
PHYSICAL REVIEW E 99, 012418 (2019)

Astrocyte-induced positive integrated information in neuron-astrocyte ensembles
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Integrated information is a quantitative measure from information theory of how tightly all parts of a system
are interconnected in terms of information exchange. In this study we show that astrocytes, playing an important
role in regulation of information transmission between neurons, may contribute to a generation of positive
integrated information in neuronal ensembles. Analytically and numerically we show that the presence of
astrocytic regulation of neurotransmission may be essential for this information attribute in neuroastrocytic
ensembles. Moreover, the proposed “spiking-bursting” mechanism of generating positive integrated information
is shown to be generic and not limited to neuron-astrocyte networks and is given a complete analytic description.
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I. INTRODUCTION

The integrated information (II) concept introduced in
Ref. [1] marked a milestone in the ongoing effort to describe
activities of neural ensembles and brain by means of informa-
tion theory. II was proposed as a quantitative measure of how
tightly all parts of a system are interconnected in terms of in-
formation exchange (for example, a combination of two non-
interacting subsystems implies zero II). The ambitious aim of
the II concept was to quantify consciousness [2]—in partic-
ular, for medical applications to detecting consciousness in
a completely immobilized patient by electroencephalographic
data. Several mathematical definitions of II [3–6] have been
proposed since the original work, all in line with the initial
idea. The perturbational complexity index, linked to II as its
proxy, has reliably discriminated the level of consciousness in
patients during wakefulness, sleep, anesthesia, and even in pa-
tients who has emerged from coma with minimal level of con-
sciousness [7]. Although the relation of II to consciousness
has been debated [8–10], II itself is by now widely adopted
as a quantitative measure for complex dynamics [11–13].
Accordingly, the understanding of particular mechanisms pro-
ducing positive II in neural ensembles is of topical interest.

The experiments have shown that astrocytes play an im-
portant role by regulating cellular functions and information
transmission in the nervous system [14,15]. It was proposed
that astrocyte wrapping a synapse implements a feedback
control circuit which maximizes information transmission
through the synapse by regulating neurotransmitter release
[16]. The involvement of astrocytes in neuron-astrocyte net-
work dynamics was quantified by estimating functional con-
nectivity between neurons and astrocytes from time-lapse
Ca2+ imaging data [17]. In contrast with neuronal cells the
astrocytes do not generate electrical excitations (action poten-
tials). However, their intracellular dynamics have shown sim-
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ilar excitable properties for changes of calcium concentration
[18]. These signals can remarkably affect neuronal excitability
and the efficiency of synaptic transmission between neurons
by Ca2+-dependent release of neuroactive chemicals (e.g.,
glutamate, ATP, D-serine and GABA) [19]. Networks of astro-
cytes accompanying neuronal cells generate collective activity
patterns that can regulate neuronal signaling by facilitating or
by suppressing synaptic transmission [14,15,20].

In this study we show that astrocytes may conduce to
positive II in neuronal ensembles. We calculate II in a small
neuro-astrocytic network with random topology by numerical
simulation and find that positive II is conditioned by cou-
pling of neurons to astrocytes and increases with spontaneous
neuronal spiking activity. We explain this behavior using
simplified spiking-bursting dynamics, which we implement
both in the neuroastrocytic network model with all-to-all con-
nectivity between neurons, showing astrocyte-induced coor-
dinated bursting, and as well in a specially defined stochastic
process allowing analytical calculation of II. The analytical
and simulation results for the all-to-all network are in good
agreement. That said, nontrivial dynamics of the random
version of the network, although not being directly compatible
with our analytical treatment, turns out to be even more
favorable for positive II than the spiking-bursting dynamics
of the all-to-all network. We speculate that the presence of
astrocytic regulation of neurotransmission may be essential
for generating positive II in larger neuroastrocytic ensembles.

II. METHODS AND MODEL

Neural network under study consists of 6 synaptically
coupled Hodgkin-Huxley neurons [21]. We use 2 variants
of neural network architecture: (i) network of 1 inhibitory
and 5 excitatory neurons with coupling topology obtained
by randomly picking 1/3 of the total number of connections
out of the full directed graph, excluding self-connections
[the particular instance of random topology for which the
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FIG. 1. Schemes of neuroastrocytic networks under study: (a)
instance of random neuronal network topology; (b) all-to-all neu-
ronal network. Inhibitory neuron is shown with an enlarged symbol
and highlighted in red. Connections without arrows are bidirectional.
Each astrocyte is coupled to one corresponding neuron and acts by
modulating outgoing connections of the neuron.

presented data have been obtained is shown in Fig. 1(a)]; (ii)
all-to-all network of 6 excitatory neurons [Fig. 1(b)].

