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ABSTRACT 
 

Tsunami fragility curves are statistical models which form a key component of tsunami risk models, as they 

provide a probabilistic link between a Tsunami Intensity Measure (TIM) and building damage. Building 

damage due to tsunamis can occur due to fluid effects (e.g. drag) and debris impact, two effects which have 

different implications for building damage levels and mechanisms. However, existing studies often pool all 

available damage data for a location regardless of whether damage was caused by fluid or debris effects, and 

so it is not clear whether the inclusion of debris-induced damage introduces bias in existing fragility curves. 

This paper uses a detailed disaggregated damage dataset from the 2011 Great East Japan Earthquake and 

Tsunami together with several advanced statistical methods in order to identify the effect that debris-induced 

damage has on fragility function derivation. 

Buildings are identified which are most likely to have sustained significant debris damage, based on the 

proportion of nearby buildings which have been designated as “washed away” in their post-tsunami survey. 

Fragility curves are then constructed for observed inundation depth and simulated force, and fragility curves 

with/without debris impact are compared for each damage state. Finally complex models which include all 

buildings and additional parameters corresponding to debris impact are considered. The influence of debris 

model parameters on determining building damage was shown to be significant for all but the lowest damage 

state (“minor damage”), and more complex fragility functions which incorporate debris model parameters 

were shown to have a statistically significant better fit to the observed damage data than models which 

omitted debris information. 

 

Keywords: Tsunami damage; Empirical fragility curves; Generalised linear models; Generalised additive 

models; Ordinary Least Squares; Cross-validation; Bootstrap techniques; Multiple imputation; Intensity 

measures; Inundation simulation; Great East Japan Earthquake and Tsunami 2011; Debris. 
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INTRODUCTION 

Tsunami fragility curves for buildings provide a probabilistic link between a Tsunami Intensity Measure 

(TIM) and building damage. They are a component of tsunami risk models, and so are vital for land-use and 

emergency planning, as well as human and financial loss estimation.  

Compared to seismic studies, few fragility functions for buildings affected by tsunami exist, and the vast 

majority have been based solely on empirical data (post-tsunami building damage surveys). Empirical fragility 

curves are very specific to the building type and flow conditions from where the data was taken (Suppasri, 

Charvet, Kentaro, & Imamura, 2014), and so should ideally not be generalized or applied to different 

geographical locations. However, given the scarcity of high-quality tsunami damage data, empirical fragility 

functions are necessarily often applied to different locations and conditions from where they were derived, 

and in such cases it is necessary to understand how fragility functions may be adapted to the new conditions. 

Tsunami-induced building damage can arise due to fluid forces (hydrostatic and hydrodynamic) and debris effects 

(impact and damming). Various TIMs have been used in recent fragility studies to describe flow conditions, such 

as depth, velocity and hydrodynamic force (Koshimura et al. 2009, Charvet et al. 2014, Tanaka and Kondo 2015). 

Macabuag et al., (2016) present a methodology for selecting the optimum TIM for a given dataset, however, TIMs 

in existing fragility studies rarely specifically describe debris-induced damage. 

Charvet, Suppasri, Kimura, Sugawara, & Imamura (2014) generate fragility functions considering that debris 

is mostly composed of the remains of collapsed buildings, and as such designates buildings as having been 

affected by debris if they are within a given distance (distances from 10m to 150m are tried) of a building 

that has been washed away. However, this method does not make any allowance for the size of collapsed 

buildings or the number of collapsed buildings (i.e. one small collapsed structure, has the same effect as 

several large collapsed structures). 

This paper presents a preliminary investigation to address the following research questions: 

1. How does the presence of debris in tsunami inland flow affect fragility functions? 

2. Is it possible to quantify this effect by separating fluid and debris-induced damage in fragility 

function derivation? 

In this paper a preliminary methodology for quantifying debris-related effects on fragility functions is 

presented. Detailed, disaggregated building-by-building damage data from the 2011 Great East Japan 

Earthquake (GEJE) is used to develop tsunami fragility curves for buildings in Japan considering the effect 

of debris in the flow. Note that the definition of debris impact is beyond the scope of this paper, and the 

focus is to instead demonstrate whether it is feasible to identify debris impact, and to highlight what affect 

this might have on fragility functions. An important application of the future development of this work will 

be to define how fragility curves could be adjusted to account for locations of increased likelihood of debris 

(e.g. downstream of ports or areas of lightly constructed buildings likely to collapse in tsunami flow) for both 

the engineering and insurance industries. 

