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Abstract Fluidization is an appealing relaxation technique based on the re-
moval of integrality constraints in order to ease the analysis of discrete Petri
nets. The result of fluidifying discrete Petri nets are the so called Fluid or Con-
tinuous Petri nets. As with any relaxation technique, discrepancies among the
behaviours of the discrete and the relaxed model may appear. Moreover, such
discrepancies may have a comparatively bigger effect when the population of
the system, the marking in Petri net terms, is “relatively” small. This paper
proposes two complementary approaches to obtain a better fluid approxima-
tion of discrete Petri nets. The first one focuses on untimed systems and is
based on the addition of places that are implicit in the untimed discrete sys-
tem but not in the continuous. The idea is to cut undesired spurious solutions
whose existence worsens the fluidization. The second one focuses on a par-
ticular situation that can severely affect the quality of fluidization in timed
systems. Namely, such a situation arises when the enabling degree of a transi-
tion is equal to 1. This last approach aims to alleviate such a state of affairs,
which is termed the bound reaching problem, on systems under infinite servers
semantics.

1 Introduction

Petri Nets (PN) is a well known family of formalisms for the modelling of
Discrete Event Systems (DES). As any other formalism for DES, they suffer
from the well known state explosion problem. Such a problem appears both
during the analysis (e.g., to decide if the system is bounded or not) and the
synthesis (e.g., designing a controller) of the system, and it affects both the
untimed and the timed model.
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Many different time interpretations can be adopted for the timing of PN.
Nevertheless, without any doubt, one of the “most basic and classical” inter-
pretation for performance evaluation and control consists of: (1) associating
exponential probability distributions to the delay of the atomic firing of tran-
sitions ; and (2) solving conflicts by a race policy (see, for example, [18, 1, 4]).
In the sequel, we will assume this time interpretation for discrete models. The
resulting stochastic nets will be referred as Markovian Petri Nets (MPN).

An interesting technique to overcome the above mentioned state explosion
problem is known as fluidization. The fluidization of a transition consists of
relaxing its firing amount (and thus the marking of its neighbour places) to the
non-negative real quantities. If all transitions are fluidized, the result is a fluid
or continuous PN (CPN) [10, 21, 20]. By fluidization, more efficient analysis
techniques can be developed at the price of losing some fidelity. In particular,
the CPN may not preserve some qualitative or quantitative properties of the
original discrete one [22, 21]. In other words, this issue is an instance of the
classical trade-off between “accuracy” and “computational complexity”.

Similarly to the linearization of any continuous nonlinear time-driven dy-
namical system, the fluidization of DES (untimed or timed) requires some
conditions to be of reasonable quality; for example, to satisfy the marking ho-
mothetic monotonicity property [14]. If such property holds and the marking
is large, then the results obtained with fluidization are frequently very good.
With respect to timed net models, some functional extensions of the law of
large numbers lead to the legitimization of the deterministic continuous PN
approximation (see Subsection 2.3). This last relaxed model can be expressed
as a set of Ordinary Differential Equations (ODEs). If the marking is not large,
then some functional extensions of the Central Limit Theorem can be helpful,
leading to Stochastically Differential Equations (SDEs) [25, 5]. In the sequel
we limit to deterministic relaxations.

Synchronizations in PN can be expressed with two complementary con-
structions: (1) rendez-vous (or joins); and (2) weights in arcs going from places
to transitions. At this point it should be pointed out that if the marking is
“very large”, the effect of those weights on arcs is not “seen” [20] (intuitively
speaking, if the marking of the place at the origin of the k-weighted arc is 1000k
–i.e, relatively very big– the enabling is 1000, so the continuous approximation
is valid). However, if the marking is not “very large”, the relative errors may
be higher (intuitively speaking, rounding the number 1.5 to 1 lead to a relative
error three orders of magnitude bigger than rounding 1000.5 to 1000). Thus,
appropriate fluidization techniques are required for systems whose marking is
“relatively” small (and hence cannot be fluidified properly), yet large enough
to make its study a discrete system computationally prohibitive.

This paper deals with techniques to improve the fluidization process, what
is specially interesting when the population is “relatively” small, at least in
some parts of the system. We do not consider neither very small populations
(in which fluidization is frequently not needed) nor very large ones (in which
fluidization usually provides a good approximation of the original PN).
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Some of the differences between discrete and continuous systems appear be-
cause solutions of the fundamental equation which are spurious in the untimed
discrete system (i.e., analytical solutions of the fundamental or state-transition
equation that are not reachable on the net model) may become reachable by
the continuous relaxation. Therefore, some transformations on the discrete PN
system are firstly proposed. They improve the fluidization process for untimed
PN, thus potentially for any timed interpretation. In particular, the steady
state throughput of the MPN will be better approximated by the continuous
approximation, i.e., by the timed CPN (TCPN).

These transformations are based on the addition of some places which are
implicit in the discrete system [23] but they constraint the behaviour of the
continuous one. In particular, such cutting implicit places [23] remove some
spurious solutions. The key issue here is that any continuous (possibly integer)
spurious deadlock can be removed (the main differences between the discrete
model and the continuous approximation is caused by spurious deadlocks).
The elimination of a given spurious deadlock is a computational problem of
polynomial time complexity. Unfortunately, the number of spurious deadlocks
may be theoretically exponential. Nevertheless, this is not a frequent case in
practice. Let us remark that improvements in both timed and untimed models
are obtained by these techniques.

With respect to timed models, we focus on a particular situation in which
the fluidized system does not approximate certain quantitative properties of
the original one. It is the case of PN systems in which the enabling bound of a
transition is equal to 1, and hence the probability of firing that transition may
be very low in the discrete case but not so “difficult” on the continuous ap-
proximation. This problem is denoted as the Bound Reaching Problem (BRP)
[13]. The BRP is a challenging problem that may appear in many practical
cases. It can arise in systems in which relatively small and large populations
are combined in a given model, and also when inhibitor arcs of a bounded
system are removed and simulated with regular arcs and places.

Among the different concerns related to the BRP, in general terms, the ap-
proximation of the throughput of a discrete Markovian PN (MPN) by a Timed
Continuous PN (TCPN) under infinite server semantics (ISS) was considered
in [21]. Here we extend such an approximation to join or rendez-vous transi-
tions by means of some representative places which implement the concept of
linear enabling functions [24, 7].

