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Summary.A new class of dependent random measures which we call compound random mea-
sures is proposed and the use of normalized versions of these random measures as priors in
Bayesian non-parametric mixture models is considered.Their tractability allows the properties of
both compound random measures and normalized compound random measures to be derived.
In particular, we show how compound random measures can be constructed with gamma, σ-
stable and generalized gamma process marginals. We also derive several forms of the Laplace
exponent and characterize dependence through both the Lévy copula and the correlation func-
tion. An augmented Pólya urn scheme sampler and a slice sampler are described for posterior
inference when a normalized compound random measure is used as the mixing measure in a
non-parametric mixture model and a data example is discussed.

Keywords: Dependent random measures; Lévy copula; Mixture models; Multivariate Lévy
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1. Introduction

Bayesian non-parametric mixtures have become a standard tool for inference when a distribution
of either observable or unobservable quantities is considered unknown. A more challenging
problem, which arises in many applications, is to define a prior for a collection of related
unknown distributions. For example, Müller et al. (2004) considered informing the analysis of
a study with results from previous related studies. They considered the Cancer and Leukemia
Group B CALGB 9160 (Budman et al., 1998) clinical study which looked at the response over
time of patients to different anticancer drug therapies. Müller et al. (2004) suggested improving
the precision of their inference by using the results of the related study CALGB 8881 (Lichtman
et al., 1993). Fig. 1 shows bivariate plots of two subject-specific regression parameters (β0 and
β1) for the two studies. The graphs suggest differences between the joint distribution of β0 and
β1 which should be included in any analysis which combines these data sets. The results for the
CALGB 9160 study also suggest that a non-parametric model is needed to describe the shape
of the density fully. A natural Bayesian approach would assume different distributions for each
study but construct a dependent prior for these distributions.

In general, suppose that x ∈ X denotes the value of covariates; then, in a Bayesian non-
parametric analysis, a prior needs to be defined across a collection of correlated distributions
{p̃x|x∈X}. This problem was initially studied in a seminal paper on dependent Dirichlet pro-
cesses (MacEachern, 1998) where generalizations of the Dirichlet process were proposed. Sub-
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Fig. 1. Scatter plots of the subject-specific regression parameters β0 and β1 for the groups in (a) the
CALGB 8881 study and (b) the CALGB 9160 study

sequent work used stick breaking constructions of random measures as a basis for defining such
a prior. This work is reviewed by Dunson (2010). These priors can usually be represented as

p̃x =
∞∑

i=1
wi.x/δθi.x/ .1:1/

where w1.x/, w2.x/, : : : follow a stick breaking process for all x ∈X . A drawback with this ap-
proach is the stochastic ordering of the wi.x/s for any x∈A which can lead to strange effects in
the prior as x varies.

If A is countable, several other approaches to defining a prior on a collection of random
probability measures have been proposed. The hierarchical Dirichlet process (Teh et al., 2006)
assumes that p̃x are a priori conditionally independent and identically distributed according
to a Dirichlet process whose centring measure is itself given a Dirichlet process prior. This
construction induces correlation between the elements of {p̃x|x∈A} in an analogous way to a
parametric hierarchical model. This construction can be extended to more general hierarchical
frameworks (see for example Teh and Jordan (2010), for a review). Alternatively, a prior can be
defined by using the idea of normalized random measures with independent increments which
are defined by normalizing a completely random measure. The prior is defined on a collection of
correlated completely random measures {μ̃x|x∈A} which are then normalized for each of x, i.e.
p̃x = μ̃x=μ̃x.X/ where X is the support of μ̃x. Several specific constructions have been proposed
including various forms of superposition (Griffin et al., 2013; Lijoi and Nipoti, 2014; Lijoi et al.,
2014a, b; Chen et al., 2013; Bassetti et al., 2014), kernel-weighted completely random measures
(Foti and Williamson, 2012; Griffin, 2011; Rosinski, 2007; Barndorff-Nielsen et al., 2001) and
Lévy copula-based approaches (Leisen and Lijoi, 2011; Leisen et al., 2013; Zhu and Leisen,
2014). In this paper, we develop an alternative method for constructing correlated completely
random measures which is tractable, whose properties can be derived and for which sampling
methods for posterior inference without truncation can be developed. The construction also
provides a unifying framework for previously proposed constructions. Indeed, the σ-stable and
gamma vector of dependent random measures that have been studied in the recent works of
Leisen and Lijoi (2011), Leisen et al. (2013) and Zhu and Leisen (2014) are special cases. Al-
though these references derive useful theoretical results, their application has been limited by
the lack of sampling methods for posterior inference. The algorithms that are proposed in this
paper can also be used for posterior sampling of models with these non-parametric priors which
is another contribution of the paper.

The paper is organized as follows. Section 2 introduces the concepts of completely random
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measures, normalized random measures and their multivariate extensions. Section 3 discusses
the construction and some properties of a new class of multivariate Lévy process, compound
random measures, defined by a score distribution and a directing Lévy process. Section 4 pro-
vides a detailed description of compound random measures with a gamma score distribution.
Section 5 considers the use of a normalized version of compound random measures in non-
parametric mixture models including the description of a Markov chain Monte Carlo scheme
for inference. Section 6 provides an illustration of the use of these methods in an example and
Section 7 concludes. Additional details are available in the on-line supplementary material.
MATLAB code to implement the methods that are described in the paper is available from
http://www.kent.ac.uk/smsas/personal/jeg28/index.htm.

2. Preliminaries

Let .Ω, F , P/ be a probability space and .X, X / be a measure space, with X Polish and X the
Borel σ-algebra of subsets of X. Denote by MX the space of boundedly finite measures on
.X, X /, i.e. this means that for any μ in MX and any bounded set A in X we have μ.A/ < ∞.
Moreover, MX stands for the corresponding Borel σ-algebra; see Daley and Vere-Jones (2003)
for technical details.

Definition 1. Let μ̃ be a measurable mapping from .Ω, F , P/ into (MX,MX) and such that
for any A1, : : : , An in X , with Ai ∩Aj =∅ for any i �= j, the random variables μ̃.A1/, : : : , μ̃.An/

are mutually independent. Then μ̃ is called a completely random measure (CRM).