The membrane potential of a single neuron evolves accord-
ing to the following ionic current balance equation:

C
dV (i)

dt
= I

(i)
channel + I (i)

app +
∑

j

I (ij )
syn + I

(i)
P , (1)

where the superscript (i = 1, . . . , 6) corresponds to a neu-
ronal index and (j ) corresponds to an index of input connec-
tion. Ionic currents (i.e., sodium, potassium, and leak currents)
are expressed as follows:

Ichannel = −gNam
3h(V − ENa )

− gKn4(V − EK ) − gleak(V − Eleak),

dx

dt
= αx (1 − x) − βxx, x = m, n, h. (2)

Nonlinear functions αx and βx for gating variables are taken as
in original Hodgkin-Huxley model with membrane potential
V shifted by 65 mV. Throughout this paper we use the follow-
ing parameter values: ENa = 55 mV, EK = −77 mV, Eleak =
−54.4 mV, gNa = 120 mS/cm2, gK = 36 mS/cm2, gleak =
0.3 mS/cm2, C = 1 μF/cm2. The applied currents I (i)

app are
fixed at constant value controlling the depolarization level and
dynamical regime that can be either excitable, oscillatory or
bistable [22]. We use I (i)

app = −5.0 μA/cm2 which corresponds
to the excitable regime. The synaptic current Isyn simulating
interactions between the neurons obeys the equation

I (ij )
syn = gsyneff(V (j ) − Esyn)

1 + exp
(−(V (i)−θsyn )

ksyn

) , (3)

where Esyn = −90 mV for the inhibitory synapse and Esyn =
0 mV for the excitatory. Neural network composition of one
inhibitory and five excitatory neurons is in line with the exper-
imental data showing that the fraction of inhibitory neurons is
about 20% [23]. Variable gsyneff describes the synaptic weight
in mS/cm2 modulated by an astrocyte [as defined by Eq. (8)
below], parameters θsyn = 0 mV and ksyn = 0.2 mV describe
the midpoint of the synaptic activation and the slope of its
threshold, respectively.

Each neuron is stimulated by a Poisson pulse train
mimicking external spiking inputs I

(i)
P with a certain average

rate λ. Each Poisson pulse has constant duration 10 ms and
constant amplitude, which is sampled independently for

each pulse from uniform random distribution on interval
[−1.8, 1.8]. Sequences of Poisson pulses applied to different
neurons are independent.

Note that the time unit in the neuronal model Eqs. (1) and
(2) is 1 ms. Due to a slower timescale, in the astrocytic model
(see below) empirical constants are indicated using seconds
as time units. When integrating the joint system of differential
equations, the astrocytic model time is rescaled so that the
units in both models match up.

We consider astrocytic network in the form of a two-
dimensional square lattice with only nearest-neighbor con-
nections [24]. Such topology for the Ca2+- and IP3-diffusion
model is justified by experimental findings stating that as-
trocytes occupy “nonoverlapping” territories [25]. The neu-
roastrocyte network of real brain has a 3D structure with
one astrocyte interacting with several neurons and vise versa.
However, in our modeling we use a simplified approach.
The latter reflects the fact that, throughout area CA1 of the
hippocampus, pyramidal (excitatory) cells are arranged in a
regular layer and surrounded by a relatively uniform scatter of
astrocytes [26]. According to the experimental data [26,27],
modeled astrocytes are distributed evenly across the neural
network, with a total cell number equaled to the number of
neurons (due to small size of networks, astrocyte network
is modeled as a 2D lattice in our study). Astrocytes and
neurons communicate via a special mechanism modulated by
neurotransmitters from both sides. The model is designed so
that when the calcium level inside an astrocyte exceeds a
threshold, the astrocyte releases neuromodulator (e.g., glu-
tamate) that may affect the release probability (and thus a
synaptic strength) at neighboring connections in a tissue vol-
ume [28]. Single astrocyte can regulate the synaptic strength
of several neighboring synapses which belong to one neuron
or several different neurons, but since we do not take into
account the complex morphological structure of the astrocyte,
we assume for simplicity that one astrocyte interacts with one
neuron.