The rest of the paper is organized as follows. Section 2 recalls basic defini-
tions. In Section 3, we concentrate on the addition of cutting implicit places
with the goal of improving the untimed continuous approximation. The bound
reaching problem is introduced in Section 4. In Section 5, a method derived
from ISS, here denoted as ρ-semantics, is proposed for the firing of transitions
involved in the BRP. Section 6 deals with the extension of previous results to
the most frequent class of synchronizations: rendez-vous. A case study is dis-
cussed in Section 7, and Section 8 concludes the paper.
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2 Definitions and previous concepts

The main concepts related to discrete and continuous PN are recalled here,
both as untimed and timed formalisms. The relationship between the timed
interpretations when the system population tends to infinity is also established.
In the following, it is assumed that the reader is familiar with Petri nets
(see [11, 10] for a gentle introduction).

2.1 Discrete Petri nets

A Petri net is a tuple N = 〈P, T,Pre,Post〉 where P = {p1, p2, ..., pn} and
T = {t1, t2, ..., tm} are disjoint and finite sets of places and transitions, and
Pre, Post are |P | × |T | sized, natural valued, incidence matrices. The preset
and postset of a node u ∈ P ∪ T are denoted by •u and u•, respectively.
A discrete PN system is a tuple 〈N ,M 0〉 where N is the net structure and

M0 ∈ N
|P |
≥0 is the initial marking (denoted in upper case M for the discrete

system).
The enabling degree of transition ti at marking M is defined as:

Enab(ti,M) = min
pj∈•ti

⌊
M [pj]

Pre[pj , ti]
⌋ (1)

The firing of ti in a certain natural amount α ≤ Enab(ti,M) leads to a new

marking M ′, which is denoted as M αti−→ M ′, and M ′ = M + α ·C[P, ti],
where C = Post − Pre is the token flow matrix (incidence matrix if N is
self-loop free) and C[P, ti] denotes the ith column in C. Hence, M = M0 +
C ·σ, the state-transition (or fundamental) equation summarizes the marking
evolution; where σ is the firing count vector associated to the fired sequence.

Right and left natural annullers of the token flow matrix are called T-
and P-semiflows, respectively. When ∃y > 0, y ·C = 0, the net is said to be
conservative, and when ∃x > 0, C · x = 0, the net is said to be consistent. A
nonempty set of places Θ is a trap if Θ• ⊆ •Θ, while a nonempty set of places
Σ is a siphon if •Σ ⊆ Σ•.

The set of all the reachable markings of 〈N ,M 0〉 is denoted asRSD(N ,M 0).
Its linearised reachability set (LRS) contains the markings which fulfill the fun-
damental equation (even if they are not reachable) [23]. In this work, the LRS

is defined on the real numbers (m ∈ R
|P |
≥0 ):

LRS(N ,M0)={m|m=M0 +C · σ,m ∈ R
|P |
≥0 ,σ ∈ R

|T |
≥0} (2)

A markingM is spurious if it is a non reachable solution of the state-transition
equation, i.e., M ∈ LRS(N ,M0) but M 6∈ RSD(N ,M 0). The structural
bound of a place pj , and the structural enabling bound of a transition ti are
integer values defined as:

SB(pj) = ⌊max{M [pj ] | M = M 0 +C · σ,M ,σ ≥ 0}⌋ (3)
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SEB(ti) =⌊max{e |∀p ∈ •ti, e ≤
M [pj ]

Pre[pj , ti]
,

M = M0 +C · σ,M ,σ ≥ 0}⌋

(4)

A Markovian Petri net system (MPN) is a particular time stochastic in-
terpretation [18, 1, 4], in which the time to fire a transition ti follows an
exponentially distributed function with parameter λi · Enab(ti,M), where λi

is the firing rate associated to ti. More formally, a MPN is a tuple 〈N ,M 0,λ〉,

where λ ∈ R
|T |
>0 is the vector of rates associated to the transitions.

Given a bounded and ergodic MPN system, the steady state throughput
of a transition ti, denoted as χMPN (ti), provides a meaningful measure for
its long-term performance. It is defined as the limit of the average number of
times ti fires per time unit when time tends to infinity [8]:

χMPN (ti) = lim
τ→∞

σi(τ)

τ
(5)

where τ is the time variable and σi(τ) is the firing count of transition ti at
time instant τ .

2.2 Continuous Petri nets

The main difference between continuous and discrete PN is in the firing amounts
and consequently in the marking, which in discrete PN are restricted to be in
the naturals, while in continuous PN are relaxed into the non-negative real
numbers. Thus, a continuous PN system (CPN) is understood as a relaxation
of a discrete one.

A continuous PN system is a tuple 〈N ,m0〉 where N is the net structure

(as defined for discrete PN) and m0 ∈ R
|P |
≥0 is the initial marking. The enabling

degree of a continuous transition ti at marking m is defined as:

enab(ti,m) = min
pj∈•ti

{

m[pj ]

Pre[pj, ti]

}

≥ Enab(ti,m) (6)

The firing of ti in a certain real amount α ≤ enab(ti,m) leads to a new
marking m′ that satisfies m′ = m + α · C[P, ti]. Notice that in contrast to
discrete PN, a continuous transition can fire if all its input places are positively
marked, i.e., enab(ti,m) > 0, regardless of the input arc weights. Its set of
reachable markings is denoted as RSC(N ,m0) [21]. And its LRS coincides
with the LRS of the discrete system. It holds that:

LRS(N ,M0) ⊇ RSC(N ,M 0) ⊇ RSD(N ,M 0) (7)

As in discrete PN, the equation m = m0 +C · σ summarizes the system evo-
lution. The derivative of this equation with respect to time is ṁ = C ·f where
f = σ̇ is the vector of instantaneous flows of transitions.
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A Timed Continuous Petri Net (TCPN) is a continuous PN together with

a vector λ ∈ R
|T |
>0 defining the speed associated to transitions, denoted as

〈N ,m0,λ〉. One of the most used semantics is infinite server semantics (ISS)
(proved to be specially interesting for engineering applications [17]). Moreover,
product semantics may be also considered [22] for population dynamics or
(bio)chemistry, and finite server semantics has been also considered in some
works [10]. Alternatively, stochastic time interpretations are proposed in the
literature such as Stochastic Continuous PN [25].