The concept of a CRM was introduced by Kingman (1967). A CRM can always be represented
as a sum of two components

μ̃= μ̃c +
M∑

i=1
Viδxi

where the fixed jump points x1, : : : , xM are in X and the non-negative random jumps V1, : : : , VM

are both mutually independent and independent from μ̃c. (The representation of a CRM should
also take into account a deterministic component; see Cont and Tankov (2004). This consider-
ation also applies later when we shall talk about vectors of CRMs. Since the deterministic part
is not relevant for the scope of the paper, we prefer to omit the deterministic component in the
representation of a CRM.) μ̃c is a CRM such that

μ̃c =
∞∑

i=1
JiδXi

where both the positive jump heights Ji and the X-valued jump locations Xi are random. The
measure μ̃c is characterized by the Lévy–Khintchine representation which states that

E

[
exp

{
−

∫
X

f.x/ μ̃c.dx/

}]
= exp

(
−

∫ ∞

0

∫
X

[1− exp{−sf.x/}] ν̄.ds dx/

)

where f :X→R+ is a measurable function such that
∫

f μ̃c <∞ almost surely and ν̄ is a measure
on R+ ×X such that ∫

R+

∫
B

min{1, s} ν̄.ds, dx/<∞

for any B in X . The measure ν̄ is usually called the Lévy intensity of μ̃c. Throughout the paper,
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we shall consider CRMs without the fixed jump component (i.e. M = 0). For our purposes,
we shall focus on the homogeneous case, i.e. Lévy intensities where the height and location
contributions are separated. Formally,

ν̄.ds, dx/=ρ.ds/α.dx/

where ρ is a measure on R+ and α is a non-atomic measure on X, which is usually called the
centring measure. Some well-known examples are the gamma process,

ν̄.ds, dx/= s−1exp.−s/dsα.dx/, s> 0, .2:1/

the σ-stable process,

ν̄.ds, dx/= σ

Γ.1−σ/
s−1−σ dsα.dx/, s> 0, 0 <σ< 1, .2:2/

and the homogeneous beta process,

ν̄.ds, dx/=θs−1.1− s/θ−1dsα.dx/, 0 <s< 1, θ> 0: .2:3/

A general class of processes that includes the gamma and σ-stable process is the generalized
gamma process,

ν̄.ds, dx/= σ

Γ.1−σ/
s−1−σexp.−as/dsα.dx/, s> 0, 0 <σ< 1, a> 0: .2:4/

Random measures are the basis for building Bayesian non-parametric priors.

Definition 2. Let μ̃ be a random measure in (MX ,MX) such that μ̃.X/∈ .0, ∞/ almost surely.
A normalized random measure is defined as p̃= μ̃=μ̃.X/.

The definition of a normalized random measure is very general and does not require that
the underlying measure is completely random. The Pitman–Yor process (see Pitman and Yor
(1997)) is a well-known example of a Bayesian non-parametric prior which cannot be derived
by normalizing a CRM. In this particular case, the unnormalized measure is obtained through
a change of measure of a σ-stable process. However, many common Bayesian non-parametric
priors can be defined as a normalization of a CRM and many other processes can be derived by
normalizing processes that are derived from CRMs; see Regazzini et al. (2003). For instance,
it can be shown that the Dirichlet process, which was introduced by Ferguson (1973), is a
normalized gamma process. Throughout the paper, we shall assume that the underlying measure
is a CRM and use the term normalized random measures with independent increments to
emphasize the independence of a CRM on disjoint intervals.

Although non-parametric priors based on normalization are extremely flexible, in many real
applications data arise under different conditions and hence assuming a single prior can be too
restrictive. For example, data may be divided into different units using covariates. In this case,
one would like to consider different distributions for different units instead of a single common
distribution for all the units. In these situations, it is more reasonable to consider vectors of
dependent random probability measures.

2.1. Vectors of normalized random measures
Suppose that μ̃1, : : : , μ̃d are homogeneous CRMs on .X, X / with respective marginal Lévy
intensities

ν̄j.ds, dx/=νj.ds/α.dx/, j =1, : : : , d, .2:5/
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where νj is a measure on R+ and α is a non-atomic measure on X. Furthermore, μ̃1, : : : , μ̃d

are dependent (throughout the paper we consider CRMs with no fixed atoms and without
deterministic component), and the random vector .μ̃1, : : : , μ̃d/ has independent increments,
in the sense that for any A1, : : : , An in X , with Ai ∩ Aj =∅ for any i �= j, the random vectors
.μ̃1.Ai/, : : : , μ̃d.Ai// and .μ̃1.Aj/, : : : , μ̃d.Aj// are independent. This implies that for any set of
measurable functions f = .f1, : : : , fd/ such that fj : X→R+, j =1, : : : , d, and

∫ |fj|dμ̃j <∞, we
have a multivariate analogue of the Lévy–Khintchine representation (see Sato (1999), Daley
and Vere-Jones (2003) and Epifani and Lijoi (2010)):

E[exp{−μ̃1.f1/−: : :− μ̃d.fd/}]= exp{−ψÅ
ρ,d.f/} .2:6/

where μ̃j.fj/=∫
fj dμ̃j,

ψÅ
ρ,d.f/=

∫
X

∫
.0,∞/d

[1− exp{−s1f1.x/−: : :− sd fd.x/}]ρd.ds1, : : : , dsd/α.dx/ .2:7/

and ∫
.0,∞/d−1

ρd.ds1, : : : , dsj−1, A, dsj+1, : : : , dsd/=
∫

A

νj.ds/: .2:8/

Representation (2.5) implies that the jump heights of .μ̃1, : : : , μ̃d/ are independent from the
jump locations. Moreover, these jump locations are common to all the CRMs and are governed
by α. It is worth noting that, since .μ̃1, : : : , μ̃d/ has independent increments, its distribution is
characterized by a choice of f1, : : : , fd in equation (2.6) such that fj =λj 1A for any set A in X ,
λj ∈R+ and j =1, : : : , d. In this case

ψÅ
ρ,d.f/=α.A/ψρ,d.λ/

where λ= .λ1, : : : ,λd/ and

ψρ,d.λ/=
∫

.R+/d
{1− exp.−〈λ, s〉/}ρd.ds1, : : : , dsd/ .2:9/

where s = .s1, : : : , sd/ and 〈λ, s〉=Σd
j=1λjsj.

We close the section with the definition of vectors of normalized random measures with inde-
pendent increments.

Definition 3. Let (μ̃1, : : : , μ̃d) be a vector of CRMs on X such that μ̃j.X/ ∈ .0, ∞/ almost
surely and let p̃j =μj=μj.X/ for j =1, : : : , d. The vector

p̃= .p̃1, : : : , p̃d/ .2:10/

is called a vector of dependent normalized random measures with independent increments on
.X, X /.

