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A walk through tau therapeutic strategies
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Abstract

Tau neuronal and glial pathologies drive the clinical presentation of Alzheimer’s disease and related human
tauopathies. There is a growing body of evidence indicating that pathological tau species can travel from cell to
cell and spread the pathology through the brain. Throughout the last decade, physiological and pathological tau
have become attractive targets for AD therapies. Several therapeutic approaches have been proposed, including the
inhibition of protein kinases or protein-3-O-(N-acetyl-beta-D-glucosaminyl)-L-serine/threonine Nacetylglucosaminyl
hydrolase, the inhibition of tau aggregation, active and passive immunotherapies, and tau silencing by antisense
oligonucleotides. New tau therapeutics, across the board, have demonstrated the ability to prevent or reduce tau
lesions and improve either cognitive or motor impairment in a variety of animal models developing neurofibrillary
pathology. The most advanced strategy for the treatment of human tauopathies remains immunotherapy, which
has already reached the clinical stage of drug development. Tau vaccines or humanised antibodies target a variety
of tau species either in the intracellular or extracellular spaces. Some of them recognise the amino-terminus or
carboxy-terminus, while others display binding abilities to the proline-rich area or microtubule binding domains.
The main therapeutic foci in existing clinical trials are on Alzheimer’s disease, progressive supranuclear palsy and
non-fluent primary progressive aphasia. Tau therapy offers a new hope for the treatment of many fatal brain
disorders. First efficacy data from clinical trials will be available by the end of this decade.
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Introduction
Tau protein is considered to be one of the most peculiar
proteins in the central nervous system. It is located in sev-
eral cell compartments, including the axon, dendrites, nu-
cleus, nucleolus, cell membrane and synapses [310].
However, tau is also present in the interstitial fluid [284,
370], and can pass into cerebrospinal fluid (CSF), where it
is found at concentrations of 10-25 pg/ml (pT181-tau) or
300-400 pg/ml (tau) [28, 29, 248]. In physiological condi-
tions, extracellular tau may enter neurons either via a
dynamin-mediated endocytic mechanism or by classical
endocytosis [95]. In neurodegenerative tauopathy, dis-
eased modified tau can propagate along neuroanatomi-
cally connected brain areas via multiple mechanisms and
spread tau pathology throughout the brain [231].
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Tau belongs to the group of natively disordered pro-
teins, which exist in a highly flexible, unfolded structural
state, largely devoid of well-defined secondary and tertiary
structure, although they are able to fold after binding to
targets [329]. The highly flexible structure of tau protein
allows interaction with multiple partners, suggesting its
involvement in numerous signalling pathways [308]. The
dark side of its structural repertoire is its ability to interact
with other tau molecules to form oligomers and filaments
[298, 338, 339]. These complexes cause degeneration of
neurons and glial cells [97], manifesting as a group of neu-
rodegenerative disorders termed ‘tauopathies’ [312].
The most prominent tauopathy is Alzheimer’s disease

(AD), the common cause of dementia in older adults. AD is
an incurable, progressive degenerative disease of the brain,
characterized by the presence of tau and ß- amyloid (Aß)
pathology [286]. There are no disease-modifying drugs
available for AD; only symptomatic treatments trying to
counterbalance the neurotransmitter disturbance exist. No
significant new drug for AD has been approved in the last
14 years, despite extensive clinical trials. The pipeline has
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been plagued with significant failures, with more than 400
failed clinical trials since the last symptomatic Alzheimer’s
drug was approved [71].
Despite the field being aware that tau pathology corre-

lates well with the onset and progression of AD for al-
most 40 years [39], it is only now that tau targetted
therapy has become attractive for clinical trials. A multi-
tude of tau antibodies and vaccines have been tested in
preclinical studies in the last two decades. Currently,
eight humanised tau antibodies and two tau vaccines
have entered clinical trials either for AD or frontotem-
poral dementia (FTD) [65, 71](www.alzforum.org). In
light of the failure of the clinical trials with amyloid tar-
geting drugs, tau therapy is manifesting as the frontrun-
ner in the search for an effective treatment for AD.

Tour de tau - tau as a protein with multiple faces
In contrast to amyloid precursor protein (APP), the func-
tion of tau protein was already known at the time of the
discovery of it as a constituent of neurofibrillary degener-
ation. Tau is a microtubule-associated protein (MAP),
promoting the polymerization and assembly of microtu-
bules [351]. In the adult human brain, there are six iso-
forms of tau protein generated by alternative splicing from
a single gene located on chromosome 17 [120, 238]. At
the N-terminal end, they differ by the addition of a 29
amino-acid sequence (1 N) or as replicates (2 N - total of
58 amino acids) coded by exons 2 and 3. The sequence
coded by exon 3 is only present if the sequence encoded
by exon 2 is inserted. Interestingly, the 2 N tau isoforms
are weakly expressed in the human brain [119, 214, 295].
The microtubule binding region (MTBR), has three (3R:
R1, R3, R4) or four repeat domains (4R: R1-R4). The se-
quence encoded by exon 10 allows the insertion of a 31
amino acid microtubule binding domain (R2) which is
inserted after the first repeat R1. Tau isoforms with 3R
and 4R are equally expressed, since their ratio is about 1:1
in the human brain [295]. However, some neurons do not
express 4R tau isoforms. For instance, granular cells of the
dentate gyrus only express mRNAs of 3R-tau isoforms
[119]. Thus, tau isoforms have different cellular and lam-
inar distribution in the human brain [46].
The strict classification of tau protein as a MAP may

have delayed research on its other biological functions. If
sequence homology (70-90%) with other MAPs is evident
in the microtubule binding domains, the N-terminal por-
tion of tau is unique. It must therefore have other unique
functions [194]. Logically, as a MAP, tau has functions in
cell trafficking, but it also interacts with dynactin and
synaptogyrin-3, suggesting specific related-functions, such
as synaptic vesicle control [213, 224].
The first unexpected functions of tau may be related to

its nuclear localization [201]. These initial findings were
widely discussed, but nowadays, it is clearly established
that tau binds to nucleic acids, and may be involved in
chromatin remodelling [53, 104, 146, 252, 266, 267]. The
binding of tau to DNA may allow protection against react-
ive oxygen species [316, 349], and binding to RNA may
contribute to ribosome stability and miRNA activity [35].
Altogether, these data strongly suggest that tau may
modulate gene expression and RNA stability. Such obser-
vations are also supported by tau loss-of-function in
pathological conditions. For instance, formation of tau
oligomers leads to DNA/RNA damage [337], RNA and
ribosome instability [225] and changes in nuclear
organization and protein expression [103]. Binding of tau
to tRNAs may also initiate tau aggregation by forming
droplets through complex coacervation [378]. Moreover,
pathological tau can interact with nucleoporins of the nu-
clear pore complex (NPC) and affect their structural and
functional integrity [93] (Fig. 1).
Secondly, tau may also play a role in cell signalling. The

longest brain tau isoform with 441 amino acids (aa) has 85
putative sites of phosphorylation. Thus, tau may act as a
buffer for cell signalling. For instance, tau may serve as a
‘phosphorylation sink’ for the p25-Cdk5 complex, hence
sequestering it away from other death-inducing substrates
[130]. Tau may also interfere with tyrosine kinase family
Src/Fyn signalling at dendrites [49, 152]. Tau also interacts
with phosphatase and tensin homolog (PTEN) and modu-
lates insulin signalling. Recent data suggest that loss of tau
function leads to an impaired hippocampal response to in-
sulin, caused by altered insulin receptor substrate 1
(IRS-1) and PTEN activities [218].
Finally, the cytosolic tau protein may also be secreted. This

secretion is stimulated by neuronal activity [263]. Such se-
cretion is likely to occur through non-conventional secretory
pathways [44]. Recent data suggest that such secretion may
be similar to that of fibroblast growth factor 2 (FGF-2), in-
cluding oligomerization, binding to phospho-inositol, and
extracellular capture by heparan sulphate proteoglycans
[164]. An alternative pathway is the secretion of
pro-interleukin 1, which requires proteolysis. Interestingly,
C-terminal-tau fragment Δ422–441 was significantly more
secreted than full length tau [261]. Tau is also secreted
within extracellular vesicles such as exosomes [346] and
ectosomes [89]. In pathological conditions, secreted tau may
participate to tau seeding and spread (discussed later).
To sum up, tau has multiple functions in addition to

axonal microtubule assembly. All of these recently dis-
covered tau functions may contribute to the develop-
ment of tau pathology and related events (Fig. 1). These
discoveries further strengthen the case for tau as the
therapeutic target for AD and tauopathies.

Tau as a driver of neurodegeneration
AD is a double proteinopathy, characterized by the pres-
ence of both tau-reactive neurofibrillary lesions and

http://www.alzforum.org


Fig. 1 Yin and Yang of Tau protein
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β-amyloid (Aβ) depositions (senile plaques; SPs). The
importance of both proteins, which are present also
under physiological circumstances, in the development
of AD is extensively debated. Numerous clinicopatholog-
ical studies were published, favouring both histological
lesions, i.e. NFTs and SPs. However, since the early nine-
ties, most studies found a strong correlation between
neocortical NFT load and cognitive impairment [94].
The progression of neurofibrillary pathology begins

in the entorhinal cortex, in contrast to the spreading
of Aβ, where the presence of neocortical SPs precedes
the appearance of hippocampal SPs [39, 91, 320, 327].
Aβ pathology is present even in cognitively intact per-
sons, so amyloid deposition is not sufficient to explain
the clinical phenotype of AD [77]. In contrast, NFT
burden in associative neocortical areas is strongly re-
lated with clinically overt dementia. The Braak staging
[39] for NFTs, used to define the neuropathological
severity of AD in the general neuropathological prac-
tice, reveals a strong correlation with cognitive decline
[92, 121]. In a study of an oldest-old population, Gold
and colleagues [121] found that unlike younger co-
horts, Braak stages did not precisely reflect the sever-
ity of dementia. Braak stage III correlates poorly with
cognitive decline, while Braak stages IV or greater are
consistently associated with at least mild dementia.
This discrepancy is most likely due to the increasing
prevalence of mixed neuropathologies in the
oldest-old, such as a combination of vascular lesions
and AD pathology [156].
As in all neurodegenerative diseases, AD is charac-
terised by selective vulnerability of specific brain regions,
cortical layers, and neuronal populations. The anatom-
ical distribution of tau and neuronal loss reflects the dif-
ferent clinical signs of AD well. Anterograde memory
problems at the beginning of the symptomatology are
related to tau-burden in the medial temporal lobe [94].
During the progression of the clinical presentation, other
signs, such as agnosia, apraxia or speech and behavioural
problems will add to the memory problems, correspond-
ing to the involvement of different associative or limbic
regions. The neuropathological background for acalculia
and visuospatial dysfunction is related to the involve-
ment of tau pathology in the parietal lobe [94]. Ideomo-
tor and dressing apraxia is linked to NFT densities in
the anterior cingulate cortex, while constructional
apraxia relate to NFT densities in the superior parietal,
posterior cingulate and occipital cortex [113]. A signifi-
cant relationship exists between associative visual agno-
sia and tau burden in the secondary visual cortex
(Brodmann area 18) and the occipitotemporal visual as-
sociation cortex (Brodmann area 37 and ventral 19)
[114]. The high NFT density in the superior parietal cor-
tex (Brodmann area 7), posterior cingulate cortex (Brod-
mann area 23), and CA1 subfield of the hippocampus
plays a role in developing temporo-spatial disorientation
[115]. Cases with atypical AD, such as posterior cortical
atrophy, also underline the importance of tau pathology
in developing clinical signs. Patients presenting mainly
with visual symptomatology have a high NFT burden in
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the occipito-parieto-temporal junction and posterior cin-
gulate cortex [138]. The anterior brain regions are less
involved as compared to the “classic” form of AD.
Behavioural problems or speech disorders, more suggestive