In the sequel, ISS is considered. According to ISS, the flow through a
continuous timed transition ti is defined as follows:

fi = λi · enab(ti,m) = λi · min
pj∈•ti

{

m[pj ]

Pre[pj , ti]

}

(8)

If there exists a steady state in a TCPN system, the throughput of ti,
denoted as χTCPN (ti), is equal to its steady state flow fi [21]:

χTCPN (ti) = lim
τ→∞

fi(τ) (9)

where fi(τ) is the flow of transition ti at time instant τ .

2.3 Deterministic limit of MPN

The deterministic limit of a system [16] describes the trajectory towards which
the population densities of a discrete Markovian system converge as its size
tends to infinity. Let us consider a MPN with initial marking M0 = k · µ0 ∈

N
|P |
≥0 where µ0 ∈ R

|P |
≥0 represents the initial marking density of the system, and

k ∈ R>0 represents the relative system size (or volume).

The vector field for place pj is defined as Fj(µ) =
∑

ti∈(•pj∪pj
•)C[pj , ti]·fi,

where fi = λi · enab(ti,µ) (notice that Fj is a nonnegative function of real
arguments on the system densities). Let F (µ) be a vector composed of the
vector field functions Fj(µ) of every place pj. The two following conditions
can be easily checked:

a) F (µ) is Lipschitz continuous, i.e., ∃H ≥ 0 s.t. |F (µ)−F (ν)| ≤ H ·|µ−ν|;
b)

∑

ti∈(•pj∪pj
•) |C[pj, ti]| · fi(µ) < ∞.

Then, the deterministic limit behaviour of the marking densities µ of the
MPN when k tends to infinity is given by the following set of differential
equations [12, 16]: µ̇ = F (µ) = C · f .

Thus, the deterministic limit of a MPN matches with the time evolution
defined for TCPN. Therefore, a TCPN faithfully captures the behaviour of a
MPN with “infinitely” large markings.
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3 Transformations on the untimed discrete PN: addition of cutting
implicit places

By fluidization, spurious markings of a discrete PN system may become reach-
able in the continuous one [22]. Some transformations of the net system are
proposed here to avoid those markings, thus obtaining a more faithful approx-
imation.

The spurious markings can be either integer or not, and it is specially
interesting to avoid them when they are deadlocks. Two techniques have been
proposed in the literature to avoid integer spurious markings. The first one,
considered in [23, 21], avoids markings in which a trap is emptied by adding
a polynomially calculable implicit place. Because a trap cannot be emptied in
a discrete PN system, the avoided marking is spurious in the discrete system.
The second technique [14] proposes to avoid a marking that empties a siphon
by adding a place. However, it cannot assure that the avoided marking was
spurious (otherwise stated, the added place is implicit). Thus, this technique
can only be applied if it is previously known to be a spurious solution.

Among non-integer spurious markings which can be removed, those which
are vertices of LRS(N ,m0) are particularly interesting. Some classical works
aim to remove the non-integer vertices of a polytope, such as the Gomory-
Chvàtal cuts. Given a polytope on the reals, they cut the markings outside
the integer hull of the polytope [3, 9]. This method could be used to remove
undesired non integer spurious markings. Although Gomory cuts are tractable
for a given set of equations, finding a good family of cuts in the general case
requires further investigation [9].

We propose to implement some polynomial time cuts on the polytope de-
fined by LRS(N ,M0), considering the PN structure. Those cuts aim to avoid
spurious markings, and they are obtained by means of implicit places which
force some marking relations. We propose three different kinds of implicit
places to avoid such non-integer vertices of the polytope: vertex cutting places
avoid those vertices which are non-integer; marking truncation places are a
particular case but more efficient to compute; enabling truncation places do
not modify the set of reachable markings, but they can modify the firing
amounts of the transitions.

A place p is said to be an implicit place if it does not constrain the behaviour
of the discrete system.

Definition 1 Given a PN system 〈N ,m0〉:

– A place p is implicit in 〈N ,m0〉 if it is never the unique place that prevents
the firing of a transition.

– A place p is structural implicit in N if there exists m0 for which p is
implicit.

A characterization of the structural implicit places is given in [23]:

Proposition 1 Let N = 〈P ∪ {p}, T,Pre,Post〉. Place p is structurally im-
plicit iff (equivalently):
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1. A y ≥ 0 exists such that C[p, T ] ≥ yT ·C[P, T ]
2. No x ≥ 0 exists such that C[P, T ] · x ≥ 0 and C[p, T ] · x < 0

Here, we refer to concurrent implicit places, which preserve not only the fir-
ing sequences, but also the steps [23, 15]. The removal of a concurrent implicit
place allows the timed performance measures to be preserved.

Proposition 2 Given a net system 〈N ,M 0〉, and 〈N ′,M ′
0〉 the same net

system without place p, then p is a concurrent implicit place [15] if M0[p] >
γ − 1, where γ can be computed as:

γ = min{yT ·m′
0 + µ| yT ·C ′ ≤ C[p, T ]

zT · Pre′[P ′, p•] + µ · 1T ≥ Pre[p, p•] (10)

y ≥ z ≥ 0, µ ≤ 0}

If p is implicit in 〈N ,m0〉 as a continuous system, then p is also implicit in
〈N ,m0〉 as a discrete system. Assume pk is not implicit in 〈N ,m0〉 considered
as a discrete system. Then, there exists a marking m reachable with discrete
firings at which pk constraints the enabling of an output transition t. Since
m is also reachable in the system as continuous, pk is not implicit in the
continuous system either.

3.1 Vertex cutting place

The aim of this technique is to cut non-integer vertices of LRS(N ,M0), that
are not reachable on the discrete model. Let us explain the technique through
an example, before introducing the method in a formal way.