3. Compound random measures

In this section, we shall define a general class of vectors of normalized random measures with
independent increments that incorporates many recently proposed priors built by using nor-
malization; see for instance Leisen and Lijoi (2011), Leisen et al. (2013), Zhu and Leisen
(2014), Griffin et al. (2013) and Lijoi et al. (2014a). Before introducing the formal definition of
compound random measures, we want to provide an intuitive illustration of the model. Consider
the following dependent random probability measures:
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p̃1 = ∑
i�1
π1,iδXi , : : : , p̃d = ∑

i�1
πd,iδXi ,

where

πj,i = mj,iJi∑
l

mj,lJl
: .3:1/

The mj,is are perturbation coefficients that identify specific features of the jth random measure
and they are independent and identically distributed across the random measures. The shared
jumps .Ji/i�1 lead to dependence among the p̃j. In the next section, we shall provide a formal
definition of compound random measures in terms of their multivariate Lévy intensity.

3.1. Definition
Let .μ̃1, : : : , μ̃d/ be a vector of homogeneous CRMs on X, i.e. the Lévy intensity νj of the
measure μ̃j is

ν̄j.ds, dx/=νj.ds/α.dx/, j =1, : : : , d:

Following the notation in equation (2.7), we want to define a ρd such that∫
.0,∞/d−1

ρd.ds1, : : : , dsj−1, A, dsj+1, : : : , dsd/=
∫

A

νj.ds/ .3:2/

for any j =1, : : : , d. In this setting we can define a compound random measure.

Definition 4. A compound random measure is a vector of CRMs defined by a score distribution
h and a directing Lévy process with intensity νÅ such that

ρd.ds1, : : : , dsd/=
∫

z−d h.s1=z, : : : , sd=z/ds1: : : dsd ν
Å.dz/ .3:3/

where h is the probability mass function or probability density function of the score distribution
with parameters z and νÅ is the Lévy intensity of the directing Lévy process which satisfies the
condition ∫

z−d

∫
min.1, ‖ s ‖/h.s1=z, : : : , sd=z/dsνÅ.dz/<∞

where ‖ s ‖ is the Euclidean norm of the vector s = .s1, : : : , sd/.

The compound Poisson process with jump density h is a compound random measure with
a score density h and whose directing Lévy process is a Poisson process. Therefore, compound
random measures can be seen as a generalization of compound Poisson processes. It is straight-
forward to show that μ̃1, : : : , μ̃d can be expressed as

μ̃j =
∞∑

i=1
mj,iJiδXi .3:4/

where m1,i, : : : , md,i∼IIDh are scores and

η̃=
∞∑

i=1
JiδXi

is a CRM with Lévy intensity νÅ.ds/α.dx/. This makes the structure of the prior much more
explicit. The random measures share the same jump locations (which have distribution α=α.X/)
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but the ith jump has a height mj,iJi in the jth measure and so the jump heights are rescaled
by the score (a larger score implies a larger jump height). Clearly, the shared factor Ji leads to
dependence between the jump heights in each measure.

To ensure the existence of the vectors of normalized compound random measures as intro-
duced in definition 3, the following condition must be satisfied for each j =1, : : : , d:

νj{.0, ∞/}=
∫ ∞

0

∫
z−1hj.s=z/νÅ.dz/ds=∞

where hj.s=z/=∫
h.s1, : : : , sj−1, s=z, sj+1, : : : , sd/ds1: : : dsj−1dsj+1: : : dsd . If this condition does

not hold true, then μ̃j.X/ = 0 with positive probability and the normalization does not make
sense; see Regazzini et al. (2003).

Remark 1. The construction of dependent random measures by superpositions of indepen-
dent random measures has been considered by many researchers (see Griffin et al. (2013), Lijoi
et al. (2014) and Chen et al. (2013) for examples in Bayesian non-parametrics). These can be ex-
pressed as compound random measures. For example, suppose that d =2, and let μ1 = μ̃Å

0 + μ̃Å
1

and μ2 = μ̃Å
0 + μ̃Å

2 where μ̃Å
0 , μ̃Å

1 and μ̃Å
2 are independent CRMs for which μ̃Å

j has Lévy intensity
Mjξ.ds/α.dx/ for a suitable choice of ξ. The properties of thinnings of a Poisson process can
be used to show that this process is equivalent to a compound random measure with νÅ.ds/=
Σ2

j=0 Mj ξ.ds/ and the score distribution can be h.m1,i = 1, m2,i = 1/ = M0=.M0 + M1 + M2/,
h.m1,i = 1, m2,i = 0/ = M1=.M0 + M1 + M2/ and h.m1,i = 0, m2,i = 1/ = M2=.M0 + M1 + M2/.
Clearly, this idea can be easily extended to higher dimensions.

In this paper, we shall concentrate on the subclass of compound random measures whose
scores are independent and identically distributed so that

h.s1, : : : , sd/=
d∏

j=1
f.sj/

where f is a continuous univariate density. This implies that each marginal process has the same
Lévy intensity of the form

νj.ds/=ν.ds/=
∫

z−1f.s=z/dsνÅ.dz/: .3:5/

In Section 5.1, algorithms are introduced to sample from the posterior of a hierarchical mixture
model driven by a vector of normalized compound random measures. These samplers depend
crucially on knowing the form of the Laplace exponent and its derivatives. Some general results
about the Laplace exponent and the dependence are available if we assume that the density
z−1f.s=z/ admits a moment-generating function.

Theorem 1. Let

Mf
z .t/=

∫
exp.ts/z−1f.s=z/ds

be the moment-generating function of z−1 f.s=z/ and suppose that it exists. Then

ψρ,d.λ1, : : : ,λd/=
∫ {

1−
d∏

j=1
Mf

z .−λj/

}
νÅ.z/dz: .3:6/

The proof of theorem 1 is in the on-line supplementary material as well as a further result
about the derivatives of the Laplace exponent.
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4. Compound random measures with independent gamma-distributed scores

In this paper, we shall focus on exponential or gamma score distributions. Throughout the paper
we shall write Ga.φ/ to be a gamma distribution (or density) with shape φ and mean φ which
has density

f.x/= 1
Γ.φ/

xφ−1exp.−x/: .4:1/

This implies that z−1f.s=z/ is the density of a gamma distribution with shape parameter equal
to φ and mean φz. The Lévy intensities ν and νÅ and the score density f are linked by equation
(3.5) and a compound random measure can be defined by either deriving νÅ for a fixed choice
of f and ν or by directly specifying f and νÅ. In this latter case, it is interesting to consider the
properties of the induced ν.

