphism i : M −→ G(M)

given by a −→ [(a, 0)]. As an example, the Grothendieck group of the additive monoid
of natural numbers (including zero) is the additive group of integers.

TheGroethendieckgroup functorG is an explicit presentation of the group completion
functor, the left adjoint to the forgetful functor fromAb toAbMon. Thismeans thatG(M)

is the ‘most general’ group containing a homomorphic image of M , in the sense that it
satisfies the universal property that any monoid homomorphism from M to an abelian
group factors uniquely through the monoid homomorphism i : M −→ G(M).

Definition B.3. The topological K -functor K : KHausop −→ Ab is G ◦ V .

From the topological K -functor, one can easily construct the full sequence of functors
Kn for n ∈ N.

Definition B.4. The suspension functor S : KHaus −→ KHaus maps a space X to the
quotient space

X × [0, 1]/{(x, 0) ∼ (x ′, 0) and (x, 1) ∼ (x ′, 1) for all x, x ′ ∈ X}
and a continuous function f : X −→ Y to the map [(x, t)] −→ [( f (x), t)].
Definition B.5. Topological K -theory is the sequence of functors Kn : KHausop −→
Ab with n ∈ N defined by Kn = K ◦ Sn .

Bott periodicity [9] provides natural isomorphisms Kn � Kn+2. We are left with
K0 = K and K1 = K ◦ S . Note that topological K -theory additionally possesses a ring
structure which does not survive in the noncommutative case.
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B.2. Operator K -theory. Here, we outline the generalisation of topological K -theory to
operator K -theory by the canonical method of noncommutative geometry. We provide
the definition and properties of the operator K0-functor which wewill use in our analysis
of the extension of the topological K -functor. These are basic facts found in any intro-
duction to the subject, e.g. [40,86,99]. We start by defining K0 for unital C∗-algebras,
and then extend it to the nonunital case via unitalisation.

B.2.1. Operator K -theory for unital C∗-algebras. In order to generalise a topological
concept to the noncommutative case, one must begin with a characterisation in terms of
commutative algebra of the topological concept in question. In the case of K -theory, this
requires phrasing the notion of a complex vector bundle over X in terms of the algebra
C(X) of continuous complex-valued functions on X . This rephrasing is provided by the
Serre–Swan theorem:

Theorem B.6 (Serre–Swan [94]). The category of complex vector bundles over a com-
pact Hausdorff space X is equivalent to the category of finitely generated projective
C(X)-modules.

Recall that a projectiveA-module is the direct summandof a freeA-module.Roughly,
themodule associated to a vector bundle E over X is the set of continuous global sections
of E with the obvious operations. This justifies considering a finitely generated projective
(left) A-module to represent a complex vector bundle over the noncommutative space
underlying the C∗-algebra A.

The canonical translation process of noncommutative geometry suggests, having now
in our possession an algebraic characterisation in terms ofC(X) of the topological notion
of complex vector bundle, thatweuse it to define its noncommutative generalisation. That
is, define theMurray–von Neumann semigroup of aC∗-algebra to be the abelian monoid
of its finitely generated projective modules (up to the appropriate notion of equivalence
and with an appropriate addition operation). It turns out to be more convenient to work
with an algebraic gadget which is equivalent to finitely generated projectiveA-modules:
namely, projections in a matrix algebra Mn(A) over A. If μ is such a finitely generated
projective module μ, then there exists another module μ⊥ such that μ ⊕ μ⊥ � An .
We thus identify the module μ with the projection p : An −→ μ, or rather, with the
canonical representation of that projection as an element of the matrix algebra Mn(A).

Equipped with our algebraic characterisation of vector bundles, we are ready to
begin defining operator K -theory in a manner directly analogous with the construction
of topological K -theory.

Definition B.7. Let A be a C∗-algebra. Two projections p ∈ Mn(A) and q ∈ Mm(A)

with n,m ∈ N areMurray–von Neumann equivalent, denoted p ∼M q, whenever there
is a partial isometry v in the C∗-algebra Mm,n(A) of m × n matrices over A such that
p = vv∗ and q = v∗v.

Definition B.8 (The Murray–von Neumann semigroup for unital A). Let A be a unital
C∗-algebra. Its Murray–von Neumann semigroup, V0(A), is the set of Murray–von
Neumann equivalence classes of projections in matrices over A:

⊔

n∈N
{p ∈ Mn(A) | p is a projection}

/
∼M .
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It is equipped with the abelian addition operation

[p] + [q] =
[(

p 0
0 q

)]
,

for which the equivalence class of the zero projection is a neutral element. Therefore,
V0(A) is an abelian monoid. A unital ∗-homomorphism φ : A −→ B yields a monoid
homomorphism V0(φ) : V0(A) −→ V0(B) given by [p] −→ [Mn(φ)(p)] for each
n ∈ N and p a projection in Mn(A), where Mn(φ) acts on elements of Mn(A) by
entrywise application of φ. This defines a functor V0 : uC∗ −→ AbMon.

