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Abstract

This thesis investigates multifractality as a tool to analyse the spatial

patterns emerging from urban inequality. In our context, inequality is de-

�ned as a di�erence between individuals in economic welfare (in the tradition

of Dalton and Sen). As such, it considers the typical household income distri-

bution, but also variables such as real estate and energy consumption. These

variables can be transformed into mathematical measures which present di-

verse extent of self-similarities explained by the self-organisation processes

resulting from an intense competition for space. The multifractal method-

ology can exploit these self-similarities to produce precise local statistical

information even when the usual tools fail due to an excessive complexity.

The analysis is performed on large geographical datasets for London,

Paris, New-York and Kyoto. The main results are a decrease in multifrac-

tality with modernisation that can be understood as an arguably positive

homogenisation, but also a negative loss of diversity; striking similarities

in the independent evolution of the spatial repartition of land and housing

prices across the globe during the 20th century; and discrepancies between

income and the other measures, in accordance with the idea that income

alone is not enough to fully characterize inequality. The most important

result, however, is the validation after comparison with the traditional in-

equality and segregation measures that multifractality is a high-performing

spatial inequality indicator. It is in particular able to extend the exposure

and clustering dimensions of segregation to ordinal continuous variables.
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Impact statement

The impact of this thesis is twofold. From an academic perspective, it

brings a new methodology to the study of inequality and segregation in the

urban environment that solves some of the issues usually encountered. It

also invites urban planners and policy makers to measure more accurately

the impact on inequality induced by their future projects. In September

2015, the United Nations General Assembly identi�ed combating inequality

as the 10th goal of sustainable development for their 2030 agenda, the present

thesis is a step forward towards achieving this goal.

The traditional academic framework for the analysis of inequality is based

on a-spatial inequality measures producing a global estimate of the inhomo-

geneities inside the distribution of a wealth variable, usually income. How-

ever, these estimates contain by nature no spatial information. In parallel,

segregation measures evaluate the spatial separation between two or more

groups living in di�erent parts of a city. When the de�nition of the groups

is based on an ordinal variable, such as income, these measures describe

the spatial patterns emerging from inequality. However, ordinal segregation

measures may su�er from computational e�ciency issues, are sensitive to the

modi�able areal unit problem and usually only provide one global parameter

that is di�cult to interpret. We propose a methodology, multifractal analy-

sis, which does not su�er from these issues and which provides a spectrum

of results allowing to characterise the spatial distribution of inequality with

unprecedented subtlety.

Our methodology is more than a simple application of an already exist-

ing mathematical theory. We have carefully adapted it to the urban context

and we have explored a novel way of interpreting it tailored to the analysis

of economic spatial inequality. This should make its implementation in prac-

tice easy for urban planners and policy makers. To that e�ect, we propose

in the appendix our own modelling framework linking the potential redevel-

opment of residential areas or modi�cation of the transport network with

the resulting spatial patterning of income inequality. Although not realis-

tic at this stage, this model demonstrates how the methodology we develop

throughout the thesis can be applied to real life situations.

Two articles have been published based on the content of the thesis (Salat

et al., 2017, 2018). They respectively aim to introduce the methodology and

to disseminate its application to studying inequality.
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Introduction

At the most basic level, inequality can be understood as the socioeco-

nomic gap separating the wealthy from the poor. Traditionally, it is charac-

terised either by the shape or the spread of a particular household income

distribution. Some policy advice is then derived with the aim of smoothing

the distribution and reducing its spread at a regional, national or interna-

tional level. This approach was most successfully carried by Piketty (2014)

and Atkinson (2015). However, ever since the notion of inequality was sci-

enti�cally formalised, it has been emphasised that income alone may not be

su�cient to capture the true di�erences in �economic welfare� between indi-

viduals (Dalton, 1920; Atkinson, 1970; Sen, 1997). Recently, Martin et al.

(2015) attempted to theorize the problem of tackling inequality from an ar-

chitectural perspective. They de�ne inequality as �a seemingly endless chain

of inequities around which both individuals and social groups hold con�ict-

ing interests� and include in these inequities social issues typically infused

by urban development, such as racial and gender discrimination.

We propose our own de�nition of inequality as any economic or social

trait that results in some individuals being worse o� than others, without the

moral connotation implied by the term �inequity�1. It does not only include

direct economic welfare characteristics, such as the traditional income di�er-

ence or housing inequality, but also the social prejudice potentially induced

by economic segregation. Our focus is nevertheless narrower than study-

ing all manifestations of inequality: we are mainly interested in analysing

the spatial patterns that emerge from inequalities. Space plays a funda-

mental role in the perception of inequality as it determines the number and

quality of jobs accessible, but also the composition of neighbouring leisure

and commercial amenities that create social interactions and outside of work

quality of life. It is therefore unsurprising that wealth inequality triggers a

1See for example Nielsen (2017): �People are not good at assessing the overall level of
inequality in a large impersonal society. They tend to visualize the structure of society as
a whole in terms of the social positions of people they are familiar with (their reference
group, the counterpart of the hunting-and-gathering band of the ancestral environment).
Complete equality of outcomes is not the preferred situation; inequality based on hard
work or superior talents is accepted as long as opportunities to achieve these outcomes are
equal. Inequality generates moral outrage [inequity] when disparities are interpreted as a
form of �cheating� or denial of a fair share in a (perhaps putative) exchange relationship.�

11



12 INTRODUCTION

competition for space resulting in turn in housing, income and accessibility

inequality. In particular, this competition induces segregation which in turn

acts as a lever that maintains or degrades the existing socioeconomic unequal

situation (Jacobs, 1961; Massey and Denton, 1993).

The importance of including space in the analysis of inequality has al-

ready been underlined by Reardon and O'Sullivan (2004); Reardon et al.