Standard inversion methods can be used to derive the form of νÅ. Equation (3.5) implies that

ν.s/=
∫

z−1 1
Γ.φ/

(
s

z

)φ−1

exp
(

− s

z

)
νÅ.z/dz:

The change of variable t = z−1 leads to

ν.s/= sφ−1

Γ.φ/

∫
exp.−st/ tφ−2νÅ

(
1
t

)
dt:

This integral can be seen as the classical Laplace transform of the function S.t/= tφ−2 νÅ.1=t/.
If we denote by L the Laplace transform then

ν.s/= sφ−1

Γ.φ/
L{S.t/}.s/:

This means that

νÅ
(

1
t

)
= t2−φL−1

{
Γ.φ/

sφ−1 ν.s/

}
.t/

where L−1 is the inverse Laplace transform. This ensures the unicity of νÅ. The forms for some
particular choices of marginal process are shown in Table 1. The results are surprising. A gamma
marginal process arises when the directing Lévy process is a beta process and a σ-stable marginal
process arises when the directing Lévy process is also a σ-stable process. Generalized gamma
marginal processes lead to a directing Lévy process which is a generalization of the beta process
(with a power of z which is less than 1) and rescaled to the interval .0, 1=a/. In fact, if we use a
gamma score distribution with shape φ and mean aφ which has density

f.x/= 1
aφΓ.φ/

xφ−1exp
(
− x

a

)
, .4:2/

the directing Lévy intensity is a stable beta distribution (Teh and Görür, 2009) of the form

νÅ.z/= aσ+1σ

φ

Γ.φ+1/

Γ.φ+σ/Γ.1−σ/
z−σ−1.1− z/σ+φ−1, 0 <z< 1:

Remark 2. This paper is focused on gamma scores but the class of compound random
measures is very wide and other choices can be considered. For instance, if beta.α, 1/ scores are
selected, i.e.

f.x/=αxα−1 α> 0, 0 <x< 1,
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Table 1. Form of directing Lévy intensity in a compound random measure
which leads to particular marginal processes

νÅ(z) Support Marginal process

z−1.1− z/φ−1 0 <z< 1 Gamma
σΓ.φ/

Γ.σ+φ/Γ.1−σ/
z−σ−1 z> 0 σ-stable

σΓ.φ/

Γ.σ+φ/Γ.1−σ/
z−σ−1.1−az/σ+φ−1 0 <z< 1=a Generalized gamma

then it is possible to introduce a multivariate version of the beta process. Let ν.s/ = θs−1.1 −
s/θ−1, 0 <s< 1 and θ> 1, i.e. the Lévy intensity of the jumps of a beta process, then νÅ.z/ is the
solution of the integral equation

ν.s/=
∫ 1

s

f.s=z/z−1 νÅ.z/dz, 0 <s< 1:

A simple application of the fundamental theorem of calculus leads to

νÅ.z/=θz−1.1− z/θ−1 + θ.θ−1/

α
.1− z/θ−2

which is the sum of ν.·/, the Lévy intensity of the original beta process, and a compound Poisson
process (if θ> 1) with intensity θ=α and jump distribution beta.1, θ−1/.

It is interesting to derive the resulting multivariate Lévy intensities which can be compared
with similar results in Leisen and Lijoi (2011), Leisen et al. (2013) and Zhu and Leisen (2014).

Theorem 2. Consider a compound random measure process with independent Ga.φ, 1/

distributed scores. If the compound random measure process has gamma process marginals
then

ρd.s1, : : : , sd/=

(
d∏

j=1
sj

)φ−1

Γ.φ/d−1 |s|−.dφ+1/=2exp
(
−|s|

2

)
W{.d−2/φ+1}=2, −dφ=2.|s|/ .4:3/

where |s|= s1 +: : :+ sd and W is the Whittaker function. If the compound random measure
process has σ-stable process marginals then

ρd.s1, : : : , sd/=

(
d∏

j=1
sj

)φ−1

Γ.φ/d−1

σΓ.σ+dφ/

Γ.σ+φ/Γ.1−σ/
|s|−σ−dφ: .4:4/

The result is proved in the on-line supplementary material with the following corollary.

Corollary 1. Consider a compound random measure process with independent exponentially
distributed scores. If the compound random measure has gamma process marginals we recover
the multivariate Lévy intensity of Leisen et al. (2013):

ρd.s1, : : : , sd/=
d−1∑
j=0

.d −1/!
.d −1− j/!

|s|−j−1exp.−|s|/:
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Table 2. Lévy intensity of the marginal process in a compound random mea-
sure with the directing Lévy processes defined in equations (2.1)–(2.4)

ν(s) Directing Lévy process

2
1

Γ.φ/
sφ=2−1Kφ.2

√
s/ Gamma

Γ.σ+φ/

Γ.φ/

σ

Γ.1−σ/
s−1−σ σ-stable

Γ.θ+1/

Γ.φ/
s−1exp.−s/U.θ−φ, 1−φ, s/ Beta

2
1

Γ.φ/

σ

Γ.1−σ/
s.φ−σ/=2−1a.σ+φ/=2Kσ+φ{2

√
.as/} Generalized gamma

Otherwise, if σ-stable marginals are considered then we recover the multivariate vector that was
introduced in Leisen and Lijoi (2011) and Zhu and Leisen (2014):

ρd.s1, : : : , sd/= .σ/d

Γ.1−σ/
|s|−σ−d:

Alternatively, we can specify νÅ and derive ν. The forms for some particular processes are
shown in Table 2 where U is the confluent hypergeometric function of the second kind and K is
the modified Bessel function of the second kind.

Remark 3. There are several special cases if νÅ is the Lévy intensity of a beta process. Firstly,
U.θ−φ, 1−φ, s/=1 if θ=φ and ν is the Lévy intensity of a gamma process. If φ=2θ−1,

U.θ−φ, 1−φ, s/=π−1=2exp.s=2/s1=2−θ+φKθ−1=2.s=2/:

When θ=1, U.1−φ, 1−φ, s/= exp.s/
∫ ∞

s u−.1−φ/ exp.−u/du. The limits as s→0 are

U.θ−φ, 1−φ, s/→
{ Γ.φ/=Γ.θ/+O.|s|φ/ 0 <φ< 1,

1=Γ.1+θ−φ/+O{|s log.s/|} φ=1,
Γ.φ/=Γ.θ/+O.|s|/ φ> 1:

Therefore, these processes have a Lévy intensity that is similar to the Lévy intensity of the gamma
process close to zero for any choice of φ and θ. The tails of the Lévy intensity are exponential.
Therefore, the process has similar properties to those of the gamma process.