Consider the example in Fig. 1(a) without the grey place, v. As discrete, it
is deadlock-free and it has four reachable markings: M 0 = (1, 0, 1, 0, 0),M1 =
(0, 1, 0, 3, 0),M2 = (0, 0, 1, 0, 3), andM3 = (0, 0, 1, 1, 1). The polytope defined
by LRS(N ,M0) is the convex set defined by those vertices and (0, 0, 1, 1.5, 0).
As continuous, the deadlock md = (0, 0, 1, 1.5, 0) ∈ LRS(N ,M0) is reachable
(by firing t2 followed by 1.5t3 from m0). Thus, the deadlock-freeness property
is lost. Marking md is outside its “integer hull”, so it is not reachable in the
discrete PN (in particular, md 6∈ N

|P |).
Consider the marking md which is a vertex and it is not reachable. Then,

there exists at least two other markings which are vertices and in which at least
one of the places which are empty atmd (i.e., p1, p2 and p5) are marked (with a
marking equal or greater than 1, in the discrete model), otherwise it would not
be a vertex. Hence, we can assure that the following inequality holds for every
discrete reachable marking: m[p1]+m[p2]+m[p5] ≥ 1. This inequality can be
forced by the addition of a place v which is implicit in the discrete (but not in
the continuous) PN: m[p1] +m[p2] +m[p5]−m[v] = 1. From this equation,
place v is defined as C[v, T ] = C[p1, T ] + C[p2, T ] + C[p5, T ], and m0[v] =
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Fig. 1 (a) The vertex cutting place v cuts the spurious deadlock md = (0, 0, 1, 1.5, 0). (b)
The marking truncation place q4 does not cut md.

m0[p1] +m0[p2] +m0[p5]− 1, as depicted in Fig. 1(a). Place v, here denoted
as vertex cutting place, adds the invariant m[p1]+2 ·m[p3]+m[p4]+m[v] = 3
to the net, and md becomes not reachable in the CPN. In this example, the
added place v leads to a continuous system which preserves the deadlock-
freeness property of the original discrete one.

Definition 2 Vertex cutting place. Given a non-integer vertex mv, a ver-
tex cutting place v is the place which forces the following relation:

∑

i|mv[pi]=0

m[pi] ≥ 1.

The obtained vertex cutting place v is implicit in the discrete PN and it
cuts the marking mv in the continuous system.

More formally, given a PN system 〈P, T,Pre,Post;m0〉 and a marking
mv, the system 〈P ′, T ′,Pre′,Post′;m′

0〉 resulting of adding vertex v can be
obtained by Algorithm 1.
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Input: PN system 〈P, T,Pre,Post;m0〉, marking mv

Output: PN system 〈P ′, T ′,Pre′,Post′;m′
0〉

1) P ′ = P ∪ {v};
2) T ′ = T ;
3) Pre′[P, T ] = Pre[P, T ];

4) Pre′[v, T ] =
∑

i|mv[pi]=0

Pre[pi, T ];

5) Post′[P, T ] = Post[P, T ];

6) Post′[v, T ] =
∑

i|mv [pi]=0

Post[pi, T ];

7) m′
0[P ] = m0[P ];

8) m′
0[v] =

∑

i|mv[pi]=0

m0[v]− 1;

Algorithm 1: Addition of vertex cutting place v.

Checking if a given solution mv is a vertex of a polytope can be done in
polynomial time (as explained in Appendix A). However, enumerating all the
vertices of the polytope is computationally costly [2].

Let us consider a spurious deadlock md (the continuous enabling degree
of all transitions at md is 0; i.e., md is a deadlock in the continuous PN).
If md is a vertex of LRS(N ,M0), it can be removed with the technique
presented in this section. If md is not a vertex of LRS(N ,M0), it must be a
convex combination of two or more vertices of the LRS(N ,M0). Notice that
the null components of md are also null in such vertices, and that at least
one of such vertices is not reachable (if every vertex is reachable, then every
linear combination, and in particular md, is also reachable [22]). Therefore, at
least one of such vertices is a spurious deadlock that can be removed with the
presented technique.

The repeated execution of this procedure, i.e., the removal of spurious
deadlock vertices, reduces the size of LRS(N ,M0) and, therefore, produces a
better approximation of the discrete PN.

3.2 Marking truncation places

This subsection introduces a particular class of vertex cutting places, which
is called marking truncation places, that can be computed and added very
efficiently. Because a marking of a discrete PN system belongs to N

|P |, a place
pj will never have more tokens than its structural enabling bound SB(pj).
However, this bound can be overlooked by the continuous system.

The addition of an implicit place qj is proposed, which is a complementary
place of pj which truncates the marking of pj to the highest possible integer,
and consequently, it limits the firing of the transitions in •pj and pj

• (in the
continuous system) and avoids undesired markings.
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Definition 3 Given a place pj, its marking truncation place qj is obtained as:
Pre[qj , T ] = Post[pj , T ] and Post[qj , T ] = Pre[pj, T ]. Its initial marking is
obtained as: m0[qj ] = SB(pj)−m0[pj ].

Given a PN system 〈P, T,Pre,Post;m0〉, their marking truncation places
can be added by Algorithm 2.

Input: PN system 〈P, T,Pre,Post;m0〉.
Output: PN system 〈P ′, T ′,Pre′,Post′;m′

0〉

1) P ′ = P ; T ′ = T ;
2) Pre′[P, T ] = Pre[P, T ]; Post′[P, T ] = Post[P, T ];
3) m′

0[P ] = m0[P ];
4) for every pj ∈ P ;
5) P ′ = P ′ ∪ {qj};
6) Pre′[qj , T ] = Post[pj , T ];
7) Post′[qj , T ] = Pre[pj , T ];
8) m′

0[qj ] = SB(pj)−m0[pj ] where SB(pj) is obtained from (3)

Algorithm 2: Addition of marking truncation places.

3

3 2

p1 p2

p3

p4

t1 t2

t3

q3

1

1

(a)

p1

p2

tp1
t1

t2
k

k

q

1

(b)

Fig. 2 (a) The marking truncation place q3 removes the undesired spurious marking
md = (0, 1, 1.5, 0). (b) With k < q < 2 · k, the enabling truncation place tp1 improves
the throughput approximation, but does not change RSC(N ,m0). If q = k, then t1 suffers
the BRP (see Section 4).

