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Abstract—This paper analyses the generalization behaviour of
a deep neural networks with a focus on their use in inverse
problems. In particular, by leveraging the robustness framework
by Xu and Mannor, we provide deep neural network based re-
gression generalization bounds that are also specialized to sparse
approximation problems. The proposed bounds show that the
sparse approximation performance of deep neural networks can
be potentially superior to that of classical sparse reconstruction
algorithms, with reconstruction errors limited only by the noise
level independently of the underlying data.

I. INTRODUCTION

A large number of phenomena arising in science and
engineering – including problems in medical imaging, remote
sensing, chemometrics, and more – can be approximated using
the linear observation model given by:

y = Ax + e (1)

where y ∈ Y ⊆ RNy corresponds to a vector of observations,
x ∈ X ⊆ RNx corresponds to a vector of underlying causes,
e ∈ RNy is a vector modelling noise or other perturbations,
and A ∈ RNy×Nx is a usually known linear operator mod-
elling the relationship between the observations and the causes.

A very common problem – known as inverse problem –
then involves inferring the vector x from the vector y given
knowledge of the linear operator A. However, for Ny < Nx,
this problem is severely ill-posed so – without resorting to
additional assumptions – a unique solution does not exist.

A number of approaches to solve inverse problems have
therefore been proposed over the past years leveraging the fact
that many phenomena in nature admit some form of structure
– such as sparsity, group sparsity, manifold structures, and
more – that is key to restrict the space of possible solutions.
In particular, the use of sparsity – exploiting the fact that
the vector to be inferred from observations admits a sparse
representation in some basis or frame – has led to a number
of methods to approximate the solution of a linear inverse
problem using greedy algorithms or convex optimization based
algorithms [1]. For example, under the assumption that the
desired vector contains at most k � Nx non-zero entries, the
well-known Basis Pursuit Denoise (BPDN) algorithm delivers
an estimate of the desired vector x from the observation vector
y given knowledge of the linear operator A as follows [1]:

x̂ = argmin
x
‖y −Ax‖22 s.t. ‖x‖1 ≤ k (2)

where ‖ · ‖2 and ‖ · ‖1 are the `2 and `1 norms of a vector.
Moreover, the BPDN estimate of the desired vector can also be
shown to approximate very well the true vector provided that
the linear operator A obeys various conditions [2]. Other state-
of-the-art approaches exploiting sparsity to solve this class of
linear inverse problems – such as iteratively reweighted least
squares and iterative soft-thresholding methods – are reported
in [3]. However, these various approaches often require the
linear operator to satisfy certain conditions to guarantee exact
inference (in the absence of noise) or stable inference (in the
presence of noise) of the desired vector from the observation
vector [1], failing drastically otherwise.

Another class of approaches to solve linear inverse problems
has also recently emerged in view of advances in deep learn-
ing. In particular, the use of deep learning approaches to solve
inverse problems involves two phases: (i) in the training phase,
a number of pairs of training vectors x and y corresponding to
one another are used to tune the set of parameters of a deep
neural network (DNN) architecture in order to implement a
mapping from y to x; 1 (ii) in the testing phase, a test vector y
is mapped onto the vector x via the network. Interestingly, this
procedure has been shown to perform exceedingly well in a
wide variety of inverse problems such as compressed sensing,
image denoising, image deblurring, image super-resolution,
and many more [4], [5]. However, a justification for such
outstanding performance is currently unknown, because recent
frameworks attempting to provide a rationale for the efficacy
of DNNs primarily focus on classification tasks rather than the
regression tasks arising in inverse problems [6].

This paper – which aims to fill-in this gap – is motivated
by two overarching questions:

• How can we quantify the performance of DNN ap-
proaches in solving inverse problems?

• How does the performance of DNN approaches compare
to the performance of other classical approaches for
solving inverse problems?