Remark 4. The generalized gamma process contains some special cases and the Lévy intensi-
ties of the marginal process for these processes are shown in Table 2. With a generalized gamma
directing Lévy process, it is straightforward to show that

ν.s/≈σ
Γ.σ+φ/

Γ.φ/Γ.1−σ/
s−σ−1

for small s. Therefore, the Lévy intensity close to zero is similar to the Lévy intensity of aσ-stable
process with parameter σ. For large s, we have

ν.s/s∝√
π

1
Γ.φ/

σ

Γ.1−σ/
.as/.φ+σ/=2−1=4s−1−σexp{−2

√
.as/}:

Therefore, the tails will decay like exp.−s1=2/.

The next theorems will provide an expression of the Laplace exponent when the scores are
gamma distributed with φ�1 such that φ∈N. We want to stress the importance of the Laplace
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transform in the Bayesian non-parametric setting. Indeed, it provides a basis for deriving theo-
retical results about the prior. The Laplace transform can be used to derive some distributional
properties such as correlation, partition structure and mixed moments. Additionally, we shall
see that the Laplace transform plays a role in the novel sampler that is proposed in this paper.

Theorem 3. Consider a compound random measure process with independent Ga.φ, 1/-
distributed scores. Suppose that φ� 1 such that φ∈ N. Let λ∈ .R+/d be a vector such that
it consists of l � d distinct values denoted as λ̃ = .λ̃1, : : : , λ̃l/ with respective multiplicities
n = .n1, : : : , nl/. Then

ψρ,d.λ/=ψρ,d.λ̃, n/= Γ.φ/l

l∏
i=1

{λ̃φ−1
i Γ.niφ/}

(
l∏

i=1

@.ni−1/φ

@.ni−1/φλ̃i

)
Υφ

l .λ̃/
l∏

i=1
λ̃

niφ−1
i ,

where

Υφ
l .λ̃/=

∫ {
1−

l∏
i=1

1

.1+ zλ̃i/φ

}
νÅ.z/dz:

The proof of theorem 3 is based on the result that is provided in theorem 1 since the moment-
generating function of a gamma distribution exists and it is explicit. To compute the expression
of Υφ

l .λ̃/ we need to define the set

Aφ,j ={k ∈{1, : : : ,φ}j : |k|=φ} φ� j:

Theorem 4. Consider a compound random measure process with independent Ga.φ, 1/-
distributed scores. Suppose that φ� 1 such that φ ∈ N. Let Λ.λ̃, z/ = .1 − Σj−1

h=1 zh/λ̃ij +
Σj−1

h=1λ̃ih zh be a function defined on the (j −1)-dimensional simplex

Δj−1 ={z ∈ .0, 1/j−1 : z1 +: : :+ zj−1 < 1}
with the convention that Δ0 = [0, 1] . Let

ai.λ̃/= λ̃
l−1
i

l∏
j=1
j �=i

.λ̃i − λ̃j/ i=1, : : : , l;

then

Υφ
l .λ̃/=

⎧⎪⎨
⎪⎩φ!

φ∑
j=1

∑
k∈Aφ,j

∑
0<i1<i2<:::<ij�l

a
k1
i1

.λ̃/: : : a
kj

ij
.λ̃/

k1!: : : kj!
C.i1, : : : , ij; k; λ̃/ if l> 1,

ψ.λ1/ if l=1

where

C.i1, : : : , ij; k; λ̃/=Γ.φ/

∫
Δj−1

{(
1−

j−1∑
h=1

zh

)kj j−1∏
h=1

z
kh−1
h

Γ.kh/

}
ψ{Λ.λ̃, z/}dz:

For the above integral we assume the usual convention that Σj
i =0 and Πj

i =1 whenever i>j.

In the following corollary, the expression of the Laplace exponent is recovered for the special
case of a compound random measure with independent exponentially distributed scores.
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Corollary 2. Consider a compound random measure process with independent exponentially
distributed scores. It follows that

ψρ,d.λ/=ψρ,d.λ̃, n/=
{

l∏
i=1

1
Γ.ni/

@.ni−1/

@.ni−1/λ̃i

}
ΥI.λ̃/

l∏
i=1

λ̃
.ni−1/

i ,

Υl.λ̃/=
⎧⎨
⎩

l∑
i=1

ai.λ̃/ψ.λi/ if l> 1,

ψ.λ1/ if l=1:

The proof of corollary 2 is omitted since it is a direct application of the results of the previous
theorems. Note that, if the vector has gamma process marginals, i.e. ψ.λi/ = log.1 +λi/, then
we recover the results in Leisen et al. (2013). If the vector has σ-stable process marginals, i.e.
ψ.λi/=λσi , then we recover the result in Leisen and Lijoi (2011) and Zhu and Leisen (2014).

Finally, we close the section with some results about the dependence structure of compound
random measure processes. A useful description of the dependence of a vector of CRMs is
given by the Lévy copula. A Lévy copula is a mathematical tool that allows the construction of
multivariate Lévy intensities with fixed marginals; see the on-line supplementary material. The
following theorem displays the underlying Lévy copula of a compound random measure.

Theorem 5. Let ρd be the compound random measure defined in equation (3.3) and let F

be the the distribution function of f . The underlying Lévy copula of the compound random
measure is

C.s1, : : : , sd/=
∫
νÅ.z/

d∏
j=1

[1−F{z−1U−1.sj/}]dz

where U−1 is the inverse of the tail integral function U.x/ :=∫ ∞
x ν.s/ds.

Furthermore, it is possible to prove a result that is similar to proposition 5 in Leisen et al.
(2013). This result gives a close formula for the mixed moments of two dimensions of a compound
random measure process. The result is expressed in terms of an ordering on sets 0≺ s1 ≺: : :≺ sj

which is defined in Constantines and Savits (1996).

Theorem 6. Consider a compound random measure process with independent Ga.φ, 1/-
distributed scores. Let q = .q1, : : : , qd/ and let pj.q, k/ be the set of vectors .η, s1, : : : , sj/ such
that the co-ordinates of η = .η1, : : : , ηj/ are positive and such that Σj

i=1 ηi = k. Moreover,
si = .s1,i, : : : , sd,i/ are vectors such that 0 ≺ s1 ≺: : :≺ sj and Σj

i=1 ηi.s1,i +: : :+ sd,i/= k =q1 +
: : :+qd . Then,

E

[
d∏

i=1
μ̃i.A/qi

]
=q1!: : : qd !

|q|∑
k=1

α.A/k ×
|q|∑

j=1

∑
pj.q,k/

j∏
i=1

1
ηi!

[{
d∏

l=1

.φ/sl, i

sl,i!

}∫
zs1, i+:::+sd,i νÅ.z/dz

]ηi

where |q|=q1 +: : :+qd .