(2006) who call for de�ning better economic segregation measures that allow

to take into account both the variable and spatial distribution of economic

ordinal variables. As a matter of fact, measuring inequality is already a

daunting task, even before considering the spatial aspect of it. It requires,

for example, to decide which is the most important factor between on the

one side the spread of the welfare gap between di�erent social groups, and

on the other side the relative proportion of the population that falls inside

each group. A method inspired by multifractal theory could o�er a solu-

tion to integrate the role of space in the analysis of inequality while solving

many of the technical issues usually encountered by the traditional inequal-

ity and segregation indices. Multifractal theory was originally developed to

study mathematical measures de�ned on geometrical complex sets and to

study fully developed turbulence in physics. It relies on exploiting the un-

derlying scaling properties sometimes found in chaotic complex systems to

gather compelling statistical information that allow to describe the spatial

heterogeneity of the system.

Multifractality is only relevant when strong self-similarities exist and

when more than one scaling exponent is needed to describe them. For cities,

the frequent occurrence of such scaling properties is well established (Batty

and Longley, 1994; Frankhauser, 1994; Bettencourt et al., 2007; Batty, 2008b;

Bettencourt and Lobo, 2016). Meanwhile, the insu�ciency of using only one

scaling exponent for an entire city has been recently emphasised (Thomas

et al., 2012; Arcaute et al., 2015; Cottineau et al., 2017). The theories to

explain the existence of self-similarities in urban systems are varied, but are

mostly centred around the creation of nonlinearities as a result of the compet-

itive self-organisation bottom-up processes shaping cities. We have already

underlined that this competition for space results in housing, income and

accessibility inequality. It is therefore natural to ask if multifractality could

be used as a tool to gain better statistical insights on inequality in urban de-

velopment compared to the current inequality and segregation measures. In

particular, can multifractality characterise the spatial patterns that emerge

from inequality in cities?

In order to answer this question, we �rst need to identify which urban

characteristics are multifractal. By characteristics we mean distributions
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such as income, land and house prices or energy consumption. Given our

context, we are only interested in those when they carry a sense of eco-

nomic welfare. We also need to assess the relative importance given by our

methodology to the spatial patterning in comparison to the distributional

characteristics of the inequality characteristics that we have identi�ed. We

�nally need to prove that the multifractal methodology o�ers new insights

on spatial inequality and more generally is an improvement over current

inequality measures.

The �rst step of our methodology consists in discriminating a set of

measures representing economic welfare and testing the multifractality of

these measures using highly detailed dataset in four di�erent cities: London,

New York, Paris and Kyoto. We then test our results against the di�erent

inequality and segregation indicators that have been traditionally in use since

the beginning of the 20th century. Our focus is resolutely oriented towards

developing a sound and powerful scienti�c measurement method rather than

towards giving policy advice. However, such policy implications should be a

natural extension of the work presented here, and we already hint at it with

the urban development model proposed as an appendix.

The thesis is structured as follows. The �rst chapter reviews the liter-

ature both on the study of inequality applied to an urban context and on

the place of monofractality and multifractality in urban science. The second

chapter presents a formal de�nition of multifractality and critically compares

the di�erent methods that have been developed to put it in practice. We

explain in particular our choice of a particular method and our own adap-

tations of it. Chapter III approaches multifractality from an interpretative

perspective both in general and tailored for the urban inequality context. It

explains and justi�es in detail the epistemology of our approach. Multifrac-

tality is presented again with a heuristic approach trimmed of the complex

technicalities of the previous chapter so that the reader less interested in the

mathematics of multifractality will �nd su�cient information to fully un-

derstand the following chapters. Chapter IV gathers case studies based on

real estate, income, energy consumption and accessibility datasets in Lon-

don, New York, Paris and Kyoto. It proves that multifractality is a valid

approach and presents some original results. Finally, the last chapter com-

pares some of our results to the results obtained from the classical inequality

indicators. We prove de�nitively that our methodology is e�cient, provides

more coherent results than the traditional framework and is able to capture

facets of segregation that cannot usually be attained by classical segregation

measures.
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CHAPTER I

Review of inequality measures and urban

multifractality

We de�ne inequality as any economic or social trait that results in some

individuals being worse o� than others. This chapter will show that this

de�nition encompasses both the traditional household income analysis (Per-

sons, 1909; Dalton, 1920; Atkinson, 1970), any other potential indicator of

disparities in economic welfare (Dalton, 1920; Sen, 1997), and the social and

economic segregation perspective (Burgess, 1928; Massey and Denton, 1988;

Reardon and O'Sullivan, 2004). We review the technical development and

particularities of these di�erent historical approaches in the chapter's �rst

section. We also present the studies that emphasize the role played by the

singularities of urban systems in giving rise to inequality and segregation,

and enlighten some of the di�culties usually encountered by the classical

methods.

A new tool potentially able to resolve these di�culties, multifractality,

is presented in the second section. It is particularly focused on the study

of spatial patterns emerging from inequalities. We �rst justify why the geo-

metric properties necessary for multifractality to exist, self-similarities, are

frequently found in urban environments. We then present some interesting

case studies from the literature that prove multifractality has already been

found for some urban measures such as land prices and street intersection

densities. These measures are a good basis to support the use of the multi-

fractal methodology for urban systems. We gather further support with ideas

from the broader multifractal �eld that could be relevant for urban environ-

ments. Finally, we review the development of the theoretical foundations

of multifractal theory and the development of the four main methodologies

usually adopted for practical studies.

1. Measuring inequality in urban systems

The usual approach to measuring inequality, particularly brought into

prominence by Atkinson (1970), consists in gathering indices that give a

global estimate of the statistical dispersion inside a given distribution, or an

15
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estimate of the deviation of said distribution compared to an equal distribu-

tion. The distribution is usually assumed to be household income (Atkinson,

1983, 2015), although Sen (1997) argues that income alone is not necessarily

an adequate representation of the welfare of an individual (an idea that was

already pointed out by Dalton as soon as 1920 Dalton, 1920). For exam-

ple, the total disposable money may di�er once we subtract the basic needs

(including potential disabilities) that may be di�erent from an individual to

another; or the money may be unequally distributed inside the household.