In a number of previous studies a biophysical mechanism
underlying calcium dynamics of astrocytes has been exten-
sively investigated [29,30]. Calcium is released from internal
stores, mostly from the endoplasmic reticulum (ER). This
process is regulated by inositol 1,4,5-trisphosphate (IP3) that
activates IP3 channels in the ER membrane resulting in a
Ca2+ influx from ER. IP3 acting as a second messenger is
produced when neurotransmitter (e.g., glutamate) molecules
are bound by metabotropic receptors of the astrocyte. In turn
IP3 can be regenerated depending on the level of calcium by
the phospholipase C-δ (PLC-δ). State variables of each cell
include IP3 concentration IP3, Ca2+ concentration Ca, and the
fraction of activated IP3 receptors h. They evolve according to
the following equations [29,30]:

dCa(m,n)

dt
=J

(m,n)
ER −J (m,n)

pump +J
(m,n)
leak +J

(m,n)
in −J

(m,n)
out +J

(m,n)
Cadiff,

dIP(m,n)
3

dt
= IP∗

3 − IP(m,n)
3

τIP3
+ J

(m,n)
PLC + J

(m,n)
IP3diff, (4)

dh(m,n)

dt
= a2

[
d2

IP(m,n)
3 + d1

IP(m,n)
3 + d3

(1 − hm,n) − Cam,nhm,n

]
,
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with m = 1, . . . , 3, n = 1, 2. Currents JER is Ca2+ current
from the ER to the cytoplasm, Jpump is the ATP pumping
current, Jleak is the leak current, Jin and Jout describe cal-
cium exchanges with extracellular space, JPLC is the calcium-
dependent PLC-δ current and are expressed as follows:

JER = c1v1Ca3h3IP3
3

(c0/c1 − (1 + 1/c1)Ca)

[(IP3 + d1)(IP3 + d5)]3
,

Jpump = v3Ca2

k2
3 + Ca2 ,

Jleak = c1v2[c0/c1 − (1 + 1/c1)Ca],

Jin = v5 + v6IP2
3

k2
2 + IP2

3

,

Jout = k1Ca,

JPLC = v4[Ca + (1 − α)k4]

Ca + k4
. (5)

Biophysical meaning of all parameters in Eqs. (4) and (5)
and their values determined experimentally can be found
in Refs. [29,30]. For our purpose we fix c0 = 2.0μM,
c1 = 0.185, v1 = 6 s−1, v2 = 0.11 s−1, v3 = 2.2μMs−1,
v5 = 0.025 μMs−1, v6 = 0.2 μMs−1, k1 = 0.5 s−1, k2 =
1.0 μM, k3 = 0.1 μM, a2 = 0.14μM−1s−1, d1 = 0.13 μM,
d2 = 1.049 μM, d3 = 0.9434 μM, d5 = 0.082 μM, α = 0.8,
τIP3 = 7.143 s, IP∗

3 = 0.16 μM, k4 = 1.1 μM [31]. Parameter
v4 describes the rate of IP3 regeneration and controls the
dynamical regime of the model Eqs. (4) and (5) that can be ex-
citable at v4 = 0.3 μMs−1, or oscillatory at v4 = 0.5 μMs−1

[30]. Here we limit ourselves to the oscillatory case.
Currents JCadiff and JIP3diff describe the diffusion of Ca2+

ions and IP3 molecules via gap junctions between astrocytes
in the network and can be expressed as follows [24]:

J
(m,n)
Cadiff = dCa(�Ca)(m,n),

J
(m,n)
IP3diff = dIP3(�IP3)(m,n), (6)

where parameters dCa = 0.001 s−1 and dIP3 = 0.12s−1 de-
scribe the Ca2+ and IP3 diffusion rates, respectively.
(�Ca)(m,n) and (�IP3)(m,n) are discrete Laplace operators:

(�Ca)(m,n) = (Ca(m+1,n) + Ca(m−1,n)

+ Ca(m,n+1) + Ca(m,n−1) − 4Ca(m,n) ). (7)

Astrocytes can modify release probability of nearby
synapses in tissue volume [14], likely by releasing signaling
molecules (“gliotransmitters”) in a Ca2+-dependent manner
[15]. We proposed that each astrocyte from the network inter-
acts to the one neuron from the neural network by modulation
of the synaptic weight. For the sake of simplicity, the effect of
astrocyte calcium concentration Ca upon synaptic weight of
the affected synapses gsyneff [which appears in Eq. (3)] has
been described with the simple formalism based on earlier
suggestions [32–34]:

gsyneff =
{
gsyn(1 + gastroCa(m,n) ), if Ca(m,n) > 0.2,

gsyn, otherwise,
(8)

where gsyn = 0.04 mS/cm2 is baseline synaptic weight, pa-
rameter gastro > 0 controls the strength of synaptic weight

modulation, and Ca(m,n) is the intracellular calcium concen-
tration in the astrocyte Eq. (4).