Remark 5. For instance, suppose that the compound random measure process has generalized
gamma process marginals. Then,∫

zs1, i+:::+sd,i νÅ.z/dz= σaσ−.s1, i+:::+sd,i/

Γ.1−σ/
B.k −σ−1,σ+φ/:

5. Normalized compound random measures

Vectors of correlated random probability measures can be defined by normalizing each dimen-
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sion of a compound random measure process. This will be called a normalized compound
random measure and is defined by a score distribution, a directing Lévy process and a centring
measure of the compound random measure. The results derived in Table 1 can be used to define
a normalized compound random measure with a particular marginal process. For example, a
normalized compound random measure with Dirichlet process marginals arises by normalizing
each dimension of a compound random measure with gamma process marginals.

In specifying a normalized compound random measure prior, it is useful to have a method of
choosing the parameters of the score distribution to give a particular level of dependence. We
describe two possible methods. It is possible to compute the covariance of two dimensions of a
normalized compound random measure process. Indeed, following Leisen et al. (2013),

cov{p̃1.A/, p̃2.B/}=
{
α.A∩B/− α.A/α.B/

α.X/

}

×
∫

.R+/2
gρ.1, 1;λ1,λ2/exp{−α.X/ψρ.λ1,λ2/}dλ1dλ2 .5:1/

where

gρ.1, 1;λ1,λ2/=
∫

.0,∞/d
s1, s2 exp{−ψρ, 2.λ1,λ2/}ρ2.s1, s2/ds1 ds2: .5:2/

(An expression for gρ for a compound random measure is provided in the on-line supplementary
material.)

This result can be used to specify any parameters of the score distribution (or a prior for
those parameters). Alternatively, if a compound random measure with independent scores is
used, the ratio of a jump’s height in the ith and jth dimensions has the same distribution as
the ratio of two independent random variables following the score distribution. For example, if
the scores are independent and follow a gamma distribution with shape φ, this ratio follows an
F -distribution with φ and φ degrees of freedom.

5.1. Computational methods
We describe methods for fitting a non-parametric mixture model where the mixing measure is
given a normalized compound random measure prior. We assume that the data can be divided
into d groups and yj,1, : : : , yj,nj are the observations in the jth group. The data are modelled as

yj,i
ind:∼ k.yj,i|ζj,i/, ζj,i ∼ p̃j, i=1, 2, : : : , nj, j =1, : : : , d,

where k.y|θ/ is a probability density function for y with parameter θ and p̃1, : : : , p̃d are given a
normalized compound random measure prior. Using the notation of equation (3.4), we write

p̃j = μ̃j

μ̃j.X/
=

∞∑
k=1

mj,kJkδθk

∞∑
k=1

mj,kJk

:

Direct simulation from the posterior distribution is impossible since there are an infinite num-
ber of parameters. Several Markov chain Monte Carlo (MCMC) methods have been introduced
which circumvent this problem in the class of normalized random measure mixtures. Favaro and
Teh (2013) described an auxiliary variable method which involves integrating out the unnormal-
ized random measure whereas Griffin and Walker (2011) introduced a slice sampling method.
We consider extending both methods to normalized compound random measure mixtures.



538 J. E. Griffin and F. Leisen

We use the notation m= .mj,k/, J = .J1, J2, : : :/ and θ= .θ1, θ2, : : :/. The posterior distribution
can be expressed in a suitable form for MCMC sampling by introducing latent variables. Firstly,
latent allocation variables c= .cj,i/ (for which ζj,i =θcj, i ) are introduced to give

p.y, c|m, J , θ/=
d∏

j=1

nj∏
i=1

{
k.yj,i|θcj, i /mj,cj, iJcj, i

/ ∞∑
k=1

mj,kJk

}

=
d∏

j=1

nj∏
i=1

k.yj,i|θcj, i /mj,cj, iJcj, i

/( ∞∑
k=1

mj,kJk

)nj

: .5:3/

Secondly, latent variables v= .v1, : : : , vd/ are introduced to define

p.y, c, v|m, J , θ/=
d∏

j=1

{ nj∏
i=1

k.yj,i|θcj, i /mj,cj, iJcj, i

}
d∏

j=1

{
1

Γ.nj/
v

nj−1
j

}

× exp
(

−
d∑

j=1
vj

∞∑
k=1

mj,kJk

)
:

Integrating over v (using the identity {1=Γ.n/}vn−1exp.−vx/=x−n) gives expression (5.3).

5.1.1. Marginal method
The approach of Favaro and Teh (2013) relies on an analytical form for p.y, v, c/ which is
available for the normalized random measures with independent increments mixtures by using
results of James et al. (2009). Suppose that {cj,i} takes K distinct values, that aj,k is the number
of observations in the jth group allocated to the kth distinct value (i.e. ak,j =Σnj

i=1I.cj,i = k/)
and define ak = .ak,1, : : : , ak,d/. Extending the results of James et al. (2009) and Favaro and Teh
(2013) to vectors of normalized random measures (as in Section 2.1) leads to

p.y, v, c/=
d∏

j=1

1
Γ.nj/

v
nj−1
j exp{−ψρ,d.v/}

K∏
k=1

κak
.v/

K∏
k=1

g.{yj,i|cj,i =k}/

where

ψρ,d.v/=
∫ {

1− exp
(

−
d∑

i=1
visi

)}
ρd.ds1, : : : , dsd/,

κa.v/=
∫ (

d∏
j=1

s
aj

j

)
exp

(
−

d∑
i=1

visi

)
ρd.ds1, : : : , dsd/

and

g.y/=
∫ ∏

k.yj,i|θ/α.dθ/:

If the vector of the normalized random measures is chosen to be a normalized compound
random measure with independent gamma scores then

κa.v/=
∫ (

d∏
j=1

s
aj

j

)
exp

(
−

d∑
i=1

visi

)
z−d

d∏
j=1

f.sj=z/ds1: : : dsd ν
Å.dz/

=
∫

z
∑d

j=1
aj

d∏
j=1

∫
{s

aj

j exp.−vjzsj/f.sj/dsj}νÅ.dz/

=
∫

z
∑d

j=1
aj

d∏
j=1

τaj .z, vj/ νÅ.dz/
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where

τa.z, v/=
∫

sa exp.−vzs/f.s/ds:

and theorem 1 provides the expression

ψρ,d.v/=
∫ {

1−
d∏

j=1
Mf

z .−sj/

}
νÅ.z/dz:

If f is chosen to be a gamma distribution with shape parameter φ,

τa.z, v/=
∫

sa exp.−vzs/f.s/ds= Γ.a+φ/

Γ.φ/
.1+vz/−a−φ:

Two algorithms can be defined. One is suitable for conjugate mixtures where g.y/ can be
calculated analytically and a second algorithm is suitable for non-conjugate mixtures where
g.y/ cannot be calculated analytically.

