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Abstract

An efficient method for Bayesian inference in stochastic volatility models uses

a linear state space representation to define a Gibbs sampler in which the volatili-

ties are jointly updated. This method involves the choice of an offset parameter and

we illustrate how its choice can have an important effect on the posterior inference.

A Metropolis-Hastings algorithm is developed to robustify this approach to choice

of the offset parameter. The method is illustrated on simulated data with known

parameters, the daily log returns of the Eurostoxx index and a Bayesian vector au-

toregressive model with stochastic volatility.
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1 Introduction

It is known that the volatility of many economic variables vary over time. Initial

work on time-varying volatility often considered asset price returns. Over the long

term, the volatility of equity returns may appear to be stable but usually there are

periods of high volatility and calm market periods when the volatility may be low

(Enders, 2004). Several approaches have been developed to model this time-varying

volatility. In ARCH and GARCH models (Engle, 1982; Bollerslev, 1986), the volatility

is modeled as a function of the lagged values of the asset returns and the volatility.

Alternatively, stochastic volatility models assume that the volatility follows a known

stochastic process such as an AR process for the logarithm of volatility (see e.g. Har-

vey and Shephard, 1996).

In this paper, we will concentrate on the Bayesian estimation of stochastic volatil-

ity models (see e.g. Jacquier et al., 1994; Kim et al., 1998; Chib et al., 2002). The asset

returns may be expressed as function of past returns or other economic variables and

the log volatility is modeled as a separate AR process. A simple stochastic volatility

model assumes that yt, the log return at time t, can be expressed as

yt = eht/2νt, t = 1, . . . , T (1)

ht = µ+ φ(ht−1 − µ) + σηηt.

where νt and ηt are independent error terms for which νt
i.i.d.
∼ N(0, 1) and ηt

i.i.d.
∼

N(0, 1), and ht is the log volatility at time t. The model assumes that the log volatility

ht follows an AR(1) process with parameters µ, φ, and ση.

Bayesian inference is complicated since this is a non-linear state space model.

Several Markov chain Monte Carlo (MCMC) methods have been developed to sam-

ple this class of models. Jacquier et al. (1994) used one-at-a-time updating of ht with

a carefully chosen proposal distribution (one-at-a-time or single move updating is
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often criticised for higly correlated samples). Samplers which update a block of ht’s

often lead to better mixing. For example, Jensen and Maheu (2014) propose to up-

date a block of ht in an asymmetric, nonparametric stochastic volatility model.

The model (1) can be expressed in linear state space form for ht using trans-

formed data log y2t = ht + log ν2t . Kim et al. (1998) (KSC) approximate the distribu-

tion of log ν2t using a normal mixture distribution leading to a Gaussian linear state

space form for ht conditional on the mixture states for each observation. This allows

the volatilities h1, . . . , hT to be updated using Forward Filtering Backward Sampling

(FFBS) techniques (Carter and Kohn, 1994; Frühwirth-Schnatter, 1994). In order to

make the approximation robust for small values of yt, a small offset parameter c is

used and log(y2t + c) is used in place of log y2t as the transformed data. This leads

to samples from an approximate posterior distribution for the parameters of the SV

model and h1, . . . , hT . KSC suggest an importance sampling scheme for estimating

posterior quantities using the approximate posterior as the importance sampling

distribution. However, as with any importance sampler, results can become biased

if the importance sampling distribution (the approximation) is sufficiently different

to the actual posterior distribution. This can be the case if c is poorly chosen. The ap-

proach has been developed in various directions. Chib et al. (2002) consider models

with Student-t distributed innovation, exogeneous variables and jumps in obser-

vations. Omori and Watanabe (2008) consider an asymmetric stochastic volatility

model and allow correlation between the returns and the volatility which allows the

modelling fo the leverage effect. A multivariate normal approximation is used to

express the model in a linear state space form with Gaussian errors. Results show a

better performance compared to a single move sampler. More recently, Kastner and

Frühwirth-Schnatter (2014) developed centring methods.

More recently, the KSC sampler has been applied to more complicated mod-
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els. For example, Belmonte et al. (2013) consider dynamic regression models with

stochastic volatility

yt = Xtβt + eht/2νt, t = 1, . . . , T (2)

ht = µ+ φ(ht−1 − µ) + σηηt.

or Clark (2012) builds a vector autoregressive model with stochastic volatility, which

will be further considered in this paper. Let yt be a (p × 1)-dimensional vector of

economics variables and xt be a (q×1)-dimensional vector of deterministic variables

measured at time t. The data modelled as

Π(L)(yt −Ψxt) = ǫt (3)

where Ψ is a (p×q)-dimensional vector of coefficients, Π(L) = Ip−Ψ1L−Ψ2L
2 . . .ΨkL

k

is a lag polynomial and νt are independent errors. The errors ǫt are modelled using

a factor stochastic volatility model. Let A be a lower triangular matrix with 1’s on

the diagonal then

ǫt = A−1Λ0.5
t νt, νt ∼ N(0, Ip),

Λt = diag(eh1,t , eh2,t , . . . ehp,t),

hi,t) = hi,t−1 + ση,iηi,t, ηi,t
iid
∼ N(0, 1) ∀i = 1, 2, . . . , p.

