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ABSTRACT
The physiological state of a cell is governed by a multitude of
processes and can be described by a combination of mechanical,
spatial and temporal properties. Quantifying cell dynamics at multiple
scales is essential for comprehensive studies of cellular function, and
remains a challenge for traditional end-point assays. We introduce an
efficient, non-invasive computational tool that takes time-lapse
images as input to automatically detect, segment and analyze
unlabeled live cells; the program then outputs kinematic cellular
shape and migration parameters, while simultaneously measuring
cellular stiffness and viscosity. We demonstrate the capabilities of the
program by testing it on human mesenchymal stem cells (huMSCs)
induced to differentiate towards the osteoblastic (huOB) lineage, and
T-lymphocyte cells (T cells) of naïve and stimulated phenotypes. The
program detected relative cellular stiffness differences in huMSCs
and huOBs that were comparable to those obtained with studies that
utilize atomic force microscopy; it further distinguished naïve from
stimulated T cells, based on characteristics necessary to invoke an
immune response. In summary, we introduce an integrated tool to
decipher spatiotemporal and intracellular dynamics of cells, providing
a new and alternative approach for cell characterization.
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INTRODUCTION
Cell stiffness is awidely usedmeasure for cellular biomechanics, and
has been used to differentiate between healthy and diseased cells
(Cross et al., 2007; Lim et al., 2010), cells in their diverse phenotypic
states (Ekpenyong et al., 2012; Swaminathan et al., 2011) and cells
acting in response to varying external biophysical stimuli (Kumar,
2014; Provenzano and Keely, 2011). An example is the increased
cellular stiffness of fibroblasts when adhered to substrates of
increasing firmness (Gupta et al., 2015; Solon et al., 2007). By and
large, the stiffness of a cell is dictated by its cytoskeleton, a highly
dynamic network of interconnected proteins that supports the cell,

giving it shape, and is responsible for cellular processes such as
migration, receptor internalization, endocytosis, exocytosis, and
interactions with the surrounding substrate and neighboring cells
(Baker et al., 2010; Kim and Coulombe, 2010). The cytoskeleton is
also the amalgamating center for inbound intracellular signals from
biophysical cues and outbound communication transduction
pathways from the nucleus, acting as a vital information highway
necessary for cell maintenance, homeostatic regulation and
locomotion (Bezanilla et al., 2015; Mullins, 2010). As such, the
cytoskeleton is a clear link between cellular biomechanics and
biological function; therefore, quantifying single-cell biomechanical
properties as a physiological metric has become vital in cell biology
research.

The technical limitations of many current cellular biomechanical
measurement protocols hinder their usefulness in studies that
investigate cell physiology under in vivo or truly biomimetic
conditions. Biomechanical measurements using whole-cell
deformation approaches, such as micropipette aspiration (Key and
Robinson, 2013), optical tweezers (Ekpenyong et al., 2012),
substrate stretching (Bartalena et al., 2011) or the microplate
stretcher (Hoffman and Crocker, 2009), yield global easy-to-
interpret single-cell measurements of biomechanical stiffness;
however, such methods require detaching otherwise adherent cells
or placing cells on a less biologically relevant substrate.
Furthermore, techniques such as atomic force microscopy (AFM)
(Haase and Pelling, 2015) and magnetic twisting cytometry
(Massiera et al., 2007) utilize nano-sized physical probes to
acquire biomechanical readings at subcellular regions of interest,
acquiring information of superior spatial resolution; at this scale,
however, intracellular non-uniformity causes considerable
variability in measured biomechanical responses, exacerbating the
already present heterogeneity in many cell populations. Most
importantly, these current techniques are unable to measure or
acquire dynamic mechanical properties adequately; for example,
data acquisition using AFM takes ∼15 min, but cells frequently
change shape at the millisecond to minute range, and is also not
compatible with high-throughput studies. Optical imaging can
capture images at time scales that are more physiologically relevant
than AFM (Haase and Pelling, 2015; Suresh, 2007). There is an
increasing interest in recreating the cellular microenvironment
through the introduction of appropriate and controlled biophysical
cues to the cells; for example, by designing custom micro-fluidic-
based cell culture chambers to mimic in vivo environments of fluid
flow. Equally, in a move away from traditional, yet limiting, two-
dimensional culture, some devices incorporate three-dimensional
matrices to house cells (Haessler et al., 2011; Pisano et al., 2015)
several of which allow live imaging during the exposure of cells to
bound and soluble cytokine sources (Polacheck et al., 2011), and
mechanical forces such as fluid shear stresses of different
magnitudes (Haessler et al., 2012). In comparison, intravitalReceived 19 April 2016; Accepted 12 July 2016
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imaging uses an actual in vivo system as a cell culture chamber
whereby cells of interest are marked fluorescently and imaging is
performed in situ (Kilarski et al., 2013). The aforementioned
biomechanical evaluation techniques are challenging to implement
in vivo or in complex biomimetic in vitro environments with
minimal perturbations; inherent background noise arising from
motion of the matrices or fluid forces present in more complex
systems could also mask cellular information.
Current in situ biomechanical measurement strategies, namely