of other neurodegenerative diseases such as frontotemporal
dementia, could also be present in neuropathologically con-
firmed AD. In contrast, prefrontal syndromes are correlated
with atypical distribution of NFTs in the dorsolateral, median
and orbitofrontal areas [340]. These clinicopathological ob-
servations underline the importance of the tau protein in the
pathogenesis of AD and its subtypes (amnestic, dysexecutive/
behavioural, visuo-spatial, and language presentation).
Tauopathies are clinically, biochemically and morpho-

logically heterogeneous neurodegenerative diseases char-
acterized by the deposition of abnormal tau (microtubule
associated protein tau; MAPT) in the brain. Neuropatho-
logical phenotypes are distinguished based on the distinct
involvement of anatomical areas, cell type, and presence
of distinct isoforms of tau in the pathological deposits
[172]. If tau protein deposition is the predominant feature,
the term primary tauopathy is used. The nomenclature
overlaps with the classification of frontotemporal lobar de-
generation (FTLD). Disorders characterized by tau path-
ologies considered having other (possibly diverse) driving
forces (e.g. Creutzfeldt–Jakob disease, Down’s syndrome)
are called secondary tauopathies [108].
Tauopathies are distinguished based on the ratio of 3 re-

peat (3R)- and 4R-tau and two or three major bands (60,
64, and 68 kDa) in Western blot of sarkosyl-insoluble frac-
tions [184, 296, 312]. FTLD-tau is grouped based on the
tau isoform predominating the morphology. Pick’s disease
(PiD) is a 3R tauopathy (60 and 64 kDa bands). 4R tauopa-
thies (64 and 68 kDa bands) is comprised of progressive
supranuclear palsy (PSP), corticobasal degeneration
(CBD), argyrophilic grain disease (AGD), and globular
glial tauopathy (GGT) [172]. Mixed 3R and 4R tauopathy
(60, 64 and 68 kDa bands) is the neurofibrillary tangle
(NFT)-dementia (discussed also in the frame of primary
age-related tauopathy, PART), and this type of tau path-
ology is seen in Alzheimer diseased (AD) brains.
Hyperphosphorylated tau is the major constituent of

neuronal and glial inclusions, although there are further
biochemical modifications (N- and C-terminal truncation,
glycosylation, glycation, nitration of tyrosine residues,
transglutamination, deamidation; acetylation; oligomer
forms) [173] which are not examined routinely in diagnos-
tic practice. Using phospho-dependent tau antibodies sev-
eral morphologies of cellular tau immunoreactivity can be
detected [172]. Tau immunoreactivity in neurons
comprises pre-tangles (diffuse cytoplasmic neuronal tau
immunoreactivity), NFTs, Pick bodies (3R-tau immunore-
active), spherical inclusions (usually 4R immunoreactive),
dystrophic neurites, neuropil threads (axonal), and grains
(dendritic). Astrocytic tau pathology includes tufted
astrocytes (PSP), astrocytic plaques (CBD), ramified astro-
cytes (PiD), globular astroglial inclusions (GGT),
thorn-shaped astrocytes, and granular-fuzzy astrocytes
(the latter two seen mostly in age-related tau astrogliopa-
thy, ARTAG). In oligodendrocytes, coiled bodies (PSP,
CBD, AGD) and globular inclusions (PiD, GGT) can be
detected (Fig. 2). The constellation of these morphologies
and their anatomical distribution characterize primary
tauopathies, e.g. NFTs in the medial temporal lobe is char-
acteristic for PART [68] and NFTs in subcortical struc-
tures together with tufted astrocytes are pathognomonic
for PSP [172]. Neuropathologic hallmarks of CBD com-
prise neuronal inclusions, threads in the white and grey
matter, coiled bodies and astrocytic plaques [85]. AGD is
characterized by the presence of argyrophilic and 4R tau
immunoreactive grains in medial temporal lobe structures
together with pre-tangles, oligodendroglial coiled bodies,
and astrocytic tau pathology [324]. Globular oligodendro-
glial and astroglial inclusions characterize the GGTs [7].
PiD is a 3R tauopathy with Pick bodies, with less glial tau
pathology and prominent FTLD [172]. In addition, neur-
onal tau pathology in the form of NFTs, threads and dys-
trophic neurites associated with Aß plaques is a hallmark
of AD [39, 46, 91]. Finally, hereditary frontotemporal de-
mentia (FTD) associated with mutations in the MAPT
gene shows 3R-, 4R- and 3R/4R-tau pathologies overlap-
ping with the neuropathologic features of primary tauopa-
thies [101, 111]. However, in hereditary FTD, tau
mutations lead to conformational changes before tau
hyperphosphorylation [90].
Tau pathologies show hierarchical involvement of ana-

tomical regions. This is exemplified by the six stages of
NFT pathology in AD [38] and PART (usually only up to
stage IV) [68] and the three stages of AGD-associated
pathology [277]. For PSP and CBD hierarchical involve-
ment is being studied; this is hindered by the heterogen-
eity of these diseases. A recent study described sequential
distribution patterns of astroglial tau pathologies in CBD,
PSP and in ARTAG types [175]. These observations on
various stages complement experimental observations in
cell culture and animal models, suggesting spreading of
tau pathologies along neuronal connections and provide a
basis for the concept of tau-strains as a background for
disease heterogeneity [31, 60, 236, 280]. In fact, 3R, 4R
and mutated tau species are likely to display different
spreading behaviors [90]. Recent studies suggest that as-
trocytes might play a previously underappreciated role in
the disease process. Indeed, astroglial tau pathology may
precede neuronal tau immunoreactivities in primary
FTLD-tauopathies [174, 193]. Astroglial tau pathologies
might reflect their contribution to disease spreading or
clearance of disease-associated proteins, and might lead to
astroglial dysfunction contributing to neuronal degener-
ation [174].



Fig. 2 Tau pathologies in diverse tauopathies. Tau pathology in AD
and PART comprise dystrophic neurites (a), axonal threads (b),
pretangles (c) and NFTs (d). PSP is characterized by pretangles and
threads (e), subcortical tangles (f), tufted astrocytes (g), and
oligodendroglial coiled bodies (h). In CBD cases pretangles and
threads (i), globose neuronal CBD-bodies (j), astrocytic plaques (k),
and oligodendroglial coiled bodies (l) can be seen. AGD is
characterized by 4R-tau positive neuronal dendritic grains (m),
pretangles (n), granular/fuzzy astrocytes (o), and oligodendroglial
coiled bodies (p). In GGT cases neuronal pretangles (q), spherical
cytoplasmic inclusions (r), globular astroglial (s) and oligodendroglial
(t) inclusions are detected. In Pick’s disease neuronal Pick bodies are
frequent in the dentate gyrus (u) and show 3R immunoreactivity (v;
here CA1 subregion is shown), furthermore, ramified astrocytes (w)
and small globular oligodendroglial inclusions (x) can be noticed as
well. Finally ARTAG comprises thorn shaped astrocytes and granular
fuzzy astrocytes here demonstrated in the subependymal (y1),
subpial (y2), perivascular (upper part of image 4) and white matter
(lower part of image) (y3), and grey matter (y4) areas. All images
show immunostaining for the AT8 antibody except (m) and (v)
where immunostaining for 4R- and 3R-tau isoform, respectively, was
performed. The bar in (a) represents 50 μm for a, e, f, g, h, l, m, t, u,
v, y1, and y4; 35 μm for b, c, d, j, k, o, p, x; 30 μm for q and r; 40 μm
for w and y2; 100 μm for i; 25 μm for s; and 150 μm for y3
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Pet imaging of tau pathology
Recently, the development of positron emission tomog-
raphy (PET) radioligands presumably binding to tau has
enabled the in vivo mapping and quantification of tau
pathology, hitherto largely confirming autopsy findings.
The radioligand [18F] Flortaucipir (FTP, previously
AV1451 or T807), a benzimidazole pyrimidine derivative,
is by far the most widely employed to date. It has been
shown to bind with high affinity to mixed 3R- and
4R-tau isoforms in paired-helical filaments (PHF) of AD
patients [26, 309, 361]. A recent study furthermore
showed that in vivo FTP-binding and post mortem PHF
load were highly correlated in a subject with a MAPT
R406W mutation, which causes AD-like 3R/4R tau path-
ology [309]. However, large inter- and intra-individual
differences were observed in a recent autopsy study of
several tauopathies [361], calling for further investigation
of FTP binding characteristics.
Off-target binding of tau PET ligands is another major

limitation and challenge to be addressed in novel tracer
development [26, 187, 200]. For example, the alleged tau
PET ligand [18F]THK5351 demonstrated strong binding
to monoaminoxidase B (MAO-B) in and ex vivo [133,
239], with ligand uptake being reduced by up to 50% in se-
lected brain regions by the MAO-B inhibitor selegiline,
preventing accurate quantification of tau [239]. Among
the currently available tracers, the binding characteristics
of FTP have been characterized best. FTP off-target bind-
ing has been observed in the caudate, putamen, and palli-
dum in elderly individuals regardless of their clinical
diagnosis [20, 42, 205, 333, 354], and has been attributed
to, amongst others, iron binding [59]. Its pronounced
binding to the substantia nigra, also in cases with no ap-
parent tau pathology, has been related to neuromelanin
[219–221], as has elevated FTP binding in the pituitary
gland, retinal pigment epithelial cells, leptomeninges, and
malignant melanocytes in metastatic melanoma [205, 219,
221]. High FTP signal in the choroid plexus has been at-
tributed to calcification/mineralization [205], binding to
tangle-like structures corresponding to so-called Biondi
ring tangles [150], or melanocyte binding [180, 219, 221]
and constitutes an issue for the quantification of hippo-
campal ligand uptake due to their close proximity. Here,
partial volume correction (PVC) might reduce bias from
choroid plexus signal on hippocampal signal [180, 211,
212, 288]. FTP has also been shown to bind to MAO-A
and B in vitro [335], however, no significant differences
were observed in vivo between FTP scans of patients with
and without MAO-B inhibitors [133].
A second generation of tau radioligands is supposed to

be affected less by off-target binding issues, however,
in vivo data are thus far limited for these ligands, which
include, amongst others, [18F]RO6958948 (Roche) [142,
359], [18F]MK-6240 (Merck/Cerveau) [24, 199, 255],
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[18F]GTP-1 (Genentech) [278, 279, 350], [18F]PI2620
(Life Molecular Imaging, formerly Piramal Imaging)
[314] and [18F]PM-PBB3 [249, 299].
For [18F] FTP, tracer uptake in physiological aging and