In general, phenomena of astrocytic neuromodulation are
highly versatile and depend upon the actual gliotransmitter
and its target [15], which in particular may lead to the in-
hibition of synaptic transmission instead of its potentiation.
In this sense, the model Eq. (8) is not universal, but we
anticipate its at least qualitative applicability to cases where
synaptic strength potentiation by astrocytes has been con-
firmed experimentally. These include the impact of astrocytic
glutamate upon presynaptic terminals leading to potentiating
excitatory transmission in the hippocampal dentate gyrus [35],
and both excitatory [28,36,37] and inhibitory [38,39] synaptic
transmission in the CA1 area of hippocampus. In addition,
glutamate action on postsynamtic terminals was also shown
to improve neuronal synchrony [40].

The time series of neuron membrane potentials V (i)(t )
are converted into binary-valued discrete-time processes ac-
cording to Ref. [41] as follows. Time is split into windows
of duration T which become units of the discrete time. If
inequality V (i)(t ) > Vthr = −40.0 mV is satisfied for at least
some t within a particular time window (essentially, if there
was a spike in this time window), than the corresponding
binary value (bit) is assigned 1, and 0 otherwise. The size of
time window is chosen so that spontaneous spiking activity
produces time-uncorrelated spatial patterns, but a burst shows
as a train of successive 1’s in the corresponding bit.

We use the definition of II according to Ref. [3] as follows.
Consider a stationary stochastic process ξ (t ) (binary vector
process), whose instantaneous state is described by N = 6
bits. The full set of N bits (“system”) can be split into two
nonoverlapping nonempty subsets of bits (“subsystems”) A

and B, such splitting further referred to as bipartition AB.
Denote by x = ξ (t ) and y = ξ (t + τ ) two states of the pro-
cess separated by a specified time interval τ �= 0. States of the
subsystems are denoted as xA, xB , yA, yB .

Mutual information between x and y is defined as

Ixy = Hx + Hy − Hxy, (9)

where Hx = −∑
x px log2 px is entropy (base 2 logarithm

gives result in bits), Hy = Hx due to stationarity which is
assumed. Next, a bipartition AB is considered, and “effective
information” as a function of the particular bipartition is
defined as

Ieff(AB ) = Ixy − IxA,yA
− IxB,yB

. (10)

II is then defined as effective information calculated for
a specific bipartition ABMIB (“minimum information bipar-
tition”) which minimizes specifically normalized effective
information:

II = Ieff(ABMIB), (11a)

ABMIB = argminAB

{
Ieff(AB )

min[H (xA),H (xB )]

}
. (11b)

Note that this definition prohibits positive II, when Ieff

turns out to be zero or negative for at least one bipartition AB.
In essence, entropy Hx generalizes the idea of measuring

an effective number of independent bits in x. For example, if
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FIG. 2. Dependence of II upon neuroastrocytic interaction gastro and upon average stimulation rate λ: (a) in random network [instance
shown in Fig. 1(a)]; (b) in all-to-all network [Fig. 1(b)]. Blue solid lines with dot marks—direct calculation by definition from simulation
data; red dashed lines—error estimation; green lines with cross marks—analytical calculation for spiking-bursting process with parameters
estimated from simulation data.

all N bits in x are independent and are “fair coins” (have equal
probability 1/2 of getting 0 or 1), then Hx = N . If x consists
of m independent groups of bits which are fully synchronized
within each group (or all bits in x are uniquely expressed in
terms of m < N independent fair coins), then Hx = m.

In the same conceptual sense, mutual information Ixy

Eq. (9) measures the degree of dependence (effective number
of dependent bits) between two random events x and y. In
case of causality, when dependence is unidirectional, one
can speak of degree of predictability instead. For example,
if y exactly repeats x (full predictability) with all bits in
x being independent fair coins, then in Eq. (9) Hx = Hy =
Hxy = N , which gives Ixy = N . If instead y and x are totally
independent (absence of predictability), then Hx = Hy = N ,
Hxy = 2N , Ixy = 0. In an intermediate situation, when only
m bits in y exactly repeat the corresponding bits in x (like
perfect transmission lines), with other N − m bits in y (act-
ing as randomly failing transmission lines) and all bits in
x being independent fair coins, then again Hx = Hy = N ,
but now Hxy = 2N − m, because m out of total 2N bits in
the combination xy are expressed in terms of others, which
leaves 2N − m independent bits. According to Eq. (9), this
yields Ixy = m. The definition of mutual information Eq. (9)
generalizes this idea, retaining its applicability in case of
arbitrary dependence between two random events, even when
this dependence can not be attributed to specific bits.