These indices are not meant to account for the role of space, and focus ex-

clusively on the disparities inside the distribution of wealth. As such, we

will call them a-spatial inequality measures. They are detailed in the �rst

subsection below.

In the urban context, another separate approach can be considered: seg-

regation. It consists in gathering indices that measure �the degree to which

two or more groups live separately from one another in di�erent parts of the

urban environment� (Massey and Denton, 1988). These indices usually do

not provide any information on the relative gap between each group, but

give a measurement of the clustering and lack of spatial uniformity. These

inhomogeneities may translate into a di�erent experience of life quality for

groups belonging to di�erent segregation clusters, hence characterizing spa-

tially inequality. In addition, Jargowsky (1996); Watson (2006) and Reardon

et al. (2006) have extended the notion to social groups de�ned through an

ordinal variable. In particular, the ordinal variable can be household income,

as was used for the a-spatial inequality measures. The segregation measures

are detailed in the second subsection.

These two approaches appear to have attracted most of the focus of the

social scientist e�orts. Some additional measures have been developed based

on spatial autocorrelation techniques used in Geography (Chakravorty, 1996;

Dawkins, 2007). They meet the objectives of the segregation measures with

a strengthened account of the spatial characteristics of the distribution. We

now detail both the a-spatial and the segregation and autocorrelation ap-

proach, then see how they have been applied to the speci�c urban context,

and �nally discuss their shortcomings and emphasise the need, as underlined

by Reardon et al. (2006), for new measures that integrate both the distri-

butional and spatial traits of the inequality variables in a more convincing

way.

1.1. A-spatial inequality measures. Early research on the topic of

inequality advocated for measuring disparities in income distributions as in

any distribution of a biological or physical characteristic (Persons, 1909).

The necessity of relating income to economic welfare was then introduced
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(Dalton, 1920). Dalton intended to do it using a functional, later renamed

utility function, obeying some mathematical rules to express the perceived

welfare stemming from income. The comparison between the functional and

a fully equal distribution was coined the Dalton index. Consider a distribu-

tion {xi}ni=1 of average µ, then the Dalton index D is de�ned as

(1) D =

∑
i U(xi)

nU(µ)
,

where U is the utility function. However, further developments of this idea

were severely constrained by the lack of computational power in these days.

In 1970, Atkinson reworked the concept to make the index invariant through

linear transformations of the utility function (Atkinson, 1970). It resulted

in the Atkinson index, classically de�ned as

(2) A = 1− 1

µ

(
1

n

∑
i

x1−εi

) 1
1−ε

,

for the same distribution as before. In this formulation, the utility function

operates implicitly through the �inequality aversion� coe�cient 0 ≤ ε < 1.

The closer ε is to 1, the more impact the lower end of the distribution has,

and the closer ε is to 0, the more impact the higher end of the distribution

has. In his seminal review, Sen (1973) argues that both these approaches

are valid, and de�nes a �normative� category to group all such indices that

relate income to welfare.

In parallel, a simpler approach was developed in Italy in the early twen-

tieth century (Gini, 1912; Ricci, 1916, partial translations by Ceriani and

Verme (2012)). It focuses on the description of the statistical characteristics

of the wealth distribution, without any particular link to economic welfare

(Yntema, 1933, for a classic early 1930s review of this approach). This sort of

indices form therefore the �descriptive� category according to Sen (1973). It

encompasses basic indices, such as the range, relative mean deviation, vari-

ance, coe�cient of variation and standard deviation of logarithms measures.

It also contains the Gini index which has undoubtedly been the most fructu-

ous one. The Gini index compares the Lorenz curve (Lorenz, 1905), i.e. the

curve representing the proportion of overall income enjoyed by the bottom

x% of the population, to a straight line representing absolute equality. More

explicitly, it is de�ned for {xi}ni=1 as

(3) G =

∑
i

∑
j |xi − xj |
2n2µ

.

It is the only index, together with the coe�cient of variation, that ensure that

�any transfer from a poorer person to a richer person, other things remaining
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the same, always increase the variance�, which is the minimal condition that

any inequality measure should have according to Dalton (1920) (who was

in�uenced on this by (Pigou, 1912)).

Alternatively, Theil (1967) uses Shannon's entropy formula to derive an

inequality measure. We want to avoid opening a Pandora's box here by

trying to de�ne precisely entropy, and abide by John Neumann's famous

quote addressed to Shannon about his formula: �You should call it entropy,

because nobody knows what entropy really is, so in a debate you will always

have the advantage.� (as reported by Tribus and McIrvine, 1971). For now,

we can understand entropy as a measure of uncertainty. Counterintuitively,

when applied to the share of income going to individuals, the formula reaches

its maximum when absolute equality is obtained. The Theil index is then

de�ned as the di�erence of the distribution's entropy to the maximum case,

which reduces for our distribution {xi}ni=1 to

(4) T =
∑
i

xi
nµ

log

(
xi
µ

)
.

According to Sen (1973), it is somewhat arbitrary, and the lack of clear in-

terpretation place it in the descriptive category. It does however satis�es

the Dalton minimal condition. The Theil index is de�ned similarly to re-

dundancy in information theory. It computes the di�erence between the

maximum possible entropy in the system (in the sense of Shannon's entropy,

so log(n)) and the actually observed entropy. The upper bound of the Theil

index, log(n), depends on the system's characteristics. As a result, it is only

useful when comparing the evolution of a singular system, or several systems

with similar number of observations n.