AD appears to follow a particular spatial and temporal
pattern. Although longitudinal data are limited to this date
[153, 311], the distribution appears to begin in the ento-
rhinal cortex, to spread into inferolateral temporal lobes
and medial parietal lobes, and to eventually cover most of
the neocortex in disease cases. To capture this high
regionality, which is significantly different from e.g. PET
imaging of Aβ pathology (often found throughout the
neocortex), several approaches have been suggested for A)
binary categorization of tau “positivity” [154, 212, 229,
344], and B) topographical staging approaches that recap-
itulate post mortem findings of tau distribution [211, 288,
290]. This regionality of tau PET ligand uptake in the
brain is further emphasized by studies employing
data-driven approaches without prior definition of ana-
tomical regions [293, 352]. However, a few studies have
suggested that ligand uptake assessment based on larger
composite regions may be sufficient to capture
AD-related tau PET signal and the longitudinal accumula-
tion of tau [153, 211]. On a group level, FTP demon-
strated clinical usefulness when its discriminative accuracy
between AD dementia and non-AD neurodegenerative
disorders was examined in a large multisite study, yielding
very high sensitivity and specificity based on medial-basal
and lateral temporal cortex ligand uptake [250].
In general, elevated tau tracer binding in the medial

temporal lobe (MTL) can be observed in cognitively
healthy older adults, whereas widespread binding in neo-
cortical regions of any individual commonly is associated
with the presence of cortical Aβ [58, 124, 161, 198, 211,
262, 288, 291, 294]. However, despite an overall correl-
ation between brain Aβ and tau [161], the spatial distri-
butions of these two aggregated proteins are discordant
[161, 198, 294]. Interestingly, the strongest association
can be observed between global Aβ and entorhinal tau
PET signal [333], rendering this region important for the
detection of AD-related tau PET signal.
Tau deposition outside the MTL is more common in

individuals with AD; however, elevated tau tracer uptake
has been reported for in neocortical areas in cognitively
normal and even Aβ negative individuals [204]. While
AD patients commonly have more widespread and pro-
nounced tracer uptake than controls, exceptions have
been found in AD patients who are Aβ-positive and
show relatively low levels of tau deposition [262, 344].
Longitudinal studies have also demonstrated that in-
creasing levels of Aβ are associated with more tau de-
position in limbic and neocortical Braak regions several
years later, even in nominally Aβ-negative individuals
[179, 325]. Despite the limited availability of longitudinal
data, it appears that tau accumulates over time in the
temporal lobes of cognitively healthy individuals and AD
patients, albeit this seems to be limited to Aβ-positive
individuals [153, 311].
Compared to associations with Aβ, correlations be-

tween tau PET measures and age across healthy elderly
seem to be weaker and confined to MTL regions [212,
289]. Greatest differences in FTP uptake between
healthy young and elderly subjects are commonly ob-
served in the choroid plexus and basal ganglia; however,
tracer uptake in these regions most likely represents
off-target binding [205, 206]. The age of symptom onset
among AD patients clearly affects tau PET uptake pat-
terns. Sporadic early-onset AD patients (EOAD) exhibit
distinctly greater parietotemporal and frontal ligand up-
take when compared with late onset AD (LOAD) which
exhibits rather confined temporal lobe uptake [289].
Data from studies in early-onset familial/autosomal-do-
minant AD are limited, suggesting earliest FTP uptake
in the medial temporal lobes of Aβ-positive presymp-
tomatic mutation carriers but high cortical uptake,
spatially comparable to sporadic EOAD cases in later
symptomatic stages [268, 289].
Tau has, in contrast to Aβ, long been known to be much

stronger associated with measures of cognitive decline and
neurodegeneration [86, 88, 136, 155, 237]. In fact, greater
FTP uptake has been shown to be related to both poorer
cognitive function cross-sectionally and retrospective longi-
tudinal decline in cognition functioning [13, 212]. In cogni-
tively healthy elderly, associations are strongest between
episodic memory performance and MTL, namely entorhi-
nal cortical tracer uptake, whereas associations with global
cognition are either absent or found for wider, less specific
neocortical regions. Interestingly, the effect of MTL tau on
episodic memory seems to be independent of global Aβ
load [211, 288] both in these individuals and in individuals
experiencing subjective cognitive decline [45]. Moreover,
MTL tau accumulation in cognitively normal elderly is as-
sociated with patterns of neurodegeneration as assessed by
both structural magnetic resonance imaging (MRI) and
[18F] Fluorodeoxyglucose (FDG) PET that are topographic-
ally similar to the patterns seen in AD patients [2, 74, 125,
132, 176], suggesting that early-stage MTL tau might have
a pathogenic role even in cognitively healthy individuals.
The relationship between tau, cognition, and neurode-

generation is even more pronounced in AD patients, espe-
cially in cases of EOAD who frequently exhibit language,
visuospatial, or executive dysfunction rather than memory
impairment and where the spatial distribution of tau depos-
ition strongly reflects the clinical phenotype [250, 368]. In
these patients, tau deposition is also strongly associated
with the neurodegeneration markers of atrophy and glucose
hypometabolism [27, 148, 250, 344], a relationship that can-
not be explained by measures of or the distribution of Aβ
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[269]. Statistically, cognitive impairment can be related to
both brain atrophy and tau, however, tau remains solely
correlated with cognitive dysfunction, even when control-
ling for atrophy [23].
Generally, FTP uptake might be helpful in distinguish-

ing clinical variants of AD, e.g. a recent study employing
a data-driven clustering approach demonstrated that the
majority of patients with relatively low entorhinal FTP
uptake, compared to overall neocortical uptake, have an
atypical clinical EOAD presentations, while most pa-
tients with high FTP uptake in both entorhinal and neo-
cortex present with EOAD and a typical amnestic
phenotype, and most with low FTP uptake in both ento-
rhinal and neocortex present with typical LOAD [352].
In summary, the assessment of tau accumulation with

PET has revealed a pattern of aggregation on a con-
tinuum from normal aging through AD that parallels
neuropathological data and now offers the possibility of
longitudinal studies. The strong relationship between tau
PET measures and measures of neurodegeneration and
cognition, taking in account the relationship between
tau and Aβ, will elucidate how Aβ and tau pathology
interact in the development of the processes that are
linked to cognitive decline and clinical dementia.

Extracellular and intracellular tau – Two sides of
one coin
In pathological conditions, tau protein undergoes
post-translational modifications, such as, truncation [241,
242, 357, 358], phosphorylation [127], ubiquitination [32,
181], glycation [283, 373], glycosylation [196, 343], nitra-
tion [144, 271, 272] and sumoylation [87, 209]. Among
them, phosphorylation and truncation are the most stud-
ied. Many laboratories suggest that tau hyperphosphoryla-
tion on Ser and Thr residues facilitates tau aggregation.
Tau is posttranslationally modified at Ser/Thr residies by
O-linked N-acetylglucosamine (O-GlcNAc), and thus in-
creasing tau O-GlcNAcylation may protect against tau ag-
gregation. In tau transgenic mouse models, inhibition of
β-N-acetyl-glucosaminidase, the enzyme responsible for
O-GlcNAc removal, is protective [33].
It has been shown that truncated tau proteins are con-

tained in the core of the paired helical filaments. Expres-
sion of the tau protein in the brain of transgenic rats and
mice induced the formation of extensive neurofibrillary
pathology, suggesting that truncated tau is a driving force
of neurofibrillary degeneration [98, 381, 382, 384, 385].
Therapeutic approaches against tau pathology target

either intracellular or extracellular tau or eventually
both. It has been demonstrated that an increase in the
level of intracellular tau could result in tau secretion into
the extracellular space or in cell death [122, 304]. Toxic
extracellular tau could interact with neuronal cell recep-
tors such as M1/M3 muscarinic receptors [122, 123], or
with heparin sulfate linked to cell membrane [372]. The
result of that interaction could be again the onset of
neuron toxicity and intracellular tau secretion. In this
way, tau pathology could be propagated. Thus, possible
therapies involving the use of muscarinic antagonists
[131, 334, 336], or agents decreasing heparin sulphation
[372], are under discussion for AD therapy.
Extracellular tau is found at significant levels in the

interstitial fluid of the central nervous system (CNS), and
can pass into cerebrospinal fluid (CSF) [370]. Initially,
extracellular tau was thought to be only passively released
by dying neurons, with selective vulnerability of neuronal
types and cellular signals contributing to the disease pro-
gression [285]. However, there is now growing evidence
that tau is actively transferred between neurons under
pathological and physiological conditions. Aggregated and
soluble tau variants have been shown to transfer between
anatomically connected regions of the brain [75, 149,
197], and trans-synaptically between cells in culture [280,
363]. How tau is actively transferred between neurons is a
major focus of dementia research, as attenuating the
pathological spread may limit the progression of disease.
Active tau transfer is thought to involve discrete steps in-
cluding post translational modification (PTM), extracellu-
lar release and subsequent tau internalization.
Intracellular tau undergoes various PTMs including

phosphorylation and proteolytic cleavage. Levels of total
and phosphorylated tau detected in the CSF are important
biomarkers for dementia [28]. Several tau modifications
are detected at proportionally higher levels in extracellular
compared with intercellular fractions, implicating specific
tau modifications in active neuronal export [248]. Higher
levels of extracellular aberrantly hyperphosphorylated tau
are detected in patients with dementia [79]. Hyperpho-
sphorylated tau has a lower binding affinity to microtu-
bules (MT) [192] and mislocalizes to somatic and
dendritic cell compartments [106, 143, 323]; these factors
may contribute to active export as dissociation from MTs
would allow a greater opportunity for tau to interact with
components that facilitate protein export. C-terminally
truncated tau (lacking approximately the last 50 amino
acids) is detected at proportionally higher levels in the
CSF samples of healthy individuals and dementia patients
[284], and in neurons in culture [43, 163]. These tau spe-
cies may be more readily detectable or resistant to degrad-
ation. Post-translational modifications and exon splicing
events influence intra- and extracellular tau stability.
Phosphorylated and 4R-tau isoform peptides have faster
turnover rates than unphosphorylated and 3R-tau isoform
peptides, respectively. Peptides from the N-terminal to
mid-domain tau are more stable and have similar
half-lives both inside and outside of the cell [284]. Not-
withstanding these differences in stability, the proportion-
ally higher levels of extracellular truncated tau suggest
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that physiological active tau release may be regulated by
proteolytic cleavage.
Distinguishing between active tau release mechanisms

and passive tau release, due to cell death, is challenging.
The process of active tau release has been linked with sev-
eral cellular mechanisms. In cell culture, monomeric tau
can directly interact with the plasma membrane and pro-
teoglycans, leading to unconventional secretion of tau [55,
164, 304], or the release of ectosomes containing tau [89].
Active tau release is also proposed to be regulated by
neuronal activity. Depolarization of neurons promotes tau
release [102, 263, 371] and release of exosomes containing
hypophosphorylated tau [346]. These mechanisms aren’t
mutually exclusive. However, it is unclear how they are as-
sociated and whether they relate to all forms of tau.
Following release into extracellular space, pathogenic