traction force microscopy (TFM) and particle-tracking micro-
rheology (PTMR), require the introduction of foreign fluorescent
particles in the surrounding matrix (Hall et al., 2013) or within the
cells themselves (Wirtz, 2009). For the case of TFM, matrix-
embedded fluorescent particles and adjacent cells are tracked by
fluorescent image microscopy: as cell locomotion deforms the
matrices, pericellular particles are displaced accordingly. Particle
displacement fields are measured using digital image correlation
algorithms followed by surface traction estimates. Although this is
not a direct measurement of cell stiffness, the resultant cellular
interaction with the immediate surrounding substrate is assumed to
be a surrogate measure of the biomechanical state of the cell. More
advanced approaches make use of computationally expensive finite
element methods to bridge the gap between particle displacement
and intracellular mechanical properties, as an approximation of cell
stiffness (Zielinski et al., 2013). For the case of PTMR, as there is
intimate contact between the particles and intracellular structures,
movement of the particles within live cells is quantified through the
mean squared displacement (MSD) and interpreted as a
proportional quantifier of the mechanical state of the cells,
otherwise known as the complex viscoelastic modulus, which is a
contribution of both a storage modulus and a loss modulus that,
respectively, represent stiffness and viscosity (Wirtz, 2009). These
two methodologies can be used in biomimetic environments and are
appealing as they are used in conjunction with live-imaging
microscopy, revealing additional cellular dynamics otherwise lost
with end-point assays. However, the use of foreign fluorescent
particles embedded within the matrix (TFM) or injected into the
cells (PTMR) could have unknown downstream biological effects,
or might not be applicable in all systems (e.g. in vivo tissues).
Thus, developing efficient non-invasive computational tools,

which utilize time-lapse images for identification and
characterization of cellular biomechanical characteristics, would
be of value to the scientific community. In view of this, we propose
a novel computational tool, which takes as input live-imaging
datasets, for automated processing and storage of morphological,
migratory and biomechanical (viscoelastic) information for groups
of cells (Fig. 1). Time-lapse datasets are used as input to conserve
and capture the time-dependent response of cells. Changes in
cellular dynamics are a consequence of the response to biophysical
cues found in the microenvironment, signals in the form of: (1)
substrate stiffness, (2) paracrine and autocrine factors, (3) cell–cell
interactions, (4) biomechanical forces, and (5) intrinsic cell
physiology (Barker et al., 2015; Gajewski et al., 2013; Medema
and Vermeulen, 2011). The responsibility of the cell to maintain or
adjust cell shape or motility is dependent on cytoskeletal kinetics
and requires an exertion of internal cellular forces. The intimate
coupling between exogenous and cell-generated forces (Chen,
2008) implies the existence of an opposite external force, calculated
through minimization of sum of squared differences (SSD) between
images (Modersitzki, 2004; Vural and Frossard, 2013). As there is a
point-wise correlation between pixel points in the images and
material points of the cell during cellular deformation, movement in

the pixels can be translated into cellular strain. Image morphing
aims to bring the SSD to zero, iteratively moving pixels until two
consecutive images of the dataset are identical. The minimization of
the SSD is interpreted as the force required for pixel displacement
(Modersitzki, 2004; Vural and Frossard, 2013). The two variables
(force and displacement) are linked using the Navier–Stokes
equation for non-rigid viscous fluid flow and the resultant is a
strain field (ε) (M. Bro-Nielsen, Medical image registration and
surgery simulation, PhD thesis, Technical University of Denmark,
1996; I. Yanovsky, Unbiased nonlinear image registration, PhD
thesis, University of California, Los Angeles, 2008; Zitová and
Flusser, 2003). Iterative time-dependent strain information was
innovatively used for mechanical characterization through Kelvin–
Voigt fitting, allowing for measures of cellular stiffness (k) and
viscosity (η).

In order to apply an image-based program for analysis of cellular
biomechanical properties in real-time imaging, the image-morphing
algorithm is coupled with the automated cell segmentation and path
alignment program (CSPA, available at https://figshare.com/s/
a207830096d7cdd32164, see Data Availability section for
details), the latter yielding migration trajectories and cell
boundary data to provide single-cell characterization from multi-
cell images. The outcome of this is high-throughput analysis,
currently not possible in experimental techniques for biomechanical
assessment of cells.

RESULTS
We demonstrated the capabilities of our approach by analyzing
temporal differences between: (1) cells of different lineage, human
mesenchymal stem cells (huMSCs) before and after (huOBs)
exposure to osteoinduction conditions; and (2) cells of different
phenotype, collagen-encapsulated naïve CD8+ T-lymphocytes
(T cells) and T cells stimulated with phorbol 12-myristate-13-
acetate (PMA) and ionomycin to invoke an immune response.