Bayesian inference is made using a Gibbs sampler and the volatilities are updated

using the KSC method in the approximate model (i.e. using r⋆t = log((yt−Xtβt)
2+c)

for the dynamic regression model or r⋆t = AΨ(L)(yt − Ψxt) + c for the vector au-

toregression model) but other parameters (such as βt) are updated using the correct

(rather than the approximate) stochastic volatity model. Although, this seems to

have little effect on inference, the Gibbs sampler is not properly specified. In addi-

tion, in these models, the effect of c is harder to understand since the scale of r⋆t can

change substantially between iterations.
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This paper makes two main contributions. Firstly, we develop an MCMC frame-

work for sampling from the posterior distribution of the SV model (rather than an

approximation to the SV model) using the KSC method as a proposal in a Metropolis-

Hastings step for updating the volatilities. Secondly, we introduce a method for

specifying the offset parameter using standardisation that robustifies the MCMC al-

gorithm to the scale of the data.

The paper initially considers the problem of sampling the time-varying volatili-

ties in the stochastic volatility model in (1) and considers more complicated models

in the examples. The remainder of the paper is organised as follows. Section 2 de-

scribes the Kim et al. (1998) method to linearise the log volatility model and the

difficulty of using an appropriate value of the offset parameter c is highlighted. In

section 3, a standardisation method is introduced and a Metropolis-Hastings (M-H)

step is described to propose volatility parameter h1, . . . , hT using Forward Filtering

Backward Sampling (FFBS). Results using simulated data, Eurostoxx daily log re-

turns and a vector autoregressive model with stochastic volatility are discussed in

section 4. Section 5 concludes.

2 Linear state space method

In this section, we review the sampling method of KSC and illustrate the effect of

choosing c. KSC suggest transforming the observations in the SV model in (1) so

that

log y2t = ht + log ν2t , (4)

which is now linear in ht. The error term log ν2t has a log χ2
1 density, which they

show can be accurately approximated by a normal mixture distribution. To make

the method robust for small or zero values of yt, a small offset parameter c is used
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(Fuller, 2009) so that y2t is replaced by y⋆t = y2t + c. This leads to the following

representation of the model in (4),

log y∗t = ht + log ν2t (5)

ht = µ+ φ(ht−1 − µ) + σηηt.

KSC suggest approximating the distribution of zt = log ν2t , which is the logχ2
1 dis-

tribution, by the density

p(zt) =

7
∑

i=1

qifN (zt|mi − 1.2704, v2i )

where fN (x|µ, σ2) is the normal density with mean µ and variance σ2. Introducing

a mixture state indicator st for t = 1, . . . , T allows the model to be written in a linear

state space form as

log y∗t = ht +mst − 1.2704 + vstǫt, (6)

ht = µ+ φ(ht−1 − µ) + σηηt,

where ǫt and νt are independent for which νt
i.i.d.
∼ N(0, 1) and ηt

i.i.d.
∼ N(0, 1), and

p(st = i) = qi. This allows a Gibbs sampler to be defined where the parameters

of the SV model can be updated from their full conditional distributions and the

Gaussian, linear state space form in (6) allowed KSC to block sample the volatility

parameter h = (h1, h2, . . . , hT ) using the simulation signal smoother (De Jong and

Shephard, 1995). The method samples from an approximate posterior distribution

and KSC describe how an importance sampler, with the approximation employed

as importance sampling distribution, can be used to estimate posterior quantities of

interest.