Definition B.9. The operator K0-functor for unital C∗-algebras, K0 : uC∗ −→ Ab, is
G ◦ V0.

B.2.2. Operator K -theory for (nonunital) C∗-algebras. So far, we have defined operator
K -theory only for the unital case. We describe the extension of K0 to all C∗-algebras.

Definition B.10. The minimal unitalisation of a C∗-algebra A (which itself may or
may not be unital) is defined as the unital C∗-algebra A+ with underlying set A × C,
componentwise addition and scalar multiplication, and multiplication and involution
given by

(a, z)(a′, z′) = (aa′ + z′a + za′, zz′), (a, z)∗ = (a∗, z̄).

There exists a unique C∗-norm on A+, whose definition we omit, extending the norm
on A.

Note that (−)+ is a functor from C∗ to uC∗: a ∗-homomorphism φ : A −→ B gets
mapped to the unital ∗-homomorphism φ+ : A+ −→ B∗ given by (a, z) −→ (φ(a), z).

A copy of A lives canonically inside A+ in the first component. Indeed, the unitali-
sation of a C∗-algebra yields a short exact sequence

0 −→ A ι−−→ A+ π−−→ C −→ 0

with ι being the injection into the first component and π the projection to the second
component. Exactness justifies identifying A with kerπ .

Definition B.11. The K0 group of a C∗-algebra A is the subgroup of K0(A+) given
by the kernel of K0(π). A ∗-homomorphism φ : A −→ B yields a homomorphism
from kerK0(A+ π−−→ C) to kerK0(B+ π−−→ C) by restriction of K0(φ

+) to the kernel of
K0(A+ π−−→ C). This defines the operator K0-functor, K0 : C∗ −→ Ab.

B.2.3. Higher operator K -groups. As in the topological case, one can easily construct
the full sequence of functors Kn for n ∈ N.

Definition B.12. The suspension functor S : C∗ −→ C∗ maps a C∗-algebra A to a
sub-C∗-algebra of C(T,A), the C∗-algebra of continuous A-valued functions on the
complex unit circle T, consisting of those functions f : T −→ A satisfying f (1) = 0.
(Alternatively, S(A) = A ⊗ C0(R), where C0(R) is the C∗-algebra of continuous
complex-valued functions on R vanishing at infinity.) A ∗-homomorphism φ : A −→ B
is mapped to the ∗-homomorphism S(φ) : S(A) −→ S(B) defined by f −→ φ ◦ f .
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Note that this suspension functor is an extension of the one defined on topological
spaces in the sense that for algebras A = C(X), we have that S(A) = C(S(X)).

Definition B.13. Operator K -theory is the sequence of functors Kn : C∗ −→ Ab with
n ∈ N defined by Kn = K0 ◦ Sn

Generalised Bott periodicity provides natural isomorphisms Kn � Kn+2. We are left
with K0 and K1 = K0 ◦ S.

B.2.4. Stability.

Definition B.14. The compact operators K is the sub-C∗-algebra of B(H), with H a
Hilbert space of countable dimension, which is generated by the finite rank operators.

Alternatively, it is defined as the colimit (direct limit) in the category C∗ of the
sequence of matrix algebras

M1(C) ↪−→ M2(C) ↪−→ M3(C) ↪−→ · · ·

where the injections are inclusion into the upper left corner: x −→
(
x 0
0 0

)
.

The C∗-algebra K is nuclear, which means that, for any C∗-algebra A, there is a
unique C∗-norm on the algebraic tensor product A ⊗alg K and thus we may speak
unambiguously of the C∗-algebra A ⊗ K.

Definition B.15. The stabilisation functor K : C∗ −→ C∗ maps a C∗-algebra A to
the C∗-algebra K(A) = A ⊗ K. A ∗-homomorphism φ : A −→ B is mapped to
K(φ) : K(A) −→ K(B) defined by K(φ) = φ ⊗ idK.

This is alternatively defined as the colimit of matrix algebra functors. That is,K(A)

is the colimit (direct limit) in C∗ of the sequence

M1(A) ↪−→ M2(A) ↪−→ M3(A) ↪−→ · · ·
where the morphisms are inclusions into the upper left corner. A ∗-homomorphism
φ : A −→ B determines ∗-homomorphisms Mn(φ) : Mn(A) −→ Mn(B) by entrywise
application of φ which form the components of a natural transformation yielding K(φ)

as colimit.