Multi-criterion path alignment improves automated tracking
of live-imaged cells
The performance of the CSPA program was assessed by
examining the relationship between automatically extracted and
manually obtained data from randomly selected naïve T cell
(n=32, Fig. 2A) datasets. From the cell migration trajectories, we
analyzed mean square displacement (MSD, Fig. 2B–D) as the
temporal variable, and cell area information (Fig. 2E–G) as the
spatial variable. Corresponding manual and automated MSD
values are distributed roughly equally around a 1:1 line of
correspondence (Fig. 2C), with an overall average (absolute
percent difference) of 2.22% (Fig. 2D; Table S1). Manual
segmentation has been shown to, not only underestimate, but
also, incorrectly estimate the cell area by omitting the true edge of
the cell (Fig. 2F,G; Table S1). The natural three-dimensional form
of a cell will place it slightly out of the focal plane as blurry or
white, thus the ability of the program to adjust color thresholds
yields a more accurate, yet slightly larger, realistic cell area.
Although we find the manual estimates of area to be unreliable and
inconsistent (Fig. S1), they (manual and auto) are both consistent
when measuring area change (ΔA) (Fig. 2E).

Temporal analysis of differentiating huMSCs
We analyzed the temporal changes of huMSC biomechanics
(Fig. 3A), migration and morphological (Fig. 3B) parameters in
response to osteoinduction treatment, using our computational
approach. The huMSC physiological kinematics were analyzed
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from time-lapse images acquired for 24 h post-seeding, and
afterward compared to another similar set of images imaged
5 days after induction towards the osteoblastic lineage (huOB)
(Fig. 4). Success of the differentiation was confirmed through the
detection of alkaline-phosphatase-positive cells (Fig. 3C). On
average, a decrease in cellular stiffness (k) was measured when
huMSCs were induced to differentiate into huOBs (Fig. 3A)
[khuMSC=3.27±0.99 versus khuOB=3.18±0.64 (×10−4 Pa)].
Furthermore, we measured a corresponding increase in viscosity
[ηhuMSC=3.31±0.31 versus ηhuOB=4.82±0.33 (×10−1 Pa s)] (results
are mean±s.e.m., Fig. 3A). Osteoinduced huMSCs also showed
decreased average migration speeds [vhuMSC=2.83±0.38 versus
vhuOB=2.29±0.35 (×10−2 μm 15 min−1)], and morphologically a
slight increase in change in cellular area [ΔAhuMSC=1.28±1.80
versus ΔAhuOB=1.32±1.93 (×10−4 μm2)] (Fig. 3B) and declination
in the change in aspect ratio [ΔARhuMSC=2.29±4.49 versus
ΔARhuOB=0.53±5.84 (×10−3)]. Through comparison of scatter
color density plot distributions of temporal parameters of huMSCs
(Fig. 4A) and huOBs (Fig. 4B), we further revealed an emerging
cluster of cells after osteoinduction with two distinct sub-
populations distinguished by their different viscosity.

Temporal analysis of phenotypically different murine T cells
In contrast to the previous case of analyzing differentiating cells,
murine T-lymphocytes (hereafter T cells) embedded in collagen I
matrices examined with our developed computational tool, revealed
more distinct migratory, morphological and biomechanical
differences when comparing naïve to PMA/Iono-stimulated
T cells (Figs 5 and 6). Not only was there a measured increase in
T cell stiffness upon stimulation [knaïve=1.02±0.33 versus
kstimulated=2.30±0.29 (×10−3 Pa)] (results are mean±s.e.m.,
Fig. 5A), our findings further show that stimulated T cells
dwell spatially for periods of time, evident through decrease in
migration speeds [vnaïve=11.08±0.83 versus vstimulated=4.49±0.37
(μm 1.5 min−1)] (Fig. 5B), from migration path visualization
(Fig. 5C), and quantified by ensemble mean squared displacement
[MSDnaïve=6555.36 versus MSDstimulated=2128.95 (μm2)] analysis
(Fig. 5D). The low viscosity of naïve T cells increases after
PMA and ionomycin stimulation [ηnaïve=7.90±0.77 versus
ηstimulated=14.08±0.56 (×10−2 Pa s)]. Calculated absolute ΔA was
lower for the case of stimulated T cells [ΔAnaïve=1.66±2.21 versus
ΔAstimulated=5.37±1.54 (μm2)], as with their change in aspect ratio
[ΔARnaïve=2.17±5.85 versus ΔARstimulated=6.11±4.28 (×10−3)]

Fig. 1. Comprehensive non-invasive cell characterization. Schematic of the process. (A) First, bright-field images are generated through transmitted light
microscopy. (B.1) Time-lapse images are processed and segmented for cell identification, and morphology data extraction and cell perimeters are identified.
(B.2) Centroids are compared and aligned based on amulti-criterion algorithm. (B.3) An image-morphing algorithm is applied to pairs of images to generate strain
fields, for measuring stiffness and viscosity by fitting to a viscoelastic model. The segmentation process provides perimeter coordinates, used to frame cells,
which in turn isolates cellular strain fields produced with image morphing. (C) Output parameters are then analyzed for (D) characterization of cells.
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Fig. 2. See next page for legend.
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(Fig. 6A). A shift in the scatter color density plot distributions of the
temporal parameters is apparent after PMA and ionomycin
stimulation, revealing linear correlations between ηstimulated and
ΔAstimulated, ηstimulated and ΔARstimulated, and kstimulated and
ΔAstimulated (Fig. 6B).

