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ABSTRACT: The aim of this study is to investigate the
potential of microfluidic techniques to generate microporous
structures, with potential utility as scaffolds, with a highly
uniform architecture, possessing an antibacterial activity.
Scaffolds were prepared by introducing N2 gas to gelatin
(GE)−water or gelatin/hyaluronic acid (GE/HA)−water
mixtures to form microbubbles at the interface. The effect of
solution temperature on microbubble stability and their
structural integrity were studied. A solution temperature of
40 °C produced the best results due to the higher solution
viscosity. The effect of different cross-linking concentrations
on scaffold swelling ratio was investigated. A concentration of
5% glutaraldehyde was found to be optimal and was chosen to
cross-link structure and conduct subsequent degradation and antibacterial experiments. HA was incorporated into the scaffolds
owing to its ability to make stable and highly absorbent scaffolds. This led to a decrease in the degradation rate and the
introduction of an antibacterial effect. This effect could be further enhanced with the inclusion of lactoferrin. This work is the
first reported attempt for making antibacterial GE/HA scaffolds by using microfluidics.

■ INTRODUCTION

Recently, remarkable research has been conducted to develop
bioactive scaffolds, which are analogous to the extracellular
matrix (ECM), that have a significant impact in the field of
tissue engineering, as their ideal ability to act as a conduit to
guide cell growth and subsequent tissue formation.1,2 The key
challenge is to produce scaffolds which facilitate tissue−cell
interactions while preventing bacterial colonization. Antibacte-
rial scaffolds have been applied in a broad range of tissue
engineering applications such as bone, cartilage, ligament, skin,
vascular tissues, neural tissues, and bone tissues. Their porosity
is the key factor in enhancing the transportation of nutrients
and oxygen.3 This has captured the attention of many
researchers keen to develop more effective approaches for
obtaining porous scaffolds with improved characteristics.
Existing manufacturing techniques for porous scaffolds include
gas forming, electrospinning, phase separation, freeze drying,
and particulate leaching.4 All these techniques introduce
porosity since a porous surface not only allows the migration
and proliferation of cells but also vascularization.5 Scaffolds
produced via these conventional technologies have a wide
distribution of pore sizes or irregularities in their structures
consequently resulting in difficulties during the conduct of
systematic research aimed at investigating the effect of
structure on the differences in signaling, gene expression, and
organization. Also, using these conventional methods to

produce scaffolds results in a lack of control over the structure
and interconnectivity of scaffolds, furthermore affecting the
mechanical properties.6 Ordered and uniformed spatial
structures are beneficial in the study of cell-to-cell and cell-
to-matrix interactions. A uniform spatial structure also
contributes to the homogeneous distribution of chemical
stimuli.7 In this study, the microfluidic technique is employed
to fabricate scaffolds with a desirable homogenous porosity,8

interconnectivity, and potential mechanical properties.6 This
process can be readily scaled up by incorporating multiple T-
junction devices into the production method.8 Wang et al.9

showed that by collecting bubbles over a period of time, the
fabrication of a sponge-type, multilayer scaffold was successful,
which promoted more cell migration and distribution in the
scaffold through chondrocyte proliferation. Ekemen et al.10

used microbubbling to fabricate scaffolds for tissue engineering
applications as their open pores are ideal for integration and
cell proliferation.
Three key factors need to be considered in the design of

ideal scaffolds intended to mimic the natural extracellular
matrix (ECM) of a targeted tissue. These are the scaffolds’
mechanical properties, structure, and biological signaling.11
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Natural ECM is comprised of a cross-linked porous structure
of collagens embedded with glycosaminoglycans and pro-
teins.2,12 Currently, a large number of extracellular matrix-
inspired protein and polysaccharide-based materials exist.12

Among them, hyaluronic acid (HA) as a natural skin
component is the most frequently used compound for soft
tissue fillers. HA is a biocompatible, biodegradable natural
material composed of approximately 10 000 repeat units of the
disaccharide units of D-glucuronic acid and N-acetyl-D-
glucosamine.1,12 HA has many important roles in the body.
These include the good maintenance of extracellular space,
reinforcement of extracellular transportation of nutrients and
ions, manipulation of hydration of tissues, and binding of
interleukins and growth factors.12−14 It has also been shown
that HA interacting with proteins can facilitate natural ECM
assembly under physiological conditions.1,15 HA−protein
hybrids can stabilize ECM and subsequently regulate cell
adhesion and growth.16 As a result, HA has been widely used
as ideal scaffold materials for skin, cartilage, bone ligament,
brain and nerve tissue engineering applications.17−19 Despite
this, HA is not thermodynamically conducive to cell attach-
ment or tissue formation. These properties are a result of its
polyanionic and highly hydrophilicity nature.16,20 There are a
few methodologies to address this challenge. One of the major
approaches is to develop HA-based scaffolds in the presence of
nanofibers, hydrogels, and sponges by integrating HA with
biomaterials such as collagen, gelatin, chitosan, and silk
fibroin.1 HA has been chosen for this study as it has an
antimicrobial response.17,18,21