 

PRESENTATION OF DATA AND ANALYTICAL MODEL 

Building Damage Dataset 

The building damage data used in this paper is taken from the GEJE (2011) building damage database 

compiled by Japan’s Ministry of Land Infrastructure Tourism and Transport (MLIT). The database is 



comprised of relevant information (including observed inundation depth and damage state (Table 1)) for 

each individual building located within the inundation area of the 2011 GEJE. 

This paper considers the same dataset as Macabuag et al. (2016), which comprised of three case-study 

locations, namely the towns of Ishinokami, Kesennuma and Onagawa,  which represent 80%, 15%, and 5%, 

respectively of the combined dataset. It is noted that as DS5 and DS6 do not represent progressively worse 

damage states they will be combined (into DS5*) for the purposes of fragility function derivation. 

Damage State Description Use 

DS0 
No 

Damage 
Water does not enter into the building footprint Immediate occupancy 

DS1 
Minor 

Damage 
Water enters below the ground floor 

Possible to use immediately after 

minor floor and wall cleanup 

DS2 
Moderate 

Damage 

Water inundates to less than 1m above the ground 

floor 

Possible to use after moderate 

repairs 

DS3 
Major 

Damage 

Water inundates to more than 1m above the floor 

(but below the ceiling) 

Possible to use after major 

repairs 

DS4 
Complete 

Damage 

The building is inundated above the ground floor 

level 

Major work is required for re-

use of the building 

DS5 

DS5* 

Collapsed Structural elements are significantly damaged Not repairable 

DS6 
Washed 

Away 

The building is completely washed away except for 

the foundation 
Not repairable 

Table 1: Damage state definitions used by the Japanese Ministry of Land Infrastructure Tourism and 

Transport following the 2011 Great East Japan Earthquake and Tsunami. Descriptions from Japan 

Cabinet Office (2013), usage descriptions are after Suppasri et al. (2014). 

 

The construction material of a building has been shown to significantly affect its building damage probability 

(Suppasri et al. 2012a). Macabuag et al., (2016) shows that for this dataset the damage state distributions and 

fragility curves for reinforced concrete (RC) and steel construction materials are very similar to each other, 

and so may be grouped together and analysed simultaneously (termed as “engineered” buildings for the 

remainder of this paper). Conversely, fragility curves for engineered and non-engineered (wood and 

masonry) buildings differ in both slopes and intercepts, and so it is appropriate to consider these material 

groups separately. Hence, in this paper fragility curves are developed specifically for the engineered material 

class (4570 buildings), in order to account for building material whilst maintaining large enough datasets to 

avoid significantly increasing uncertainty in the model parameter estimates. 

Buildings of unknown construction material make up 18.1% of the total dataset within the inundated area, 

representing a significant proportion of the data. Previous studies (e.g. Suppasri et al. 2013) generally 

conduct complete-case analysis (i.e. they remove any partial data, such as buildings of unknown material, 

from their fragility analysis). However, Macabuag et al. (2016) showed that missing data can only be 

removed if it can be shown to be Missing Completely At Random (where the data is missing purely by 

chance so that there is no relationship between the buildings that have missing material data and other 

attributes such as the building height, size and use) and that this is not the case for the 2011 MLIT Japan 

data. Multiple Imputation (MI) (which involves replacing missing observed data with substituted values 

estimated multiple times via stochastic regression models built on the other attributes) has been shown to be 

an acceptable method for estimating missing data, and so is conducted in order to estimate building material 

based on footprint area, damage state, building use, and observed inundation depth used to complete the data. 