For example, consider the PN in Fig. 2(a), which is also deadlock-free as
discrete but not as continuous. The marking truncation place q3 is added,
which is complementary to p3, whose initial marking is M0[q3] = ⌊1.5⌋ − 0 =
1. It is implicit in the discrete system, but it modifies the LRS(N ,M0). It
avoids having more than 1 token in p3, hence it avoids the spurious deadlock
md = (0, 1, 1.5, 0), in which md[p3] = 1.5 is higher than SB(p3) = 1. The
resulting system is deadlock-free as continuous. Moreover, the addition of q3,
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with m0[q3] = 1, makes the timed approximation of the original system as
MPN more accurate. The improvement is not significant when λ1 = λ2 (see
first column of Table 1), but it is specially relevant when λ1 > λ2 (see the
second column of the table), because the steady state of the TCPN is near to
md.

Table 1 χ(t1) of the PN in Fig. 2(a), with different λ.

Method χ(t1) χ(t1)
λ = (5, 5, 1) λ′ = (5, 1, 1)

MPN 0.769 0.492
TCPN 0.833 0.025
TCPN+impl 0.833 0.499

The addition of every marking truncation place to the system can be done
in polynomial time (because computing SB(p) is polynomial). However, this
technique does not always obtain the “integer hull” of the polytope. For exam-
ple, consider again the PN system in Fig. 1(b). The marking truncation place
q4 is added to limit the structural bound of p4 SB(p4). However, md is still
reachable by the continuous PN by firing t2, 1.5t3 from m0 (the rest of places
qj would not avoid it either), and the addition of the vertex cutting place is
needed.

3.3 Enabling truncation places

Finally, the enabling truncation places do not modify the LRS(N ,M0), but
they limit the flow at a given marking if time is considered. They can have
an effect on the throughput, even if all the SB(p) are integer (the marking
truncation place would have no effect).

Analogously to the marking of a place, a transition ti will never be fired in
an amount higher than its structural enabling bound SEB(ti). The addition
of an implicit place tpi is proposed. It would truncate the maximal possible
firing of the transition to the highest possible integer.

Definition 4 Enabling truncation place. Given a transition ti, its en-
abling truncation place tpi is a self-loop place of transition ti whose initial
marking is m0[tpi] = SEB(ti).

Given a PN system 〈P, T,Pre,Post;m0〉, their enabling truncation places
can be added by Algorithm 3.



Fluid approximation of Petri net models with relatively small populations 13

Input: PN system 〈P, T,Pre,Post;m0〉.
Output: PN system 〈P ′, T ′,Pre′,Post′;m′

0〉

1) P ′ = P ; T ′ = T ;
2) Pre′[P, T ] = Pre[P, T ]; Post′[P, T ] = Post[P, T ];
3) m′

0[P ] = m0[P ];
4) for every ti ∈ T ;
5) P ′ = P ′ ∪ {tpi};
6) Pre′[tpi, T \ ti] = 0;
7) Pre′[tpi, ti] = 1;
8) Post′[tpi, T \ ti] = 0;
9) Post′[tpi, ti] = 1;
10) m′

0[tpi] = SEB(ti) where SEB(ti) is obtained from (4)

Algorithm 3: Addition of enabling truncation places.

Consider the PN in Fig. 2(b) with k = 5, q = 8 and λ = (1, 5). The struc-
tural enabling bound of t1 is SEB(t1) = ⌊1.6⌋ = 1. Hence, an enabling truncation
place tp1 with initial marking equal to 1 is added (see place tp1, drawn in grey
colour). The throughput of t1 in the discrete PN is χMPN (t1) = 0.90. The con-
current implicit place tp1 forces the continuous system to be more faithful to
the original discrete system and produces the throughput χTCPN+impl(t1) =
1.00, which is a better approximation than the throughput of the original con-
tinuous net system χTCPN (t1) = 1.33. Only tp1 has been added because place
tp2 would not affect to the behaviour of the continuous PN.

4 The bound reaching problem (BRP)

TCPN under ISS approximate reasonably well the behaviour of MPN when
the population is relatively large, as pointed out in Section 2.3. However, the
Bound Reaching Problem (BRP) identifies a particular but important situation
in which the quality of the approximation may be significantly worse [13].

Definition 5 A transition ti in 〈N ,M 0〉 is said to suffer from the BRP
if SEB(ti) = 1. The set of transitions suffering from the BRP in a PN
system 〈N ,M 0〉 is denoted as Bound Reaching Transition Set : BRTS =
{ti | SEB(ti) = 1}.

The differences between discrete and continuous behaviour are due to the
fact that synchronizations (arc weights and therefore joins) are strongly re-
laxed when the net system is fluidified. Consider transition t1 in Fig. 2(b) with
q = k (and without tp1). Thus, SEB(t1) = 1. Seen as discrete, t1 is only en-
abled when M [p1] = k. However, as continuous, t1 is enabled for any positive
amount of tokens 0 < m[p1] ≤ k, regardless of the arc weight k.

Considering the net system as a MPN, the firing time distribution of t1
fromm follows an exponential probability function with parameter λ1 ·⌊

m[p1]
k

⌋.
After the first firing of t1, only t2 can be fired, and it keeps on firing until the
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Table 2 Throughput of t1 in Fig. 2(b), with k = q, and λ = (10, 1).

Method k = 1 k = 2 k = 4 k = 8 k=16
χMPN (t1) 0.909 0.517 0.420 0.355 0.287

k tokens are again at p1. Then, t1 becomes enabled again. If k increases,
the probability of having k tokens in p1 decreases, and also its steady state
throughput. Its average cycletime is obtained from order statistics as Θ = 1

λ1

+
1
λ2

·
∑k

i=1
1
i
, and its mean throughput is 1

Θ
, i.e., χMPN (t1) = λ2/(

∑k
i=1

1
i
+ λ2

λ1

).

Notice that χMPN (t1) is the product of a dimensionless coefficient depend-
ing on k and λ2

λ1

, multiplied by λ2 that defines a time scale (time homothecy
[22]). Thus, we can normalize λ2 = 1, and the normalized χMPN (t1) depends
on k and λ1. The steady state throughput of t1 for different values of k is
shown in Table 2 for λ = (10, 1).