Collagen is the major protein component of ECM. As GE is
produced from collagen denaturation, it contains some of the
collagen precursor chemotactic signals (RGD amino acid
sequence, which can facilitate cell attachment). Thus, gelatin is
considered a cost-effective replacement to collagen for the
various potential applications in tissue engineering.3 Gelatin is
broadly used as a material in the fabrication of scaffolds for
cartilage, bone, and nerve tissues.17 Gelatin also has a good gas
foaming ability and in this study was the major structural
component which was used to blend with HA to fabricate GE/
HA hybrid structures with potential use as scaffolds. The use of
natural materials as well as high porosity are two factors which
are implicated in bacterial growth as well as cell growth.
Lactoferrin (LF) is a glycoprotein and belongs to the

transferrin family, delivered from human or bovine milk.
Lactoferrin works as an opsonin to promote bacterial
clearance.21 LF binds the iron, resulting in sequestered iron,
which is one of the most necessary nutritional requirements for
most bacterial pathogens and thus inhibits the growth of a
broad spectrum of bacterial strains.21 It has been shown from

previous studies that lactoferrin has (i) the ability to promote
the proliferation and differentiation of osteoblasts, suggesting
its potential utility as an osteogenic growth factor in bone
tissue engineering,22 (ii) multiple functions including immu-
nomodulatory, anticancer, antibacterial, anti-inflammatory, and
antiviral activities.21,23 LF has been chosen for this study for its
antibacterial activity and its nontoxic effects.24−26

In this study, antibacterial structures were generated to
prevent and limit infections without the use of antibiotics as its
long-term use can provoke toxic and adverse effects. The need
for prevention of implant-associated bacterial infections has led
this research to combine microfluidics with the fabrication of
antibacterial scaffolds made from natural biomaterials. GE and
HA were chosen as the scaffold materials to mimic the vital
components of the ECM. The microfluidic technique was used
to generate monodispersed microbubbles which were the
precursors to the scaffolds. These scaffolds were cross-linked
with glutaraldehyde (GA). The operating temperature, cross-
linking concentrations, swelling ratio, and degradation were
also studied in this work. Moreover, the potential to
incorporate natural antibiotic agents into the scaffolds was
investigated in vitro by testing against Staphylococcus aureus. S.
aureus was chosen as a model bacteria for this study as it is a
major cause of nosocomial-acquired infections and can not
only provoke healthcare-associated infections such as ven-
tilator-associated pneumonia, surgical site infection, and
catheter-associated bloodstream infection but is also associated
with community-onset infections such as skin and soft tissues
infections.27,28

The aim of this study was to produce highly organized
porous structures and assess their antibacterial activity, as no
other study was found to have studied the antibacterial activity
of microbubble scaffolds. Gelatin and hyaluronic acid have
been used in several studies as scaffolding materials to mimic
components of the ECM, but this study is the first that
combines GE/HA with LF to create antibacterial scaffolds
using microbubbles.

■ RESULTS AND DISCUSSION

Stability Test. GE microbubbles were generated using 5
w/w % GE solution heated to temperatures of 40, 50, or 60 °C
and delivered with a constant liquid flow rate of 80 μL/min to
the T-junction microfluidic device. Gas pressure was adjusted
between 200 and 300 kPa to achieve approximately the same
initial bubble size. The average initial bubble size made from
these three solutions was 315 μm with a standard deviation of
7%. After processing, the scaffold pore size is proportional to
the diameter of the initially generated microbubbles. The
produced pore size is desirable as the pore size should be large

Table 1. Material Properties of 5 w/w % GE at 40, 50, and 60 °Ca

solution temperature (°C) viscosity (mPa s) density (g/mL) surface tension (mN/m)

5 w/w % GE/HW 40 25.27 ± 0.74 1.01 ± 0.02 54.6 ± 1.23
5 w/w % GE 40 19.85 ± 0.71 1.02 ± 0 03 43.52 ± 2.16
5 w/w % GE 50 5.66 ± 0.66* 1.06 ± 0.08 44.76 ± 0.03
5 w/w % GE 60 4.61 ± 0.43* 1.02 ± 0.007 41.74 ± 0.07

aEach measurement was repeated five times and values are expressed in mean ± standard error of the mean. One-way analysis of variance
(ANOVA) was carried out followed by post hoc Tukey multiple comparison test. GE solutions (5 wt %) at three different temperature were
compared and values are represented statistically when *p < 0.05 in comparison with 5 wt % GE in 40° solution. Statistical analysis was performed
using the GraphPad Prism 6.0 software (GraphPad Software, Inc., San Diego, CA). There is no significant difference in density and surface tension
between 5 wt % GE solutions at three different temperatures. The viscosity of 5 wt % GE solution at 40° is significantly higher (p < 0.05) compared
to the other two solutions at 50 and 60 °C.
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enough to allow communication between cells, access to
nutrition, and ECM formation. Murphy et al.29 show that the
cell proliferation was the highest in scaffolds with a pore size of
300 μm in comparison to smaller pore sizes, as cells can more
easily attach to large surfaces.30