 

Tsunami Inundation Simulation Data 

To supplement the observed inundation depth data, a numerical inundation simulation is conducted for the 

case-study locations to calculate simulated peak inundation depth, velocity, Froude number (a measure of 

velocity non-dimensionalised by depth) and momentum flux (a product of depth and velocity, proportional to 

hydrodynamic drag force). Macabuag et al. (2016) propose a methodology for comparing multiple TIMs and 



concludes that for this dataset an equivalent quasi-steady force proposed by Qi et al. (2014) (and suggested 

by Lloyd (2014) to represent the force of a tsunami inundation on buildings) is the TIM which shows the 

optimal fit to observed damage data. It is evaluated via two different flow regimes determined by Froude 

Number, and it relates h, v and blockage ratio (building width/channel width, which is taken as 25% in this 

study) to force, denoted here as FQS. Readers are referred to Qi et al. (2014) for the calculation procedure. 

The two TIMs that are considered in this paper are therefore observed inundation depth (hobs) and the 

simulated equivalent quasi-steady force (FQS). 

The numerical tsunami inundation model is presented in detail and validated by Adriano and Koshimura 

(2016). The tsunami source model used in this study is the time-dependent slip propagation model presented 

in Satake et al. (2013). The wave propagation and inundation calculation solves discretized non-linear 

shallow-water equations (Imamura et al. 1995; Suppasri et al. 2012) over six computational domains in a 

nested grid system. The non-linear shallow-water equation includes the effects of flow resistance, which is 

parameterised using uniform value of the Manning's roughness coefficient (n=0.025). The example results 

shown in Figure 1 are the peak values for each grid square over the simulation period. 

 

Statistical Model 

According to the GEM methodology (Rossetto et al. 2014), a statistical model suitable for the available data 

should be constructed. Statistical models are used to construct a relationship between building damage and 

the TIM, which accounts for the uncertainty in damage prediction. The statistical models can be parametric 

(e.g. Generalised Linear Models (GLMs), Cumulative Link Models (CLMs), or linear models with Ordinary 

Least Squares (OLS) parameter estimation), semi-parametric (e.g. Generalised Additive Models, GAMs) or 

non-parametric (e.g. kernel smoothers). 

Macabuag et al. (2016) presents three stages of analysis conducted in order to identify suitable statistical 

models for representing the imputed dataset: first a comparison of ordered and partially-ordered cumulative 

link models, then a sensitivity analysis of data aggregation and parameter estimation techniques, finally a 

sensitivity analysis of semi-parametric model parameters. Following this analysis OLS parameter estimation 

is quantitatively shown to be unsuitable for fragility function estimation as it suffers from the issues of data 

aggregation and violates several linear model assumptions, semi-parametric models are not recommended for 

prediction purposes, and partially ordered models are shown to demonstrate a significantly better fit to this 

dataset than ordered models. 

Therefore partially-ordered probit models are selected for this study where fragility curves corresponding to 

the five damage states (DS1-DS5*) are determined by assigning a damage response indicator, ds, to each 

building, which is considered to follow a multinomial distribution. Each building is also assigned a TIM 

value, xj. The designation of this debris variable is discussed in detail below. The main advantage of this 

model over separate GLMs fitted to binary data, is its ability to use all available information regarding the 

data in the database, it recognises that the damage is an ordinal categorical variable and accounts for the 

main conclusions of the exploratory analysis (Charvet et al 2014a). A probit link function is used (the inverse 

standard cumulative normal distribution). The model equation is given in (1) where β0 and β1 are the 

unknown regression parameters (the intercept and slope, respectively) estimated by a maximum likelihood 

optimisation algorithm. Uncertainty is quantified using bootstrap methods employed by Charvet et al. (2014) 

based on 1,000 iterations. 

  



Random 

Component 

𝑑𝑠 = {0,1,2,3,4, 5∗},        𝑑𝑠|𝑥𝑗~𝑀𝑢𝑙𝑡𝑖𝑛𝑜𝑚𝑖𝑎𝑙 (𝑃(𝑑𝑠 = 𝐷𝑆𝑖|𝑇𝐼𝑀 = 𝑥𝑗)) 

Where,    𝑃(𝑑𝑠 = 𝐷𝑆𝑖|𝑇𝐼𝑀 = 𝑥𝑗) = {

1 − 𝑃(𝑑𝑠 ≥ 𝐷𝑆𝑖|𝑥𝑗 )