tau can be taken up by healthy neurons, and promote
seeded aggregation [165]. There have been conflicting re-
ports regarding the forms of tau and route of entry of tau
into various cell types. Studies suggest that aggregated tau
is the predominant form internalized into cells [105, 362].
However, monomeric full-length tau can also be efficiently
taken up by neurons [95]. These reports show that tau is
taken up by endocytosis. Levels of the clathrin-mediated
endocytosis component myc box-dependent-interacting
protein 1 (BIN1) negatively correlate with tau uptake [52].
Different forms of tau enter neurons via distinct but over-
lapping pathways. Monomeric tau can enter neurons via
dynamin-dependent endocytosis that is saturable, suggest-
ing uptake is dependent on carrier proteins or receptors
[95]. Entry of aggregated tau is attenuated by heparin in
cell culture, indicating that heparan sulphate proteogly-
cans serve as receptor for tau uptake [140].
Hyperphosphorylated tau isolated from AD brain tissue

is also recognized by the CNS immune system; microglia
internalize and degrade tau in an Fc-dependent manner
[210], and the cytosolic Fc receptor – tripartite
motif-containing protein 21 (TRIM21), inhibits seeded tau
aggregation [223]. Conversely, it is also suggested that the
migration of microglia through the CNS transfers patho-
genic species of tau to new areas of the brain [216].
It is currently unknown if tau transfer is a disease-specific

phenomenon or physiological process appropriated during
disease. Physiological tau transfer may be involved in net-
work signaling or neuronal maintenance. Independently of
the ability of pathological tau to seed aggregation, extracel-
lular tau itself has been shown to be neurotoxic [84] and
extracellular tau from individuals harboring amyloid pre-
cursor protein (APP) gene duplication can also cause syn-
aptic dysfunction [145]. Tau immunotherapies that
attenuate transfer of tau with the aim of limiting disease
progression are under development [43, 64]. Tau antibodies
have been shown to attenuate intracellular tau aggregation
[375], while tau-antibody complexes can be internalized
and targeted for degradation [56, 129, 215]. Identifying epi-
topes and conformations that distinguish between physio-
logical and pathological tau transfer are important
considerations when developing immunotherapies that tar-
get extracellular tau.

Tau passive immunotherapy
In Alzheimer’s disease, tau protein is burdened by numer-
ous post-translational modifications resulting in aggrega-
tion and tangle formation. Therefore, a number of passive
vaccines for tau immunotherapy raised against various
epitopes or conformation/s of tau have been developed,
showing varied degrees of efficacy in attenuating tau path-
ology in animals, along with improvement in cognitive or
motor functions. Several animal models have been used
for testing of the therapeutic efficacy of monoclonal anti-
bodies. Tau pathology is localized in various brain areas
including hippocampus and brainstem. The location of
tau pathology is mostly determined by the gene promotor.
The clinical presentation is driven by topographic distri-
bution of tau pathology, some of rodent models demon-
strated cognitive decline while others suffer from
impairment of sensori-motor functions [383]. The major-
ity of preclinical studies have been performed on trans-
genic mice expressing mutant tau proteins (Table 1).
However, tau mutations are not linked to familial forms of
AD, but can cause frontotemporal dementia.
In general, tau therapeutic antibodies target, neutralize

and/or eliminate either monomeric [36, 374, 375], aggre-
gated forms [54], phospho-specific, or conformationally
altered forms of tau protein [36, 56, 72, 129, 167, 342]
(Table 1) and thus preventing formation neurofibrillary le-
sions. Anti-tau antibodies also differ in their binding site
on tau. They recognise either the N-terminus [4, 73, 374,
375], the proline rich region [73, 342], the microtubule
binding region [167, 375] or C-terminus [36, 56, 151].
The N-terminus of the tau protein has become attract-

ive for preclinical development of tau therapeutic anti-
bodies [4, 73, 374, 375]. This can be attributed to
following reasons. Firstly, the conformational changes in
the N-terminal region of tau occur very early in the dis-
ease pathogenesis in AD, which affects the function of the
protein [62]. Furthermore, the exposure of the N-terminal
is associated with early pathological event in human tauo-
pathies [63]. The N-terminal fragment containing Gln124
displayed stronger ability to stabilize microtubules [78]. In
addition, only N-terminal fragments were detected in the
CSF from AD subjects [160, 284]. Similar results were also
obtained from cortical neurons cultured from AD brains
[43]. Moreover, the N-terminal fragment of tau protein
was shown to increase amyloid beta production [43], and
impair mitochondrial function, synaptic plasticity, and in
turn was detrimental to neurons [9, 10, 34, 100]. Several
studies focusing on antibodies targeting N-terminal



Table 1 Tau antibodies tested in preclinical efficacy studies

ANTIBODY EPITOPE ANIMAL
MODEL

IMPROVEMENT EFFICACY REFERENCE

Cognitive Motor NFTs Insoluble tau

PHF1 pS396/404 P301L nd. nd. nd. Reduced [56]

P301S nd. Improved Reduced Reduced

MC1 aa7–9 and aa 313–322 P301L nd. nd. nd. Reduced

P301S nd. Improved Reduced Reduced

MC1 aa7–9 and aa 313–322 P301L nd. nd. Reduced No change [72]

DA31 aa150–190 No change No change

PHF1 pSer396/404 Reduced Reduced

4E6G7 379-408 (pS396/404) P301L nd. nd. Reduced No change [129]

6B2G12

TOMA nd. Tg2576 Improved Improved nd. Reduced [54]

PHF6 pT231 rTg4510 Improved No change nd. No change [281]

PHF13 pS396 rTg4510 Improved No change nd. No change

PS19 Improved nd. Reduced No change

HJ9.3 aa306–320 P301S Improved No change Reduced Reduced [375]

HJ9.4 aa7–13 Moderate change No change Reduced No change

HJ8.5 aa25–30 Moderate change No change Reduced Reduced

HJ8.5 aa25–30 P301S nd. Improved Reduced Reduced [374]

43D aa6–18 3xTg-AD Improved nd. Reduced nd. [73]

77E9 aa184–195 Improved nd. Reduced nd.

AT8 pS202 + pT205 3xTg-AD nd. nd. Reduced nd. [342]

MAb86 pS422 TauPS2APP nd. nd. Reduced nd. [61]

pS404 mAb IgG2 pS404 K3 and pR5 nd. nd. Reduced Reduced [151]

pS409-tau pS409 P301L nd. nd. Reduced Reduced [182]

Armanezumab aa2–18 THY-Tau22 nd. nd. Reduced nd. [4]

PHF1 pS396/404 P301L nd. Improved Reduced No change [36]

Ta9 pS396 tau609 Improved nd. Reduced Reduced [328]

tau784

Ta4 pSer396 tau609 Improved No change Reduced Reduced

tau784

Ta1505 pSer413 tau609 Improved nd. Reduced Reduced

DC8E8 aa268-273, aa299-304, aa330-335, aa362-367 R3/m4 nd. nd. Reduced Reduced [168]

nd Not defined
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sequences of tau have reported varied degree yet promis-
ing efficacy in reducing tau pathology and improveing
cognitive or motor deficits during preclinical trials [4, 14,
73, 374, 375].
On the other hand, it has been shown that the majority

of tau in the AD brain is truncated, mostly at the
N-terminus [384]. A recent study showed that high mo-
lecular weight tau species from AD brain extract demon-
strated strong immuno-positivity to C-terminal specific
antibodies, and were weakly stained with N-terminal spe-
cific antibodies, indicating substantial lack of N-terminal
sequences in oligomers and fibrils from the AD brain
[380]. In concordance with this study, two recent papers
demonstrated that N-terminal tau antibodies do not rec-
ognise truncated tau and the whole spectrum of aggre-
gated forms of tau in Alzheimer’s disease brain. They
mainly decorate a triplet of hyperphosporylated
full-length tau – A68 [183]. This means that a large por-
tion of pathological tau is not recognised by N-terminal
tau antibodies [67, 331, 380]. By using a seeded aggrega-
tion cell model, N-terminal antibodies (PT26, aa 23-26;
PT93, aa27-32; hTau10, aa29-36) showed incomplete
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depletion of human-derived seeds even at the concentra-
tion, which was sufficient for complete depletion of tau
seeds from P301S transgenic model (300 nM) [331]. Simi-
larly, two tested N-terminal antibodies (aa15-24, aa 25-30)
and MC1 (which recognises both N-terminus and micro-
tubule binding domain) failed to fully prevent seeding of
AD tau in a seeded aggregation cell model [67] and
in vivo [8]. In contrast, Nobuhara and colleagues [240]
demonstrated that N-terminal antibody C13 (aa2-18) effi-
ciently removed tau from rTg4510 brain extracts and hu-
man AD high molecular weight tau (HMW). Moreover,
the antibody reduced tau uptake of pathological mouse
and human AD HMW tau in a sensitive FRET-based in
mouse primary neurons. It is important to note that the
antibodies targeting the N-terminus on tau are not spe-
cific to diseased tau, and they possibly reduce the level of
physiological tau.
While beneficial effects of N-terminal antibodies on

reduction of tau uptake or inhibition of seeding activity
are still a matter of discussion, the development of novel
therapeutic tau antibodies has shifted to the mid domain
of tau protein. In the mid region, phosphorylation of tau
at the position pS202 and pT205 was reported as an
intracellular and extracellular marker for tau pathology
in AD [39], and is potentially involved in neuronal apop-
tosis [166]. Moreover, phosphorylation of tau at T231
was also reported as an early event in AD [207, 208].
Several mid-domain tau antibodies (PT51, aa153-158,
PT79, aa131-140, PT89, aa173-178) demonstrated
complete depletion of mouse transgenic tau
P301S-derived tau seeds. However, incomplete depletion
of human derived seeds even at maximal concentration
of 300 nM [331], suggests the different composition of
mouse and human tau seeds. On the other hand, the
antibody 6C5 (aa125-131) efficiently removed tau (> 85%
reduction) from both mouse transgenic (Tg4510) brain
extracts and human AD HMW tau (82% reduction). Fur-
thermore, the antibody was the most effective in redu-
cing tau uptake of pathological mouse tau (> 90%
reduction) and human AD HMW tau (> 75% reduction)
as well in a sensitive FRET-based assay in mouse pri-
mary neurons [240]. Similarly, the antibody recognising
aa235-250, fully neutralised seeding activity of AD and
PSP tau in a seeded aggregation cell model with an IC50
of 2.9 nM and 5.6 nM, respectively [67]. These results
demonstrate that antibodies recognising the mid region
of tau can be effective in the reduction of tau uptake
and neutralisation of tau seeding activity. In contrast to
in vitro experiments, studies using tau antibodies raised
against this region of tau showed inconsistent results in
preclinical in vivo experiments [72, 73, 342].
The third class of antibodies target the microtubule

binding region (MTBR), which plays a crucial role in
polymerization and stability of microtubules [36, 168,
328]. On the other hand, this region is responsible for
the pathological tau-tau interaction. It was reported that
the C-terminal fragments were more prone to filament
formation than the N-terminal sequences [257, 258].
Specifically, the region spanning aa244-372 corresponds
to the amyloid-forming region on tau protein [315]. This
property is attributed to the hexapeptide sequence