The choice of c can have a large effect on the inferences. Kim et al. (1998) use

c = 0.001 for the Mixture Offset parameter, but state that “it is possible to let c

depend on the values taken by y2t ”. To illustrate the effect, data were generated
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c = 10−n

n Sample Sample

mean variance

2 5.4019 0.0009

3 3.1361 0.0036

4 1.0933 0.1046

5 -0.2892 0.8586

6 -0.9314 2.3086

7 -1.1706 3.6025

8 -1.2578 4.4397

9 -1.2903 4.8983

10 -1.3022 5.1186

c = 10−n

n Sample Sample

mean variance

2 -1.0534 2.8484

3 -1.2197 3.9463

4 -1.2728 4.5070

5 -1.2879 4.7261

6 -1.2912 4.7842

7 -1.2917 4.7930

8 -1.2917 4.7940

9 -1.2917 4.7941

10 -1.2917 4.7941

Table 1: Sample mean and variance of log(y2t + c) − ht when h is simulated using µ =

−10, φ = 0.95, σ2
η = 0.012 (left hand table) and when yt is simulated directly from N(0, 1),

using different values of the offset parameter c.

using the SV model in (1) with µ = −10, φ = 0.95 and ση = 0.01. The sample

mean and sample variance of log(y2t + c) − ht for 1500 generated values are shown

in Table 1. Since the data is generated, it follows that log y2t − ht follows a log(χ2
1)

distribution whose mean is -1.2704 and whose variance is 4.93. Difference between

these values of the mean and variance of log(y2t + c) − ht shows the effect of c. The

sample mean and variance are only close to the true values when c is smaller than

10−9. For larger values of c, the sample mean is too large and the sample variance is

too small. The value chosen by KSC works well if the log returns are on a unit scale

but works badly in this case when µ = −10.
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The simulation results suggest that we can only choose a single value of c for all

data if we can scale the data appropriately. In more complicated models, for example

in a regression setting with stochastic volatility where yt is modelled as a function of

other variables, the residuals could depend on the current values of the parameters

in the sampler. In this case, it would be difficult to set one value of c which works

with different parameter values. A scaling approach will be developed in Section 3

where we will re-scale yt to a variable with unit variance. To understand the effect of

c on data with a unit variance we simulated 1500 data points from a standard normal

distribution and calculated the sample mean and sample variance of log(y2t +c). The

results in Table 1 show that c needs to be near 10−3 for the sample mean and sample

variance to be near to the values without c.

3 Standardisation approach and its MCMC sam-

pler

The results in the previous section show that the value of the offset parameter c can

have a strong influence on the shape of the distribution of log(y2t + c). Our method

is based on the following idea. The model in (1) can be expressed as νt = yte
−ht/2

where νt ∼ N(0, 1) and so we can choose a single value of c which does not have a

strong influence on log(ν2t +c) = log
(

y2t e
−ht + c

)

= log(y2t +ceht)−ht. This suggests

the following standardised approximating model

log (y2t + ceht) = ht + log ν2t , (7)

ht = µ+ φ(ht−1 − µ) + σηηt.

The approach of KSC cannot be directly applied using this representation since it is

no longer a linear state space model for ht. This can be used to define alternative
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offset parameterisations by replacing eht be an estimator which would allow the

standard KSC method to be used. For example, one anonymous referee suggested

using

y∗t =











log
(

y2t + cvar(y)
)

yt = 0

log
(

y2t + c y2t
)

yt 6= 0
. (8)

However, it is hard to see how this can be easily implemented in more complicated

model such as (2) or (3) where KSC is used on a residual rather than observed data.

Our approach defines an MCMC sampler for the posterior distribution using the

non-linear parameterisation in (1). The approximating model in (7) is used to de-

fine a proposal for h1, . . . , hT , which can be sampled using FFBS, in a Metropolis-

Hastings step. In models such as (2), this scheme allows all model parameters to be

correctly sampled using the non-linear parameterisation of the SV model.

To describe the MCMC sampling scheme, we will denote θ = {µ, φ, ση} and

h = (h1, . . . , hT ) and so the joint posterior density for h and θ is given by

p(h, θ|y) =
p(y|h, θ)p(h|θ)p(θ)

p(y)
.

Kim et al. (1998) use an approximate density for p(y|h, θ) and we denote this by

p̃(yt|ht, θt) =

7
∑

i=1

p̃(st = i)p̃(yt|ht, θt, st = i) =

7
∑

i=1

qip̃(yt|ht, θt, st = i)

where

p̃(yt|ht, θt, st) = N
(

log(y2t + ceht)|ht +mst − 1.2704, v2st

)

.