To study the effect of GE solution temperature on the
stability of the resulting microbubbles and the structure of
scaffolds produced by microbubbles after drying, material
properties of 5 w/w % GE solutions at 40, 50, or 60 °C were
measured (Table 1). Table 1 shows that amongst the three
different temperatures, viscosity is the main parameter which
has substantially changed. Solution viscosity decreased, as the
water bath temperature was increased from 40 to 60 °C. The
highest solution viscosity is 19.85 ± 0.71 mPa s at 40 °C.
There is no significant difference in density and surface tension
between 5 wt % GE solutions at three different temperatures
with standard deviations of 0.01 and 1.5, respectively.
As demonstrated in Figure 1, the least stable microbubbles

were produced by solutions at 60 °C (Figure 1i), where
microbubbles started to dry out within 2 min without cross-
linking. On the other hand, microbubbles generated at 40 °C
(stable for up to 4 min without cross-linking) were observed to
be the most stable (Figure 1e). The stability difference is most
likely caused by the sharp viscosity contrast between 5 w/w %
GE at 40 and 60 °C (Table 1). The difference in viscosity also
contributes to the formation of scaffolds. Honeycomb-shaped
scaffolds were created with solutions heated to 40 °C (Figure
1h). Conversely, scaffolds with irregularities were formed with
solution heated up to 60 °C. This is a result of the lower shell
viscosity of the microbubbles, which is insufficient to resist the
distortion forces caused by solvent evaporation.31 This is in
agreement with previous reports that increasing the viscosity of
the continuous phase can prolong the life span of the droplets
surrounded by polymer.6 This in turn reduces the number of
defects which are evident in Figure 1m−p for solution at 60 °C
and improves structure uniformity, Figure 1e−h. After the
formation of GE microbubbles at 40 °C, GE/HA microbubbles
were produced under the same conditions, proving that GE/
HA microbubbles remain stable and uniform, and the resultant
scaffolds retain a well-ordered honeycomb structure for a
longer period of time than GE scaffolds, as shown in Figure

1c,d. The stability of the microbubbles after cross-linking was
not studied in detail in this work, however, during the timespan
of experimental degradation (∼1 week), the bubbles were
stable in phosphate-buffered saline (PBS) under 37 °C. Thus,
the cross-linking helps to stabilize, i.e., retain both shape and
size.
As illustrated in Figure 2, the smallest diameter (295 μm

with a polydispersity index (PDI) of 0.01) microbubbles were

produced with solutions at 40 °C. The largest bubble diameter
(341 μm with a PDI of 0.04) was created with solutions at 60
°C. Microbubbles shrink as a function of time as gas dissolves
into the surrounding.8 The reduction in size leads to increased
stability (Figure 1). The stability of the microbubbles depends
on several resistance parameters like gravitational drainage,
Oswald’s ripening, and Laplace pressure, where gas diffusion
through the surrounding liquid shell is prompted by the
pressure gradient (Laplace pressure).32 This trend can be
explained by the fact that microbubbles made at 40 °C had
lower rates of gaseous diffusion into the liquid shell.8 As the
stability of microbubbles under ambient conditions is governed
by their radius and Laplace pressure is inversely related to
microbubble radius, smaller microbubbles have lower gas
exchange rates.8 Additionally, the resistance from their
condensed hard shell to gas permeation is also a vital

Figure 1. Structure of GE and GE/HA two-dimensional (2D) scaffolds, fabricated by microbubbles. From left to right, start point and after 2, 4,
and 10 min (a−d) GE/HA at 40 °C, (e−h) GE at 40 °C, (i−l) GE at 50 °C, (m−p) GE at 60 °C water bath temperature, respectively.

Figure 2. Effect of temperature on microbubble size at different
temperatures, 40, 50, and 60 °C.