Since the C∗-algebra K ⊗ K is isomorphic to K, the stabilisation functor is an
idempotent operation, i.e. K ◦ K � K.

Definition B.16. A C∗-algebra A is called stable or a stabilisation if it is fixed (up to
isomorphism) by the K functor, i.e. A � K(A) = A ⊗ K.

Note that no stable C∗-algebra can be unital. Two C∗-algebras A and B are stably
equivalent when K(A) � K(B). Among stable C∗-algebras, stable equivalence re-
duces to ordinary isomorphism equivalence. As we shall see, operator K -theory doesn’t
distinguish between stably equivalent algebras.

Theorem B.17. Operator K -theory is matrix stable. That is, K0 � K0 ◦ Mn and K1 �
K1 ◦Mn , where Mn is the functor that forms (n×n)-matrix algebras over C∗-algebras.
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Theorem B.18. Operator K -theory is continuous. That is, if

A1 −→ A2 −→ A3 −→ · · ·
is a direct sequence of C∗-algebras and ∗-homomorphisms,

K0(A1) −→ K0(A2) −→ K0(A3) −→ · · ·
is its image under the K0-functor, and A = lim−→An, then,

K0(A) � lim−→ K0(An)

via the obvious homomorphism induced between cones. A similar statement holds for
K1.

As a consequence of the preceding two theorems, and the alternative definition of
the compact operators as the limit of a direct sequence of matrix algebras, we obtain:

Theorem B.19. Operator K -theory is stable. That is, K0 � K0 ◦K and K1 � K1 ◦K.

Consequently, the operator K -theory functors are determined by their restrictions to
stable C∗-algebras.

B.3. Alternative definition of operator K0-functor. The Murray–von Neumann semi-
group, and thus the K0-group, of a unital C∗-algebra A can be expressed in a rather
simple fashion in terms of projections of its stabilisation [86, Exercise 6.6]. We require
this definition in the proof of Theorem 5.2 and thus describe it in explicit detail.

Definition B.20. Let A be a C∗-algebra. Two projections p and q in A are unitarily
equivalent, denoted by p ∼u q, whenever there is a unitary u ∈ A+ such that p = uqu∗.
We write [p] for the unitary equivalence class of p.

Given projections p1, . . . , pk ∈ K(A), one can find pairwise orthogonal representa-
tives of their unitary equivalence classes, i.e. there exist projections q1, . . . qk ∈ K(A)

such that pi ∼u qi (i ∈ {1, . . . , n}) and all the qi are pairwise orthogonal [86, Exercise
6.6].

The Murray–von Neumann semigroup for unital C∗-algebras admits the following
alternative characterisation:

Definition B.21 (The Murray–von Neumann semigroup for unital A, alternative defini-
tion). Let A be a unital C∗-algebra. The elements of V0(A) are the unitary equivalence
classes of projections inK(A). The abelian addition operation is given by orthogonal ad-
dition. That is, if p and p′ are two projections inK(A), then [p]+[p′] = [q+q ′]where q
and q ′ are orthogonal representatives of [p] and [p′], respectively (i.e. p ∼u q, p′ ∼u q ′,
and q ⊥ q ′). The equivalence class of the zero projection is a neutral element for this
operation, making V0(A) an abelian monoid. A unital ∗-homomorphism φ : A −→ B
yields a monoid homomorphism V0(φ) : V0(A) −→ V0(B) by [p] −→ [K(φ)(p)].
This defines a functor V0 : uC∗ −→ AbMon.
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Through this reformulation of the Murray–von Neumann semigroup functor V0, we
automatically get a new description of K0 by composition with the Grothendieck group
functor, as K0 = G ◦ V0. Then, K0(A) is simply the collection of formal differences

[p] − [q]
of elements of V0(A) with

[p] − [q] = [p′] − [q ′]
precisely when there exists [r ] such that

[p] + [q ′] + [r ] = [p′] + [q] + [r ].
Composing the action on morphisms of the Grothendieck group functor after the

action of V0 just defined, we find that a unital ∗-homomorphism φ : A −→ B between
unital C∗-algebras yields a group homomorphism between the K0 groups of A and B
given by

[p] − [q] −→ [K(φ)(p)] − [K(φ)(q)].

C. Ideals of Operator Algebras

C.1. The primitive ideal space. Here, we include some basic facts on the prime ideal
spectrum of rings and on its C∗-algebraic analogue, the primitive ideal space. These
are required for our explication of the motivation for considering the extension of the
closed-set lattice functor.