In particular, in our attempt to answer these questions, we
build upon the robustness framework introduced by Xu and
Mannor in [7]: (i) we then introduce new DNN based regres-

1Note that the operational principle associated with deep learning networks
is different from that of classical approaches. Classical approaches to solve
inverse problems attempt to directly invert the mapping from x to y. In
contrast, deep learning approaches attempt to learn a mapping from y to x.
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Fig. 1. A d-layer deep neural network.

sion generalization bounds; (ii) we show how these bounds can
be used to quantify the performance of DNNs in solving a par-
ticular inverse problem involving sparse approximation; and
(iii) we also show how the performance of a DNN compares
with the performance of other classical approaches, notably
BPDN, for solving such sparse approximation problems.

The remainder of the paper is organized as follows: We
start by introducing our problem set-up in Section II. We
then provide DNN generalization bounds applicable to general
regression problems in Section III. We also provide special-
izations of these generalization bounds applicable to typical
inverse problems in Section IV. This opens up the possibility
of comparing DNN based approaches to classical approaches
to solving inverse problems. Finally, concluding remarks are
drawn in Section V.

Due to space limitations, the proofs are appearing in an
upcoming preprint [8]

II. SETUP

We concentrate on a supervised learning setup. In particular,
we consider the problem of estimating a vector x ∈ X from
another vector y ∈ Y , where the pair of vectors s = (x,y) is
drawn from the sample space D = X ×Y according to some
unknown distribution µ. We also consider we have access
to a set of m training samples S = {(xi,yi)}i≤m, drawn
independently and identically distributed (i.i.d.) according to
µ. These training samples are used to learn a regressor

ΞS(·) : Y → X (3)

that can be used to deliver an estimate of the vector x ∈ X
given the vector y ∈ Y . We will be assuming for technical
reasons that the input space X and the output space Y are
compact with respect to the `2-metric and that the sample
space D = X × Y is compact with respect to the sup-metric.

We are interested in characterising the quality of this learnt
regressor, by capturing the deviation between the regressor
estimate of the desired vector and the actual desired vector. In
particular, this will be done via the generalization error (GE)

TABLE I
A LIST OF POINT-WISE ACTIVATION FUNCTIONS [z]σ = {σ(zi)}i≤Ni

.

Name Function σ(zi)
Hyperbolic tangent tan(zi)
ReLU max(zi, 0)
Sigmoid 1/1+exp(−zi)
Softmax exp(zi)/∑

j exp(zj)

associated with the regressor given by:

GE(ΞS) = |lexp(ΞS)− lemp(ΞS)| (4)

corresponding to the difference between the expected loss and
empirical losses given by:

lexp(ΞS) = E[l(ΞS(y),x)]

lemp(ΞS) =
1

m

∑
i

l(ΞS(yi),xi)

where the loss function l(·, ·) is taken to be the `2-loss.
We concentrate exclusively on deep neural networks based

regression. A deep neural network is a multi-layered architec-
ture consisting of a series of linear and non-linear transfor-
mations as shown in Fig. 1 [9]. In particular, we can express
the i-th layer output x̃i ∈ RNi in terms of the i-th layer input
x̃i−1 ∈ RNi−1 as follows:

x̃i =
[
Wix̃

i−1 + bi
]
σ

where Wi ∈ RNi×Ni−1 is the i-th layer weight matrix,
bi ∈ RNi is the i-th layer bias vector, and [.]σ represents an
element-wise nonlinear activation function such as hyperbolic
tangent, rectified linear units (ReLU), or sigmoid (see Table I).
We also denote the network input by x̃1 = y and we denote
the network output by ΞS(y) = x̃.

The various hyper-parameters associated with a deep neural
network can be learnt using optimization techniques based on
training data [10]. State-of-the-art approaches include [11],
[12].

In view of the fact that the generalization ability of deep
neural network regressors is poorly understood, our goal in the
sequel is to provide general generalization bounds for DNN
based regression – applicable to a wide range of settings –
as well as specialized generalization bounds for DNN based
regression applicable to inverse problems.

III. GENERALIZATION ERROR BOUNDS: GENERAL CASE

We now derive performance guarantees for DNN based
regression by capitalizing on the robustness framework [7].

A very important element of the robustness framework is
the notion of algorithmic robustness.