ACS Omega Article

DOI: 10.1021/acsomega.8b02573
ACS Omega 2019, 4, 2225−2233

2227

http://dx.doi.org/10.1021/acsomega.8b02573


contributor to the stability of gas-filled microbubbles.33 The
higher solution viscosity (19.85 ± 0.71 mPa s, Table 1) at 40
°C condensed the relevant shells of microbubbles. Hence,
microbubbles produced at 40 °C are more stable, and the
resultant scaffolds have well-ordered honeycomb structures. As
a result, the temperature of the solution precursor affects the
stability and quality of the microbubbles, due to the change in
solution viscosity (Figure 1).
Effect of Solution Viscosity on Microbubble Diame-

ter. As shown in Figure 3, dimensionless diameter of

microbubbles produced by cross-flow rupture technique
corresponds to the solution viscosity ratio (Table 2) of the

dispersed phase to that of the continuous phase. In other
words, the diameter of microbubbles increased with decreasing
continuous phase viscosity, where dimensionless microbubble
diameter is the ratio of diameter of microbubbles to the size of
channel (200 μm in Figure 1). However, the relative surface
tension of 0.6 and relative density of 0.9 are kept constant and
unaffected by the change of solution viscosity ratio, where the
relative surface tension and density are expressed as the ratio of
surface tension/density of dispersed phase to the surface
tension/density of continuous phase, respectively. Thus, the
relation between microbubble size and material properties can
be seen from Figure 3 where microbubble sizes generated in
the T-junction are decreased with increasing continuous phase
viscosity and independent of material surface tension. This can
be explained using the capillary number. There are several
dimensionless parameters that reveal the formation of droplets
and bubbles in microfluidic T-junctions. The key parameter
among them is capillary number, which is the ratio of viscosity
to interfacial tension.8 The diameter of bubbles decreases with
increasing capillary number.34 Therefore, microbubbles with a
nonsignificant surface tension deviation of 1% generated by
solution at 60 °C are larger than the size of microbubbles
produced at 40 °C.
Previous reports for gas−liquid systems observed that

average bubble size increased with increasing viscosity of the
continuous phase.35,36 This apparent contradiction is due to

the different breakup mechanisms involved in different
microfluidic techniques.37 The formation of microbubbles in
these reports35,36 was achieved by geometry-dominated
breakup, where the formation of microbubbles is dominated
by the spontaneous transformation caused by surface
tension.35,37 However, in this paper, microbubbles were
formed though the cross-flow rupture technique (T-junction).
In this device, microbubble size is related to the flow rate ratio
and phase viscosity.36,37

A well-structured scaffold is desirable as highly ordered and
uniform spatial structures are beneficial for cell-to-cell and cell-
to-matrix interactions.7 As the 2D scaffold is well structured at
40 °C, 5 w/w % GE solution heated to 40 °C was chosen as
the base solution for all the following experiments.

Swelling Behavior. The swelling ratio of scaffolds plays a
vital role in maintaining the stability of the scaffold structure
and its mechanical properties when implanted in vivo.33

Hence, the swelling ratio is a key parameter to evaluate the
structural stability of GE scaffolds. Cross-linking is a necessary
step in preparing stable three-dimensional (3D) biopolymer
scaffolds18 as gelatin has poor mechanical properties and can
be easily dissolved in aqueous environments.38 According to
previous reports, scaffold porosity does not change significantly
after cross-linking.39 To remove uncrosslinked glutaraldehyde
residues, phosphate buffer solution was used to rinse the
scaffolds. To ensure the removal of any residual chemicals,
scaffolds were immersed in chilled PBS solution which was
changed every hour, for the first 4 h, and then immersed in
PBS solution for 20 h more at 4 °C, in comparison with other
studies, where the samples were rinsed twice or thrice.40−42 To
improve the biocompatibility of the scaffolds, the concen-
tration of GA was lowered, and the scaffolds were rinsed four
times in total and kept incubated for 24 h, since in other
studies the samples were cross-linked with higher concen-
trations under higher temperatures, resulting in a higher risk of
cytotoxicity,43 or GE/HA scaffolds were rinsed less than four
times in total and not incubated in PBS. The purpose of this
section is to investigate the swelling behavior of scaffolds cross-
linked with different concentrations of glutaraldehyde.
Figure 4 shows the swelling ratio of scaffolds decreasing with

increasing concentrations of the cross-linking agent GA. The
least stable scaffolds cross-linked by 1% GA had the highest
swelling property within 24 h. However, the structures of
scaffolds with 1% cross-linker collapsed and dissolved after
1440 min. The structures for 5 and 10% GA cross-linked
scaffolds were stable after 1440 min. Scaffolds with 10% cross-
linker had the lowest water absorption, with a swelling ratio of
approximately 20% after 1440 min. This compares with
scaffolds cross-linked with 5% GA where the swelling ratio is
24%, a 4% increase compared to 10% GA. Thus, the higher GA
concentration produces a lower swelling ratio. This is due to
the different cross-linking efficiencies of different GA
concentrations. It was reported previously33 that higher
cross-linker concentrations could dramatically enhance the
cross-link efficiency.
Water is attracted to the hydrophilic un-cross-linked amino

groups, which leads to a greater solvent volume fraction within
the scaffolds. As cross-linking of gelatin can be explained by the
reaction between the aldehyde functional groups and free ε-
amino groups (−NH2) of lysine and hydroxylysine,44 hydro-
philicity is decreased with increasing the concentrations of
cross-linker, as the nucleophilic addition of the ε-NH2 groups
to the carbonyl groups (CO) of the aldehyde forms a

Figure 3. Relative value for 5 w/w % GE solution at 40, 50, and 60 °C
of density, surface tension, and dimensionless microbubble diameter
as a function of solution viscosity ratio.