DISCUSSION
We have developed a computational platform that couples two
modular programs, one automatically extracting migratory and
morphological information of cells, and the other measuring cellular
viscoelastic properties from live-imaging datasets. Together, the
programs are a non-invasive and label-free tool which we
validate and demonstrate the capabilities of by testing on two case
studies: (1) distinguishing stem cells and stem cells differentiated
into the distinct osteoblastic lineage, and (2) naïve T cells and
stimulated T cells, which provide a biomimetic example different
from the huMSC model, with increased migratory and morphologic
dynamics. Mechanical parameters of the cells are compared by first
measuring changes in relative stiffness differences in differentiated
and undifferentiated stem cells, and compared to results found with
AFM studies. Furthermore, we distinguished naïve from stimulated
T cells with expected characteristics necessary to invoke immune
response. Interestingly, we detected increased viscoelasticity,
decreased random migration and morphologic behavior from
stimulated T cells as compared to naïve T cells. These changes in
behavior are consistent with newly acquired functional requirements
of stimulated T cells as an effector arm of the immune response in
peripheral tissue.
In reference to cell (or particle) tracking, a number of algorithms

and tools have been proposed for both semi-automated and
automated segmentation and tracking of (labeled) cells
(Lamprecht et al., 2007; Li et al., 2008; Miura, 2005). However, a
one-size-fits-all segmentation and cell tracking program has yet to
be established. We found that for the case of unlabeled (i.e. without
fluorescent staining of the nucleus or cytoplasm) multi-object
tracking, there are only few programs available (Hand et al., 2009;
Huth et al., 2010). Of those available, even fewer can segment and
track multiple-fast moving and unlabeled cells; thus, such
approaches typically require customized programmable criteria to
meet the needs of a specific goal. For this study in particular, we had
several objectives that needed to be met (requiring in-house
customization): (1) to accurately segment multiple cell boundaries
in each bright-field image, (2) store both the centroids and area for
each cell in each image, (3) link each cell in each image with itself in
subsequent images, and (4) extract cell boundaries, which is the link
to part two of our platform. There were some obstacles specific to
our datasets: first, cells moved fast, often entering and exiting the
focal plane; second, cell paths were hard to accurately align based on
commonly used nearest neighbor algorithms alone, mainly due to

interference of other cells in the vicinity (J.-Y. Tinevez, Simple
Tracker, MATLAB File Exch, 2012). The two mentioned issues
cause cell paths to be substantially shorter (by∼66%, i.e. tracked for
short time frame when compared to manual) and either a new
disjoint path would form or cell paths would jump tracks,
continuing along the path of another cell (see Fig. S2). For the
case of CSPA, we found that the inclusion of multi-criteria path
alignment feature significantly improved the accuracy of detected
cell paths: cells were tracked for their time duration within the focal
plane and cells did not jump tracks with the inclusion of minimizing
spatial shape change (per cell) across frames.

The use of image morphing to acquire mechanical characteristics
is novel and expected to be applicable to a wide range of biological
investigations. The algorithm captures cellular stiffness and
viscosity, which can be used for relative comparison against
appropriate controls. Traditional mechanical testing measures the
deformation of an object when subjected to a known applied force,
here forces are approximated from images instead. Time-lapse
images have been used successfully in estimating forces in a wide
array of fields, including vision object detection, robotics and
satellite imagery, applications where direct measurements of
deformations are not possible (Jagannathan et al., 2011). The
external applied force that deforms the cells is treated as an opposing
force to outward exertion of internally generated forces (detailed in
the User Guide Section 3.1 available at https://figshare.com/s/
a207830096d7cdd32164). This coupling between exogenous and
endogenous-cell-generated forces is simply described by Newton’s
3rd Law and further justified through detailed mechanotransduction
(Chen, 2008) principles. The image similarity measure is taken as
the driving force of the morphing process (Modersitzki, 2004), the
applied force field required to morph (transform) one image onto
another; analogous to the force required to deform an object from
one shape (deformation) to another. Image morphing is approached
through minimizing the similarity measure (SSD) between two
images (Modersitzki, 2004; Vural and Frossard, 2013). We
calculated force fields from detectable changes in intensity values
of consecutive image pairs; this takes into account both the shape of
the cell as well as information within the cytosolic region. It should
be noted that peripheral shape alone has been reported to be
sufficient in predicting magnitude and direction of cell-generated
forces (Lemmon and Romer, 2010).

The magnitude of the image-based force approximations is solely
dependent on imaged cellular deformation, which could be
influenced by other factors such as the stiffness of the substrate.
Indeed this is the case, as the said digitally measured mechanical
properties of cells is a function of the local microenvironment over
time and not a single absolute value assumed by experimental
techniques. For the case of absolute measures, for example, to
optimize stem cell differentiation protocols, an image movement to
force calibration should be performed when possible. Our method is
suited to evaluate relative changes; we verified that an increase in
physical force differs from image-based force approximation by a
simple scaling factor (detailed in User Guide Section 3.4).