In turn, effective information Eq. (10) measures how much
the system is more predictable as a whole than when trying
to predict the subsystems separately. Trivial cases when Ieff

is zero are (i) independent subsystems (then system as a
whole is equally predictable as a combination of the parts)
and (ii) complete absence of predictability (when all mutual
informations are zero). When the system is fully synchronized
(all bits are equal in any instance of time), for any bipartition
we get Ixy = IxA,yA

= IxB,yB
, which implies Ieff < 0 according

to Eq. (10). From Eqs. (11a) and (11b) we conclude that II
is zero or negative in the mentioned cases. The idea behind
the choice of “minimal information bipartition” ABMIB in
Eq. (11), according to Ref. [3], is to identify the worst-case
partition in terms of information interconnection, but with
preference to nontrivial partitions with roughly similarly sized
subsystems, which is achieved by normalization in Eq. (11b).

For more detail on the rationale behind the used definition of
II we refer the reader to the original paper [3], and for the
general concept of II—to the papers cited in the Introduction.

III. RESULTS

We calculated II directly, according to the definition above,
using empirical probabilities from binarized time series of
simulated neuroastrocytic networks of both mentioned ar-
chitectures [Figs. 1(a) and 1(b)]. For each architecture we
performed two series of simulation runs: (i) with constant
Poissonian stimulation rate λ (equal 15.0 Hz for the random
network and 30.0 Hz for the all-to-all network) and neuroas-
trocytic interaction gastro varied, (ii) with constant gastro = 6.0
and λ varied, other model parameters as indicated above. Time
window T used in binarization and time delay τ used in
computation of II are τ = T = 0.1 s for the random network,
and τ = T = 0.2 s for the all-to-all network. The length of
time series to calculate each point is 5×105 s, taken after
2×103 s transient time. The estimate of II shows convergence
as the length of time series is increased. Error due to finite data
(shown as half-height of errorbar in the graphs) is estimated
as maximal absolute difference between the result for the
whole observation time and for each its half taken separately.
Obtained dependencies of II upon gastro and λ are shown in
Fig. 2.

For the random topology [Fig. 2(a)] we observe that (i)
positive II is greatly facilitated by nonzero gastro (i.e., by the
effect of astrocytes), although small positive quantities, still
exceeding the error estimate, are observed even at gastro =
0; (ii) II generally increases with the average stimulation
frequency λ which determines the spontaneous activity in the
network [42].

The visible impact of astrocytes on the network dynamics
consists in the stimulation of space-time patterns of neuronal
activity due to astrocyte-controlled increase in the neuronal
synaptic connectivity on astrocyte timescale. An instance of
such pattern of activation for the random network is shown as
a raster plot in Fig. 3(a). The pattern is rather complex, and we
only assume that II must be determined by properties of this
pattern, which in turn is controlled by astrocytic interaction
(as well as by network topology and by external inputs to the
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FIG. 3. Raster plots of neuronal dynamics at gastro = 6, λ = 20: (a) in random network [instance shown in Fig. 1(a)]; (b) in all-to-all
network [Fig. 1(b)]. White and black correspond to 0 and 1 in binarized time series.

neurons represented by Poissonian processes in the model).
We currently do not identify specific properties of activation
patterns linked to the behavior of II in the random network;
however, we do it (see below) for the all-to-all network of
identical (all excitatory) neurons, due to its simpler “spiking-
bursting” type of spatiotemporal dynamics consisting of coor-
dinated system-wide bursts overlaid upon background spiking
activity, see raster plot in Fig. 3(b). As seen in Fig. 2(b),
this network retains the generally increasing dependence of
II upon gastro and λ, with the most notable difference being
that II is negative until λ exceeds a certain threshold.

To confirm the capacity of II as a quantitative indicator
for properties of complex dynamics in application to the
system under study, we additionally consider graphs of mutual
information Ixy in the same settings, see Fig. 4 [note a
greater range over λ in Fig. 4(b) as compared to Fig. 2(b)].
Comparing Figs. 2 to 4 we observe a qualitative difference in
dependencies upon λ in case of all-to-all network [Figs. 2(b)
and 4(b)]: while mutual information decreases with the in-
crease of λ, II is found to grow, and transits from negative
to positive values before reaching its maximum. It means
that even while the overall predictability of the system is
waning, the system becomes more integrated in the sense
that the advantage in this predictability when the system is
taken as a whole over considering it by parts is found to
grow. This confirms the capability of II to capture features of

complex dynamics that are not seen when using only mutual
information.