C.1.1. The spectrum of commutative rings. In commutative ring theory and algebraic
geometry, the starting point for the application of geometrical methods is the association
of topological spaces to rings [53, p. 70]. These are, in fact, locally ringed spaces;
however, we will not be considering this additional structure.

Definition C.1. A prime ideal J of a commutative ring R is a ideal J � R such that
whenever a, b ∈ R with ab ∈ J then a ∈ J or b ∈ J .

The canonical examples of prime ideals come from the ideals of the ring of integers
generated by prime numbers.

Definition C.2. Let R be a commutative ring and let I ⊂ R be an ideal of R. Then
hull(I ) is the set of prime ideals that contain I .

Definition C.3. The spectrum functor Spec : CRng −→ Top from the category of com-
mutative rings and ring homomorphisms to the category of topological spaces and con-
tinuous functions is defined as follows.

Given a commutative ring R, Spec(R) is the set of prime ideals of R, equipped with
the hull-kernel (or Zariski, or Jacobson) topology, whose closed sets are of the form
hull(I ) for some ideal I ⊂ R.

Given a ring homomorphism h : R −→ S, Spec(h) : Spec(S) −→ Spec(R) is the
continuous function that maps a prime ideal J to its preimage h−1(J ) under h.
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C.1.2. The primitive ideal space. These definitions and theorems can be found in [7, p.
208] and [14, p. 118].

Definition C.4. A primitive ideal J of a C∗-algebra A is an ideal that is the kernel of
an irreducible representation of A.

Recall that an irreducible representation of a C∗-algebra A is a ∗-representation
π : A −→ B(H) such that no nontrivial closed subspaces S ⊂ H satisfy π(a)S ⊂ S
for all a ∈ A. Every pure state of A gives rise to an irreducible representation A by the
Gel'fand–Naı̆mark–Segal construction.

Definition C.5. Let A be a C∗-algebra and let I ⊂ A be a closed two-sided ideal of A.
Then hull(I ) is the set of primitive ideals containing I .

Definition C.6. Let A be a C∗-algebra. The primitive ideal space Prim(A) is the set of
primitive ideals of A, equipped with the hull-kernel (or Zariski, or Jacobson) topology
whose closed sets are of the form hull(I ) for some closed two-sided ideal I ⊂ A.

Theorem C.7. The map hull is an order preserving bijection between the set of closed
two-sided ideals of a C∗-algebra A and the closed sets of the hull-kernel topology on
Prim(A).

Definition C.8. The spectrum Â of a C∗-algebra A is the set of unitary equivalence
classes of irreducible representations of A. It is equipped with the coarsest topology
with respect to which the map [π ] −→ kerπ is continuous.

The topology on Â is thus also order isomorphic to the partially ordered set of closed
two-sided ideals of A.

C.2. Von Neumann algebras. We briefly outline some required elementary facts about
von Neumann algebras [7, Chapter 3].

Definition C.9. A von Neumann algebraA is a ∗-subalgebra of B(H), for some Hilbert
space H, which contains the identity and is closed in the weak (operator) topology.

Recall that a net of operators (Tα) inB(H) converges to T in theweak topology if and
only if, for every vector v ∈ H and linear functional φ ∈ H∗, we have that (φ(Tα(v)))

converges to φ(T (v)). As convergence of a net of operators in norm implies its weak
convergence, we see that von Neumann algebras are examples ofC∗-algebras. We could
equally well have defined von Neumann algebras to be ∗-subalgebras of B(H) which
contain the identity and are closed in the strong, ultraweak, or ultrastrong topologies as
the closures of ∗-subalgebras of B(H) in these topologies all coincide. Von Neumann
proved that taking any of these closures of unital ∗-subalgebras of B(H) coincides also
with taking the double commutant (though he did not know of the ultrastrong topology).

Wewill primarily require facts about projections and ideals of vonNeumann algebras
and the relationship between the two notions.
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C.2.1. Projections. The projections ofA are operators p such that p = p∗ = p2. They
are orthogonal projections onto closed subspaces of H. This yields a natural partial
order on projections induced by the inclusion relation on their corresponding subspaces.
Alternatively, this order can be defined by:

p ≤ q iff pq = p iff qp = p.

We denote the partially ordered set of projections in A by P(A). In von Neumann
algebras, the collection of projections forms a complete lattice: the infimum infα pα of
an arbitrary collection of projections {pα}α is given by the orthogonal projection onto⋂

α pαH whereas the supremum supα pα is the orthogonal projection onto the closed
linear span of

⋃
α pαH. The orthogonal complement map (−)⊥ that sends p to 1 − p

makes this lattice complemented in the sense that p ∨ p⊥ = 1, p ∧ p⊥ = 0, and
p⊥⊥ = p.