It is noteworthy that both the Gini and Theil indices obey the require-

ment made by Atkinson (1970) of invariance through linear transformations

of the income distribution (as can be easily veri�ed from the equations). In

the context of segregation, Reardon et al. (2006) further require that mea-

sures are invariant to any order preserving change of the distribution. As

a matter of fact, this is part of a larger unresolved debate. Assume that

the entire population is divided into several income classes. Is the number

of people inside each income class more important than the gaps between

those classes? Reardon's stance means that it is from their point of view.

Likewise, for continuous distributions, is the shape of the Lorenz curve more

important than the total income spread? This debate, together with the

debate about the necessity of introducing a utility function to interpret in-

come in terms of economic welfare, are not settled. The a-spatial inequality
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�eld has otherwise known little technical evolution since the 1970s. More

recently, the emphasis has been increasingly put on measuring segregation.

1.2. Segregation indicators. The idea of relating social distance to

spatial distance is not new (Park, 1924, 1926). It was �rst convincingly

formulated by Burgess (1928). Since then, there have been trends and many

debates as to which segregation indices should be used, with for example a

long-lived emphasis on the interaction index invented by Bell (1954), which

has been through a series of enhancements in the eighties (Lieberson (1981);

Jakubs (1981); Morgan (1983), among many others). It is usually de�ned as

(5)
∑
i

(xi
X

)( yi
Ni

)
,

where xi is the population of minority class X in an areal unit i, X its pop-

ulation in the entire system, yi the population of majority class Y in unit i,

and Ni the total population of unit i. In 1955, it appeared Duncan and Dun-

can (1955) had settled the argument with the epiphany of the dissimilarity

index,

(6) D =
1

2

∑
i

∣∣∣xi
X
− yi
Y

∣∣∣ ,
where xi and yi are the population of class X and Y (respectively) in an

aeral unit i, and X and Y are the total population of class X and Y in

the entire system. This position was further strengthened by the work of

Taeuber and Taeuber (1965). However, the truce came to an end in 1976

when the objections by Cortese et al. (1976) relaunched the debate. In

1988, Massey and Denton (1988) listed up to twenty di�erent indices for the

purpose of measuring residential segregation. In this section, we only present

the general segregation framework, rather than the details and mathematical

de�nitions of each of the many indices. Those details are postponed until

chapter V.

In 1986, Stearns and Logan (1986) distinguished three �dimensions� to

segregation, they are (un)evenness, concentration and probability of interac-

tion. Massey and Denton (1988) increased the number to �ve by replacing

probability of interaction with exposure, centralisation and clustering. They

de�ne these notions as follows.

• Evenness is de�ned as the �di�erential distribution of two social

groups among areal units in a city�;

• Exposure is the �degree of potential contact, or possibility of in-

teraction, between minority and majority group members within

geographic areas of the city�;
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• Concentration is the �relative amount of physical space occupied

by a minority group in the urban environment�;

• Centralisation is the the �degree to which a group is spatially

located near the centre�;

• Clustering is the �extent to which areal units/minority adjoin one

another�.

For example, the dissimilarity index and the Gini coe�cient are measures

of evenness, while the interaction index is a measure of exposure. The �ve

dimensions are illustrated in �gure I.1. Depending on how the classes and

areal unit are de�ned, the di�erent dimensions may overlap. Indeed, in the

bottom right image representing clustering, there is an obvious separation of

the distribution and space in four di�erent classes and neighbourhoods that

will lead to mutually exclusive areal units, hence to maximum unevenness.

Centralisation Concentration Clustering

Unevenness Low exposure

No segregation

Figure I.1. The �ve dimensions of segregation. As-
sume that the brighter a pixel is, the higher the average in-
come is in its corresponding area. The image in the middle
represents no segregation. On the left, the distribution is un-
even: rich and poor neighbourhoods are mutually exclusive.
On the right, the rich and the poor are not exposed to one
another since they are separated by the middle class. On the
bottom left, the richest occupy the centre. On the bottom
middle, they are concentrated around the bottom right cor-
ner and occupy a low amount of space. On the bottom right,
the population is clustered in four di�erent classes.

In 2004, Reardon and O'Sullivan (2004) argued that only exposure and

evenness indices met satisfactorily the criteria they had identi�ed to evaluate

the quality of segregation measures. Indeed, they ask of a measure to have
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�scale interpretability�, which in their case means reaching 0 when group pro-

portions are uniform and reaching the maximum value only when there is

no proximity between any two members of each group. They further require

independence from arbitrary boundaries, invariance to local population den-

sity and to total population composition (meaning that only the position in

space should matter). In addition, the measure should obey three �algebraic

property� which they call �location equivalence� (similar to class equivalence

in mathematics), �additive spatial decomposability� and �additive grouping

decomposability� (similar to σ-additivity in mathematics). They �nally de-

�ne some rules tackling transfers and exchanges of individuals between areal

units. We will see in the conclusions and in appendix B how our multifractal

measures fare against these rules.

The measures referenced above are only statistically meaningful if the

sample size is large enough in each areal unit. This means that the size of

the units may become excessive to relate to the perception of proximity at

human scale. It also means that the shape of the unit and the shape of

its arti�cial boundary may have a large impact on the results. Wong (1993)

emphasizes this issue and proposes to incorporate the length of the boundary

and shape of the areal units as a weight into the de�nition of the dissimilarity

index. Ideally, we would want a �continuous� map of segregation where each

location is at the centre of its own unit. As a matter of fact, (Reardon et al.,

2006) call for new economic segregation measures that take into account the

role of space in a more ambitious way, while being insensitive to the choice

of category thresholds, boundary de�nitions1, and shape-preserving changes

in the variable distribution.