To allow us to use FFBS to update h, we use an augmented version of the posterior

distribution for the non-linear parameterisation

pq(h, θ, s|y) ∝ p(y|h, θ)p(h|θ)p(θ)g(s|h, θ) (9)

where g(s|h, θ, y) is defined as

g(s|h, θ, y) =
p̃(y|h, θ, s)p̃(s)

p̃(y|h, θ)
∝

T
∏

t=1

p̃(yt|ht, θ, st)p̃(st)

p̃(yt|ht, θ)
(10)
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which is the full conditional of s using the Kim et al. (1998) approximation. Since

∑

s g(s|ht, θ, y) = 1,

pq(h, θ|y) =
∑

s

pq(h, θ, s|y) ∝ p(y|h, θ)p(h|θ)p(θ) = p(h, θ|y)

and sampling from pq will lead to draw for θ and h from the posterior using the

non-linear parameterisation. An MCMC sampling scheme is run with pq as the tar-

get distribution. The parameters θ are updated from pq(θ|y, h) followed by s up-

dated from pq(s|θ, y, h) and, finally, h updated from pq(h|θ, y, s) using a Metropolis-

Hastings step where the proposal arises from FFBS. The full details of the scheme

are given below with the following priors: p(µ) ∝ 1, π(φ) ∝
(

1+φ
2

)a−1 (
1−φ
2

)b−1
,

σ−2
η ∼ Ga

(

σr

2 ,
Sσ

2

)

where Ga(a, b) represents a gamma distribution with mean a/b

and variance a/b2.

Sampling µ

The full conditional distribution of µ is N(µ̂, σ2
µ) where

µ̂ = σ2
µ

(

(1− φ2)

σ2
η

h1 +
(1− φ)

σ2
η

t=T−1
∑

t=1

(ht+1 − φht)

)

,

and

σ2
µ = σ2

η

(

(T − 1)(1− φ)2 + (1− φ2)
)−1

.

Sampling φ

The full conditional density for φ is proportional to π(φ)p(y|h, µ, φ, σ2
η). We update

this parameter using Metropolis-Hastings random walk whose proposal distribu-

tion is a normal truncated to (−1, 1) whose mean is the previous value of φ. The

variance of the proposal is tuned using an Adaptive Metropolis-Hastings method

(Atchade and Rosenthal, 2005) to get an acceptance rate of 23.4%.
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Sampling σ2
η

The full conditional distribution of σ−2
η is Ga(a, b) where

a =
T + σr

2

and

b =
Sσ + (h1 − µ)2(1− φ2) +

∑t=T−1
t=1 ((ht+1 − µ)− φ(ht − µ))2

2
.

Sampling s

The full conditional distribution of s is g(s|h, θ, y) and so s1, . . . , sT are conditionally

independent with st sampled from the discrete distribution

pq(st = i|h, θ, y) =
qi p̃(log

(

y2t + ceht)|ht, θ, st = i
)

∑j=7
j=1 qj p̃

(

log(y2t + ceht)|ht, θ, st = j
) .

Sampling h

The full conditional density for h is proportional to p(y|h, θ)p(h|θ)g(s|h, θ, y). The

parameter is updated using a Metropolis-Hastings step. Suppose that the previous

value is h and the proposed value is h′ then h′ is generated using FFBS on the Gaus-

sian, linear state space model

log(y2t + ceht) = h′t +mst − 1.2704 + vstǫt (11)

h′t = µ+ φ(h′t−1 − µ) + σηηt

where ǫt ∼ N(0, 1). This is the approximating model in (7) conditioned on s1, . . . , sT

and with log(y2t + ceht) evaluated at the previous value of ht. The form of the FFBS

steps are available from Carter and Kohn (1994) or Frühwirth-Schnatter (1994). Let

µB,t and σ2
B,t be the mean and variance of the state in the backward steps and µt and

σ2
t are the a posteriori mean and variance at time t derived from the Kalman filter.
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Then µB,T = µt and σ2
B,T = σ2

T and

σ2
B,t|h

′

t+1:T , h =

(

1

σ2
t

+
φ2

σ2
η

)−1

,

µB,t|h
′

t+1:T , h =

(

1

σ2
t−1

+
φ2

σ2
η

)−1(
µt

σ2
t

+
φht+1

′ − φµ(1− φ)

σ2
η

)

,

for t < T where ht
′ is the sample value at time t. The proposal density is

q(h′|h, θ, y, s) =
T
∏

t=1

N
(

h′t|µB,t, σ
2
B,t

)

.

It is important to note that the proposal depends on ht through the transformed data

log(y2t + ceht). The Metropolis-Hastings acceptance probability is

a = min

(

1,
pq(h

′

, θ, s|y)

pq(h, θ, s|y)

q(h|h
′

, θ, y, s)

q(h′ |h, θ, y, s)

)

= min

(

1,
p(y|h

′

, θ)p(h
′

|θ)g(s|h
′

, θ, y)

p(y|h, θ)p(h|θ)g(s|h, θ, y)

q(h|h
′

, θ, y, s)

q(h′ |h, θ, y, s)

)

= min

(

1,

T
∏

t=1

p(yt|h
′
t, θ)p̃(yt|ht, θ)

p(yt|ht, θ)p̃(yt|h′t, θ)

)

.