𝑃(𝑑𝑠 ≥ 𝐷𝑆𝑖|𝑥𝑗) − 𝑃(𝑑𝑠 ≥ 𝐷𝑆𝑖+1|𝑥𝑗)

𝑃(𝑑𝑠 ≥ 𝐷𝑆𝑖|𝑥𝑗)

        

𝑖 = 0
0 < 𝑖 < 𝑁𝐷𝑆

𝑖 = 𝑁𝐷𝑆

 (1) 

Systematic 

Component 
and 𝑝𝑟𝑜𝑏𝑖𝑡 (𝑃(𝑑𝑠 ≥ 𝐷𝑆𝑖|𝑇𝐼𝑀 = 𝑥𝑗)) = 𝛽

0,𝑖
+ 𝛽

1,𝑖
𝑥𝑗,𝑘 

Parameter 

Estimation 
and 𝛽0,𝑖 , 𝛽1,𝑖 estimated via Maximum Likelihood 

 

This study utilizes several “goodness of fit” tests in order to assess how well a statistical model fits the 

damage data, to quantitatively compare models, and to choose the model with the best fit. The coefficient of 

determination (R
2
) denotes the proportion of the variance in the dependent variable that is predictable from 

the independent variable and is used in many existing studies (Gokon, Koshimura, & Matsuoka (2010); 

Suppasri et al. (2011)). However, R2
 does not indicate whether the most appropriate set of explanatory 

variables has been chosen, the correct regression methodology was used, or if there is collinearity present in 

the data on the explanatory variables.  

Guidelines set out by Rossetto et al. (2014) recommend the use of the Likelihood Ratio Test (LRT) to 

compare nested models, as conducted by some recent studies (I. Charvet, Ioannou, Rossetto,  a. Suppasri & 

Imamura 2014; Muhari et al. 2015). The likelihood  statistic of a model describes the likelihood of observing 

the observations on which the model was fit, given the error distribution defined by that model. A more 

complex statistical model (one with more explanatory variables) will always fit the data on which it was fit, 

as well or better than a simpler model fit to the same data. The LRT tests whether the improvement in fit of a 

more complex model is statistically significant. The test utilizes the likelihood ratio test statistic (D) of two 

nested models, which is a function of the ratio of the models’ likelihood statistics (2). 

𝐷 = −2 log
𝐿𝑠𝑖𝑚𝑝𝑙𝑒 𝑚𝑜𝑑𝑒𝑙

𝐿𝑐𝑜𝑚𝑝𝑙𝑒𝑥 𝑚𝑜𝑑𝑒𝑙
 (2) 

 

The distribution of the test statistic D is approximately a χ2
 distribution, with degrees of freedom equal to the 

difference between the degrees of freedom of the two models being tested (dfsimple model – dfcomplex model). By 

assuming this χ2
 distribution, the probability (or p-value) of D can be computed, with a p-value < 0.05 

indicating a greater than 5% chance that the difference in deviance statistics D was developed from random 

chance, and so the more complex model can be rejected. The likelihood ratio test will be used in this study to 

compare nested models. 

 

INCORPORATION OF DEBRIS EFFECTS IN FRAGILITY FUNCTION DERIVATION 

This section investigates to what extent the presence of debris in tsunami inland flow affects fragility 

function derivation. Buildings which are thought to have been damaged by debris effects are removed from 

the dataset and fragility functions are formed based only on buildings for which debris was less likely to be 

the main factor in defining building damage. 

 

Method of Debris Designation 

A major source of large debris within tsunami inland flow is from collapsed buildings (Charvet, Suppasri, et 

al., 2014), therefore buildings close to other collapsed buildings will be removed from the dataset. A regular 

grid of 500m is applied to each case study location, the total footprint area of all “washed away” (DS6) 

buildings is calculated for each grid, and if this area exceeds a threshold proportion of the total building 



footprint area for that grid all buildings of that grid are deemed to have been affected by debris and so 

removed from the dataset. Threshold proportions (washed away area/total area) of 20%, 35% and 50% are 

tried. 