They summarise existing measures by categorising them into three dif-

ferent groups of measures. These measures are relatively di�cult to de�ne

and put in practice, we therefore only mention them here and postpone a

more detailed description of them until chapter V. The �rst group is made of

categorical segregation measures. An extensive compilation of such measures

has been established by Apparicio et al. (2014). These may be appropriate

for racial segregation, but they are not suitable for economic segregation,

since they only allow either two or a small number of categories that do not

represent well economic measures such as income. A second group is made of

ordinal variation-ratio segregation measures, forefronted by the Neighbour-

hood Sorting Index (NSI) (Jargowsky, 1996; Jargowsky and Kim, 2005) and

the Centile Gap Index (CGI) (Watson, 2006). They compare the ratio of the

between-neighbourhood variation to the total population variation for some

1This particular issue is usually referred to as the Modi�able Areal Unit Problem or
MAUP.
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de�nitions of social variation (Berry and Mielke, 1992; Kvalseth, 1995a,b).

Their main limit is that they do not obey well the three criteria of category,

boundary and shape-preserving change invariance. Finally, the third group

is made of spatial measures, including those based on the autocorrelation

geographic principle (Chakravorty, 1996; Dawkins, 2007) and some custom

ones proposed by the authors.

Before we explore in more details the shortcomings of these segregation

measures, as well as the shortcomings of the inequality measures from the

previous section, we summarize some of the well establish results we expect

to recover, or at least not contradict, with our own methodology, and take

note of some recent methodological ideas that can prove useful while de�ning

our own measures.

1.3. Inequality in urban systems. Some archetypal results include

the observation that there is an opposition between American and Euro-

pean cities with a pauperisation of the centre for the former that is not

observed for the latter (Brueckner et al., 1999; Glaeser et al., 2008). This

pauperisation of the centre may further generate sprawl that is considered

largely detrimental for the environment and health (due in particular to the

increase use of driving) and is a source of segregation as new homogeneous

exclusively residential zones are created (Squires, 2002, and in particular,

Jargowsky (2002)). There is additionally a common gentri�cation process

in most developed cities, potentially creating heterogeneity and uncontrolled

displacement of some social classes (Atkinson and Bridge, 2005). High seg-

regation is associated with health problems for the lower classes (Lobmayer

and G., 2002), and ghettoisation self-perpetuating processes that can have

social and economic negative repercussions (Massey and Denton, 1993), in

particular urban decay (Jacobs, 1961; Andersen, 2002).

In contrast, the Japanese city is presented as a model of low residential

segregation by Fujita and Hill (1997). They have identi�ed in particular a

decreasing trend in segregation during modern times that diverges distinctly

from the other highly developed societies. Those results were later miti-

gated by Fielding (2004), who criticises the methodology and in particular

the in�uence that the spatial scales and arti�cial boundary de�nitions used

may have had on the low segregation scores. Nonetheless, Fielding points
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out seven socio-economic reasons2 that would explain why segregation is ex-

pected to be much lower for Japanese cities compared to American cities.

We will test this hypothesis in chapter IV with our methodology.

Due to the lack of ordinal segregation measures until the mid nineties

(Jargowsky, 1996), and due to the rapidly decreasing e�ciency of categor-

ical segregation measures when the number of categories is greater than

two (Reardon et al., 2006), most of the segregation analysis has historically

revolved around racial segregation, and particularly black and white seg-

regation in American cities (Taeuber and Taeuber, 1965; Lieberson, 1981;

Reardon et al., 2009). Our methodology is however based around ordinal

variables. Even though they are rarer, some noteworthy contributions do

exist in this direction such as the studies by Watson (2006, 2009) that evi-

dence a correlation between a rise in income a-spatial inequality and a rise

in residential segregation.

In terms of a-spatial inequality indices, the greatest successes have been

achieved by Piketty (2014) and Atkinson (2015). Their work is entirely policy

oriented. More precisely, it is primarily aimed at governmental policy-making

in contrast to local planning. This is well in line with the aim of a-spatial

indices that provide only one global number for a given distribution. In con-

trast, an interesting comparison of the UK Census results in 2001 and 2011

is proposed by Lloyd (2016). In this study, most of the results are focused on

comparing between urban and rural areas and between the di�erent cardinal

directions at a nation wide scale, and little is said of intra-urban inequalities.

Despite that, the variogram methodology used is particularly relevant for our

study. In fact, Lloyds attempts at linking inequality and space in a way that

varies from the segregation approach. He plots the Census variables (such as

ethnicity, employment or housing tenure) into variograms that relate the dif-

ferences in variable proportion between pairs of locations with the distance

between said locations. The main di�erence with other indices consists in

plotting the full curve of variations versus distance, and interpreting the dif-

ferences between di�erent dates or location types across an entire curve in

opposition to only one global number.

Finally, in a noteworthy contribution, Louf and Barthelemy (2016) in-

troduce some important methodological elements. They applied a custom

exposure measurement method to the 2014 American Community Survey

and found that the population could be sorted in 3 main income classes, with

higher-income households being proportionally more present in larger cities

2The fact that transportation costs are covered by the employer; the higher renewal rate
of the built housing stock; the lesser social status value attributed to housing; the reliance
on small scale planning in contrast to large scale planning; the lack of gentri�cation; the
low level of ethnic diversity; and the narrower global income range in Japan.
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and higher density zones. They use these results to refute the assumption

of increased social polarisation and explain some of the di�erences between

American and European cities. A key element was to measure the deviation

from the fully random �null� model, rather than taking the index directly.

Another signi�cant methodological aspect was to use density instead of dis-

tance to de�ne neighbourhoods. It allows in particular to take into account

the polycentricity of modern cities beyond the historical boundaries (Louf

and Barthelemy, 2013).

Indeed, similarly to Fielding (2004) mentioned earlier, they point out the

negative impact that arti�cially de�ned boundaries can have on the quality

of the results, and try to tackle this problem with this improved methodol-

ogy. Many more issues arise in the way that segregation and inequality is

measured currently. We now describe these issues and advocate for the need

of fresh measuring tools that approach the problem from a new angle.