Definition 1 (Algorithmic Robustness [7]). Let S denote
the training set and D denote the sample space. A learning
algorithm is said to be (K, ε(S))-robust if the sample space



D can be partitioned into K disjoint sets Kk, k = 1, . . . ,K,
such that for all (xi,yi) ∈ S and all (x,y) ∈ D

(xi,yi), (x,y) ∈ Kk =⇒ (5)
|l(ΞS(yi),xi)− l(ΞS(y),x)| ≤ ε(S)

In other words, a learning algorithm is robust provided that
the losses of a training sample and a test sample belonging to
the same partition are close.

The relevance of this definition is associated with the fact
that it provides a route to study the generalization ability
of various learning algorithms, including deep neural net-
works [6]. However, Sokolic et al. [6] have provided gen-
eralization bounds for DNN based classifiers in lieu of DNN
based regressors, so the results cannot be used to cast insight
on the performance of deep neural networks in solving inverse
problems. We will therefore generalize the results in [6] from
the classification to the regression setting.

We first show that a d-layer DNN based regressor satisfies
a Lipschitz continuity condition.

Theorem 1. (Adapted from Theorem 2 and Lemma 1 in [6])
Consider a d-layer DNN based regressor ΞS(·) : Y → X .
Then, for any y1,y2 ∈ Y , it follows that

‖ΞS(y1)−ΞS(y2)‖2 ≤
d∏
i=1

‖Wi‖F ‖y1 − y2‖2

where ‖.‖F denotes the Frobenious norm of a matrix.

Proof: We only outline the proof. The results follows
from Theorem 2 in [6] which proves that the ratio between
the Euclidean distance at the input and the output of a d-layer
DNN is less than the `2-norm of the Jacobian matrix which is
upper bounded by the product of the frobenious norm of the
weight matrices [6].

We can now show the main results. The following theorem
characterizes the robustness of a d-layer neural network in
terms of the covering number of the metric space (D, ρ) [13].

Theorem 2. (Robustness) Consider that X and Y are compact
spaces with respect to the `2 metric. Consider also the sample
space D = X × Y equipped with a sup metric ρ. It follows
that a d-layer DNN based regressor ΞS(·) : Y → X trained
on the training set S is(

N
(
ψ

2
;D, ρ

)
,

(
1 +

d∏
i=1

‖Wi‖F

)
ψ

)
− robust

for any ψ > 0, where N
(
ψ
2 ;D, ρ

)
< ∞ represents the

covering number of the metric space (D, ρ) using metric balls
of radius ψ/2.

Proof: We provide a sketch of the proof only. A full
version will appear in an upcoming manuscript [8]. The loss
function of a Lipschitz continuous DNN can be Lipschitz
continuous too. Thus the difference of the losses between

two sample points is upper bounded by the product of the
Lipschitz constant (1+

∏d
i=1 ‖Wi‖F ) and distance ψ, between

the samples. The claim then follows.

The following theorem – building upon the previous one
– now characterizes a bound to the generalization error of a
d-layer neural network.

Theorem 3. (GE Bound) Consider again that X and Y are
compact spaces with respect to the `2 metric. Consider also
the sample space D = X × Y equipped with a sup metric ρ.
It follows that a d-layer DNN based regressor ΞS(·) : Y →
X trained on a training set S consisting of m i.i.d. training
samples obeys with probability 1 − ζ, for any ζ > 0, the
generalization error bound given by:

GE(ΞS) ≤

(
1 +

d∏
i=1

‖Wi‖F

)
ψ

+ M(S)

√√√√2N
(
ψ
2 ;D, ρ

)
log(2) + 2 log

(
1
ζ

)
m

(6)

for any ψ > 0, where M(S) <∞ is a constant that depends
only on S.

Proof: This result follows from the generalization error
bound provided in [7].