The number of studies using AFM to quantify huMSC and huOB
stiffness allowed us to then gauge the biomechanical properties
measured using the image-morphing algorithm (Bongiorno et al.,
2014; Darling et al., 2008; Docheva et al., 2008; Titushkin and
Cho, 2007; Yourek et al., 2007). Our measurements showed a drop
in cellular stiffness after huMSCs were induced to differentiate into
huOBs, an observation that is likely linked to the decline in both
cytoskeletal actin thickness and order in osteoblasts as reported by
studies using fluorescent imaging of phallodin-stained cells

Fig. 2. Temporal and spatial assessment of CSPA. (A) Comparison of
manually (solid lines) and automatically (dashed lines) obtained T cell paths
(32 individual trajectories from three separate datasets) are shown in two and
three dimensions. (B) Corresponding manual (MSDm) and automated (MSDa)
MSD values (C) are distributed roughly equally around a 1:1 line of
correspondence. (D) Percent difference between MSDm and MSDa is 2.22%
on average, indicating that centroids are well-measured with either method
(see Table S1). (E) Best fit distributions of measured area are not consistent
when comparing manual (Am) to automated (Aa) values, despite the
distribution of area change (ΔAm and ΔAa) being consistent. (F) Plot of Am and
Aa, and (G) percent differences display a consistently higher Aa. This indicates
that manually measured areas are unreliable and inaccurate. The improved
consistency in area estimation by automated measurements can clearly be
seen by eye (see Fig. S1).
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(Titushkin and Cho, 2007; Yourek et al., 2007). Although studies
produced similar qualitative actin cytoskeleton changes, they
interestingly reported conflicting trends when acquiring k values
from huMSCs and huOBs using AFM (Titushkin and Cho, 2007;
Yourek et al., 2007), a discrepancy that further emphasizes the
present challenges in measurement repeatability and reproducibility

using high-resolution apparatus. Additional evaluation against
other studies which also use AFM techniques for stiffness
measurements (Table S2) revealed that our resulting huOB to
huMSC k ratio of 0.97 (khuOB/khuMSC=0.97) measured by image
morphing was within the documented range of 0.44–2.41
(Bongiorno et al., 2014; Darling et al., 2008; Docheva et al.,

Fig. 3. Comparative characterization of huMSCs
differentiated towards huOBs. (A) We measured an
overall decrease in temporal stiffness [khuMSC=3.27±
0.99 versus khuOB=3.18±0.64 (×10−4 Pa)], and the
resultant khuOB/khuMSC ratio was within the reported
range from researchers using AFM (Table S2).
(B) Additionally, huOBs have decreased migration
velocities [vhuMSC=2.83±0.38 versus vhuOB=2.29±0.35
(×10−2 μm 15 min−1)] and were shown to have a
declining area [ΔA=−1.28±1.93 (×10−3 μm2)].
When huMSCs differentiated into (C) alkaline-
phosphatase-positive huOBs viscosity increased
[ηhuMSC=3.31±0.31 versus ηhuOB=4.82±0.33
(×10−1 Pa s)]. (D) Representative deformation and
maximum principle strain maps are shown. In total, the
number of huMSCs and huOBs analyzed (90 temporal
points per cell; 15-min interval for 24 h) were 28 and 30,
respectively. Numerical results are mean±s.e.m.
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2008; Titushkin and Cho, 2007; Yourek et al., 2007). Stiffness
calculated from experimental force-deformation studies, such as
AFM, have been reported to be difficult to interpret (Janmey and
McCulloch, 2007). Large variation in collected data, despite having
reproducible results, is attributed to intracellular heterogeneity.
Moreover, cytoskeletal composition, its associated proteins, and

other cellular components fluctuate with respect to space and time,
which is an additional characteristic that our platform is able to
capture. Furthermore, CSPA detected a decrease in migratory
capacity and morphological changes after osteoinduction, similar to
that reported by Ichida et al. (2011). We further emphasize that
computational image-morphing techniques as we report here can be

Fig. 4. Probability density plots, correlation and least squares fit of measured biomechanical properties, morphological and migration parameters of
osteogenically differentiated huMSCs. (A) huMSCs are induced to differentiate into (B) huOBs. Significant (P<0.001, P-values are derived from Student’s t
distribution), but weak, correlations between stiffness and viscosity, and viscosity versusmigration distance and area change (ΔA) exist. There is, however, a clear
change in viscosity as huMSCs differentiate into huOBs: two distinct distributions of viscosity emerge (B, top row, arrowheads). There is no visible change in
measured cell stiffness, but a difference in data spread is apparent as huMSCs (n=28) differentiate into huOBs (n=30) (A and B, bottom row, dashed boxes). The
qualitative differences in the density plot before and after differentiation are quantified through changes in statistical correlation results. It is interesting to note that
the probability density plot (representing the majority of cells) displayed a single viscosity peak at ∼10−1 Pa s (A, row 1, panels 2, 3, 4). However, after being
osteoinduced for 5 days, the viscosity splits into two distinct groups at ∼10−1 and 10−1.5 Pa s (B, row 1, panels 2, 3, 4). Numerical results are mean±s.e.m.
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used in general as a label-free marker to distinguish cells in culture.
Illustrating this, through intracellular deformation and
corresponding strain fields, is the observation of a more
homogenous population of cells prior to osteoinduction
(Fig. 3D), signifying that differentiation into the osteoblastic
lineage is non-uniform.