Considered as a TCPN, t1 is enabled for any markingm[p1] > 0. Moreover,
the firing of t1, and hence the behaviour of the system, is not modified by k.
The throughput of t1 as a TCPN is time homothetic (i.e., its steady state flow
is proportional to λ), and it is equal to: χTCPN (t1) = λ2/(1 +

λ2

λ1

).

Considering λ = (10, 1), χTCPN (t1) = 0.909 for any value of k. The con-
tinuous throughput coincides with the discrete one for k = 1, but it provides
a bad approximation for k > 1 (see Table 2), which gets worse when k grows.

In order to overcome this lack of accuracy due to the BRP, different tech-
niques can be investigated. They can range from fully continuous to hybrid. A
first possibility is to modify the flow of the continuous transition. For example,
an “ad hoc” continuous flow estimation is explained in [13] as an alternative
to ISS. However, it has some disadvantages such as no time homothecy.

0 k

1

enab(t1)

m[p1]

(a) ISS

0 k' k

1

enab(t1)

m[p1]

(b) Hybrid PN

0 k-ρ k

1

enab(t1)

m[p1]

(c) ρ-semantics

Fig. 3 Enabling degree of t1 in Fig. 2(b) with q = k. (a) TCPN under ISS (continuous and
differentiable flow); (b) Hybrid PN (see Fig.4(a)), t1 discrete and approximately scaled arcs;
(c) ρ-semantics (piecewise function, based on ISS).
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5 A new semantics to approach the bound reaching problem

The aim of this section is to propose an alternative fluidization technique to
tackle the BRP. The resulting method will be a deterministic approach based
on ISS.

Consider again the PN in Fig. 2(b), with q = k. A key difference between
the behaviour of the MPN and the TCPN under ISS is that in the MPN, t1
can fire only when the k tokens are in p1; while in the continuous case, it is
not needed to “wait until the k tokens” are in p1 to fire t1.

p1

p2

t′1

t2

k
k′

k′

(a)

p′1 p2

pa pb

t′1

t2

timm

k

k

k-ρ

k-ρ
k-ρ

ρ

(b)

Fig. 4 (a) Hybrid PN system in which t′
1
is discrete (black transition) and t2 is continuous,

arc weights are modified to k′, (b)Transformation of the PN in Fig. 2(b), with q = k. Tran-
sitions t1 and t2 are continuous under ISS, and timm is immediate (thin black transition).

In a TCPN, waiting until p1 has k tokens would take infinite time. Hence,
it makes sense to wait until some other smaller value, such as k − ρ (where ρ
comes from “the rest”). This behaviour can be obtained by transforming p1-t1
(see Fig. 2(b)) to a subnet composed of p′1, t

′
1, pa, pb, timm (see Fig. 4(b)),

such that t′1 is not enabled for “the first” k − ρ tokens, and it is enabled for
higher amounts.

Immediate transitions are difficult to handle in TCPN [19]. A first ap-
proximation can be to consider immediate transitions as timed ones which
are several orders of magnitude faster than the other transitions (for example,
λimm = 10000 if λ = (10, 1)). However, this has some disadvantages: If λimm

is relatively not very high, then the steady state might not be the desired one;
while for very high relative values of λimm, stiffness problems would appear.

In this particular construction, we can abstract the structure given by p′1,
t′1, pa, pb, timm by a unique transition which compacts the desired behaviour,
resulting in the denoted ρ-semantics, based on ISS (see [13] and Fig. 3(c) for
more details). Its flow is given by:
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f1=λ1 ·

{

0 if m[p1] ≤ Pre[p1, t1]-ρ
m[p1]-(Pre[p1,t1]-ρ)

ρ
otherwise

(11)

The transient flow of t1 is still a continuous function but piecewise defined,
which introduces certain “hybridization” in the behaviour of the transition
(see Fig. 3(c)). If ρ tends to 0, the flow tends to a step function of values from
0 to λ1, while if ρ tends to Pre[p1, t1], the flow tends to ISS. The computation
done by this approach is local to transition t1 (the transition in BRTS), and
it is simple and fast to calculate. It inherits some basic properties of ISS, such
as homothetic monotonicity w.r.t. the firing rates.

With the proposed ρ-semantics, the throughput of the system can be
“tuned” from 0 (when ρ ∼ 0) to the throughput of the TCPN (when ρ is
“equal” to Pre[p1, t1]). The challenge is how to select ρ to approximate the
steady state throughput of the MPN.

Let us first compute ρ for the PN in Fig. 2(b) with q = k, and then apply
that heuristics on any PN system with a similar structure. The throughput of
t1 at the steady stated can be symbolically computed, considering ρ-semantics
for the flow of t1 (i.e., equation (11), with ρ as a parameter), and ISS for t2
(i.e., equation (8)). Because of its p-semiflow, it holds m[p1] + m[p2] = k.
At the steady state, the equality C · fss = 0 must be satisfied, and hence
χρ(t2) = k · χρ(t1). From these equalities, the value of χρ(t1) for the PN in
Fig.2(b) with q = k is:

χρ(t1) = λ2 ·
ρ

k + ρ · λ2

λ1

(12)

Forcing χMPN (t1) = χρ(t1), an analytical formula for the value of ρ is ob-
tained, that fortunately depends only on k (not on λ):

ρ =
k

∑k

i=1
1
i

(13)

The PN model in Fig. 2(b) can be seen as a simplification of any net system
with analogous structure. Hence, it will be possible to use the heuristic formula
(13) in other transitions suffering from the BRP such that |•t| = 1.

6 Generalization of the ρ-semantics to join transitions

As introduced in Section 5, the ρ-semantics has been designed for transitions
with a unique input arc. The aim of this section is to generalize it to transitions
with more than one input place (rendez-vous or join transitions).

First, linear enabling functions for join transitions are presented. Then,
the addition of the representative places is introduced. Finally, the application
of the ρ-semantics to join transitions is proposed.
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6.1 Linear enabling functions

Linear Enabling Functions (LEF) were introduced for discrete PN in [24, 7]
to characterize the enabling of a transition by a single linear expression.