Since, p̃(yt|ht, θ) is a good approximation to p(yt|ht, θ), we have that

p(yt|h
′
t, θ)p̃(yt|ht, θ)

p(yt|ht, θ)p̃(yt|h′t, θ)
≈ 1.

This suggest that this sampling step will have good acceptance rate for suitably cho-

sen values of T but that its performance will deteriorate as T increases. The amount

by which the performance deteriorate will depend on the data.

4 Results

The performances of our proposed method described in Section 3, which we will

call the Metropolis-Hastings sampler with standardisation (MH-S) method, and the
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KSC method with importance sampling (KSC) were compared with different values

of c on simulated and financial data. The priors for the parameters were chosen as in

section 3 with the hyperparameter values: a = 20, b = 1.5 (which gives a prior mean

for φ of 0.86), σr = 5, and Sσ = 0.01σr. The performances were compared using the

Effective Sample Size (ESS) (Sokal, 1997) which was estimated by

ESS =
N

1 + 2
∑j

i=1 ri

where N is the number of samples from the iterations, ri is the correlation coefficient

at lag i and j is the count of the non-zero correlation coefficients. The number of lags

to include was chosen using Bartlett’s test.

4.1 Simulated data

Two test data sets of length 1500 were generated using the model in (1) with µ = −10

and φ = 0.95. One data set used ση = 0.2 and the other used ση = 0.6. An initial

20 000 iterations were used as a burn in period followed by a further 20 000 iterations

which were thinned to 1 in 5 to sample the parameters. The chains were found to be

sufficiently long for the trace plots of parameters to stabilise.

The estimated posterior medians and 95% credible intervals of the model pa-

rameters for the two simulated data sets using the MH-S and KSC samplers are

presented in Table 2. The MH-S sampler clearly provides estimates which are robust

to the choice of c over the range of values considered with both data sets. In contrast,

the results using the KSC sampler depend on the value of c with both data sets. The

larger values of c (c = 10−3 and c = 10−5) provide extremely biased estimates for

all summaries in both data sets. The method performs well with smaller values of c

(c = 10−7 and c = 10−9). This is not surprising since the mean of y2t is exp{µ+σ2
η/2}

which is 4.6317 × 10−5 in this example and so is much smaller than the values con-

sidered by KSC (where the mean of y2t has a scale of units). If we adjust for the
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ση = 0.2

c = 10−n Sampler µ φ σ2
η

n = 3 MH-S -10.17 (-10.39,-9.99) 0.928 (0.887, 0.958) 0.0508 (0.0290, 0.0847)

n = 5 MH-S -10.17 (-10.36,-9.99) 0.927 (0.876,0.959) 0.0522 (0.0299,0.1019)

n = 7 MH-S -10.17 (-10.35, -9.98) 0.929 (0.890,0.958) 0.0504 (0.0269,0.0814)

n = 9 MH-S -10.17 (-10.35, -9.99) 0.923 (0.875,0.956) 0.0544 (0.0302,0.0936)

n = 3 KSC -7.04 (-7.09,-6.98) 0.617 (0.315, 0.836) 0.0036 (0.0020, 0.0073)

n = 5 KSC -9.88 (-10.03,-9.74) 0.946 (0.905,0.972) 0.0161 (0.0084,0.0308)

n = 7 KSC -10.15 (-10.33, -9.97) 0.926 (0.881,0.959) 0.0515 (0.0286,0.0914)

n = 9 KSC -10.17 (-10.35, -9.99) 0.924 (0.874,0.957) 0.0554 (0.0298,0.0987)

ση = 0.6

c = 10−n Sampler µ φ σ2
η

n = 3 MH-S -10.17 (-11.42,-8.89) 0.979 (0.967, 0.990) 0.2010 (0.1501, 0.2659)

n = 5 MH-S -10.19 (-11.46,-8.96) 0.980 (0.967,0.990) 0.2004 (0.1495,0.2721)

n = 7 MH-S -10.19 (-11.43, -8.86) 0.980 (0.968,0.991) 0.1949 (0.1509,0.2621)

n = 9 MH-S -10.18 (-11.37, -8.89) 0.979 (0.967,0.990) 0.2027 (0.1560,0.2051)

n = 3 KSC -6.80 (-7.04,-6.57) 0.978 (0.958, 0.991) 0.0074 (0.0043, 0.0120)

n = 5 KSC -9.55 (-10.49,-8.60) 0.983 (0.972,0.992) 0.0803 (0.0606,0.1063)

n = 7 KSC -10.15 (-11.36, -9.00) 0.980 (0.968,0.990) 0.1870 (0.1411,0.2462)

n = 9 KSC -10.18 (-11.37, -8.93) 0.979 (0.966,0.990) 0.2069 (0.1560,0.2763)

Table 2: Posterior medians and 95% credible intervals of the model parameters with data

simulated using different values of c.
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difference in the scales, an appropriate value would be c = 4.6317 × 10−8 which is

contained in the range of vales for c for which the KSC method performs well.