Current evidence supports the hypothesis that robust T cell
activation and function is dependent upon mechanotransduction
pathways initiated at the immunological synapse (Comrie et al.,
2015; Xie et al., 2012), however, very little is known about
lymphocyte sensing of biophysical properties within peripheral
tissues. Although naïve T cells are activated in cell-dense lymphoid

Fig. 5. Comparative characterization of naïve, and
PMA- and ionomycin-stimulated murine CD8+

T cells. (A) Stimulated T cells have increased stiffness
[knaïve=1.02±0.33 versus kstimulated=2.30±0.29
(×10−3 Pa)] and viscosity [ηnaïve=7.90±0.77 vs
ηstimulated=14.08±0.56 (×10−2 Pa s)] when compared
to naïve, unstimulated controls. (B) Migration velocity
slowed down after stimulation [vnaïve=11.08±0.83 vs
vstimulated=4.49±0.37 (μm 1.5 min−1)] with an
increased change in area [ΔAnaïve=1.66±2.21 vs
ΔAstimulated=5.37±1.54 (μm2)]. (C) Naïve T cells
surveyed a broader surrounding area, of (D) ∼3.08-
fold more based on ensemble mean square
displacement plots. (E) Representative deformation
and maximum principle strain maps are also shown.
In total the number of naïve and stimulated T cells
analyzed (80 temporal points per cell, 1.5 min interval
for 2 h) were 49 and 39, respectively. Numerical
results are mean±s.e.m.
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organs where collagen fibers are encased in fibroblastic reticular
cells, they function within protein-rich peripheral tissues
(Nourshargh et al., 2010). Integrins, and downstream cytoskeletal
machinery, are required for lymphocyte extravasation and interstitial
migration through inflamed peripheral tissue (Overstreet et al.,
2013), and T cells are found in close association with matrix fibers in
skin, brain and tumors (Boissonnas et al., 2007; Mrass et al., 2006;
Wilson et al., 2009). The distinct extracellular biophysical properties

at sites of T cell activation and function indicate that T cells
themselves acquire distinct, intrinsic biophysical properties to enable
migration and function within these microenvironments. Consistent
with this hypothesis, we measured an increased stiffness of activated
T cells as compared to their naïve counterparts when stimulated with
PMA and ionomycin in type I collagen gels (Fig. 5A; Movie 1). The
altered cellular viscosity correlatedwith increased dwell times in gels
as well as decreased migration velocities (Fig. 5B). Literature

Fig. 6. Probability density plots, correlation, and least squares fit of measured biomechanical properties, morphological, andmigration parameters of
naïve, and PMA- and ionomycin-stimulated CD8+ T cells. Analysis of computer model output for (A) naïve murine T cells (n=49) and (B) PMA- and ionomycin-
stimulated T cells (n=39). Significant (P<0.001, P-values are derived from Student’s t distribution), but weak, correlations between stiffness and viscosity,
and viscosity versus area change (ΔA) and migration distance exist. Correlation increases after activation, and the emergence of spread in cell ΔA is evident
(B) andmigration distances decrease (A and B, dashed boxes). Themeasured stiffness, viscosity, ΔA and ΔAR distributions broaden when T cells are stimulated.
Numerical results are mean±s.e.m.
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suggests microenvironmental feedback influences T cell elasticity
and function; impaired cytotoxic T cell infiltration and function is
observed in many solid tumor models where effector T cells are
excluded from tumors and instead lie in close association with
stiffened extracellular matrix fibers (Mrass et al., 2006). These
remodeled fibers (Provenzano et al., 2006), and their stiffness
(Levental et al., 2009) and T cell exclusion (Galon et al., 2012) are
correlated with disease progression and poor overall survival. To
summarize, the experimentally observed T cell response
(progression from naïve to immunological state) shows strong
support for the image-based measured stiffness differences and
associated migration and morphological characteristic changes.
Probability density plots with corresponding heat maps, correlation
and least squares fitting were performed to determine relationships
between the output parameters (Fig. S4). Using these basic statistical
measures can reveal descriptive biology from the perspective of cell
structure versus function.

This is the first time, to our knowledge, that an image-morphing-
based algorithm has been applied as a tool to target and capture
intracellular biomechanical properties of living cells. This
application was facilitated through the CSPA program to enhance
the quantity and quality of data output. The measured cellular data
are gathered rapidly and free of inherent operator variance, as it is
able to bypass the laborious process of manual segmentation and
tracking. Methods of measuring stiffness and viscosity values of
cells have differing advantages, and the method of choice is specific
to the biological investigation. Our approach does not differ, but is
significantly attractive as it offers a temporally conserved non-
invasive measurement of intracellular properties, in conjunction
with spatio-temporal characteristics of single cells. We present an
alternative straightforward method to characterize imaged cells; our
target usage is in vivo intravital imaging and in vitro 3D
experiments. This work provides an initiative for future
implementation, with real-time instant feedback, linked to a