Table 2. Effect of Solution Temperature on Viscosity Ratio
of 5 w/w % GE, Where Viscosity Ratio Represents the Ratio
of the Dispersed Phase (Nitrogen) to the Continuous Phase

temperature (°C) 40 50 60
viscosity ratio 0.0009 0.0031 0.0038
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carbinolamine in a condensation reaction.44 Thus, 10% GA
cross-linked scaffolds had the lowest swelling ratio and water
uptake ability as more amino groups were cross-linked under
10% GA compared with 1 and 5% GA resulting in greater loss
of hydrophilic groups. Therefore, 5% GA was used to cross-
link 5 w/w % GE scaffolds in subsequent degradation and
antibacterial expriments, since these scaffolds have a good
balance between high absorbency and good structural stability
which are the two main desirable factors for cell adhesion and
growth.1

Figure 5 indicates the swelling ratios as a function of time for
GE/HA scaffolds compared to GE scaffolds of the same GE

concentration (5 w/w %) and cross-linked with the same GA
concentration (5 w/w %, data taken from Figure 4 for
comparison). The swelling ratios increased significantly with a
steep gradient within the initial 10 min, and then an increase
with a smaller gradient up to 1440 min for both scaffolds. The
swelling ratios for GE and GE/HA scaffolds were almost
identical in the first 10 min since rapid swelling is a result of
the un-cross-linked hydrophilic amino groups remaining inside
both GE and GE/HA scaffolds. The high porosity of both
scaffolds permits rapid infiltration of the PBS solution into the
scaffolds.45 GE and GE/HA scaffolds display a less-steep
increasing gradient after the first 10 min as they approach

hydrodynamic equilibrium. This indicates that after the first 10
min, as hydration of the GE/HA matrix approaches saturation,
the scaffold starts to absorb less water.45 The swelling ratio is
almost 1.3 times lower with the presence of HA in the
scaffolds, compounding the effect of GA cross-linking on HA,
as shown in Figure 5. This is due to the cross-linking reaction
between GA and hydroxyl (−OH) groups of HA leading to a
reduction in the hydrophilicity of HA, resulting in a decrease of
the swelling ratio of GE/HA scaffolds in comparison to the GE
scaffolds.46 Despite this, the GE/HA scaffolds appear to have
retained some good swelling capabilities of ∼18% after 1440
min.

In Vitro Degradation. The resistance to hydrolytic
degradation of GE and GE/HA scaffolds treated with 5 w/w
% of GA is shown in Figure 6, which demonstrates the weight

loss of scaffolds as a function of incubation time in PBS at 37
°C (pH 7.4). The mass loss is associated with protein
dissolution into the surrounding PBS aqueous solution.39 The
data for GE scaffolds prior to cross-linking was not included as
it dissolved completely in PBS within the first hour of
incubation. This is due to the lower resistance of un-cross-
linked scaffolds to hydrolytic degradation.47 Hence, cross-
linking has an impact on the scaffold binding capability and
degradation kinetics due to the formation of intermolecular
bonds. Compared to un-cross-linked scaffolds, in vitro
degradation tests demonstrate that GA cross-linking can
effectively improve the stability of the scaffolds. Here, Figure
6 shows the comparison of mass loss between GE scaffolds and
GE/HA scaffolds over time, under incubation in PBS solution
at 37 °C.
Figure 6 indicates that the rate of degradation in HA-

containing scaffolds decreased with the presence of HA
content. GE/HA scaffolds showed a weight loss of 8% after
1 day, whereas GE scaffolds displayed a weight loss of 21%
after 3 days. This is due to the difference in the extent of cross-
linking within the different scaffolds which results in different
hydrophilicity. GE/HA scaffolds had stronger intermolecular
bonds and correspondingly lower hydrophilicity. The increase
in the weight loss of GE scaffolds was due to greater water
absorption, as the hydrophilic surface of GE enhances
infiltration of water into the polymer matrix, leading to a
higher rate of protein dissolution into the surrounding liquid,
therefore increasing the scaffolds’ degradation.48 However, the
cross-linking reaction reduces the hydrophilicity of GE/HA
scaffolds, which results in a decrease in the water absorption
and therefore a decrease in the rate of degradation.46 Data
were expressed as mean ± SD (n = 3). The apparent reversal