Our analytical consideration is based upon mimicking
the spiking-bursting dynamics by a model stochastic process
which admits analytical calculation of effective information.
We define this process ξ (t ) as a superposition of a time-
correlated dichotomous component which turns system-wide
bursting on and off, and a time-uncorrelated component de-
scribing spontaneous activity which occurs in the absence of
a burst, in the following way.

At each instance of time the state of the dichotomous
component can be either “bursting” with probability pb, or
“spontaneous” (or “spiking”) with probability ps = 1 − pb.
While in the bursting mode, the instantaneous state of the
resulting process x = ξ (t ) is given by all ones: x = 11..1 (fur-
ther abbreviated as x = 1). In case of spiking, the state x is a
random variate described by a discrete probability distribution
sx , so that the resulting one-time state probabilities read

p(x �= 1) = pssx, (12a)

p(x = 1) = p1, p1 = pss1 + pb, (12b)

where s1 is the probability of spontaneous occurrence of
x = 1 in the absence of a burst (all neurons spontaneously
spiking within the same time discretization window).

0 105 15
0

0.2

0.1

(a) (b)

0.3

0.05

0.15

0.25

0 20105 15 25 0 105 15
0

0.2

0.1

0.3

0.05

0.15

0.25

2010 3015 25 35

FIG. 4. Dependence of mutual information Ixy upon neuroastrocytic interaction gastro and upon average stimulation rate λ: (a) in random
network (instance shown in Fig. 1(a)); (b) in all-to-all network [Fig. 1(b)]. Legend as in Fig. 2.
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FIG. 5. Family of plots of J (s1; pb, φ) at pb = 0.2 and φ varied
from 0.1 to 0.9 with step 0.1.

To describe two-time joint probabilities for x = ξ (t ) and
y = ξ (t + τ ), we consider a joint state xy which is a concate-
nation of bits in x and y. The spontaneous activity is assumed
to be uncorrelated in time: sxy = sxsy . The time correlations
of the dichotomous component are described by a 2×2 ma-
trix of probabilities pss , psb, pbs , pbb, which denote joint
probabilities to observe the respective spiking and/or bursting
states in x and y. The probabilities obey psb = pbs (due to sta-
tionarity), pb = pbb + psb, ps = pss + psb, thereby allowing
to express all one- and two-time probabilities describing the
dichotomous component in terms of two quantities, for which
we chose pb and correlation coefficient φ defined by

psb = pspb(1 − φ). (13)

The two-time joint probabilities for the resulting process are
then expressed as

p(x �=1, y �=1)=psssxsy, (14a)

p(x �=1, y =1)=πsx, p(x =1, y �=1)=πsy, (14b)

p(x =1, y =1)=p11, (14c)

π =psss1+psb, p11 =psss
2
1 + 2psbs1 + pbb. (14d)

Note that the above notations can be applied to any subsys-
tem instead of the whole system (with the same dichotomous
component, as it is system-wide anyway).

For this spiking-bursting process, the expression for mutual
information of x and y Eq. (9) after substitution of probabil-
ities Eqs. (12) and (14) and algebraic simplifications reduces
to

Ixy = 2(1 − s1){ps} + 2{p1} − (1 − s1)2{pss}
−2(1 − s1){π} − {p11} = J (s1; pb, φ), (15)

where we denote {q} = −q log2 q for compactness. With
expressions for p1, p11, π from Eqs. (12b) and (14d) taken
into account, Ixy can be viewed as a function of s1, denoted in
Eq. (15) as J (·), with two parameters pb and φ characterizing
the dichotomous (bursting) component.

A typical family of plots of J (s1; pb, φ) versus s1 at pb =
0.2 and φ varied from 0.1 to 0.9 is shown in Fig. 5. Important
particular cases are

J (s1 = 0) = 2{ps} + 2{pb} − {pss} − 2{psb} − {pbb} > 0,

which is the information of the dichotomous component
alone; J (s1 = 1) = 0 (degenarate case—“always on” deter-
ministic state); J (s1) ≡ 0 for any s1 when pb = 0 or φ = 0
(absent or time-uncorrelated bursting). Otherwise, J (s1) is a
positive decreasing function on s1 ∈ [0, 1).