Theorems 2 and 3 provide various insights that are also
aligned with previous results in the literature. In particular,
these theorems suggest that the robustness and generalization
properties of a d-layer neural network are not associated with
the number of network parameters per layer but rather with
appropriate norms of the weight matrices. Bartlett [14] had
also shown the size of the network has no effect on the
generalization error of a neural network by bounding the fat
shattering dimension as a function of the `1 norm of the
weights, so implying independence of the number of hidden
units. Xu and Mannor [7] have also shown that robustness of
a neural network does not depend on its size. Similarly, in
[15], it is argued that norm based regularization can improve
the generalization ability of a deep neural network.

These theorems also suggest that a deeper network may
generalize better than a shallower one, by guaranteeing the
Forbenius norm of the weight matrices is less than one.
This result is aligned with similar claims by Neyshabur[15]
resulting from matrix factorization approaches. In fact, it is
possible to explicitly bound the norm of weight matrices via
reprojection using gradient decent [10], and regularization of
weight matrices has been empirically shown to result in better
generalization [16].

Finally, Theorem 3 also suggests that – beyond the depen-
dence on the number of training samples – the generalization
ability of a d-layer neural network also depends directly on
the complexity of the data space D captured via its covering
number. In particular, the generalization error of more complex



data spaces will tend to be higher than the generalization error
of a simpler data space.

IV. GENERALIZATION ERROR BOUNDS FOR
INVERSE PROBLEMS

We now specialize the performance guarantees from general
regression problems to inverse problems, with a focus on
sparse approximation tasks.

We consider specifically the linear observation model in (1),
with some additional assumptions:

• First, the space X consists of k-sparse vectors, taken from
an `2 ball of unit radius i.e.

X = {x ∈ RNx : ‖x‖0 ≤ k, ‖x‖2 ≤ 1} (7)

• Second, the space Y consists to a linear projection of
the input space induced by observation matrix plus a
perturbation associated with bounded `2-norm noise, i.e.

Y := {y = Ax + e ∈ RNy : x ∈ X , ‖e‖2 ≤ η} (8)

• Third, we assume that the linear mapping represented
by the matrix A is Lipschitz continuous with Lipschitz
contant L, i.e.

‖Ax1 −Ax2‖2 ≤ L‖x1 − x2‖2 (9)

for any x1,x2 ∈ X . Note that this condition is in practice
obeyed by linear mappings that conform to the Restriced
Isometry Property (RIP) [17].

We also consider that an appropriately trained d-layer net-
work – using a training set S – is employed to deliver an
estimate of the sparse vector x given the measurement vector
y.

We can now immediately specialize the results appearing
in Theorems 2 and 3 to this particular setting. The following
upper bound on the covering number of the input space will
be very useful [18]:

N (δ/2;X , ‖.‖2) ≤
(
Nxe

k

)k (
1 +

4

δ

)k
(10)

Corollary 1. Consider the spaces X and Y in (7) and (8)
equipped with a `2 metric, the space D = X×Y equipped with
the sup-metric ρ, and the Lipschitz continuous mapping in (9).
It follows that a d-layer DNN based regressor ΞS(·) : Y → X
trained on the training set S is((

Nxe

k

)k (
1 +

4

δ

)k
,

(
1 +

d∏
i=1

‖Wi‖F

)
(Lδ + 2η)

)
robust.

Sketch of Proof: For the model given by eqs. (7), (8) and
(9), the (Lδ+2η)/2-covering number of metric space (D, ρ) is
upper bounded by the δ/2-covering number of X . This result
together with Theorem 2 proves the corollary.

Corollary 2. Consider again the spaces X and Y in (7) and
(8) equipped with a `2 metric, the space D = X ×Y equipped
with the sup-metric ρ, and the Lipschitz continuous mapping
in (9). It follows that a d-layer DNN based regressor ΞS(·) :
Y → X trained on a training set S consisting of m i.i.d.
training samples obeys with probability 1− ζ, for any ζ > 0,
the generalization error bound given by:

GE(ΞS) ≤

(
1 +

d∏
i=1

‖Wi‖F

)
(Lδ + 2η)

+ M(S)

√√√√2
(
Nxe
k

)k (
1 + 4

δ

)k
log(2) + 2 log

(
1
ζ

)
m

(11)

for any δ > 0, for some M(S) <∞.

Proof: The result follows directly from Theorem 3 and
Corollary 1.