Figure 4. Effect of different cross-link concentrations, 1, 5, and 10%
GA, on water uptake capability of GE scaffolds. Each measurement
was repeated for five times and values were expressed in mean ±
standard error of the mean. Two-way ANOVA was carried out
followed by post hoc Tukey multiple comparison tests. GE solutions
(5 wt %) with three different glutaraldehyde ratios were compared
and values are represented statistically when *p < 0.05 in comparison
with cross-linked 5 w/w % GA and +p < 0.05 when compared with
cross-linked 10 w/w % GA. Statistical analysis was performed using
the GraphPad Prism 6.0 software (GraphPad Software, Inc., San
Diego, CA).

Figure 5. Comparison of the water uptake capability between GE
scaffolds and GE/HA scaffolds over time, under incubation in PBS
solution.

Figure 6. Comparison of mass loss between GE scaffolds and GE/HA
scaffolds over time, under incubation in PBS solution at 37 °C.
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of mass loss after 1 day for GE/HA scaffolds can be explained
by the possibility that water penetration has not reached the
core of the scaffold on account of the reduced hydrophilicity
relative to GE scaffolds. As a result, during drying, water from
only the periphery is removed, and mass loss is observed via
protein dissolution from the periphery. After immersion for >3
days, however, the time is sufficient to allow water to diffuse
into the core of the scaffold. In this scenario, it is likely that 24
h of desiccation is insufficient to fully remove water from the
core of the scaffold leading to an apparent reduction in the
mass loss. This appears to be mirrored in the GE scenario
albeit with a delay, with the apparent decrease occurring after 4
days. Due to its resistance to rapid degradation, GE/HA
scaffolds were loaded with lactoferrin and assessed for
antibacterial properties.
Antibacterial Activity. The materials that were used in

this study to fabricate the scaffolds are biodegradable natural
polymers and are derivatives of proteins found naturally in the
ECM. For this reason, they have been used in the fabrication of
scaffolds for tissue engineering using different techniques. It is
well known that different bacterial adhesins can recognize
several elements of host−cell surfaces, such as components of
the extracellular matrix, including collagens, laminins, elastin,
proteoglycans, and hyaluronic acid,49 resulting in bacterial
adhesion. In this case, the bacterial adhesion in scaffolds can be
promoted as the size of bacteria (0.5 μm)50 allows their
infiltration and attachment on to the large pores of the
scaffolds.39 For this reason, antibacterial properties are highly
desired for scaffolds, and this was a major aim of this study.
The inclusion of HA into GE scaffolds (GE/HA) results in a

reduction of bacteria growth by almost 35%, in comparison
with the GE scaffolds, which do not show any antibacterial
activity. Antibacterial activity was evident despite the low
concentration (2.5 mg/mL) of HA in comparison with other
reported values in the literature.18,21

To further decrease the bacterial growth, GE/HA scaffolds
were immersed, after their preparation, in lactoferrin (LF)
solution for 3 h. LF was chosen for its antiviral, antibacterial,
antiparasitic, and antifungal properties.21,51

Figure 7 shows the growth inhibition, which was determined
by measuring the absorbance of the supernatant at 600 nm,

after its incubation in media at 37 °C overnight. Figure 7
shows a reduction in bacterial growth of 35% for GE/HA
scaffolds and 70% for GE/HA scaffolds loaded with LF (p <
0.05) in comparison with GE scaffolds. As GE/HA scaffolds
have a good water uptake capability, scaffolds absorbed
lactoferrin (LF) solution after being immersed, resulting in a
further decrease of the bacterial growth. This demonstrates the
feasibility of producing scaffolds with antibacterial activity from

monodispersed microbubbles manufactured using a T-Junction
microfluidic device.

■ CONCLUSIONS

A microfluidic single T-junction has been adopted to produce
monodispersed microbubbles. Subsequently, stable GE/HA
scaffolds were obtained by drying microbubbles with the aid of
GA cross-linking. Stable and well-structured microbubbles
could be produced by keeping solutions at 40 °C during
processing. Scaffolds cross-linked with 5% GA solution showed
good water absorption which could be used to prevent the loss
of body fluid and nutrients from scaffolds during culturing in
vitro and implanting in vivo. The incorporation of HA
decreases the absorptive capabilities of the scaffold (which
are still significant at 18%) and lowers the rate of degradation.
The antibacterial properties of GE/HA scaffolds were capable
of reducing bacterial growth despite a low concentration of 2.5
mg/mL. Antibacterial activity can be improved by immersing
the GE/HA scaffolds in LF solution. The GE/HA scaffolds
combine the advantages of gelatin and HA (e.g., good water
uptake capability, biodegradable, ECM constituents) and may
be a suitable candidate for use in wound-healing patches, soft
tissue engineering, or as coatings for implanted medical
devices.
Microbubbles offer a simple robust and inexpensive method

for scaffold fabrication. The present work could provide the
experimental basis for further cell growth and in vivo studies
on GE/HA microbubble scaffolds using microfluidics.