In the case of a conjugate mixture model, the steps of the algorithm are as follows.

5.1.1.1. Updating cj,i. Let C
−.j,i/
k ={yl,m|cl,m = k, .l, m/ �= .j, i/} and K−.j,i/ be the num-

ber of distinct values of {cl,m|.l, m/ �= .j, i/}. The parameter cj,i is updated from the discrete
distribution

p.cj,i =k/∝
⎧⎨
⎩
κak+r.v/g.C

−.j,i/
k ∪{yj,i}/

κak
.v/g.C

−.j,i/
k /

1�k �K−.j,i/,

κr.v/g.yj,i/ k =K−.j,i/ +1

where r is a d-dimensional vector with rm = 1 if m = j and rm = 0 otherwise. For independent
Ga.φ, 1/ scores,

κak+r.v/

κak
.v/

= .aj,k +φ/

∫
z
∑d

m=1
am,k+1

.1+vjz/−aj,k−1−φ d∏
m=1;m�=j

.1+vmz/−am,k−φ νÅ.z/dz

∫
z
∑d

m=1
am,k

d∏
m=1

.1+vmz/−am,k−φ νÅ.z/dz

and

κr.v/=φ

∫
z.1+vjz/−1−φ d∏

m=1;m�=j

.1+vmz/−φ νÅ.z/dz:

5.1.1.2. Updating vj. The full conditional distribution of vj is proportional to

v
nj−1
j exp{−ψρ,d.v/}

K∏
k=1

κak
.v/:

This parameter can be updated by using an adaptive Metropolis–Hastings random walk (Atchadé
and Rosenthal, 2005).

5.1.1.3. Updating parameters of f . The full conditional distribution of the parameters of
f is proportional to
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exp{−ψρ,d.v/}
K∏

k=1
κak

.v/:

This parameter can be updated by using an adaptive Metropolis–Hastings random walk (Atchadé
and Rosenthal, 2005).

In the case of non-conjugate mixtures, Favaro and Teh (2013) defined an auxiliary variable
method which introduces the distinct values θ1, : : : , θK into the sampler and M potential distinct
values for empty clusters θ′

1, : : : , θ′
M .

5.1.1.4. Updating cj,i. A set of values θ′
1, : : : , θ′

M is formed. If cj,i is a singleton (i.e.
cj,i �= ck,m for .j, i/ �= .k, m/), set θ′

1 = θcj, i and sample θ′
j ∼α=α.X/ for j =2, : : : , M. Otherwise,

sample θ′
j ∼α=α.X/ for j =1, : : : , M. Sample cÅ

j,i from the following discrete distribution:

p.cÅ
j,i =k/∝

⎧⎪⎨
⎪⎩

κak+r.v/

κak
.v/

k.yj,i|θk/ 1�k �K−.j,i/,

α.X/

M
κr.v/k.yj,i|θ′

k−K−.j, i/ / k =K−.j,i/ +1, : : : , K−.j,i/ +M:

If cÅ
j,i �K−.j,i/, set cj,i = cÅ

j,i. Otherwise, set cj,i =K−.j,i/ +1 and θK−.j, i/+1 =θ′
cÅ

j,i−K−.j,i/ .

5.1.1.5. Updating θk. The full conditional density of θk is proportional to

α.θk/
∏

{.j,i/|cj, i=k}
k.yj,i|θk/:

The full conditional distributions of vj and any parameters of f are unchanged from the
algorithm for conjugate mixture models.

5.1.2. Slice sampling method
We introduce u= .uj,i/ and define

p.y, c, v, u|m, J , θ/=
d∏

j=1

{ nj∏
i=1

k.yj,i|θcj, i /mj,cj, i I.uj,i <Jcj, i /

}
d∏

j=1

{
1

Γ.nj/
v

nj−1
j

}

× exp
(

−
d∑

j=1
vj

∞∑
k=1

mj,kJk

)
:

Integrating over u and v gives expression (5.3). A similar form was derived in Griffin and Walker
(2011). This form of the likelihood is still not suitable for MCMC sampling since it involves
all jumps. To avoid this, we define L= mini=1,:::,nj ;j=1,:::,d{uj,i} and divide the jumps into two
disjoints sets: A† = {.J

†
k , m

†
1,k, : : : , m

†
d,k/|J†

k > L} and AÅ = {.JÅ
k , mÅ

1,k, : : : , mÅ
d,k/|JÅ

k � L}. The
set A† has a finite number of elements which are denoted K and AÅ has an infinite number of
elements. Integrating over AÅ leads to a posterior which is suitable for MCMC sampling and
has the form

d∏
j=1

{ nj∏
i=1

k.yj,i|θcj, i /m
†
j,cj, i

I.uj,i <Jcj, i /

}
d∏

j=1

{
1

Γ.nj/
v

nj−1
j

}
× exp

(
−

d∑
j=1

vj

K∑
k=1

m
†
j,kJ

†
k

)

×E

[
exp

(
−

d∑
j=1

vj

∞∑
k=1

mÅ
j,kJÅ

k

)]
: .5:4/
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An MCMC scheme using this form of likelihood leads to a random truncation of the normalized
compound random measures process at each iteration but does not introduce a truncation error
since integrating over the latent variables leads to the correct marginal posterior.

The expectation in expression (5.4) can be expressed in terms of a univariate integral by using
a variation on theorem 1, giving

−log
{

E

[
exp

(
−

d∑
j=1

vj

∞∑
k=1

mÅ
j,kJÅ

k

)]}
=

∫ L

0

{
1−

d∏
j=1

Mf
z .−vj/

}
νÅ.z/dz:

The full conditional distributions, a general discussion of the methods for updating parameters
and details of the implementation for specific processes are given in the on-line supplementary
material.

6. Illustrations

The clinical studies CALGB 8881 (Lichtman et al., 1993) and CALGB 9160 (Budman et al.,
1998) looked at the response of patients to different anticancer drug therapies. The response
was white blood cell count and patients had between four and 25 measurements taken over
the course of the trial. The data were previously analysed by Müller et al. (2004), who fit-
ted a non-linear random-effects model for the patient’s response over time. The model as-
sumes that the mean response at time t with parameters θ= .z1, z2, z3, τ1, τ2,β0,β1/ is given
by

f.θ, t/=
{

z1 t< τ1,
rz1 + .1− r/g.θ, τ2/ τ1 � t< τ2,
g.θ, t/ t � τ2

where r= .τ2 − t/=.τ2 −τ1/ and g.θ, t/=z2 +z3=[1+exp{β0 −β1.t −τ2/}]. There were nine differ-
ent combinations of the anticancer agent cyclophosphamide, the drug granulocyte macrophage
colony stimulating factor and amifostine which are summarized in Table 3.