Derivation of Eq. (15) does not impose any assumptions
on the specific type of the spiking probability distribution sx .
In particular, spikes can be correlated across the system (but
not in time). Note that Eq. (15) is applicable as well to any
subsystem A (B), with s1 replaced by sA (sB) which denotes
the probability of a subsystem-wide simultaneous (within the
same time discretization window) spike xA = 1 (xB = 1) in
the absence of a burst, and with same parameters of the
dichotomous component (here pb, φ). Effective information
Eq. (10) is then written as

Ieff(AB ) = J (s1) − J (sA) − J (sB ). (16)

Since as mentioned above pb = 0 or φ = 0 implies
J (s1) = 0 for any s1, this leads to Ieff = 0 for any bipartition,
and, accordingly, to zero II, which agrees with our simulation
results [left panels in Figs. 2(a) and 2(b)], where this case
corresponds to the absence of coordinated activity induced by
astrocytes (gastro = 0).

Consider the case of independent spiking with

s1 =
N∏

i=1

Pi, (17)

where Pi is the spontaneous spiking probability for an indi-
vidual bit (neuron). Then sA = ∏

i∈A Pi , sB = ∏
i∈B Pi , s1 =

sAsB . Denoting sA = sν
1 , sB = s1−ν

1 , we rewrite Eq. (16) as

Ieff(s1; ν) = J (s1) − J
(
sν

1

) − J
(
s1−ν

1

)
, (18)

where ν is determined by the particular bipartition AB.
Figure 6 shows typical families of plots of Ieff(s1; ν = 0.5)

at pb = 0.2 and φ varied from 0.1 to 0.9 in Fig. 6(a) [with
increase of φ, maximum of Ieff(s1) grows], and at φ = 0.2
with pb varied from 0.02 to 0.2 in Fig. 6(b) [with increase of
pb, root and maximum of Ieff(s1) shift to the right].

Hereinafter assuming φ �= 0 and pb �= 0, we notice the fol-
lowing: first, Ieff(s1 = 0) = −J (0) < 0, which implies II <

0; second, Ieff(s1 = 1) = 0; third, at φ > 0 function Ieff(s1)
has a root and a positive maximum in interval s1 ∈ (0, 1). It
implies that absent or insufficient spontaneous spiking activity
leads to negative II, while the increase in spiking turns II
positive. This is exactly observed in the all-to-all network
simulation results, where spiking is determined by λ, see
Fig. 2(b) (right panel). It can be additionally noticed in Fig. 6
that the root of Ieff(s1) (which is essentially the threshold in s1

for positive II) shows a stronger dependence upon the burst
probability pb than upon correlation coefficient of bursting
activity φ.

Furthermore, expanding the last term of Eq. (18) in powers
of ν yields

Ieff = −J
(
sν

1

) + ν · s1 log s1J
′(s1) + · · · (19)

Consider the limit of large system N → ∞ and a special
bipartition with subsystem A consisting of only one bit (neu-
ron). Assuming that individual spontaneous spike probabili-
ties of neurons Pi in (17) retain their order of magnitude (in

012418-6



ASTROCYTE-INDUCED POSITIVE INTEGRATED … PHYSICAL REVIEW E 99, 012418 (2019)

0 0.10.02 0.04 0.06 0.08

0

(a) (b)

0.1

−0.05

0.05

0.15

0 0.10.02 0.04 0.06 0.08

0

0.01

−0.005

0.005

FIG. 6. Families of plots of Ieff(s1; ν = 0.5): (a) at pb = 0.2 and φ varied from 0.1 to 0.9 with step 0.1; (b) at φ = 0.2 and pb varied from
0.02 to 0.2 with step 0.02.

particular, do not tend to 0 or 1), we get

s1 → +0, sν
1 = sA = O(1), ν → +0, (20)

and finally Ieff < 0 from Eq. (19), which essentially prohibits
positive II in the spiking-bursting model for large systems.

The mentioned properties of Ieff dependence upon param-
eters can also be deduced from purely qualitative consider-
ations in the sense of the reasoning in the end of Sec. II.
Absence of time-correlated bursting (pb = 0 or φ = 0), with
only spiking present (which is time-uncorrelated), implies
absence of predictability and thus zero II. Absence of sponta-
neous spiking [s1 = 0 in Eq. (18)] implies complete synchro-
nization (in terms of the binary process), and consequently
highest overall predictability (mutual information), but neg-
ative II. The presence of spontaneous activity decreases the
predictability of the system as a whole, as well as that of any
subsystem. According to Eq. (10), favorable for positive Ieff

(and thus for positive II) is the case when the predictability of
subsystems is hindered more than that of the whole system.
Hence the increasing dependence upon s1: since in a system
with independent spiking we have s1 = sAsB < min{sA, sB},
spontaneous activity has indeed a greater impact upon pre-
dictability for subsystems than for the whole system, thus
leading to an increasing dependence of Ieff upon s1. This may
eventually turn Ieff positive for all bipartitions, which implies
positive II.