■ EXPERIMENTAL MATERIALS AND METHODS

Materials. Gelatin (Type B, bovine skin, approx 225 g
Bloom), HA (sodium salt, (1.5−1.8) × 106 Da), Lactoferrin
(bovine milk, 87 × 103 Da), and Glutaraldehyde (Grade II,
25% in H2O, 100.12 Da) were purchased from Sigma-Aldrich
Co. All of the materials and reagents were used without further
purification.

Solution Preparation. GE solution, 5% (w/w), was
prepared by dissolving gelatin in deionized water at 40, 50,
or 60 °C with a magnetic stirrer for 1 h. The solution was
heated with a temperature controller (Warner Instruments,
model TC-124A) during microbubble generation to prevent
gelation. GE/HA was prepared by mixing the GE with 25 mg
of HA in 10 mL of deionized water, stirring for 1 h at 40 °C
under the same conditions as GE. LF solution was prepared by
dissolving 1 mg/mL in deionized water at room temperature
(20 °C) stirring for 15 min.

Microbubble Scaffold Fabrication. The experiments for
microbubble generation were performed in a T-junction
microfluidic device made of poly(dimethylsiloxane). Two
Teflon fluorinated ethylene polypropylene microchannels,
200 μm in diameter, were used perpendicularly to each other
for the continuous phase (liquid flow) and the dispersed phase
(gas flow). For the continuous phase and the dispersed phase,
liquid solutions of GE, GE/HA, and N2 gas were used. The
confluence junction of the two phases penetrated into a third
microchannel with 200 μm diameter, a microbubble begins to
grow, as the gas pressure and the flow in the main channel
distort the bubble in the downstream direction, shown in
Figure 8.
Breakup of the gas−liquid streams is dominated by the

pressure drop across the bubble as it forms. The aqueous
solutions are loaded into a syringe and placed in the syringe

Figure 7. Antibacterial behavior of different scaffolds when cultured
with S. aureus (p < 0.05).
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pump (Harvard Apparatus Ltd., Edenbridge U.K.), which
delivers the solution to the microchannel. At the same time, N2
gas was passed through the other microchannel resulting in
microbubble formation. Monodispersed microbubbles sponta-
neously self-assembled into liquid foam structures and after
leaving them to dry, were solidified.52 During the drying
process, due to the pressure difference between the bubbles
and the ambient atmosphere, the film of the bubbles bursts,
leaving only the plateau borders, resulting in structure creation.
By collecting the microbubbles on a glass slide enable forming
of multiple layers of the microbubbles. By collecting the
microbubbles on a glass slide, 3D scaffolds were formed from
the multiple layers of the microbubbles. GE scaffolds were
cross-linked with 1, 5, and 10% concentrations of GA solution.
GE/HA scaffolds were cross-linked with 5% of GA. The cross-
linked GE and GE/HA scaffolds were then immersed in PBS
solution at 4 °C for 24 h to completely remove any residues of
GA. GE/HA scaffolds were later immersed in lactoferrin (LF)
solution to load them with LF.
Stability Study. GE (5 w/w %) was chosen as the

continuous phase to generate microbubbles. Three GE
solutions were made by dissolving 5 w/w % gelatin in
deionized water at temperatures of 40, 50, and 60 °C,
separately. Material characterization was carried out at room
temperature. The mean diameter of microbubbles produced at
various gas pressures and flow rates was measured as a function
of time. For each sample, 100 microbubbles were chosen
stochastically and measured every 2 min until all of the
microbubbles burst or their GE shell dried. The effect of the
temperature on the stability, structure, and size of microbubble
was studied.
Visualization and Analysis. Scaffolds were observed

under an optical microscope (Zeiss Axiotech, Germany) fitted
with a camera (Nikon Eclipse ME 600, Japan) at a
magnification of 5×. A high-speed Phantom v5.0 camera
with a maximum resolution of 800 × 600 pixels at up to 4800
fps with a recording time of 1.2 s was used to record live
microbubble formation videos (see Supporting Information).
The bubble-formation processes were analyzed under different
flow rate ratio conditions. The size and structure of
microbubbles were captured using the same microscope.
Measuring the diameter of at least 100 microbubbles per
sample by using Image J software, we were able to calculate the

average bubble diameter (dav) and the polydispersity index
(σ). Polydispersity index is defined by the following equation

/dav 100%σ δ= × (1)

where δ is the standard deviation.
Cross-Linking of Scaffolds. Three different cross-linker

solutions of 1, 5, and 10 w/w % concentrations of GA were
prepared in 10 mL of deionized water. Cross-linker
concentrations of GA (1, 5, and 10 w/w %) were applied on
scaffolds. The samples were dried in ambient conditions for 24
h. Scaffolds were then rinsed with PBS every 1 h for the first 4
h and then immersed in PBS for a further 20 h at 4 °C to
remove residual GA.