Summaries of the data are available as part of the DPpackage in R (Jara et al., 2011) where
a non-linear regression model is fitted with f.θj,i, t/ as the mean for the ith patient in the jth

Table 3. Levels of cyclophosphamide, granulocyte macrophage colony stimulating factor
and amifostine across the nine groups†

Group Cyclophosphamide Granulocyte Amifostine Study Number of
(gm−2) macrophage colony patients

stimulating factor
(μg kg−1)

1 1.5 10.0 0 1 6
2 3.0 5.0 0 2 28
3 3.0 5.0 1 2 18
4 3.0 2.5 0 1 6
5 3.0 5.0 0 1 6
6 3.0 10.0 0 1 6
7 4.5 5.0 0 1 12
8 4.5 10.0 0 1 10
9 6.0 5.0 0 1 6

†The CALGB 8881 study is indicated as study 1 and the CALGB 9160 study as study 2.
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Fig. 2. Posterior mean marginal densities of each parameter in the CALGB example ( , group in the
CALGB 8881 study; , group in the CALGB 9160 study): (a) z1; (b) z2; (c) z3; (d) t1; (e) t2; (f) β0; (g) β1
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Fig. 3. Posterior mean joint densities of β0 and β1 in the CALGB example for groups in (a) the CALGB
8881 study and (b) the CALGB 9160 study

group. We shall consider the differences in the distribution of the estimated values θ̂j,i across
the nine studies. It is assumed that

θ̂j,i ∼N.μj,i, Σj,i/, .μj,j, Σj,j/∼ p̃j

where p̃1, : : : , p̃9 are given a normalized compound random measures process prior with inde-
pendent Γ.φ, 1/-distributed scores and Dirichlet process marginals. The centring measure α is
N.μ| ¯̂θ, 100Σ/IW.Σ|14, 4=9× Σ̂/ where ¯̂θ and Σ̂ are the sample mean and the sample covariance
matrix of θ̂. This implies a prior mean of 1=9× Σ̂. The parameter φ is given an exponential prior
with mean 1.

The results of the analysis are illustrated in Fig. 2 which shows the posterior mean marginal
density of each parameter. The results within each study are very similar with the main difference
occurring between the two studies. All densities are very similar for the parameters z1, z2, z3
and t2. There is a slight difference in the distribution for t1 but much bigger differences for
parameters β0 and β1. The results for the CALGB 8881 study are unimodal whereas those for
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CALGB 9160 includes additional modes at 0.5 for β0 and −0:5 and 2 for β1. Fig. 3 shows the
posterior mean joint density of β0 and β1, which shows a bimodal distribution for the CALGB
9160 study with one mode at roughly .−1:5, 0:5/ (which is the mode for the CALGB 8881 study)
and a second mode at roughly .−0:5, 0/. This suggests that the CALGB 9160 data may contain
two groups who responded differently. The posterior median of φ was 1.03 with a 95% highest
posterior density region of .0:46, 2:36/.

7. Discussion

The modelling of dependent random measures has been an extremely active area of research
for more than 15 years beginning with the seminal work of MacEachern (1999). Much of
the work has concentrated on dependent random probability measures with several general
approaches developed in the literature. Using the notation of equation (1.1), initial work con-
sidered approaches where wi.x/ = wi and dependence is modelled through the atom location
θi.x/. This implies that cluster sizes will be similar for all values of x and so leads to a spe-
cific form of dependence. Alternatively, many researchers have used θi.x/ = θ for all x with
dependence modelled through the weights, often by using a stick breaking construction where
wi.x/ = Vi.x/Πj<i {1 − Vj.x/}; see for example Dunson (2010) for a review. This usually leads
to computationally tractable methods which either extend random truncation methods such
as retrospective sampling (Papaspiliopoulos and Roberts, 2008), or slice sampling (Kalli et al.,
2011) or develop truncation ideas for Dirichlet process mixtures (Ishwaran and James, 2001).
However, stick breaking approaches have some limitations for modelling. The construction im-
plies a stochastic ordering so that w1.x/ will tend to be the largest weight for all x. This can be
inappropriate for some regression problems where we would like different components to have
large weights for different values of x. The correlation is usually built on Vj.x/ and so wi.x/ is
a non-linear function of many correlated processes. This can lead to a dependence structure on
wi.x/ which is difficult to interpret. Analytical results such as generalizations of the exchangeable
partition probability function are usually impossible to derive for these priors. These methods
can often be applied to problems where X is continuous or discrete. Other priors are restricted to
a discrete X . One approach builds a hierarchy of non-parametric processes (see Teh and Jordan
(2010) for a review) leading from the seminal work of Teh et al. (2006) on hierarchical Dirichlet
processes. For example, a two-level hierarchical model could be constructed by assuming that
the distributions for each group are conditionally independent draws from a non-parametric
prior which is centred on a process which is itself given a non-parametric prior. This leads to the
same correlation a priori between the distribution for each value in X (although more compli-
cated hierarchical structures could be introduced to allow different correlation within subsets
of X ). Posterior simulation is usually implemented by using the Chinese restaurant franchise
algorithm.

Compound random measures are defined using a CRM and a finite dimensional score dis-
tribution. For a given marginal process, the dependence between the distributions is controlled
by the choice of a finite dimensional score distribution. The compound random measure in
its most general form is very flexible and allows both hierarchical and regression models. The
class of normalized compound random measures includes many previously described priors
and provides a useful framework for understanding the links between these priors clearer. This
paper has concentrated on priors where the dimensions of the scores are independent, which
allows their properties to be derived. If the moment-generating function of the marginal score
distributions is available analytically, posterior computation for a normalized compound ran-
dom measures mixture model can be carried out by using an augmented Pólya urn scheme or a
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slice sampler and several useful analytical expressions can be derived. More general, compound
random measures type models where the scores are given by a regression were discussed by
Ranganath and Blei (2015) who used a truncation of the infinite dimensional parameter and
variational Bayes methods to make inference. In future work, we intend to extend both the Pólya
urn scheme and the slice sampler to regression models.

In this paper, we have concentrated on the case where the scores are independent and gamma
distributed. This allows the dependence between the measures in different dimensions to be
modelled by the shape parameter of the gamma distribution. In this case, we show how com-
pound random measures can be constructed with gamma, σ-stable and generalized gamma
process marginals. Importantly, the modelling of dependence between random measures can
be achieved by the modelling of dependence between random variables and so greatly reduces
the difficulty of specifying a prior for a particular problem. Future work will consider studying
these classes of compound random measures.
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