  
Figure 1: Plan views of Ishinomaki, Japan showing simulation results for inundation depth (left) and 

the 500m grid used for debris analysis (right) with buildings shown coloured according to their 

damage state (from DS1, green, to DS5, red, with washed away buildings denoted in black). 

 

Exploratory Analysis of Debris Dataset 

Table 2 shows the proportions of the dataset remaining after debris-affected buildings have been removed, 

according to each of the collapse area thresholds. It can be seen that the lowest collapse area threshold (of 

20%) leads to the greatest number of buildings being removed from the dataset. Figure 2 shows histograms 

for all engineered buildings and for buildings not affected by debris (according to the 20% threshold), 

showing that buildings affected by debris fall into higher DS categories and at higher TIM values. 

Threshold 

(=
𝑭𝒐𝒐𝒕𝒑𝒓𝒊𝒏𝒕 𝒂𝒓𝒆𝒂 𝒐𝒇 ′𝒘𝒂𝒔𝒉𝒆𝒅 𝒂𝒘𝒂𝒚′ 𝒃𝒖𝒊𝒍𝒅𝒊𝒏𝒈𝒔 𝒘𝒊𝒕𝒉𝒊𝒏 𝒈𝒓𝒊𝒅𝒔𝒒𝒖𝒂𝒓𝒆

𝑻𝒐𝒕𝒂𝒍 𝒂𝒓𝒆𝒂 𝒐𝒇 𝒂𝒍𝒍 𝒃𝒖𝒊𝒍𝒅𝒊𝒏𝒈𝒔 𝒊𝒏 𝒈𝒓𝒊𝒅𝒔𝒒𝒖𝒂𝒓𝒆
) 

Number of buildings 

deemed to not be 

affected by debris 

% of total dataset 

unaffected by 

debris 

No buildings removed from dataset 4570 100% 

50% of total grid building area 3982 87.1% 

35% of total grid building area 3792 83.0% 

20% of total grid building area 3130 68.5% 

Table 2: proportions of data designated as debris-affected under various collapse area thresholds. 

 

 
Figure 2: Histograms of observed inundation depth for engineered buildings for each DS. 

Distributions are shown for all engineered buildings (red) and for buildings deemed not to be affected 

by debris (blue, based on a 500m grid and 20% collapse area threshold). 



Debris Removal Results 

Figure 3 compares fragility functions formed for all engineered buildings and for those designated as 

unaffected by debris, for collapse area thresholds of 50%, 35% and 20%. Deviation from the fragility 

functions formed for all engineered buildings increases with lower threshold values (i.e. the greatest 

difference is seen for functions formed on data for the 20% collapse area threshold). The fragility functions 

for all engineered buildings and for the 20% area threshold are therefore also shown in link function (probit) 

space in Figure 4, and the model parameters for the inundation depth fragility functions are given in Table 3. 

  
Figure 3: Fragility functions for engineered buildings with/without data removed (based on collapse 

area thresholds of 20%, 35% and 50%). 

 

 
Figure 4: Link functions for observed inundation depth (top) and simulated force (bottom) for 

fragility functions derived for all engineered buildings (solid line, with 95% bootstrap confidence 

intervals) and buildings not affected by debris (for the 20% collapse area threshold). 
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No Debris removal 50% threshold 35% threshold 20% threshold 

β0 

0|1.(Intercept) 2.47 2.49 2.49 2.44 

1|2.(Intercept) 1.32 1.29 1.28 1.20 

2|3.(Intercept) 0.29 0.26 0.24 0.11 

3|4.(Intercept) -0.80 -1.20 -1.21 -1.41 

4|5.(Intercept) -0.95 -1.23 -1.25 -1.45 

β1 

0|1 . ln|hobs| 0.09 0.09 0.08 0.08 

1|2 . ln|hobs| 0.10 0.10 0.10 0.09 

2|3 . ln|hobs| 0.57 0.47 0.45 0.46 

3|4 . ln|hobs| 0.95 1.30 1.28 1.38 

4|5 . ln|hobs| 0.66 0.87 0.85 1.03 
Table 3: Changes in model parameters for observed inundation depth (model (1)). Green colour scale 

indicates decreasing values, red colour scale indicates increasing values. 