MH-S KSC

0 500 1000 1500
−12

−11

−10

−9

−8

−7

time

h t

0 500 1000 1500
−12

−11

−10

−9

−8

−7

time

h t

Figure 1: Posterior mean of ht using the MH-S and KSC methods and different values of

c. The colour key for the line plots is: simulated (red), c = 10−3 (blue), c = 10−5 (green),

c = 10−7 (light blue).

The KSC method should provide unbiased estimates of all parameters and so

the biases in the posterior summaries for c = 10−3 and c = 10−5 are surprising. The

plots in Figure 1 show the posterior means of ht for different samplers. Clearly, the

posterior mean of ht for the KSC sampler with c = 10−3 is larger than the correct

posterior values. This is directly due to the choice of c which concentrates the poste-

rior for ht on larger values and so biases the results for µ. The importance sampler

should correct for differences but, in this case, the importance sampling distribu-

tion places negligible mass on the correct values and so leads to biased posterior

summaries. To confirm that this is the cause, we ran a Metropolis-Hastings chain

without standardisation (i.e. where (6) is replaced by log(y2t +c) = ht+log ν2t )) (MH-
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c = 10−n µ φ σ2
η

n = 3 -7.64 (-7,72, -7.58) 0.493 (0.292, 0.665) 0.0033 (0.0025, 0.0058)

n = 5 -6.87 (-6.85, -2.84) 0.949 (0.398,0.967) 0.0057 (0.0035,0.061)

n = 7 -10.17 (-10.35, -9.99) 0.925 (0.876,0.957) 0.0539 (0.0297,0.0960)

n = 9 -10.17 (-10.35, -9.98) 0.929 (0.888,0.961) 0.0499 (0.0274,0.0857)

Table 3: Posterior medians and 95% credible intervals of the model parameters with data

simulated with ση = 0.2 and using the MH-NS sampler with different values of c.

NS). Table 3 shows that this sampler also leads to biased estimates for small c. This

is an independence Metropolis-Hastings sampler which has a proposal supporting

values far from the correct values of ht when c = 10−3 and so the sampler never

moves to the correct values of ht.

The effective sample sizes for the two simulated data set using the MH-S and

KSC samplers are presented in Table 4. These show that the MH-S sampler perform

well for all values of c despite the length of the time series (T = 1500). The sampler

has a large number of accepted h moves, good effective sample sizes for h100 and µ,

and acceptable effective sample sizes for the other model parameters. The effective

sample sizes with the KSC sampler are consistently larger for values of c which give

unbiased estimates of the posterior summaries (c = 10−7 and c = 10−9) .

Overall, these results show that the MH-S method is robust to the choice of c

and can provide effective inference for relatively long time series (T = 1500) with

realistic values of the φ and ση.
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ση = 0.2

c = 10−n Sampler h100 µ φ σ2
η h moves (%)

n = 3 MH-S 1577.9 2952.9 143.9 76.2 40.5

n = 5 MH-S 1068.5 2230.3 96.8 58.9 27.2

n = 7 MH-S 1496.9 2625.1 76.6 76.6 41.2

n = 9 MH-S 1327.2 2050.1 67.5 67.5 29.0

n = 3 KSC 1672.1 181.4 36.0 109.5

n = 5 KSC 3055.6 3371.0 203.8 108.1

n = 7 KSC 3336.9 3430.8 210.0 138.5

n = 9 KSC 2590.7 3323.6 207.9 126.4

ση = 0.6

c = 10−n Sampler h100 µ φ σ2
η h moves (%)

n = 3 MH-S 693.1 3542.4 687.4 172.3 28.0

n = 5 MH-S 720.9 4092.8 465.6 126.3 25.5

n = 7 MH-S 860.9 3740.2 753.0 217.2 27.4

n = 9 MH-S 712.4 4209.0 950.0 238.1 25.3

n = 3 KSC 3392.3 3520.5 446.9 202.4

n = 5 KSC 2839.1 4135.3 1438.1 523.5

n = 7 KSC 2715.0 4103.0 1183.8 583.1

n = 9 KSC 3261.3 4016.6 1169.9 529.6

Table 4: Effective sample size for all model parameters with data simulated using differ-

ent values of c.