The enabling of a transition ti can be represented with a single LEF if
every p ∈ •ti except at most one (denoted as π), satisfies the equality SB(p) =
Pre[p, ti], i.e,

∃π ∈ •ti s.t. ∀p ∈ {•ti \ π}, SB(p) = Pre[p, ti] (14)

A particular case appears if every place p ∈ •ti satisfies SB(p) = Pre[p, ti].
If SB(p) > Pre[p, ti] holds for more than one of its input places p, its en-
abling cannot be directly represented by a single LEF, and some previous
transformations of the PN should be done (see [24]).

Given a transition ti which holds equation (14) it will be enabled when:

M [π] + SB(π) ·
∑

p∈{•ti\π}

M [p] ≥ Pre[π, ti] + SB(π) ·
∑

p∈{•ti\π}

Pre[p, ti] (15)

Consider the PN in Fig. 5(a) (without the grey place, r1). Transition t1 holds
equation (14) with π = p6 (because SB(p6) = 5 > Pre[p6, t1] = 2, {•t1 \π} =
{p4}, and SB(p4) = Pre[p4, t1] = 2). The enabling of t1 (in the discrete
system) is given by:M [p6]+SB(p6)·M [p4] ≥ Pre[p6, t1]+SB(p6)·Pre[p4, t1].

6.2 Representative places for join transitions

The LEF of a discrete transition can be represented in the PN system with an
implicit place which is representative of its enabling [7].

(a)

Method

MPN

TCPN

ρ-semantics

χ(t1)

0.396

0.484

0.410

(b)

Fig. 5 (a)The grey place r1 is the representative place of transition t1. The ρ-semantics is
applied to transition t1. (b) Steady state throughput of t1, with λ = (10, 1, 1, 1, 1).
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Given a PN system 〈N ,M 0〉 which satisfies (14), a representative place
ri can be added to the system, which is computed as a linear non-negative
combination of the places in •ti. Place ri is built as:

C[ri, T ] = C[π, T ] + SB(π) ·
∑

p∈{•ti\π}

C[p, T ] (16)

And its initial marking is computed as:

M0[ri] = M 0[π] + SB(π) ·
∑

p∈{•ti\π}

M0[p] (17)

Consider again t1 in Fig. 5(a). The representative place r1 is added, com-
puted as C[r1, T ] = C[p6, T ] + SB(p6) · C[p4, T ], where SB(p6) = 5 (see
the grey place r1 in Fig.5(a)). Its initial marking is computed as M0[r1] =
M0[p6] + SB(p6) ·M0[p4] = 0. In general, the added place ri (the marking of
ri) is a non-negative linear combination of the places in •ti (their markings).
Hence, ri will never be the unique place constraining the enabling degree of
ti, and it is implicit in the discrete and the continuous systems.

The original places in •ti become implicit in the discrete PN system when
ri is added. However, they do not become implicit in the continuous one. For
example, once the implicit place r1 has been added in Fig. 5(a), p4 and p6
become implicit in the discrete net system. However, m′

1 = (3, 0, 0, 0, 1, 1, 0)
is reachable in 〈N ,m0〉, and the enabling degree of t1 is restricted by p4 at
m′

1 (and not by r1). Analogously, place p6 does not constrain the enabling
degree of t1 in the reachable marking m′

2 = (2, 0, 0, 1, 3, 0, 5). Hence, p4 is not
implicit in the continuous system and p4, p6 cannot be removed.

6.3 Generalization of the ρ-semantics

The flow of the join transition ti is defined by using the ρ-semantics for place
ri, and ISS for the rest of the places in •ti.

The value of ρi is computed from ρ as defined in equation (13). If place ri
was obtained as a linear combination of those in •ti, then ρi is obtained with
the same linear combination of ρ(Pre[pi, tj ]) for the places pj ∈ •ti, where
ρ(Pre[pi, tj ]) is computed from equation (13), with k = Pre[pi, tj ].

Given a representative place ri which has been obtained as C[ri, T ] =
C[π, T ] + SB(π) ·

∑

p∈{•ti\π}
C[p, T ], then ρi is obtained as follows:

ρi = ρ(Pre[π, ti]) + SB(π) ·
∑

p∈{•ti\π}

ρ(Pre[p, ti]) =

Pre[π, ti]
∑Pre[π,ti]

n=1
1
n

+ SB(π) ·
∑

p∈{•ti\π}

Pre[p, ti]
∑Pre[p,ti]

n=1
1
n

. (18)
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The flow of the transition (defined in equation (11)) is generalized below
to join transitions, in which an analogous term is used for the representative
place, and ISS is used for the rest of the places in •ti:

fi=λi ·

{

0 if m[ri] ≤ Pre[ri, ti]-ρi

min{m[ri]-(Pre[ri,ti]-ρi)
ρi

, min
p∈•ti

{ m[p]
Pre[p,ti]

}} otherwise (19)

For example, consider transition t1 in the PN in Fig.5(a). In this case,
•t1 = {p1, p2}, so |•t1| > 1 and the ρ-semantics cannot be directly applied.
The first step is to add the representative place r1 (see Section 6.2). Then,
the value of ρ1 can be obtained from equation (18). Finally, the ρ-semantics
proposed in equation (19) can be applied to t1. Considering λ = (10, 1, 1, 1, 1),
the ρ-semantics (χρ(t1) = 0.41, see the Table in Fig. 5(b)) gives a better
approximation than the TCPN (χTCPN (t1) = 0.484) to the original MPN
(χMPN (t1) = 0.396).

The ρ-semantics has been presented here for join transitions, eventually
with weights in the arcs. However, the behaviour of those transitions in which
joins and choices are combined requires further investigation.

7 Case study

The aim of this section is to apply the techniques presented in this paper
to an example from the literature. The Petri net example shown in Fig. 6 is
obtained from [6]. It represents a supervisory control system for a distributed
manufacturing process.

In [6], the system is modelled with UML, and then a discrete PN system
is derived. The system represents a production line process, in which two
components interact. The left part of the Petri net (with places and transitions
labelled by B) represents a belt, while the right part represents some film. Both
parts are mutually synchronized.