Fig. 7. Automated CSPA. The CSPA program consists of three main steps. (A) Step 1 imports each raw image as well as its complement image for pre-
processing (i) erosion with structuring element, (ii) adaptive thresholding, (iii) noise removal, (iv) conversion to binary, and (v) final segmentation, object labeling
and parameter identification. (B) Step 2 involves the alignment of objects identified in Step 1 into migration trajectories based on two criteria: minimum distance
(D) and minimum change in area (ΔA). Finally, (C) in Step 3, all data is stored using optimally matched cell indices. For this example, centroids and
corresponding parameters are stored systematically under a path number; there are five paths in image t−Δt. The six objects in image t are then labeled randomly
and each cell (1) matches with an existing cell path, (2) matches with a path in an image at an earlier time point, or (3) initializes a new path. When comparing
consecutive images, the calculated distance between centroids and ΔA of each cell, are then stored in a matrix and scanned. A one-to-one correspondance
ensures each cell in t is aligned with its single best match in another image. Here, the third object identified in image two will join path number 2 and the second
object which did not join a path initializes a new sixth path. When the algorithm terminates, centroids, perimeter coordinates, and area are stored as (x,y)
coordinates, numeric arrays, and the sum of pixels within the outlined segmented objects, respectively.
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Fig. 8. Extraction of intrinsic cellular
viscoelastic properties. (A) Iterative
strain information is captured through the
morphing process. (B) Extracted average
maximum principle strain versus time data
are fitted to a Kelvin–Voigt viscoelastic
model to determine intracellular
biomechanical properties. (C) Force fields
are calculated based on image differences,
and (D) used as input to a viscoelastic
Navier–Stoke equation to determine
velocity fields. (E) Finally, the material
derivative yields a related displacement
field from which we can obtain an Almansi
strain tensor, yielding comprehensive
strain information for the cell(s).
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biologically based mathematical modeling framework. This will
facilitate steady data streaming for applications such as cell sorting
systems, stem cell fate prediction, and assessment of tissue
engineering construct prior to translational therapies, all without
compromising the integrity of the biological system.

MATERIALS AND METHODS
Cell differentiating assay
Primary human adult mesenchymal stem cells (huMSCs) were obtained
from Lonza (Basel, Switzerland) and cultured according to the
manufacturer’s instructions and utilized to determine the feasibility of
measuring differences in differentiating cells. huMSCs were seeded at a
density of 500 cells cm−2 on type I collagen (Sigma Aldrich, St Louis, MO)
tissue culture plates. Phase-contrast images were acquired at 15-min
intervals for 24 h using a customized imaging microscope (ImageIQ Inc.,
Cleveland, OH) before and 5 days after osteoinduction. The imaging
microscope maintained ambient cell culture conditions (37°C and 5%CO2).
Osteogenic induction was performed using a StemPro(R) Osteogenesis
Differentiation Kit (Gibco, Life Technologies, Carlsbad, CA) according to
the manufacturer’s instruction. At day 6, after live imaging, osteoblast
differentiation was detected by alkaline phosphatase expression.

Cell phenotypic assay
We measured and compared different phenotypes of CD8+ murine
T-lymphocytes (T cells). Naïve CD8+ T cells from C57BL/6 mice were
isolated by magnetic sorting (negative CD8 sort, EasySep Stem Cell
Technologies) and embedded into 1.5 mg ml−1 type I collagen (Advanced
Biomatrix Inc., Carlsbad, CA) at a density of 25,000 cells ml−1. Following
gel formation, naïve CD8+ T cells were either left untreated or stimulated
with 10 ng ml−1 phorbol 12-myristate-13-acetate (PMA) and 1 µg ml−1

ionomycin (Sigma, St. Louis, MO). Cells were imaged at 1.5-min intervals
for 2 h using a commercial phase-contrast inverted microscope (Axiovert
200, Carl Zeiss Microscopy GmbH, Munich, Germany) equipped with an
enclosed incubation system (Incubation System S, PeCon GmbH) to
maintain physiological ambient conditions. All animal experiments were
conducted in accordance with approval from the Cantonal Veterinary Office
of Canton de Vaud, Switzerland according to Swiss Law.

Computational programs
The image processing programs (1) for image morphing and (2) for cell
segmentation path alignment (CSPA) were developed in MATLAB (The
MathWorks Inc., Natick, MA) as a modular program, each capable of
independent usage. The programs can be easily adapted for the analysis of a
wide variety of time-lapse data, and the source code is available from https://
figshare.com/s/a207830096d7cdd32164. Readers are encouraged to refer to
the user guide that accompanies this code for detailed explanation of the
technique employed.

Automated CSPA
The newly developed CSPA program (Fig. 7) is a user-friendly, highly
flexible algorithm designed to analyze phase-contrast time-lapse videos of
live-cell dynamics under varied experimental conditions to extract migration
and time-variant morphological parameters (Fig. S3). The program follows
a sequence of logical steps: objects within each image are identified through
erosion with a structuring element, followed by adaptive thresholding and
subsequent noise removal (Fig. 7A).