1.4. Shortcomings of the classical indicators. As identi�ed above,

one of the �rst criticism of current inequality measures is their reliance on

household income only, instead of actual individual economic welfare (Dal-

ton, 1920; Sen, 1997). The solution supported by these authors is to intro-

duce utility functions to relate income and welfare. We believe however that

other criteria can account for economic welfare in addition to income. Indeed,

home ownership is both a proxy of wealth and a clear sign of inequality when

it is inaccessible for a part of the population. Similarly, energy consumption

could be used to translate the intensity of activity of the professional sector

or could be linked to the standard of living at the household level. We could

also think of accessibility, air quality or diversity of nearby amenities as in-

dicators of life quality at least partially uncorrelated to income. After taking

technical feasibility into account, we chose a focus on real estate, income, en-

ergy consumption and accessibility to diverse amenities to build inequality

measures.

The link between real estate and income inequality is rarely exploited

aside from a few noteworthy works in architecture (Martin et al., 2015) and

economy (Abeysinghe and Hao, 2014; Farzanegan et al., 2017). However,

these references do not take into account the speci�cities of self-organised

complex systems. The seminal review by McDonald and McMillen (2011)

summarizes the traditional science of urban economics and real estate. Clas-

sic location models in Economy often adopt a utilitarian perspective where

social interactions are neglected in favour of reducing transportation costs3.

These theories also classically assume that there is a convergence towards an

3More comprehensive models are however presented by Tannier et al. (2016).
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equilibrium, however Pumain (2017) and Batty (2017) argue that cities are

in reality in a far from equilibrium state. In the appendix, we propose an

urban model that can compare the evolution of the income distribution and

the housing market under di�erent urban development scenarios. We use

an agent-based modelling approach to reintroduce both the social aspects of

choosing an accommodation and the complex self-organising nature of cities.

Another issue pointed out above was the loss of spatial information

with classical measures, especially since they provide only one global value.

Chodrow (2017) criticizes the fact that a single scale is generally used for

an entire region. He derives from information theory a creative multiscale

approach to de�ne new segregation measures. His approach being aimed

at analysing racial segregation, it is quite e�cient at computing categorical

variables, but not ordinal variables. In addition, Louf and Barthelemy (2016)

argue that using arbitrarily de�ned administrative boundaries incurs a loss

of the relevant spatial information. Multifractal theory answers the spatial

issues in two ways. First, it characterizes the studied variable through mul-

tiple scales, similarly to Chodrow (2017), including the �nest, and therefore

keeps track of the spatial environment better than large-scale administrative

boundaries. Second, it provides a full curve of values that contains spatial

information rather than one global value. We show in particular in chap-

ter V that despite improving the situation, the new measures proposed by

(Reardon et al., 2006) are still very sensitive to the choice of boundary de�-

nitions. We also demonstrate in that chapter that the multifractal approach

does o�er a better solution, while still performing adequately on the criteria

of invariance to order-preserving changes in the distribution also supported

by Reardon et al. (2006).

Finally, Louf and Barthelemy (2016) alert on the possible mistakes in-

curred by reliance on administrative boundary. This is particularly visible

in the top left image of �gure I.1. Indeed, if we were to divide the space

in four squared neighbourhoods, then there would be minimal segregation,

since all four neighbourhoods would be identical. In contrast, if we were to

divide the space in sixteen squared neighbourhoods, then all neighbourhoods

would either only contain rich individuals or only contain poor individuals.

This would be a case of maximum segregation.

Let us now review and justify the use of this promising methodology in

the urban context.

2. A new tool: Multifractals

Fractality is a notion originally invented to study irregular sets in ge-

ometry for which classical Euclidean tools failed (Mandelbrot, 1982). Its
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concept is to extend the usual notion of dimension to sets whose topology

at an in�nitesimally small scale is better described by a higher (fractional)

dimension than their standard Euclidean dimension. When they exist, the

self-similarity properties of the set are heavily used to �nd this new dimen-

sion. By extension, the notion became somewhat of a synonym for self-

similarity and more generally for scaling in physical complex systems. As

Gomez-Lievano et al. (2016) put it, �scaling laws are important in science

because they constrain the development of new theories: any theory that

attempts to explain a phenomenon should be compatible with the empirical

scaling�.

Fractality is also called monofractality when it is necessary to di�eren-

tiate it from multifractality. The idea behind multifractality is to extend

the general notion of fractality to mathematical measures (Frisch and Parisi,

1983), which can be broadly understood as �layers� with some arithmetic

properties on top of the physical space. A measure is considered multifractal

when it possesses several local scaling exponents instead of a unique global

one. The set formed by all points where the exponent is the same is in turn a

fractal set (in the geometrical sense), whose dimension can be studied. Pro-

vided that these various scaling conditions are veri�ed, multifractality can be

a remarkable tool to study and compare spatial inhomogeneities for di�erent

systems. Luckily, as we will see below, multifractality is quite common in

complex systems resulting from self-organization with random processes.

Cities are a perfect example of a complex system resulting from self-

organization with random processes (Portugali, 2011; Portugali et al., 2012).

Since we intend to use multifractality as a tool for analysing urban inequality,

it is necessary to explain why it is especially well suited to study urban char-

acteristics, and in particular those that can be related to inequality. This

section will �rst show why, in view of the literature, scaling is frequently

found in urban science, and why the study of its characteristics has sprawled

in the last 20 years. It will then present case studies that encourage adding

the more �exible multifractal formalism to the classical monoscaling analy-

ses, with a focus on those that relate to the inequality factors identi�ed in

the previous section. The case studies will be separated in two groups: those

directly applied to urban systems, and those from the broader multifractal

�eld that could �nd useful applications to cities. Lastly, we will brie�y review

the current theoretical and technical knowledge about multifractals.