4.2 Eurostoxx Index

The returns of the Eurostoxx index from 2 January 2007 to 23 April 2013 were calcu-

lated using the closing values and are shown in Figure 2. There are 1585 log returns
17
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Figure 2: Daily log returns of the Eurostoxx index from January 2007 to April 2013.

in the time series with 3 cases of zero log returns (on 6 January 2010, 3 March 2010

and 16 July 2012). The MH-S and KSC methods were run for different values of c.

An initial 20 000 iterations were used as a burn in period followed by a further 20 000

iterations which were thinned to 1 in 5 to sample the parameters.

The estimated posterior median and 95% credible interval for this data set using

the MH-S and KSC samplers are presented in Table 5. Again, these results show

that the MH-S sampler provides good estimates of the posterior summaries for all

value of c whereas the KSC sampler does not provide good summaries for c = 10−3.

Again, this emphasises that the KSC sampler relies on a value of c which is consistent

with the scale of the data whereas the MH-S sampler works well regardless of the

scale of the data.

Table 6 shows the ESS for both the MH-S and KSC samplers. The results are

consistent with the simulated examples with the KSC sampler having a larger ESS

than the MH-S but the MH-S providing a suitable ESS for effective inference.

The KSC sampler was also applied with an alternative offset specification in (8).
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c = 10−n Sampler µ φ σ2
η

n = 3 MH-S -8.76 (-9.32, -8.24) 0.981 (0.966, 0.992) 0.0287 (0.0178, 0.0504)

n = 5 MH-S -8.76 (-9.30, -8.26) 0.982 (0.966,0.922) 0.0284 (0.0174,0.0496)

n = 7 MH-S -8.77 (-9.32, -8.28) 0.981 (0.966,0.993) 0.0286 (0.0174,0.0480)

n = 9 MH-S -8.75 (-9.30, -8.24) 0.981 (0.965,0.992) 0.0282 (0.0176,0.0493)

n = 3 KSC -6.84 (-6.91,-6.77) 0.768 (0.417, 0.949) 0.0045 (0.0023, 0.0095)

n = 5 KSC -8.68 (-9.20,-8.21) 0.983 (0.969,0.994) 0.0218 (0.0133,0.0355)

n = 7 KSC -8.76 (-9.27, -8.28) 0.980 (0.964,0.992) 0.0299 (0.0172,0.0491)

n = 9 KSC -8.77 (-9.28, -8.30) 0.980 (0.964,0.991) 0.0306 (0.0189,0.0508)

Table 5: Posterior medians and 95% credible intervals of the model parameters with the

Eurostoxx data and using different values of c.

c = 10−n Sampler h100 µ φ σ2
η h moves (%)

n = 3 MH-S 1709.4 3863.5 320.9 118.1 45.2

n = 5 MH-S 1772.0 3793.5 202.1 102.4 42.5

n = 7 MH-S 1771.6 3398.6 217.7 95.4 43.2

n = 9 MH-S 1253.8 3816.7 122.1 56.2 37.0

n = 3 KSC 3572.2 409.4 44.0 83.9

n = 5 KSC 3452.8 4001.1 572.1 217.7

n = 7 KSC 2823.0 3805.2 456.9 213.2

n = 9 KSC 3176.6 2960.0 347.0 157.5

Table 6: Effective sample size for all model parameters with the Eurostoxx data and

using different values of c.
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The posterior medians of ht is shown in Figure 3. The results from using a simpler
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Figure 3: Posterior median of ht for the Eurostoxx data using the approximate variance

to standardise the data.

standandardisation method are similar to the results shown in Figure 4 where the

MH-S method was used.

The posterior medians of ht (with the 95% credible interval) are shown in Fig-

ure 4. The volatility shows substantial persisetence and time-variation with higher

values during the financial crisis.

4.3 Vector autoregression

The use of stochastic volatility in multivariate time series models has become in-

creasingly common. As an example, we consider the following Bayesian VAR model

with stochastic volatility which was introduced in Clark (2012) building on steady-

state priors (Villani, 2009). Let yt be a (p× 1)-dimensional vector of economics vari-

ables and xt be a (q × 1)-dimensional vector of deterministic exogeneous variables
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Figure 4: Posterior median and 95% credible interval of ht for the Eurostoxx data using

the MH-S with c = 10−3.

measured at time t. The data modelled as

Π(L)(yt −Ψxt) = ǫt

where Ψ is a (p×q)-dimensional vector of coefficients, Π(L) = Ip−Ψ1L−Ψ2L
2 . . .ΨkL

k

is a lag polynomial and νt are independent errors. The vector Ψxt allows for a deter-

ministic trend within the model. The errors ǫt are modelled using a factor stochastic

volatility model. Let A be a lower triangular matrix with 1’s on the diagonal then

ǫt = A−1Λ0.5
t νt, νt ∼ N(0, Ip),

Λt = diag(eh1,t , eh2,t , . . . ehp,t),

hi,t = hi,t−1 + ση,i ηi,t, ηi,t
iid
∼ N(0, 1) ∀i = 1, 2, . . . , p.