The set of projections inA is also equipped with several other preorders which arise
from the canonical partial order and certain compatible equivalence relations. We will
require, in particular, the notions of Murray–von Neumann equivalence of projections
and unitary equivalence of projections.

The intuition behind Murray–von Neumann equivalence is to identify projections
whose corresponding image subspaces are of the same dimension. That is, there should
be an operator v ∈ Amapping the Hilbert spaceH to itself which isometrically maps the
subspace of one projection to the subspace of another, thereby witnessing the equality
of their dimension.

Definition C.10. Two projections p and q in a von Neumann algebraA areMurray–von
Neumann equivalent, denoted p ∼M q, if and only if there exists v ∈ A such that

p = v∗v and q = vv∗.

The partial order onP(A) induces a partial order on the set of Murray–von Neumann
equivalence classes of projections. We write p �M q to denote that p ∼M q ′ for some
q ′ ≤ q.

Definition C.11. Two projections p and q in a von Neumann algebra A are unitarily
equivalent, denoted p ∼u q, if and only if there exists a unitary element u ∈ A such
that p = uqu∗.

Similarly, the partial order on P(A) induces a partial order on the set of unitary
equivalence classes of projections. We write p �u q to denote that p ∼u q ′ for some
q ′ ≤ q.

Unitary equivalence (resp. ordering) implies Murray–von Neumann equivalence
(resp. ordering) for arbitrary pairs of projections. We will require the following par-
tial converse for orthogonal projections.

Proposition C.12. Let p and q be projections in a von Neumann algebra. If p and q are
orthogonal, then p ∼M q iff p ∼u q, and, moreover, p �M q iff p �u q.

For a proof of the statement concerning equivalences, see [7, Proposition 6.38]. The
second statement is an easy consequence of this: p �M q means that p ∼M q ′ for some
q ′ ≤ q; but if p and q are orthogonal then so are p and q ′; and so by the first statement
one obtains p ∼u q ′, meaning that p �u q.
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Definition C.13. The central carrier C(p) of a projection p ∈ A is the smallest central
projection above p:

C(p) = inf {z ∈ P(A) ∩ Z(A) | p ≤ z} .
It is immediate from this definition that a projection p and a unitary rotation upu∗ have
the same central carrier for p ≤ z if and only if upu∗ ≤ uzu∗ = zuu∗ = z. It is also
immediate that if S ⊂ P(A) is a set of projections, thenC(sup S) = sup {C(p) | p ∈ S}.

One of the basic technical tools we will require is the comparison theorem of pro-
jections in a von Neumann algebra [65]. The intuitive idea is best understood in a factor
(a von Neumann algebra with trivial centre) which can be thought of as an elementary
direct summand. Here, the dimension of two projections can be compared; either they
are of equal dimension, or the dimension of one exceeds the dimension of the other.

Theorem C.14 (Comparison theorem). Let p and q be projections in a von Neumann
algebra A. There exists a central projection z in A such that

zp �M zq and z⊥ p �M z⊥q.

C.2.2. Ideals. Ideals of operator algebras must satisfy both the usual algebraic condi-
tions as well as an additional topological condition.

It turns out that the appropriate notion of morphism for von Neumann algebras is not
weakly continuous∗-homomorphismbut rather ultraweakly continuous∗-homomorphism.
The ultraweak topology is stronger than the weak topology.

Definition C.15. A left (resp. right) ideal I of a von Neumann algebraA is a left (resp.
right) ring ideal I ⊂ A that is closed in the ultraweak topology.

A total ideal or two-sided ideal I of a von Neumann algebra A is a two-sided ring
ideal I ⊂ A that is closed in the ultraweak topology.

Left, right, and total ideals correspond with projections. Examples of left (resp. right)
ideals are the sets given by Ap (resp. pA). These are the kernels of morphisms given
by right (resp. left) multiplication by p⊥.

Theorem C.16 ([96, Proposition 3.12], [71, Lecture 9, Corollary 6]). Every (ultraweakly
closed) left ideal L ⊂ A of a von Neumann algebra A is of the form L = Ap for a
projection p ∈ P(A). Further, the projection p is uniquely determined by L.

Under this correspondence, total ideals are precisely those left or right ideals corre-
sponding to central projections.

Theorem C.17 ([96, Proposition 3.12], [71, Lecture 9, Corollary 8]). Every total ideal
I ⊂ A of a von Neumann algebra A is of the form I = zAz = zA = Az for a unique
central projection z ∈ P(A) ∩ Z(A).
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