306VQIVYK311 on the 2nd repeat of MTBR which was
shown to promote tau aggregation by a nucleation
dependent mechanism [338]. Recent cryo-electron mi-
croscopy study demonstrated that this hexapeptide
packed through a heterotypic, non-staggered interface
with the opposing residues 373–378 [99]. Moreover, the
hexapeptide on the 3rd MTBR also caused formation of
fibrils in vitro [315]. Currently, only two preclinical stud-
ies on passive immunotherapies targeting the MTBR
were performed, both showing promising results [168,
375]. More specifically, the antibody DC8E8 [168] binds
to the four highly homologous and yet independent hex-
apeptides localised in each microtubule binding domain,
while mAb HJ9.3 (epitope 306-321) recognises the hexa-
peptide sequence 306VQIVYK311 [375]. Both antibodies
were effective in reduction of neurofibrillary pathology
in the brain of transgenic rodent models.
It has been shown that the C-terminus enhanced the

microtubule binding capacity of tau protein and also in-
fluenced pathological tau aggregation [177, 232]. More
specifically, the C-terminal region of tau harbors several
phosphorylation sites which regulate microtubule bind-
ing of tau and hyperphosphorylation of phospho-sites in
this region, such as pS413, pS396, pS404, are observed
in early and late stages of AD progression [15, 300].
Therefore, several studies are devoted to investigating
the effect of C-terminal specific tau antibodies in animal
models [36, 56, 129, 151, 182, 328].
Finally, conformational changes and oligomer forma-

tion of tau protein represent early events in the patho-
genesis of tau lesions in AD [39, 256, 348]. For example,
with MC1 (aa7–9 and aa313–322), conformational epi-
tope specific reactivity is observed in Braak stages I and
II in AD [348]. In addition, MC1 immuno-purified sol-
uble tau species readily assembled into paired helical fil-
aments in vitro [348]. Therefore, antibodies against
these unique species of tau are also being investigated in
preclinical studies to attenuate tau pathogenesis. MC1
therapy slightly reduced insoluble tau and number of
tangles in the brain of experimental mice [54, 56, 72].
Currently, only a handful of humanised tau antibodies

are being investigated at various stages of clinical devel-
opment (Clinicaltrials.gov). Humanized versions of
N-terminal specific antibodies 8E12 [374, 375], and
BIIB092 (also known as BMS-986168 or IPN007) [43]
are being currently investigated at various phases of tri-
als for treatment of PSP and AD. Another N-terminal
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antibody RO 7105705 (RG 6100) has already entered
Phase 2 clinical trials, targeting Alzheimer’s disease.
Janssen is also starting phase 1 clinical trials in mild AD
with the antibody JNJ-63733657 which is effective at
eliminating pathological tau seeds. Antibody UCB0107
that targets the mid region of tau is currently in Phase I
(healthy volunteers). Antibody LY3303560 (modified
MC1 antibody) recognising both N-terminus and micro-
tubule binding domain is in Phase 2 trial in MCI-to-AD
or mild to moderate AD patients. Finally, antibody
BIIB076 that has the ability to bind monomeric and fi-
brillar forms of tau is being tested in the Phase I clinical
trial in AD [65, 71](www.alzforum.org).
There are several advantages of passive immunotherapy.

In terms of pharmacology definition, antibodies are pre-
cisely characterised both in vitro and in vivo (avidity, affin-
ity, target specificity, half-life, concentration, single
isotype). Passive immunotherapy does not require the im-
mune system to generate an immune response. The main
disadvantages are expensive production, the short half-life
of antibodies and chronic systemic administration (i.v.).
Chronic administration may lead to formation of
anti-antibodies, which could result in neutralization and/
or have other unwanted immunological side effects [128].

Importance of binding mechanism and affinity of
therapeutic anti-tau antibodies
The binding of antigen by an antibody is effectuated by
direct contacts between the antigen epitope and antibody
complementarity determining regions (CDRs). The
three-dimensional structure of the CDRs and its temporal
fluctuations conditioned by the flexibility of the antibody
molecule determine (1) the specificity for an epitope, (2)
the binding selectivity between various presentations of
the epitope and (3) the strength of interaction (the stability
of the antibody-antigen complex), where the strength is
quantified as association (equilibrium) constant, Ka, or its
reciprocal quantity, the dissociation constant Kd. All these
aspects are interconnected, where the latter, quantified
strength of interaction, is being used for the determination
of previous two, i.e. specificity and selectivity.
According to the available data, not all three of the

abovementioned aspects were evaluated for all the
anti-tau therapeutic antibodies. The specific epitopes are
the best characterized and thoroughly described in a re-
cent review [189, 244]. They comprise linear, conform-
ational or phosphorylation-dependent sites on tau [302].
The second aspect, selectivity towards pathogenic presen-
tation of the epitope, is important for both the safety and
the efficacy of the anti-tau therapy. This avoids the side ef-
fects caused by knocking out healthy tau and focuses the
antibody action towards the initial and/or the most toxic
pathological tau forms. In this respect, some of the anti-
bodies have had claims for their selectivity for pathological
tau at various stages of tau neurodegeneration, e.g., MC1
for a conformation associated with tau filaments [99, 159],
ACI-5400 for a phospho-epitope inducing a pathological
conformation [321] or DC8E8 for multiple epitopes select-
ively presented on conformational ensemble of pathogenic
truncated tau [168, 243]. The third aspect, interaction
strength, has been frequently evaluated by relative quanti-
fication on western blot, or, more precisely, by ELISA. For
an absolute quantification the surface plasmon resonance
(SPR) technique has been used.
A confusing aspect of quantification of binding strength

arises in the distinction between monovalent and multiva-
lent arrangement of the quantification protocol. A
full-length monoclonal antibody of IgG class contains two
binding sites for the antigen. For determination of binding
strength, one has to measure KA or KD of interaction of
one binding site with one epitope on the antigen molecule,
e.g. using monovalent antibody Fab. This quantity is com-
monly called as antibody affinity. The affinity is a constant
value, characteristic for the given antibody binding site –
antigen epitope pair, and may be used for an unbiased
comparison of antibody binding strength. Affinity is inde-
pendent of the spatial arrangement of antigen. If per-
formed properly, it is independent on the design of the
measurement.
The strength of binding of a whole IgG molecule, which

is bivalent, may be expressed equally as a KA or KD, but
with this we measure the avidity of antibody. The avidity is
not a constant and depends on the availability of the anti-
genic epitopes in the vicinity of both IgG antibody binding
sites simultaneously. When an epitope is present at a high
local concentration (that is, at a high areal/spatial density),
e.g. on a surface (during Western blotting, on the ELISA
plate/SPR sensorchip with a high density of immobilized
protein etc.) or on the polymerized antigen (tau filaments),
the overall level of bound antibody may be very high with
the probability that at least one of the antibody binding
sites can at any one moment be bound to the antigen.
Antibody avidity is effective in situ (in the inter-neuronal

space) towards protein particles with a high spatial density
of its epitopes (e.g. oligomerized, aggregated and filament-
ous tau, but not monomeric tau). Generally, the avidity of a
mature, functional antibody can reach extreme values, ran-
ging from 10− 12 to 10− 15M (picomolar to femtomolar),
whereas the affinity of a single antibody binding site is pro-
portionally lower, in the range of 10− 8 to 10− 10 M
(nanomolar to subnanomolar). It is of note that the
immune system employs an affinity ceiling at ~ 10− 10

M during antibody maturation, eliminating the anti-
bodies with excessively high affinities, that are not
beneficial for the organism [22]. It was postulated
that for therapeutic antibodies for tauopathies, a
strong selectivity towards pathological tau may be
more important than high affinity [72, 301].

http://www.alzforum.org
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Whereas affinity, the constant measure characteristic
for a given antibody-antigen pair can be quantified repro-
ducibly on different SPR instruments in different labora-
tories, using various immobilization chemistries and a
range of time kinetic protocols, the avidities are more dif-
ficult to reproduce with a new sensorchip or with different
arrangement of measurement, because they are intrinsic-
ally dependent on the conditions of measurements. It is
known that a low flow rate used in SPR could artificially
decrease the dissociation rate constant and therefore in-
crease the affinity due to rebinding events [234]. Equally,
the amount of protein on the chip could also increase
rebinding and mass transport artefacts [235].
Reactivity of anti-tau antibodies HJ8.5, HJ9.4 and

HJ9.3 were measured at conditions where the avidity
was effective due to the use of bivalent full-length anti-
bodies, and a very high density of tau epitopes on the
surface of sensorchip [375]. Therefore, determined
values represent avidity rather than affinity. Reactivity of
antibody ACI-5400 was also measured with bivalent
full-length antibody, but with a low density of epitopes
on the sensorchip [321]. Therefore, the determined value
likely corresponds to the affinity; although a correction
for a bivalent analyte has to be performed. Antibody
DC8E8 was measured with low densities of antibody on
the sensorchip, therefore, strictly under conditions
measuring affinity, and thus, the values represent affin-
ities [167] (Table 2).
For unbiased comparison of binding strength and spe-

cificity of candidate therapeutic anti-tau antibodies, the
affinity should be strictly used. Binding of therapeutic
antibody to oligomerized tau protein species in the inter-
stitial brain space would benefit from increased avidity
of a bivalent antibody, assuming that the antibody epi-
tope is present on the polymerized tau in sufficiently
Table 2 Overview of affinity/avidity data of candidate therapeutic a

ANTIBODY EPITOPE AFFINITY AVIDITY T

HJ8.5 aa25-30 nd. 0.4 pM H

HJ9.4 aa7-13 nd. 7 nM H

HJ9.3 aa306-320 nd. 100 pM H

ACI-5400 aa393-408(pS396) 38 nM nd. T
p

DC8E8 Tetratope in the repeat region of tau
(aa268-367)

91 nM nd. H

DC8E8 Tetratope in the repeat region of tau
(aa268-367)

14 nM nd. P
3

derived from
MC1

aa7-9; aa312-322 235 nd. m

derived from
MC1

aa7-9; aa312-322 nd. < 0.22 nM t

nd Not defined, SPR Surface plasmon resonance spectroscopy
high spatial density. The latter requirement might be ful-
filled for repeat region-directed antibodies, as the repeat
region is the constitutive component of the core struc-
ture of assembled tau [99, 242]. The avidity enhance-
ment for binding of N-terminal anti-tau antibodies like
HJ9.4 and HJ8.5 is compromised from two reasons: (1)
the N-terminal part of tau is not regularly arranged in
the tau polymers, but rather forms a fuzzy coat [99] and
(2) a significant portion of high molecular weight tau
species in the Alzheimer’s brain is N-terminally trun-
cated [384] and may be lacking the antibody epitopes.