 

The above figures show the trend that where buildings affected by debris are removed from the dataset, for 

higher damage states (DS4 and DS5*) the probability of damage exceedance is reduced for lower TIM 

values, but increased for higher TIM values. As more buildings are removed from the dataset (i.e. as the 

collapse area threshold decreases) the curve becomes steeper, accentuating the effect of reduced damage 

exceedance probabilities at lower TIM values but higher probabilities at higher TIM values (Figure 3). The 

opposite is true for lower damage states. 

Intuitively, lower damage exceedance probabilities are expected in the absence of debris-related damage (i.e. 

a given flow depth may be deemed as more likely to cause damage if debris is also present in the flow). 

However, higher damage exceedance probabilities at higher TIM values are counterintuitive, and so the 

reason for this must be examined further. 

 

Significance of Debris Parameter 

A possible explanation for the removal of debris-damaged buildings from the dataset leading to increased 

damage exceedance probabilities at higher TIM values may be that this is simply due to the steepening of the 

curve (reduction in uncertainty or spread of the data, represented by the slope term, β1) as a result of their 

being less data available (Table 2). 

The significance of including debris data in the model can be investigated by forming a more complex model 

which includes a binary debris indicator variable, debrisj, indicating whether or not the building has been 

affected by debris (3) (i.e. debrisj = 1 for all buildings within grid squares which have a ratio of washed away 

footprint area to total area above the threshold percentage). The parameter β2,i in equation (3) adjusts the 

intercept of the model and equation (4) includes a fourth parameter β2,i  which adjusts the slope of the model 

(an interaction term). In this way a single model can be formed which includes all engineered buildings and 

the significance of each parameter can be determined by their p-values (Table 4). A likelihood ratio test is 

then carried out to determine whether there is a significant increase in model accuracy with the addition of 

the debris terms (Table 5). 

𝑝𝑟𝑜𝑏𝑖𝑡 (𝑃(𝑑𝑠 ≥ 𝐷𝑆𝑖|𝑇𝐼𝑀 = 𝑥𝑗 )) = 𝛽
0,𝑖

+ 𝛽
1,𝑖

𝑥𝑗,𝑘 + 𝛽
2,i

𝑑𝑒𝑏𝑟𝑖𝑠𝑗 
(3) 

𝑝𝑟𝑜𝑏𝑖𝑡 (𝑃(𝑑𝑠 ≥ 𝐷𝑆𝑖|𝑇𝐼𝑀 = 𝑥𝑗)) = 𝛽
0,𝑖

+ 𝛽
1,𝑖

𝑥𝑗,𝑘 + 𝛽
2,i

𝑑𝑒𝑏𝑟𝑖𝑠𝑗 + 𝛽
3,i

𝑥𝑗,𝑘𝑑𝑒𝑏𝑟𝑖𝑠𝑗 (4) 

 

The p-values in Table 4 show that all debris parameters are significant and that null hypothesis (that debris 

has no influence on damage state) can be rejected with the exception of the debris and debris interaction 

terms for DS1 (β2,DS1 and β3,DS1). The LRT results in Table 5 give p-values << 0.001 showing that the 

reduction in the residual sum of squares for the more complex model is statistically significant, so inclusion 

of debris improves the performance of fragility functions.  



 

Table 4: Parameters of model (4). Significance codes are: *** = p<0.001, ** = p<0.01, * = p<0.05. 

 

Model Number no.par AIC logLik LR.stat df Pr(>Chisq) 

(1) 10 11177.14 -5578    

(3) 15 10546.54 -5258 640.5995 5 <2.2e-16 *** 

(4) 20 10399.99 -5180 156.5459 5 <2.2e-16 *** 

Table 5: Likelihood ratio test results comparing models of increasing complexity based on observed 

inundation depth. 