Clark (2012) applies the model to output growth, unemployment rate, inflation

and federal funds rate with long-term inflation expectations used as an exogeneous
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variable and uses real-time data from 1961:Q1 to 2008:Q3. We consider the same

data and time period but use the final revision values for all data.

Clark (2012) describes, in detail, the prior specification and the Gibbs sampling

steps needed to fit the model and these are not repeated here. The full conditional

distribution for each volatility process can be put in the form of a stochastic volatility

model by noting that

AΠ(L)(yt −Ψxt) ≡ ỹt = Λ0.5
t νt

and

log ỹ2i,t = hi,t + log ν2i,t, ∀i = 1, . . . , p.

This allows the KSC method described in Section 2 to be used to update hi,1, . . . , hi,T

from their full conditional distribution for each i = 1, . . . , p in a Gibbs sampler. How-

ever, Clark (2012) notes that “in preliminary investigations with BVAR models, es-

timates based on the latter algorithm seemed to be unduly dependent on the priors

and prone to yielding highly variable estimates of the volatility”. Therefore, we con-

sider the MH-S algorithm described in Section 3 and show that this algorithm is able

to successfully sample from the posterior distribution. The posterior distribution

of the model was sampled using 3 different values of the mixture offset (c = 10−3,

c = 10−6 and c = 10−9) with the sampler from for a total of 50 000 iterations with a

burn-in period of 10 000 iterations. The results were found to be very similar for all

parameters and very similar to results from a Metropolis-Hastings algorithm which

updates each hi,t separately without taking any transformations. For iilustration, the

posterior median of eh1,t for the three values of c are shown in Figure 5 and clearly

do not depend on the value of the mixture offset parameter.
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Figure 5: Posterior median of eh1,t for Example 4.3 using different mixture offset values

and the MH-S method.

5 Conclusion

When the SV model is expressed in linear state space form using a normal mixture

model, the value of the offset parameter c used for the MCMC sampling can have

an important effect on the posterior inferences. To overcome this lack of robustness

to the choice of c, we propose a Metropolis-Hastings sampler which uses a linear

state space constructed using a standardised version of the error term. The volatili-

ties are sampled jointly using a forward filtering backwards sampling algorithms in

the same way as KSC. This approach provides inference about the volatility and the

model parameters which is robust to the choice of c The effective sample sizes for

the volatility and the model parameters indicate that the method can provide accu-

rate inference for realistic values of the model parameters on time series of realistic

length.

In contrast to the KSC method, the MCMC chain is generated from the correct full
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conditional joint distribution for the volatilities and so no importance sampling re-

weighting is needed to correct inference. The application to a vector autoregression

with stochastic volatility in section 4.3 shows that sampling from the correct full

conditional distribution can have important consequences for the ability of the Gibbs

sampler to simulate from the correct posterior distribution.
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A Derivation of the Metropolis-Hastings acceptance

ratio for sampling h

The Metropolis-Hastings acceptance ratio is

a = min

(

1,
pq(h

′

, θ, s|y)

pq(h, θ, s|y)

q(h|h
′

, θ, y, s)

q(h′ |h, θ, y, s)

)

,

= min

(

1,
p(y|h

′

, θ)p(h
′

|θ)g(s|h
′

, θ, y)

p(y|h, θ)p(h|θ)g(s|h, θ, y)

q(h|h
′

, θ, y, s)

q(h′ |h, θ, y, s)

)

.

Using

q(h|h′, θ, y, s) =
p̃(y|h, θ, s)p(h|θ)

p̃(y|s, θ)
,

and

g(s|h′, θ, y) =
p̃(y|h′, θ, s)p̃(s)

p̃(y|h′, θ)
,

implies that

a = min



1,
p(y|h′, θ)p(h′|θ)

p(y|h, θ)p(h|θ)

p̃(y|h′,θ,s)p̃(s)
p̃(y|h′,θ)

p̃(y|h,θ,s)p̃(s)
p̃(y|h,θ)

p̃(h,θ,s)p(h|θ)
p̃(y|s,θ)

p̃(y|h′,θ,s)p(h′|θ)
p̃(y|s,θ)



 .

Finally, cancelling out the terms, gives

a = min



1,

p(y|h,θ)
p̃(y|h′,θ)

p(y|h,θ)
p̃(y|h,θ)



 .
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