Tau therapeutic vaccines
Like their passive immunotherapy counterparts, active
vaccines targeting the mid-region, microtubule binding
domain and C-terminus have been extensively investi-
gated in preclinical studies (Table 2). Most of these studies
demonstrated reduction in tau pathology [14, 30, 167, 270,
274, 322] along with improvement in cognitive or sensori-
motor abilities in animals [36, 37, 167, 322, 326] (Table 3).
Interestingly, the majority of preclinical studies with

tau active vaccines have paid only marginal attention to
the characterization of the antibody response induced by
the vaccines. It should be emphasized, that the primary
goal of all designed tau vaccines is antibody-mediated
protection. The quantity and quality of the vaccine anti-
bodies may represent a critical correlate of the efficacy
of tau vaccines. In general, the measurement of titer or
concentration by ELISA is the widely accepted approach
for quantification of antibody response in body fluids
[66, 369]. Unfortunately, there is still no agreement on
the optimal methods for measurement of anti-tau anti-
bodies, or how the results of such assays should be re-
ported [3]. Many preclinical studies of the tau vaccines
have analysed the antibody response in a rather
ntibodies

ARGET (IN SPR) NOTE REFERENCE

uman Tau2N4R tau immobilized to a high level (>
3000 RU)

[375]

uman Tau2N4R tau immobilized to a high level (>
3000 RU)

[375]

uman Tau2N4R tau immobilized to a high level (>
3000 RU)

[375]

au393-408(pS396/
S404)

tau immobilized to a low level (130
RU)

[321]

uman Tau2N4R Antibody immobilized to a low level
(230-250 RU)

[168]

athological Tau151-
91_4R

Antibody immobilized to a low level
(230-250 RU)

[168]

onomeric tau Antibody immobilized at unknown
density

[135]

au aggregate Antibody immobilized at unknown
density

[135]



Table 3 Preclinical studies on tau vaccines

IMMUNOGEN ANIMAL
MODEL

IMPROVEMENT EFFICACY REFERENCE

Cognitive Sensorimotor NFT’s Insoluble tau

Tau379–408 [pS396,404] P301L No change Improved Decreased Decreased [14]

Tau 379-408 [pS396/404] htau/PS1M146L Improved Improved Reduced Reduced [36]

Tau 417-426 [pS422] Thy-Tau22 Improved nd. Reduced Reduced [326]

Tau393-408 [pS396/S404] (Liposome based) P301L nd. Improved No change Reduced [322]

Tau379-408 [pS396/S404] hTau X PS1 Improved No change Reduced Reduced [37]

hTau Improved No change No change Reduced

hTau/PS1/mTau Improved No change No change Reduced

Tau195-213 [pS202/T205] DM-Tau-tg nd. nd. Reduced nd. [30]

Tau207-220 [pT212/S214] nd. nd. Reduced nd.

Tau 224-238 [pT231] nd. nd. Reduced nd.

Tau aa395-406 [pS396/404] pR5 nd. nd. Reduced nd. [25]

Human paired helical filaments (PHF’s) THY-Tau22 nd. nd. Reduced Reduced [12]

Tau229-237 [pT231/pS235] P301S nd. nd. nd. nd. [273]

Tg2576

Tau199–208 [pS202/pT205] P301S nd. Improved No change No change [274]

nd. Improved No change No change

Tau209–217 nd. Improved No change No change

Tau 294-305 SHR72 rats nd. Improved Reduced Reduced [167]

Tau 379-408 [pS396/404] 3xTg-AD No change nd. Reduced Reduced [270]

Tau 294-305 P301S Improved Reduced Reduced [157]

nd Not defined
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descriptive manner as “good, robust, high or low”, and
did not elaborate on its quantitative aspect [14, 37, 270,
322]. Only two studies published so far, have defined the
titer of the antibody response [167, 274]. There is an ur-
gent need for development of common standards for the
measurement of antibody response with the most sensi-
tive and reproducible methods. This will allow us to per-
form a direct comparison of antibody responses between
different assays and different clinical trials [3]. Another
determining factor of vaccine efficacy is quality of
vaccine-induced antibodies (e.g., their isotypes, affinity/
avidity, target epitope, functional activity). For example,
antibody isotype already more or less indicates antibody
affinity. Moreover, to some extent, affinity reflects thera-
peutic effectivity of antibody.
In comparison with passive tau immunotherapy, there

are only two tau active vaccines that have been tested in
human clinical trials, AADvac1 for Alzheimer’s disease
and non-fluent primary progressive aphasia (Axon
Neuroscience SE), and ACI-35 vaccine for Alzheimer’s
disease (AC Immune SA, Janssen). Active vaccine AAD-
vac1 consists of tau peptide (aa 294-305/4R) that was
coupled to keyhole limpet haemocyanin (KLH) in order
to stimulate production of specific antibodies. The
24-week first-in-man study on AADvac1 in patients with
mild to moderate AD dementia demonstrated encour-
aging results in both safety and immunogenicity. Twenty
nine of 30 patients developed an IgG response against
the tau peptide component of AADvac1 and against re-
combinant pathological tau (aa151-391/4R) [381]. The
serum antibodies showed a pronounced preference for
pathological truncated tau over healthy full-length tau
protein [245]. Similarly, a 72-week open-label single
arm interventional follow-up trial (FUNDAMANT)
displayed a benign safety profile of the vaccine. No
cases of meningoencephalitis or vasogenic oedema
were observed. There was a tendency towards slower
atrophy in MRI and less decline in cognitive assess-
ment in patients with high titres [243]. Currently, a
phase II clinical trial in AD and a phase I trial in
non-fluent primary progressive aphasia are underway
(alzforum.org) (Fig. 3).
Much less is known about the ACI35 clinical trial.

ACI-35 is a liposome-based vaccine consisting of a syn-
thetic peptide to mimic the phospho-epitope of tau at resi-
dues pS396/pS404 anchored into a lipid bilayer. A phase 1b
multi-centre double-blind randomized placebo-controlled
trial in 24 patients with mild to moderate Alzheimer’s dis-
ease compared low, medium, and high doses of the vaccine
to placebo.



Fig. 3 Chemical structures of methylene blue derivatives
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Active immunization is long lasting because it induces
immunological memory. Active vaccines are easy to ad-
minister (different routes) and the production is
cost-effective. Immunisation generates polyclonal re-
sponse; antibodies can recognize multiple epitopes on
the target protein with different affinity and avidity. On
the other hand, the immune response depends on the
host immune system, there is a variability in the anti-
body response across patients [128, 353].

Antisense therapies for tauopathies
Direct targeting of tau gene (MAPT) expression is gain-
ing currency as a therapeutic approach with an antisense
oligonucleotide (ASO) therapy already in Phase I clinical
trials. Several in vivo and cell studies have demonstrated
the benefit of tau reduction in slowing pathological pro-
gression and improving functional deficits in tauopathy
models both dependent and independent of ß-amyloid
pathology. Tau reduction also results in significant im-
provements in seizures associated with AD pathology
and in a model for Dravet syndrome [112].
The fibrillar tau pathology in tauopathy brains consists of

abnormally hyperphosphorylated tau protein [169, 360].
Normal phosphorylation and dephosphorylation of residues
within and flanking the microtubule (MT)-binding repeat
domain (MTBR) mediates the dynamic binding and release
of tau from MTs [303]. Hyperphosphorylation could cause
or be the result of aberrant release of tau from MTs, with
hyperphosphorylated tau unable to bind to MTs [41]. The
resulting surplus of unbound tau together with localised
concentrations, could lead to the triggering of pathological
conformational conversion of tau to a seed-competent form
[228] and the initiation of the aggregation cascade that
leads to the fibrillar tau accumulations.
The genetics of tau have informed us on the role of

tau defects as directly contributing to neurodegenera-
tion. The early dominance of Aß and the amyloid hy-
pothesis [292] subsumed tau to a consequence or
bystander in the AD pathogenesis cascade. However, it
was clear that the spread and severity of tau pathology
better correlated with clinical progression of AD [40,
116, 126]. The identification of mutations in the tau
gene (MAPT) that cause familial forms of FTLD with
tau pathology (FTLD-tau) [147, 313] cemented the primary
role of defective tau as a neurodegenerative agent. From
these genetic studies, the identification of common genetic
variation in MAPT emerged, defining the H1 haplotype,
that is a strong risk factor for primary tauopathies with
dominant 4R-tau pathology, progressive supranuclear palsy
(PSP; OR = 5.46) [19, 139, 260] and corticobasal degener-
ation (CBD; OR= 3.7) [139, 147, 171] and, more surpris-
ingly, Parkinson’s disease (OR = 0.77) [306].
The FTLD-tau mutations in MAPT fall into two broad

classes; missense mutations that chiefly affect residues
within the MTBR that impair microtubule binding capacity
and/or increase fibrillogenicity of tau, and splicing muta-
tions in intronic sequences flanking the alternatively spliced
exon 10 and in splicing regulatory motifs within exon 10
[147]. The latter cause increased inclusion of exon 10 and
ensuing increased ratio of tau isoforms with four MTBRs
(4R-tau) over those containing three MTBRs (3R-tau)
[118]. The splicing of MAPT exons 2, 3 and 10 is develop-
mentally regulated, and in the healthy adult brain, there are
about equal amounts of 3R- and 4R-tau [117, 170]. The
basis of the increased risk conferred by the H1 haplotype of
MAPT and its defining common polymorphisms, spanning
the entire gene and beyond, could be the demonstrated
allele-specific differences in transcription [233] and of spli-
cing of exons 3 and 10 of the MAPT pre-mRNA [50, 233].
The result is an overall increase in tau levels, particularly
the more fibrillogenic 4R-tau, leading to the 4R-tau domi-
nated pathology seen in PSP and CBD [195]. Furthermore,
it was shown that 17q21.31 duplication leads to early-onset
dementia with an AD clinical phenotype [178].

Therapeutic reduction of tau
Surplus availability of unbound tau, particularly of the
more fibrillogenic mutants or 4R-tau could, with abnor-
mal hyperphosphorylation, lead to mislocalisation and ab-
errant interaction with other cellular components and
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milieux. This leads to conformational conversion of tau
from its highly soluble, intrinsically disordered character-
istic to the seed-competent aggregation-prone form [228].
This has led to the notion that reduction of total tau (or
surplus 4R-tau) could be therapeutically beneficial. Al-
though the recent stable of passive immunotherapy ap-
proaches targeting tau could be blockading intercellular
transmission of pathological tau seeds, a plausible mech-
anism could also be a reduction of pathological tau medi-
ated by microglial or neuronal uptake and clearance of
extracellular tau-antibody complexes [107, 210, 223].
Several published pre-clinical studies with cell and animal

models of AD and tauopathies have persuasively demon-
strated the possible therapeutic benefit of tau reduction
(Table 4). An ASO-based approach already having entered
Phase I of clinical trials [227]. In early work, SantaCruz and
colleagues demonstrated recovery of memory function and
reduced neuronal loss after conditional repression of tau
expression in the rTg4510 mouse [282]. Reduction of en-
dogenous tau levels in AD mouse models overexpressing
human amyloid precursor protein (hAPP) with familial AD
mutations dose-dependently ameliorated Aß-related learn-
ing and memory deficits and protected the mice from early
mortality [152, 275]. The benefit of tau reduction occurred
without influencing Aß burden suggesting that tau reduc-
tion uncouples Aß from downstream pathogenic mecha-
nisms [275] including the prevention of Aß-induced defects
in axonal transport [341]. Other mouse studies have also
shown tau reduction-mediated mitigation of cognitive defi-
cits as a consequence of mild repetitive brain injury [57], or
type-1 diabetes [1].
With excitotoxicity implicated in AD, and increased

incidence of seizures in AD patients [11], tau reduction
also prevented increased susceptibility of hAPP mice to
evoked seizures [275]. This protection extended to sei-
zures independent of AD pathology with ASO-mediated
knockdown of endogenous tau in adult non-transgenic
mice [81] and in mouse (Kcna1−/−) and Drosophila (kcc
and eas) models of hyperexcitability [141] as well as a
mouse model for Dravet syndrome [112].