Characterization of Scaffolds. The swelling ratio allows
us to determine the capacity of the hydrogel to imbibe large
amounts of water.53 GE scaffolds were cross-linked with a 1, 5,
or 10% solution of GA. The scaffolds were then dried and
weighed (Wd). Scaffolds were then immersed in phosphate-
buffered saline (PBS, pH 7.4) for 24 h at 37 °C. The wet
weight (Wt) of the samples was measured after 10, 20, 30, 60,
120, 180, and 1440 min. Swelling ratio was calculated using the
eq 2

W W WSR ( )/ 100%t d d= − × (2)

where SR is the swelling ratio (%) and is defined1 as the ratio
of the weight increase (Wt − Wd) to the initial dry weight
(Wd).
In vitro degradation of scaffolds was investigated by

measuring weight loss over time under static culture
conditions. The weight loss was calculated from the difference
between the weight of samples at the start of experiment and
the residual weight after immersing samples in PBS solution for
a period of 5 days.49 Experiments were performed in PBS
buffer at 37 °C every day for 5 days to mimic a biological
environment. Then, scaffolds were taken out of solutions daily
and placed in a desiccator to dry for 24 h before residual
weight measurement (Wr). The extent of the in vitro
degradation was calculated as the percentage of weight loss
before and after PBS treatment1 using the equation given

W W W W( )/ 100%l 0 r 0= − × (3)

where Wl is the percentage of weight loss, W0 is the weight of
scaffolds at the start of experiment, and Wr is the sample
weight after desiccator drying. Degradation tests have been
defined as the degradation involving backbone chain breakage
and a diminution in average molecular weight.54 Here, the
degradation test helps us understand how facilely the scaffold
can be degraded over time.
The experiments for swell ratio and degradation were

conducted three times, and all values were reported as the
mean and standard deviation.

Antibacterial Assay. S. aureus (ATCC 25923) was used to
check the antibacterial properties of the samples. Bacterial
strain was cultured aerobically at 37 °C in a Tryptic Soy Broth
(TSB) medium at pH 7.4. One colony was transferred to 10
mL of TSB medium and incubated at 37 °C for 20 h. To
obtain bacteria in the mid logarithmic phase growth, the
absorbance (600 nm) of overnight culture was adjusted to
0.00022, corresponding to a final density of 105 CFU/mL.
Scaffolds were placed into a 96-well plate and sterilized using
UVGI for 15 min. After the sterilization, 180 μL of S. aureus,
A600 = 0.00022, was added to each well and incubated for 24 h
at 37 °C. For the negative control, gelatin scaffolds were

Figure 8. Schematic representation of the process of bubble
generation in a T-junction cross-flow microfluidic device setup.
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incubated with S. aureus using the same method. For the
positive control, penicillin streptomycin (Pen Strep) was
added. To check the bacterial growth or inhibition after 24 h,
the absorbance of the supernatant at 600 nm was measured.
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Sertdemir, Y.; Dağlioğlu, K. Effects of bovine lactoferrin in surgically
created bone defects on bone regeneration around implants. J. Oral
Sci. 2015, 57, 7−15.
(52) Parhizkar, M.; Sofokleous, P.; Stride, E.; Edirisinghe, M. Novel
preparation of controlled porosity particle/fibre loaded scaffolds using
a hybrid micro-fluidic and electrohydrodynamic technique. Biofabri-
cation 2014, 6, No. 045010.
(53) Park, H.; Guo, X.; Temenoff, J. S.; Tabata, Y.; Caplan, A. I.;
Kasper, F. K.; Mikos, A. G. Effect of Swelling Ratio of Injectable
Hydrogel Composites on Chondrogenic Differentiation of Encapsu-
lated Rabbit Marrow Mesenchymal Stem Cells In Vitro. Biomacro-
molecules 2009, 10, 541−546.
(54) Ratner, B. D.; Gladhill, K. W.; Horbett, T. A. Analysis of in
vitro enzymatic and oxidative. J. Biomed. Mater. Res. 1988, 22, 509−
527.

ACS Omega Article

DOI: 10.1021/acsomega.8b02573
ACS Omega 2019, 4, 2225−2233

2233

http://dx.doi.org/10.1021/acsomega.8b02573