2.1. Monofractality in urban environments: scaling's ubiquity?

The existence of fractality in cities, in the sense of self-similarity and pres-

ence of scaling power laws, has been identi�ed since the 1980s (Batty and
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Longley, 1986, 1994; Frankhauser, 1994). These �ndings have since oper-

ated a paradigm shift in the study of cities and launched an exponential

craze for �nding power laws in urban parameters. The milestones of this

new approach include the Science paper by Batty (2008b), followed by two

pioneering books de�ning a new science of cities (Batty, 2005, 2013), and

some proposed, although contested, empirical proofs of the concept's uni-

versality in urban development (Bettencourt et al., 2007; Bettencourt and

Lobo, 2016; Youn et al., 2016).

Pumain (2004), in�uenced by the work of West (1997) on scaling in bi-

ological systems in general and by the work of Banavar et al. (1999) on

e�ciency in transportation networks, identi�es the potential role of trans-

portation means, and more precisely their speed variations through the ages,

in creating spatial nonlinearities in urban human activity. This idea has since

been re�ned by Batty (2008b) who formulates the origin of fractality as a

result of cities growing from bottom up processes resulting from an intense

competition for space. In this approach, the scaling emerges from the con-

straints imposed on the underlying network inducing a varying growth of the

number of links compared to the number of nodes. It was notably supported

by the later work of Arbesman et al. (2009); Pan et al. (2013); Bettencourt

(2013) and Yakubo et al. (2014). Another hypothesis proposed by Salingaros

and West (1999) and Frankhauser (2004) is the combination of bottom-up

processes (both from individual actions and collective actions) with top-down

planning. In contrast, Schweitzer and Steinbrink (2002) assume that fractal

patterns emerge from contradictory decisions at individual level only, such

as a con�ict between minimizing the distance both to the centre of the city

and to the countryside.

More recently, Gomez-Lievano et al. (2016) propose an explanation for

the existence of power laws in rank-size distribution of cities, based on a

combination of two factors. The �rst one is that the more complex a phe-

nomenon is, the more complementary factors must be simultaneously present

for it to happen. The second one is that Darwinian selection processes trans-

form the distribution into a logarithmic distribution exacerbating extreme

values. Applied to cities, this would mean that the selection process caused

by cities' attractivity induces a logarithmic distribution of the number of

factors depending on population size, which is the very de�nition of a power

law.

A lot of the interest in urban scaling laws comes from their potential

applications to economic e�ciency. West (1997, 2006, 2017) has associated

sublinearity (i.e. a scaling exponent smaller than one) in quantities account-

ing for infrastructure as an identi�er of scale economies, and superlinearity
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(i.e. a scaling exponent greater than one) as a condition for the creation of

wealth and innovation (and as a potential risk of crises). In particular, Bet-

tencourt et al. (2007) used these ideas to show the necessity of exponential

innovation and growth to avoid the collapse of an urban economy. How-

ever, the applicability of this approach to cities was criticized by Pumain

(2012), who argues that the necessary ergodicity assumption is not met by

the evolutionary processes generating cities. Nonetheless, the study of ur-

ban scaling laws has proved fruitful over time, with applications for example

in transport network e�ciency (Derrible and Kennedy, 2010a,b; Louf et al.,

2014; Louf and Barthelemy, 2015) and in accessibility optimisation for ur-

ban planning (Tannier et al., 2012). Fractal methods have also been used to

characterise urban morphology (e.g. Batty and Longley, 1986; Fotheringham

et al., 1989; Frankhauser, 1994) and in particular to de�ne the boundaries of

cities (Longley and Batty, 1989; Tannier et al., 2011; Tannier and Thomas,

2013), which, as we will now see, turns out to be an important stake for

asserting the validity of scaling laws in cities.

Indeed, despite its great potential, limits to urban fractality have been

increasingly pointed out in recent years. Thomas et al. (2012) have shown

that the scaling may be di�erent for the whole city than for its neighbour-

hoods. Similarly, Arcaute et al. (2015) and Cottineau et al. (2017) have

evidenced that varying the often arbitrary de�nition of city boundaries can

induce large variations of the value of fractal exponents calculated inside

the city. In particular, Arcaute et al. (2015), propose a systematic method,

further developed by Masucci et al. (2015), to de�ne the �natural� bound-

aries of cities in an attempt to solve this particular issue. Arcaute et al.

(2016) also propose a percolation clustering approach for the same purpose.

These authors point out that the formalism used to measure scaling laws

is not rigorous enough (see also Leitão et al., 2016). Harsher criticism is

thrown by Louf and Barthelemy (2014), who denounce wrong fractal esti-

mates based on inadequate estimations and a general lack of understanding

of the underlying fractal mechanisms. They alert on possible �unforeseen,

disastrous consequences� that could stem from using inadequately obtained

fractal results for policy making.

Even though the universality of the conclusions that can be drawn from

empirical fractal analysis is discussed, and as much criticism as some par-

ticular technical implementations receive, there is a clear consensus on the

factual existence of strong underlying scaling laws in urban systems. Part of

the errors pointed out by (Louf and Barthelemy, 2014) could be explained by

the lack of subtlety of the monofractal model in the sense that it forces to �t

a single scaling exponent over an entire dataset. Because of the considerable
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randomness in social processes, it appears more suitable to use the more so-

phisticated multifractal model that allows �tting multiple exponents. In ad-

dition, contrary to the monofractal dimension that only provides one global

a-spatial parameter, the multifractal approach retains the spatial nature of

the variable (in addition to still providing a range of global parameters). In

fact, we have pointed out in the previous section that this characteristic was

identi�ed by Reardon et al. (2006) as being especially desirable and usually

insu�ciently conveyed by classical segregation measures.

2.2. Multifractality in urban environments: a new paradigm.

Roughly speaking, when a space possesses a characteristic that is not a

power law, but instead a collection of local power laws with di�erent scaling

exponents, then this characteristic is called a multifractal. To be more pre-

cise, it is required that said characteristic can be transformed into a proper

mathematical measure, i.e. a function that associates each sub-space with a

non-negative number so that the measure of a countable union of sub-spaces

is the sum of the measure for each sub-space4. It has already been proved

that many urban measures are indeed multifractal. The work by Hu et al.