Antisense therapies
This is an exciting juncture in the hunt for therapies against
neurodegenerative disorders by directly targeting those
causative genes. The efficacy and safety of ASO therapy has
been demonstrated in clinical trials for nusinersen (Spin-
raza®; ClinicalTrials.gov Identifier: NCT02193074) for the
treatment of spinal muscular atrophy (SMA) and eteplirsen
(Exondys51®; NCT00844597, NCT01396239/NCT01540409,
NCT02255552) to treat Duchenne muscular dystrophy
(DMD). More recently, IONIS-HTTRx (RG6042;
NCT02519036) was tested for the treatment of Huntington’s
disease (HD) [317]. This specifically targets the mutant, ex-
panded huntingtin gene (HTT) mRNA and supresses its
expression. A recent Phase 1/2a clinical trial with intrathecal
delivery of the ASO has had no adverse drug-related inci-
dents and showed promising reduction of mutant HTT
mRNA levels in CSF [317].
ASOs are short, single-stranded oligonucleotides (8-50

nucleotides) that are designed to bind with complete
specificity to complementary sense pre-messenger RNA
(mRNA) or mature mRNA sequences. Depending on de-
sign and binding site, they could mediate degradation of
the target mRNA or prevent translation and thus attenu-
ate protein production. Gene down-regulation by ASOs
exploits cellular mechanisms either via RNA interference
(RNAi) and the degradation of the target mRNA by
RNA-induced silencing complex (RISC), or by recruit-
ment RNase H1 to degrade mRNA at the site of the
DNA-RNA duplex. Owing to their size and highly
charged nature, ASOs present challenges in terms of cel-
lular uptake, stability and susceptibility to degradation
by nucleases and, particularly with CNS targeted therap-
ies, overcoming the blood-brain barrier (BBB). These
can in part be overcome by chemical modifications of
the DNA or RNA phosphodiester backbone or ribose
sugar [190] and the use of the likes of viral vectors, lipo-
somes, polyplexes, or cell-penetrating peptides to en-
hance delivery [96, 222, 367].
Based on the striking success and safety profile of re-

cent ASO-based clinical trials and, and the recent
in vivo ASO-based tau reduction work by de Vos and
colleagues [80], a clinical trial of IONIS-MAPTRx

(BIIB080, ISIS 814907), the first ASO targeting tau in
mild AD patients, is currently under way [ClinicalTrials.-
gov Identifier: NCT03186989]. Via repeated intrathecal
delivery, it appears that this ASO can overcome the BBB
in non-human primates with about 75% reduction of
MAPT mRNA in both hippocampus and cortex and no
dose-limiting side-effects [227].
As shown with nusinersen in SMA and eteplirsen in

DMD, ASOs could also be used to target splice acceptor
or donor sites or splicing enhancers or repressors to
block or enhance splicing of alternatively spliced exons
[69, 190]. SMA is caused by survival motor neuron 1
(SMN1) gene mutation causing loss of SMN1 protein,
resulting in loss of motor neuron function [202]. The
intrathecally administered ASO targets the paralogous
SMN2 pre-mRNA, promoting inclusion of exon 7 and
production of active SMN in place of the depleted
SMN1 product [307]. DMD is a fatal X-linked recessive
neuromuscular disorder characterised by progressive
muscle weakening and wasting caused by disruptive mu-
tations throughout the large (79 exon) DMD gene [203].
ASO approaches for DMD, including eteplirsen, are de-
signed to induce exon skipping, thereby excluding dis-
pensable downstream exons and avoiding exons with
disruptive loss-of-function frame-shift or splice site



Table 4 Studies on cell and animal models demonstrating therapeutic benefit of tau reduction

MODEL BENEFITS REFERENCES

Tet-repression of Tg-tau expression in
rTg4510 mice

Reduced neuronal loss and improved memory function [282]

hAPP tau−/− crosses Blocks Aß and excitotoxin mediated neuronal dysfunction [275]

hAPP (APP23) Dtau or tau−/− crosses Prevention of Aß-mediated memory deficits and improved survival [152]

CSF delivered ASOs Reduces evoked seizures in adult nTg mice [81]

tau−/− Kcna−/− crosses Reduced network hyperexcitability in mouse and Drosophila epilepsy models [141]

Crossing tau−/− mice with nTg mice Reduces learning and memory deficits due to mild repetitive traumatic brain injury in
mice

[57]

Streptozotocin-treated tau−/− and nTg mice Mitigates cognitive deficits in type-1 diabetes mouse model [1]

tau−/− Scn1a −/− R1407X loss-of-function
truncation mice

Prevents seizure and improves survival in Dravet syndrome mouse model [112]

shRNA knockdown of Mapt in nTg mouse
primary neurons

Prevents Aß-induced axonal transport deficits [341]

ASO knockdown of Tg-tau overexpression in
PS19 mice

Reduced tau pathology, reversal of existing tau pathology. Prevention of neuronal loss.
Improved behavioural deficits

[82]

Inducible tau knockdown in APP/PS1 x
rTg4510 mice

Prevents tau pathology and neuronal death in presence of Aß pathology [80]

Abbreviations: Tg transgenic, nTg non-transgenic (wild-type), Tet tetracycline, hAPP human amyloid precursor protein, shRNA short hairpin RNA
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mutations, while still producing an internally truncated,
partially functional protein [190].
Noting the pathogenic role of increased availability of

4R-tau due to exon 10 mutations in FTLD-tau and the
MAPT H1 haplotype in PSP and CBD, rebalancing exon 10
is also being tested [276, 287]. This includes ASO-based
targeting of exon 10 splice motifs leading to exon-skipping
and reduced 4R-tau [287], or reprogramming using a
spliceosome-mediated trans-splicing (SMaRT) technique
that acts by creating a hybrid mRNA through a trans-spli-
cing reaction between the MAPT pre-mRNA and a pre--
trans-splicing molecule, comprised of a binding domain
that hybridises with the 3′ end of intron 9 and exons 11–
13, designed to exclude exon 10 [276].

MAPT-AS1 natural antisense transcript as a physiological
repressor of tau expression
In addition to ASOs, we have seen recent upsurge in our
understanding of natural antisense transcripts (NATs).
These are endogenous RNA molecules formed by anti-
sense transcription at coding genes and play
multi-layered role(s) in regulation of expression of their
paired coding gene [347]. The MAPT-AS1 long
non-coding RNA (lncRNA) gene partially overlaps
head-to-head with the promoter and 5′ untranslated re-
gion (5’-UTR) of MAPT and by alternative splicing and
use of alternate exons and splice sites, expresses multiple
NATs (tau-NATs) [305]. Both in vitro and in vivo, some
of the tau-NATs potently repress tau translation [305].
This presents a novel, physiological repressor of tau pro-
tein acting in the cytoplasm that, unlike synthetic ASOs,
does not rely on RISC or RNAseH and is amenable to
adeno-associated virus (AAV) vector-based delivery.
Several clinical trials using AAV vectors, including intra-
cranial delivery, have been shown to be safe [137]. Wide-
spread CNS distribution and persistence for up to 10
years and no adverse effects [188] could imply treatment
limited to a single delivery unlike ASOs where in on-
going clinical trials, involve repeat intrathecal injection
of large doses, every few weeks over several months.

Consequences of tau reduction
Given the importance of tau in multiple facets of neur-
onal function, mainly by its role in axonal MT assembly
and stabilisation and mediation of axonal transport, defi-
cits in tau could have undesirable consequences. Mice
that completely lack tau have normal learning and mem-
ory and cognition [191, 230, 275], with a minor, variable
motor phenotype in later life [186, 191, 230, 330]. On
the other hand, it is important to note, that tau deletion
was shown to be associated with brain iron accumula-
tion, brain insulin resistance and deficits in synaptic
plasticity and cognition [6, 185, 218]. However, observa-
tions in knockout models could be hampered by devel-
opmental compensation by other MT-associated
proteins such as MAP1B [134, 318] and it is thus crucial
to understand the consequences of tau knockdown,
post-development, in the adult brain. In one recent
study, bilateral hippocampal shRNA mediated knock-
down of tau in adult mice caused significantly impaired
motor coordination and spatial memory accompanied by
reduced synaptic markers and dendritic spine density.
Behavioural deficits were restored once tau repression
was removed [332]. However, in other studies, general-
ised knockdown of CNS tau in adult mice caused no de-
viations in normal sensory, motor or cognitive tasks
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[82]. Based on these mixed findings, it would be import-
ant to ascertain the tolerability of different levels of tau
knockdown – it is perceivable that partial knockdown of
tau in the adult brain could be beneficial, and yet mini-
mising any undesirable effects.

Anti-aggregation agents
Hyperphosphorylated and truncated tau protein is sus-
ceptible to aggregation and loss of cytoskeletal
microtubule-stabilizing properties, leading to neuronal
damage and cell death. Compounds able to prevent ag-
gregation may represent a promising strategy for effect-
ive treatment of Alzheimer’s disease [162, 356]. Two
major approaches focus on phosphorylation of tau and
prevention of tau oligomerization. The former involves
the search for inhibitors of kinases which phosphorylate
tau or phosphatase activators which dephosphorylate the
protein [5, 189]. The latter seeks direct inhibitors of the
tau aggregation process.

Regulation of tau phosphorylation
Phosphorylation of tau is under tight control of various
protein kinases and phosphatases [5, 189]. Among them,
glycogen synthase kinase 3β (GSK-3β) and phosphatase
2A (PP2A) are two key enzymes involved in regulation of
the phosphorylation state of tau. GSK-3β is a multitasking
serine/threonine kinase largely expressed in CNS that
phosphorylates tau mainly at the Ser199, Ser396 and
Ser413 sites [16]. Furthermore, it has been shown that an
increase in GSK-3β activity induces Αβ formation and is
also implicated in other processes, including neuroinflam-
mation and apoptosis [51]. Therefore, GSK-3β is validated
as a therapeutic target for AD, and several chemical clas-
ses of GSK-3β inhibitors have been discovered and devel-
oped in preclinical [217, 253] or even clinical trials.
Tideglusib (NP031112, NP-12), is an ATP non-competitive
GSK-3β inhibitor demonstrated to reduce spatial memory
deficits in transgenic mice in preclinical studies [76]. While
it has reached clinical trials, no satisfactory therapeutic re-
sults were obtained during phase II.
Tau phosphorylation is also regulated by

O-GlcNAcylation, a non-canonical glycosylation involving
the attachment of single O-linked N-acetylglucosamine
(O-GlcNAc) moieties to serine and threonine residues
[376]. O-GlcNAcylation is regulated by two enzymes,
O-GlcNAc transferase catalyzing the transfer of GlcNAc to
proteins, and N-acetylglucosaminidase (OGA) catalyzing
the removal of GlcNAc from proteins [377]. Thiamet-G – a
potent OGA inhibitor, that can influence O-GlcNAc levels
in the brain, reduced tau phosphorylation in the brain after
intraventricular administration [377]. This finding was suc-
cessfully replicated in additional study, where Thiamet-G
prevented the progression of hyperactivity, slowed brain at-
rophy, and reduced brain hyperphosphorylated tau in tau
transgenic model TG4510 [345]. Similarly, ASN120290 – a
small molecule that inhibits O-GlcNAcase reduced tau
phosphorylation and the number of neurofibrillary path-
ology in the brain of transgenic mice P301L. ASN120290
which received Orphan Drug Designation from the Food
and Drug Administration (FDA) for PSP, has already initi-
ated Phase I clinical trials.