To apply our analytical results to the networks under
study, we fitted the parameters of the spiking-bursting process

under the assumption of independent spiking Eq. (17) to the
empirical probabilities from each simulation time series. The
calculated values of s1, pb, φ in case of the all-to-all neuronal
network are plotted in Fig. 7 versus gastro and λ (results for
the random network not shown due to an inferior adequacy of
the spiking-bursting analytical model in this case, see below).
As expected, spontaneous activity (here measured by s1)
increases with the rate of Poissonian stimulation λ [Fig. 7(a),
right panel], and time-correlated component becomes more
pronounced (which is quantified by a saturated increase in pb

and φ) with the increase of astrocytic impact gastro [Fig. 7(b),
left panel].

In Figs. 2 and 4 we plot the (semi-analytical) result of
Eqs. (15) and (16) with the estimates from Fig. 7 substituted
for s1, pb, φ, and with bipartition AB set to the actual
minimum information bipartition found in the simulation.
For the all-to-all network [Figs. 2(b) and 4(b)] this result
is in good agreement with the direct calculation of Ixy and
II [failing only in the region λ < 20, see Fig. 4(b)], unlike
in case of random network [Figs. 2(a) and 4(a)], where the
spiking-bursting model significantly underestimates both Ixy

and II, in particular, giving negative values of II where they
are actually positive.

IV. DISCUSSION

We have demonstrated the generation of positive II in
neuroastrocytic ensembles as a result of interplay between
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FIG. 7. Parameters of the spiking-bursting model s1, pb, φ fitted to simulated time series in case of the all-to-all neuronal network.
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spontaneous (time-uncorrelated) spiking activity and
astrocyte-induced coordinated dynamics of neurons.
The analytic result for spiking-bursting stochastic model
qualitatively and quantitatively reproduces the behavior of II
in the all-to-all network with all excitatory neurons [Fig. 2(b)].
In particular, the existence of analytically predicted threshold
in spontaneous activity for positive II is observed.

Moreover, the spiking-bursting process introduced in this
paper may be viewed as a simplistic but generic mechanism
of generating positive II in arbitrary ensembles. Complete an-
alytic characterization of this mechanism is provided. In par-
ticular, it is shown that time correlated system-wide bursting
and time uncorrelated spiking are both necessary ingredients
for this mechanism to produce positive II. Due to the simple
and formal construction of the process, thus obtained positive
II must have no connection to consciousness in the underlying
system, which may be seen as a counterexample to the original
intent of II. That said, it was also shown that II of the spiking-
bursting process is expected to turn negative when system
size is increased. Aside from consciousness considerations,
it means at least that positive II in a large system requires a
less trivial type of spatiotemporal patterns than one provided
by the spiking-bursting model.

The increasing dependence of II upon neuroastrocytic in-
teraction gastro and upon the intensity of spiking activity deter-
mined by λ in a range of parameters is also observed in a more
realistic random network model containing both excitatory
and inhibitory synapses [Fig. 2(a)], for which our analysis is
not directly applicable though. Remarkably, the decrease of λ

in the random network, in contrast to the all-to-all network,

does not lead to negative II. In this sense the less trivial
dynamics of the random network appears to be even more
favorable for positive II than the spiking-bursting dynamics
of the all-to-all network. This may be attributed to more com-
plex astrocyte-induced space-time behavior, as compared to
coordinated bursting alone, although we have not established
specific connections of II with properties of activation patterns
in the random network. Nonetheless, based on this observation
we also speculate that the limitation on network size which
was predicted above for spiking-bursting dynamics may be
lifted, thus allowing astrocyte-induced positive II in large
neuroastrocytic networks. This is in line with the hypothesis
that the presence of astrocytic regulation of neurotransmission
may be crucial in producing complex collective dynamics in
brain. Note, however, that our conclusions are based upon
(and, thus, limited to) the assumption of the positive impact of
astrocytic calcium upon synaptic interactions Eq. (8), which is
not universal, but was found to hold in certain areas of brain
and for specific gliotransmitters [15].

The extension of our study to large systems is currently
constrained by computational complexity of direct calculation
of II which grows exponentially with system size. Methods
of entropy estimation by insufficient data [10,41] may prove
useful in this challenge, but will require specific validation for
this task.
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