In this work, we modify the production line, allowing the system to produce
k jobs at the same time. In order to obtain that, we allow the belt to hold
k jobs, so we modify the initial marking of Bout to k. These jobs will be
synchronized in transition Bnew , so also the weight of the arcs around this
transition are modified to k. Moreover, k jobs will be wrapped by using the
film (right part of the figure) at the same time. The k tokens in Fout are
synchronized in transition Fnew .

Let us consider the computation of the steady state throughput of transi-
tion Bnew. It can be efficiently done for low values of k for the discrete PN,
however, the state explosion problem raises for bigger values of k. For example,
the Markov chain obtained for k = 1 has 16 states, for k = 3 it has 673 states,
and for k = 5 it grows to 7322 states. It grows exponentially for bigger values
of k. Hence, the fluidization of the system is interesting in this case.

Consider a small value of k such as k = 3, and λ = (1, 1, 1, 1, 10, 1, 1, 1, 1, 10).
In this case, χSPN (Bnew) = 0.356 for the MPN. This value is not well ap-
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Fig. 6 Case study. Petri net which models a supervisory control system (obtained from
[6]).

proximated by the continuous PN, χISS(Bnew) = 0.714, but it is well ap-
proximated by applying the ρ-semantics to transitions Bnew, in which the
obtained throughput is χρ(Bnew) = 0.398. A relative error (computed as
|χSPN − χρ|/χSPN ) of 11.8% is obtained. This result was obtained in 3.32
seconds.

Table 3 Steady state throughput of transition Fnew in the PN in Fig. 6.

Method χSPN χISS χρ error
k = 3 0.356 0.714 0.398 11.8%
k = 10 0.860 2.381 0.839 2.4%
k = 100 6.010 23.810 4.774 20.6%

Moreover, it is not only a good approximation of small populations, but also
when the parameter k grows, dealing to ’relatively small’ populations. Consider
for example k = 100, in which χSPN (Bnew) = 6.010. The approximation given
by the ρ-semantics (χρ(Bnew) = 4.774) is much better than the value obtained
by the continuous PN under ISS (χISS(Bnew) = 23.810). See Table 3 for an
overview of results for the case study.
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8 Conclusions

Fluidization aims to reduce the analysis complexity of discrete PN models.
Unfortunately, some logical and performance properties of the discrete PN may
be lost by fluidization, specially when the system population is “relatively”
small. In this paper, two sorts of techniques have been proposed to improve
the fluid approximation of the discrete model.

The relaxation of the formalism entails the reachability of some spurious
markings (i.e., non reachable in the discrete PN) in the continuous model.
The removal of spurious markings, and in particular the removal of spurious
deadlocks, in the fluidified model has been proposed. The technique is based on
the addition of cutting places which are implicit in the discrete PN (they do not
modify the behaviour of the original discrete system) but not in the continuous
one. This yields a more faithful approximation to the original discrete system,
for both the untimed and timed interpretations.

Moreover, we have studied the Bound Reaching Problem (BRP), which
may appear in timed systems, and that causes the throughput of the original
discrete PN system and the continuous approximation to be particularly dif-
ferent. A new method based on ISS, which is denoted ρ-semantics, has been
proposed to tackle the BRP. Such novel semantics inherits basic properties
from ISS such as time homothecy, not marking homothecy, and it is specially
accurate when it is applied to transitions with a single input place. Moreover,
the technique has been generalized to join transitions by means of represen-
tative places.
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13. E. Fraca, J. Júlvez, and M. Silva. The Bound Reaching Problem on the
fluidization of timed Petri nets. In 11th Int. Workshop on Discrete Event
Systems (WODES’14), pages 142–148, Paris, France, 2014.
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A Checking if a marking is a vertex of the potential reachability set

A marking mv ∈ LRS(N ,M0) is said to be a vertex if it is not a linear combination of
markings in LRS(N ,M0), i.e. 6 ∃ m1,m2 ∈ LRS(N ,M0) with m1 6= m2 and α, β > 0
such that mv = αm1 + βm2. Hence, any vertex is a minimal support vector (although the
reverse is not true).

A polynomial time method is presented below to check if a given solution of the state
equation is a vertex. Let us define Ψ as a subset of linearly independent places in P such
that rank(C[Ψ, T ]) = rank(C[P, T ]).

Proposition 3 A solution mv ∈ LRS(N ,m0) is a vertex iff ∀pi ∈ Ψ , vi is equal to 0,
where vi is defined by the following Linear Programming Problem (LPP):

vi = max (mv[pi]−m1[pi])

s.t. m1 = m0 +C · σ1,m1,σ1 ≥ 0 (20)

m2 = m0 +C · σ2,m2,σ2 ≥ 0

mv = 0.5 ·m1 + 0.5 ·m2

Proof. (⇒) Assume mv is a vertex. Thus, 6 ∃m1,m2 such that m1 6= m2 and mv =
0.5 ·m1 +0.5 ·m2. Therefore, ∀pj ∈ P , m1 = m2 = mv and vj = 0. Hence,∀pi ∈ Ψ , vi = 0.
(⇐) Assume mv is not a vertex. Then, there exist two interchangeable solutions m1,m2 ∈
LRS(N ,m0) such that m1 6= m2 and mv = 0.5 ·m1 +0.5 ·m2. Hence, there exists at least
a place pj ∈ P such that m1[pj] < mv[pj ] < m2[pj ]. If pj ∈ Ψ , directly vj > 0. Otherwise,
and because rank(C[Ψ, T ]) = rank(C[P, T ]), ∃pi ∈ Ψ which linearly depends on pj , such
that m1[pi] 6= mv[pi] 6= m2[pi]. And hence, vi > 0.

Proposition 3 can be checked in polynomial time. Because (A.1) is a LPP, it is of
polynomial complexity. The decision procedure is based in the solution of |Ψ | LPP, from
which the first phase of the classical simplex approach is common (observe that only the
objective function changes).

If N is consistent, the number of variables and constraints can be reduced, by replacing
mk = m0 +C · σk by B ·mk = B ·m0, for k = {1, 2}, where B is a basis of p-flows of N
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[23]. Then, vi is defined as:

vi = max (mv[pi]−m1[pi])

s.t. B ·m1 = B ·m0,m1 ≥ 0 (21)

B ·m2 = B ·m0,m2 ≥ 0

mv = 0.5 ·m1 + 0.5 ·m2