Inhibition of tau aggregation
The most common direct inhibitor of tau protein aggre-
gation is methylene blue (MB), which belongs to the
class of thiazine dyes. Methylene blue, also known as
methylthionine chloride (MTC), was originally synthe-
sized at the end of the nineteenth century and used to
treat malaria. It later found use as an antibacterial, anti-
viral and anticancer agent, applied in the treatment of
various disorders. It is worth noting that its structure
has played an important role in the development of
phenothiazine-like compounds, including antipsychotic
and antihistamine drugs. The anti-aggregating effect of
phenothiazines upon the tau protein, discovered by
Wischik and co-workers [355] over twenty years ago,
paved the way for a new class of for potential anti-AD
agents. However, during this time, most researchers fo-
cused on β-amyloid targets, and over the next two de-
cades few achievements concerning tau were reported.
Nonetheless, several chemical classes of tau aggregation
inhibitors have been synthesized and presented [47, 48].
The tau aggregation inhibitor, methylene blue, occurs

in two main forms, which are in equilibrium, depending
on the redox potential of the solution. The first oxidized
cationic state is characterized by a dark blue color, while
the second (reduced form) is colorless and also referred
to as leucomethylene blue (leuco-methylthioninum,
LMT). Structurally, MTC is an aromatic anthracene
compound (polyaromatic), whereas LMT is classified as
a phenothiazine. It has been shown that anthracene-type
compounds inhibit the tau protein, while phenothia-
zines, with nonaromatic tricyclic structures are inactive
in this respect. MTC acts as a prodrug, and in acidic pH
converts into leuco-methylthioninium, which can pene-
trate the BBB and reach brain tissues [17]. Many studies
have demonstrated that MTC has a broad spectrum of
pharmacological activity [251, 319]. The inhibition of tau
aggregation by MTC has been confirmed by numerous
in vitro tests as well as in in vivo models in transgenic
mice. The dye has properties which inhibit microtubule
assembly, prevent tau interaction, inhibit β-amyloid ag-
gregation as well as α-synuclein aggregation. MTC coun-
teracts mitochondrial damage caused by oxidative stress;
it also has a positive effect on regulation of autophagy,
acetylcholine E (AchE) inhibition, monoamine oxidases,
the glutamatergic system and inhibition of noradrenaline
uptake. From the point of view of potential clinical
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applications, the most important properties of MTC in-
clude: inhibition of microtubule formation, improvement
of mitochondrial oxidation and inhibition of monoamine
oxidase A [239].
In clinical trials, MTC was introduced under the

name Rember™ (TauRx Therapeutics) as a potential
anti-AD drug candidate. Some improvements in
AD-related symptoms have been reported, but the
drug failed phase II trials due to undesirable side ef-
fects, including diarrhoea, urgency, painful urination,
dizziness and others (Clinical Trial Identifier,
NCT00515333 and NCT00684944). Results of these
studies prompted researchers to develop a new gener-
ation of MTC derivatives. These new compounds
(LMTX) include leuco-methylthionium bis (hydro--
methanesulfonate (LMTM) and leuco-methylthionium
dihydrobromide (LMTB) – stable, reduced forms that
permit direct absorption of LMT without the need
for the aforementioned conversion step (Fig. 3).
LMTM (TRx0237) has reached phase III trials, and

was better absorbed, with improved safety and tolerabil-
ity compared to methylene blue (Rember™). Neverthe-
less, results of Phase III clinical trials involving LMTM
in the treatment of AD were disappointing as they did
not yield unambiguously positive data. The first phase
III trial (NCT01689246) included 891 participants with
mild to moderate AD, who received 125 mg of LMTM
twice a day, or 75 mg twice a day while the control
group received 4 mg twice a day. No significant differ-
ence in cognitive faculties or the ability to perform daily
activities was observed between the treatment and con-
trol groups [110]. Due to the low number of participants
(79) in this study, these results require further confirm-
ation. Currently, TauRx has begun a new clinical trial
(LUCIDUTY, NCT03446001) using FDG-PET imaging
to examine the potential of LMTX in delaying the pro-
gression of pathological changes in the brain in AD pa-
tients who do not receive cholinesterase inhibitors or
memantine. This trial is aimed at patients with early
AD, with treatment lasting for 9 months (at doses of
8 mg/day and 16 mg/day). Thus, LMTM is being de-
veloped as an anti-AD treatment option based on in-
hibition of tau aggregation. Moreover, LMTC has
demonstrated amelioration of α-synuclein pathology
in a transgenic mouse model of synucleinopathy, and
Fig. 4 Multifunctional derivatives of piperazine
may therefore find use as a potential disease modifi-
cation therapy in Parkinson’s disease (PD) and other
synucleinopathies [290].
Since the discovery of the tau aggregation inhibitory ac-

tivity of methylene blue, several chemical classes of com-
pounds have been identified. These include derivatives of
phenothiazines, polyphenols, benzothiazoles and porphy-
rins [319]. It has been observed that all these tested deriva-
tives inhibited both tau filament formation and Aβ fibril
formation. Further research carried out by Bulic and E.
Mandelkow [47, 48], based on screening of a random li-
brary of 200,000 compounds, led to the identification of
new chemical structures for potential tau inhibitors, includ-
ing rhodamines, phenylthiazolyl-hydrazides, N-phenyla-
mines, anthraquinones, benzothiazoles. Using quantitative
high-throughput screening, Crowe and co-workers [70] dis-
covered that aminothienopyrydazines (AZPZs) also inhibit
of tau assembly.
Another potential source of anti-aggregation agents is

provided by the multi-target-directed ligand approach.
This strategy is suitable for complex diseases such as
Alzheimer’s disease [18, 83, 264]. Therefore, many multi-
functional compounds have been obtained by combining
various pharmacophores targeting neurodegenerative
processes into a single molecule. Among them multi-
modal molecules have been discovered that are endowed
with tau aggregation inhibitory activity as well as other
desirable properties. Selected examples of multifunc-
tional agents are presented below.
Compound AZP2006, an N,N′-disubstituted pipera-

zine [226, 297], reduces the release of Aβ species and
targets both amyloid and tau pathologies. It was demon-
strated to improve cognitive faculties in various mouse
models of both amyloid and tau pathology [21].
AZP2006 underwent phase I clinical trials on AD, and
has now been classed as an orphan drug for the treat-
ment of progressive supranuclear palsy (PSP). Another
new compound, named RPEL, is a piperazine derivative
that contains the pharmacophore fragment of tacrine
[226] (Fig. 4). This dual-action compound showed in-
hibitory potency against cholinesterase (IC50 hAChE =
0.8 nM), reduced the phosphorylation of tau protein and
inhibited the release of the Aβ peptide. Moreover, it dis-
played in vivo potency in transgenic mouse models and
reduced memory loss.



Fig. 6 Structure of multifunctional carbazole–based
cyanine compounds
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Japanese researchers [246, 247] presented a new tau
inhibitor compound, PE859, based on the curcumin
structure (Fig. 5). Promising results were obtained in
both in vitro and in vivo studies – the compound was
shown to counteract tau aggregation and prevent the
onset and progression of nerve dysfunction in an in vivo
model. Furthermore, it inhibits both tau and Aβ aggre-
gation and alleviates cognitive dysfunction in vivo.
Two carbazole-based cyanine compounds named SLM

and SLOH were described as strong inhibitors of Aβ aggre-
gation in vitro and were able to alleviate the pathological
symptoms and memory deterioration in AD model mice
[364–366] (Fig. 6). These multifunctional compounds also
reduced tau hyperphosphorylation as well as significantly
attenuated neuroinflammation through inhibitiion of
GSK-3β activity. They showed a good pharmacokinetic pro-
file, with high BBB permeability, which justifies their further
development as AD drug candidates [379].
Dual inhibitors acting against β-secretase (BACE1) and

glycogen synthase kinase 3β (GSK-3β), with well-balanced
in vitro activity (in μM range), were synthesized in the
class of triazinone derivatives [265]. These compounds
displayed strong neuroprotective and neurogenic effects,
and also showed good BBB permeability in a pharmacoki-
netic evaluation in mice. A new multi-target strategy for
designing anti-AD agents involves compounds which
combine GSK-3β and tau aggregation inhibitors [109]. De-
rivatives of 2,4-thiazolidinedione showed activity against
GSK-3β (at micromolar IC50 values) and were also found
to inhibit tau aggregation. Other examples of multifunc-
tional compounds include rhein-huprine hybrids, which
showed AChE and BACE1 inhibitory activity, as well as
Aβ1-42 and tau anti-aggregating properties [259]. A
1-benzylamino-2-hydroxyalkyl derivative with a diphenyl-
piperazine fragment, selected form a series of compounds,
showed balanced inhibitory activity against both
disease-modifying targets, inhibition of BACE1, inhibition
of Aβ, inhibition of tau aggregation, as well as inhibition
of BuChE as a symptomatic target [254]. Jiang and
co-workers [158] described a new class of dual GSK-3β
and AChE inhibitors. These multifunctional compounds
were designed by incorporating a tacrine fragment at the
thiazolyl ring, as the pharmacophore responsible for
Fig. 5 Structure of curcumin derivative PE859 dual tau and
β-amyloid inhibitor
GSK-3β inhibition. The resulting derivatives were very po-
tent inhibitors of both targets (in the nanomolar range).
The most promising compound from this series signifi-
cantly inhibited tau protein phosphorylation and counter-
acted self-aggregation of Aβ1-42. In addition, it was not
toxic and proved effective in an in vivo assay in mice, by
significantly improving memory.
Most of the above-described direct tau inhibitors and

multifunctional compounds have shown activity in
in vitro tests, but only some of them have been evalu-
ated in vivo in extended pharmacological, preclinical
studies. Moreover, it is difficult to predict further devel-
opment of these compounds. Due to the complex nature
of AD, it seems reasonable to pursue development of
combination therapies, as well as new alternative ap-
proaches which involve multi-target drugs. It is probable
that a molecule capable of acting on two recognized tar-
gets, with one of them belonging to the tau cascade,
might bring clinical benefits compared to drugs which
only address only specific target.

Concluding remarks and future directions
Tau is a multifaceted protein with a plethora of physio-
logical functions. In the disease condition, tau protein
drives neurodegeneration and causes neurodegenerative
disorders such as Alzheimer’s disease. Pathologically
modified tau has become an important therapeutic target
for AD and related tauopathies. Although no
disease-modifying treatments are yet available, many new
therapeutic approaches targeting pathological forms of tau
are being tested in clinical trials. Disease-modifying therapy
is aimed at preventing, slowing or ameliorating the produc-
tion, oligomerisation, aggregation and deposition of patho-
logical tau protein. The most promising therapeutic
strategies include active tau vaccines and therapeutic
monoclonal antibodies. Besides immunotherapy, there are
many other therapies currently being explored in the treat-
ment of tau neurodegeneration such as modulation of tau
phosphorylation, inhibition of tau aggregation or regulation
of its expression. While waiting for the results of ongoing
clinical trials, we can continue to unravel the complexities
of tau proteome and different biological functions of this
peculiar brain protein.
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