 

SUMMARY AND CONCLUSION 

This paper has presented a preliminary methodology for quantifying debris-related effects on fragility 

functions. Detailed, disaggregated building-by-building damage data from the 2011 Great East Japan 

Earthquake (GEJE) has been used to develop tsunami fragility curves for engineered buildings in Japan for 

observed inundation depth and simulated force, considering the presence of debris in the flow. A 500m grid 

is applied to three case-study locations and buildings of each grid are deemed to have been affected by debris 

if the ratio of “washed away” building area to total building area within that grid exceeds a threshold 

proportion. Exploratory analysis was conducted of the total dataset of all buildings of engineered 

construction material (RC or steel) and of the debris-affected datasets. Fragility functions formed for all 

engineered buildings, and those deemed not to be affected by debris were compared, so that the effect of 

removing debris-damaged buildings from the regression dataset could be seen. More complex regression 

models were then formed incorporating a debris indicator variable (denoted 1 for all buildings considered to 

be affected by debris, and 0 for all other buildings) and an interaction term, so that the statistical significance 

of the debris parameters for each damage state could be examined. Finally, the models with and without 

debris parameters were compared using likelihood ratio tests so as to determine whether the inclusion of 

debris indicators in the model gave a significant improvement in the model fit. 

  

 
  

Estimate Std. Error p Significance 

β0 

0|1.(Intercept) 2.44 0.08 1.14E-189 *** 
1|2.(Intercept) 1.20 0.03 5.01E-294 *** 

2|3.(Intercept) 0.11 0.03 2.89E-05 *** 

3|4.(Intercept) -1.41 0.05 1.31E-190 *** 

4|5.(Intercept) -1.45 0.05 2.93E-163 *** 

β1 

0|1 . ln|hobs j| 0.08 0.01 2.69E-31 *** 

1|2 . ln|hobs j| 0.09 0.01 3.38E-52 *** 

2|3 . ln|hobs j| 0.46 0.02 1.62E-124 *** 

3|4 . ln|hobs j| 1.38 0.04 3.71E-296 *** 

4|5 . ln|hobs j| 1.03 0.04 1.72E-119 *** 

β2 

0|1 . debrisj 0.13 0.21 5.36E-01  
1|2 . debrisj 1.06 0.15 2.83E-12 *** 

2|3 . debrisj 1.67 0.10 1.57E-64 *** 

3|4 . debrisj 1.58 0.12 2.90E-38 *** 

4|5 . debrisj 0.89 0.11 2.37E-15 *** 

β3 

0|1 . ln|hobs j|. debrisj 0.04 0.02 1.62E-02 * 
1|2 . ln|hobs j|. debrisj 0.91 0.23 6.58E-05 *** 

2|3 . ln|hobs j|. debrisj -0.24 0.04 1.74E-08 *** 

3|4 . ln|hobs j|. debrisj -0.61 0.08 1.44E-15 *** 

4|5 . ln|hobs j|. debrisj -0.46 0.07 6.89E-11 *** 



The main results from this preliminary work are as follows: 

 Buildings thought to be affected by debris mostly experienced higher TIM values and higher damage 

states (debris designation occurs in the vicinity of other ‘washed away’ buildings, which as more 

likely to occur in locations of high TIM values). 

 The removal of buildings thought to be affected by debris resulted in changes to both the slope and 

intercept of the fragility functions. This indicates that the inclusion of debris-damaged buildings in 

the dataset (as is the case for most existing empirical fragility functions) does have an effect on 

fragility functions that may not be captured by purely flow regime-related TIMs. 

 The difference between the intercept and slope (in link space) for fluid-only and debris-influenced 

fragility functions can be quantified by inclusion of debris-indicator terms in the fragility functions. 

 The influence of debris model parameters on determining building damage was shown to be 

significant for all but the lowest damage state (“minor damage”). 

 More complex fragility functions which incorporate debris model parameters were shown to have a 

statistically significant better fit to the observed damage data than models which omitted debris 

information. This suggests that inclusion of debris information in fragility functions improves the 

accuracy of the model. 

 

Note that the method of identifying debris-damaged buildings in a dataset impact has not been the focus of 

this paper. The use of a grid, the grid size (500m) and the collapse area thresholds (50%, 35% and 20%) have 

all been subjective, and selected in order to allow the demonstration of the proposed methodology for 

quantifying debris effects on fragility function derivation. The optimal method of identifying and quantifying 

debris impact is the subject of further study, and along with the preliminary findings of this paper, will 

contribute to defining how fragility curves can be adjusted to account for increased damage probabilities in 

locations of increased likelihood of debris. 
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