Cell identification and alignment occurs through consecutive image
comparisons, where all cells are measured against each other, through their
displacement and shape fluctuation, measured by the magnitude of area
change (ΔA) (Fig. 7B.1). Top-down and bottom-up data scanning is
designed to allocate the indices of optimal combinations of cells using the
criteria of minimum movement and subsequent minimum ΔA (Fig. 7B.2).
Following this process, cells are treated as ‘old’ if matched or ‘new’ if
unmatched (Fig. 7B.2). Objects appear or disappear from the field of view
during the course of the image sequence. Moreover, objects also become
temporarily occluded from the field of view. This issue is addressed with an
additional customized data mapping option. An ‘old’ object implies it will

align with an already-initialized path in one of two ways: (1) direct mapping
with itself in the previous (t−Δt) image; or (2) mapping to itself in the t
−n×Δt (where n is the image number) image; for this case, a customized data
mapping scheme is required. Unmatched objects are tested against the
closest prior image with at least as many objects as the current image, if the
two (distance and area) criteria are met, the current unmatched object will
link with the path of the matched cell. An object identified as ‘new’ will
initialize a new cell path. All indices are systematically stored and used for
data storage for subsequent analysis of time-dependent cell properties
(Fig. 7C). As a measure of algorithm performance, randomly selected naïve
T cells were manually tracked using ImageJ (Schneider et al., 2012) for
comparisons with their automated counterparts. For each live-imaging
dataset with time interval (Δt), each sequential position pt (xt, yt) of each cell
of interest is calculated as the center of mass, found by clicking on a mouse
and tracing the outline (perimeter) of the cell (Fig. S1). Automated tracking
algorithms took an average of 0.12 (0.06) min per dataset; manual tracking
alone took on average 12.57 (12.32) min (the numbers in brackets refer to
the s.d.). Manual tracking of individual cells can take between 1.50 min and
55.20 min, tracking identical cells using CSPA takes between 3.13 s up to a
maximum of 14.04 s, a 99% decrease in time (Table S3).

Measuring cell biomechanics through image morphing
Cell shape is never constant. Cell migration and dendrite extensions present
the most drastic change in morphology, which exhibit flow and squeezing-
like characteristics during these processes. To capture the relatively large
complex displacements during shape change, we adopted a non-rigid
viscous fluid flow registration approach (Bro-Nielsen and Gramkow, 1996;
D’Agostino et al., 2003; Zitová and Flusser, 2003) (Fig. 8), also known as
image morphing (Fig. S2). Sequential pairs of images are denotedM(x)|t and
SðxÞjtþ4t , where M(x) is the moving image that is morphed into S(x), the
static image (Movie 2a). The morphing process determines a displacement
field u(x) so that the difference betweenM(x−u(x)) and S(x) is minimized or
equal to zero. This displacement is dependent on the balance of forces
within the fluid as determined by the Navier–Stokes partial differential
equation for compressible viscous fluids using the Eulerian reference frame:

DnðxÞ þ rðr � nðxÞÞ ¼ f ðx; uðxÞÞ; ð1Þ
where ν(x) is the velocity field, f(x, u(x)) is the force field that is used to drive
the viscous flow; here, we define f(x, u(x)) as derivative of the sum of
squared difference between the images (Modersitzki, 2004; Vural and
Frossard, 2013):

f ðx; uðxÞÞ ¼ �½Mðx� uðx; tÞÞ � SðxÞ�rM jx�uðx; tÞ: ð2Þ
Eqn (1) is solved for v(x,t) using the force field obtained from Eqn (2), and
the corresponding displacement field u(x,t) can be calculated using the
material derivative, Eqn (3), a time rate change of a property on a particle in
the a velocity field, in this case displacement:

vðx; tÞ ¼ @uðx; tÞ
@t

þ vðx; tÞ � ruðx; tÞ: ð3Þ

A forward finite difference approach, with iterative time interval n, is used to
extract an estimate of the time derivative Eqn (4):

uðx; tnþ1Þ ¼ uðx; tnÞ þ ðtnþ1 � tnÞ½I þruðx; tnÞ�vðx; tnÞ
¼ uðx; tnÞ þ ðtnþ1 � tnÞ½Fðx; tnÞ�vðx; tnÞ:

ð4Þ

This resultant displacement field is applied to M(x, tn) to yield M(x, tn+1)
through image interpolation, this sequence of calculation continues until f
(x, u(x, t)) or the mean squared error between M(x, tn) and S(x) is below a
user-allowable tolerance. The finite strain theorem allows Euler–Almansi
strain tensors to be obtained from the deformation gradient:

eðx; tnÞ ¼ 0:5½I � Fðx; tnÞ�TFðx; tnÞ�1�; ð5Þ
where I is the identity matrix and the strain components are as follows,
e(x, tn)=[exx(x, tn) exy(x, tn);eyx(x, tn) eyy(x, tn)]. The iterative process calculates
a temporal average strain field from principal strains, ε1 and ε2 (Movie 2b,c).
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From this, we derive parameters of viscoelasticity by fitting the Kelvin–
Voigt viscoelastic mechanical model (Ekpenyong et al., 2012; Lim et al.,
2006). We observed the presence of pericellular noise when implementing
the image-morphing program on cells embedded in 3D collagen gels, where
cellular forces pull on collagen fibrils creating micro motion. We tackle this
issue by calling the CSPA program for automated cell perimeter coordinates
(Fig. 7B), for use as a mask in the extraction of strain information.

Statistics
Reported measurements are in the form of mean±s.e.m. Relationships
between output parameters were assessed and strength is indicated by the
Pearson’s linear correlation coefficient (r); the significance of the
relationship is expressed by probability levels (P-value).
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