The results embodied in these two corollaries can be used
to illuminate further the performance of sparse approximation
based on deep learning networks. In particular, let us assume
we employ a regularization strategy during the training phase
constraining the Frobenius norm of the weight matrices to be
less than one, such as reprojection using gradient descent [10].

This leads immediately to another generalization error
bound holding with probability 1− ζ

GE(ΞS) ≤ 2(Lδ + 2η)

+ M(S)

√√√√2
(
Nxe
k

)k (
1 + 4

δ

)k
log(2) + 2 log

(
1
ζ

)
m

(12)

for any ζ > 0 and any δ > 0, and by setting δ = o
(
m−

1
k

)
and by setting trivially ζ to be a function of m such that
log (1/ζ) /m = o(1), to another generalization bound behav-
ing as follows

GE(ΞS) ≤ 4 · η + o(1) (13)

This suggests that – with the increase of the number of
training samples m – the generalization ability of a deep
neural network is limited only by the level of the noise
independently of the parameter values of the linear observation
model, namely Ny , Nx, k, and L. Instead, these parameters
mainly influence the speed at which the generalization error
asymptotics kick-in.

In turn, in view of the fact that the generalization error
is upper bounded by the sum of the expected and empirical
error, it is also possible to upper bound the expected sparse
approximation error associated with a deep neural network as
follows:

lexp(ΞS) ≤ lemp(ΞS) +GE(ΞS) ≤ lemp(ΞS) + 4 · η + o(1)
(14)



Recent results suggest that deep neural networks – with
a sufficient number of parameters – tend to memorize the
training dataset [19] suggesting that

lexp(ΞS) ≤ GE(ΞS) ≤ 4 · η + o(1) (15)

We conclude by comparing how the performance of a deep
neural network compares to the performance of a well-known
algorithm – BPDN – in sparse approximation problems.

Theorem 4 ([20]). Consider the linear observation model in
(1) where x ∈ X = {x ∈ RNx : ‖x‖0 ≤ k} and y ∈ Y =
{y = Ax + e ∈ RNy : ‖x‖0 ≤ k, ‖e‖2 ≤ η}. Consider also
the sparse approximation algorithm delivering an estimate of
x from y given knowledge of A:

x̃ = arg min
x∈RNx

‖x‖1 subject to, ‖y −Ax‖2 ≤ ε

where ε ≥ η. It follows – under the assumption that k ≤
(1 + µ) /4µ – the error of the approximation delivered by this
algorithm can be bounded as follows:

‖x̃− x‖2 ≤
η + ε√

1− µ(4k − 1)

where µ corresponds to the mutual coherence of the matrix
A.

This sparse approximation algorithm – along with other
sparse approximation algorithms based on convex optimization
approaches or greedy approaches (see [1] and references
within) – are known to exhibit a phase transition. Here, when
the data sparsity k ≤ (1 + µ) /4µ, the algorithm provides a
reconstruction that scales with the amount of noise η; this is
akin to the behaviour of the sparse approximation delivered
by a deep neural network.

On the other hand, when the data sparsity k > (1 + µ) /4µ
the algorithm does not give any reconstruction guarantees
but the deep neural network may still be able to deliver
an appropriate reconstruction of the sparse vector given its
under-sampled linear observation. In fact, reference [21] has
empirically demonstrated that the performance of a DNN
degrades gradually as Ny decreases in relation to Nx and k.

V. CONCLUSIONS

This paper, by drawing on the robustness framework intro-
duced by Xu and Mannor, puts forth a generalization bound
for deep neural network based reconstruction that can be
specialized for a wide range of settings.

The specialization of this bound to sparse approximation
problems – occurring in various signal and image processing
tasks – has shown that deep neural networks can lead to
generalization errors that depend on the noise level only. This
– together with the fact that recently established results suggest
that deep neural networks can potentially memorize datasets
– also suggests that the sparse approximation error incurred
via the use of deep neural networks also depends on the noise
level only. This behaviour can be in sharp contrast with the
behaviour of classical sparse approximation algorithms.
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