(2012, 2013) is particularly relevant, since it deals with land prices, a proxy

of wealth. Two di�erent multifractal methods are tested over the land price

distribution of the Chinese city of Wuhan. The �rst article introduces the

idea of predictive value with a temporal analysis, although the narrow range

of dates considered (only three close years: 2001, 2004 and 2007) limits the

strength of its �ndings. The second one is aimed at urban planning with

insights on measuring how much of the price distribution can be explained

by the geographical background. Those two papers are positive arguments

to hypothesize the multifractality of land prices in cities.

Two articles, one by Ariza-Villaverde et al. (2013) and one by Murcio

et al. (2015), report multifractality for street network intersection densities

in Cordoba and London respectively. The �rst one concludes by stating

the insu�ciency of monofractals to describe street networks, that should be

described instead using multifractals. The second one is complemented by

a modelisation of the loss of multifractality induced by constrained bound-

aries on the development of street networks represented by a DLA model.

They invite to build measures on street networks, and more widely on other

transportation networks, to study the possible multifractality of accessibility.

An interesting discovery in these two articles is an apparent loss of mul-

tifractality, or more precisely a convergence towards monofractality, through

4In practice, this transformation is often left implicit. For example, �counting the number
of intersections in a network� is an implicit way of de�ning the measure µ so that µ({x}) =
1 if x is an intersection.
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time. Indeed, in the article by Murcio et al. (2015), it is a clear consequence

of the shrinkage of the multifractal spectra representing street intersections

densities in London at 9 time intervals between 1786 and 2010. In the case

of Ariza-Villaverde et al. (2013), it is not reported as a result, but implied by

the relative width of the spectra corresponding to the historic Roman-Arab-

Christian developed parts of Cordoba compared to the parts redeveloped in

the 1950s. This temporal loss of multifractality can be related to the work by

Nie et al. (2015), which reports similar results for a measure corresponding

to the fraction of urban impervious surface in each pixel of landsat images of

Shanghai between 1997 and 2010. In fact, full multifractality was found only

in 1997, while mulitfractality was only found along the W-E axis in 2002,

and no multifractality was found in 2010. This trend of urban measures con-

verging to a monofractal through time structure will be largely con�rmed by

the results of this thesis.

As stated previously, self-organization under competition for space re-

sults in strong scaling characteristics. It is therefore not surprising to also

�nd multifractality in city form and population growth processes (Chen,

2008; Chen and Wang, 2013), the dynamics of city-size and settlement dis-

tributions (Haag, 1994; Chen and Zhou, 2004; Chen, 2014), and other more

loosely related topics such as agricultural land use (Wang et al., 2010). All

these papers, although not directly related to potential inequality parame-

ters, prove the frequent multifractal nature of measures arising from urban

development.

Aside from a noteworthy attempt at making multifractal analysis prac-

tical by Chen (2016), whose purpose was to �nd a method to distinguish

between urban and rural areas, the common shortcomings of all those arti-

cles, however, are the emphasis on description over practical interpretation.

In contrast, the very recent work by Yamu and Frankhauser (2015); Yamu

and van Nes (2017), and Frankhauser et al. (2018) attempts at reducing

urban sprawl through multifractal urban simulation with a home-made soft-

ware called Fractalopolis. The software is meant to construct new optimized

urban development by iterating a multifractal pattern taking into account a

number of accessibility, environmental and social rules. The goal is to �nd

the most e�cient way to limit sprawl while maintaining the life quality of

the citizens. The second article in particular is framed within the objectives

of the UN 2015 Paris agreements.

This thesis aims at operating a similar shift from description towards

optimizing urban development, while adding a necessary interpretative in-

termediary step. Although mainly focused on relating multifractality and

inequality, the interpretation framework can contribute to a better general
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understanding of the multifractal spectrum. It should be, at least partly,

transferable to other topics arising in the �eld of urban multifractals. An

opening towards a more planning oriented approach is proposed in appendix

A where an agent-based model to test the impact of urban development sce-

narios on inequality is proposed. This work should encourage the inclusion

of inequality rules to the accessibility, environmental and social rules taken

into account for example by Yamu and Frankhauser (2015) in their approach.

2.3. Interesting ideas from the broader multifractal �eld. Out-

side of the urban context, some applications of multifractality have already

�ourished. In particular, some studies on the analysis of retinal vessels

(Mainster, 1990; Stosic and Stosic, 2006; Talu, 2013), are an interesting

source of inspiration, since the network structure of blood vessels is reminis-

cent of the network structure of some street patterns. It shares in particular

the planar property and tree-like aspect. However, we �nd the method used

in these papers, which consists in analysing the network as a black and white

�photography�, limited in comparison to the rich literature that has been de-

veloped on applying multifractal analysis directly to the network topological

structure (e.g. Wang et al., 2012; Liu et al., 2015; Song et al., 2015; Rendon

de la Torre et al., 2017).

Another fruitful application domain is o�ered by �nancial markets. Frac-

tal structures have been studied in �nance and real estate since the 1990s

(e.g. Mandelbrot, 1997; Kaizoji, 2003; Ohnishi et al., 2012), while multi-

fractal structures have been more and more evidenced since the early 2000s

(notably by Mandelbrot, 1999; Muzy et al., 2000; Bacry et al., 2001; Di Mat-

teo et al., 2003; Di Matteo, 2007; Barunik et al., 2012; Morales et al., 2012,

2013; Buonocore et al., 2016, 2017; Jiang et al., 2018). The techniques used

are speci�cally designed for time-series, which are di�cult to obtain with

a su�ciently wide range when associated with their geographical data for

urban land and house prices. However, since the spatial distribution of real

estate is, in a sense, a projection of its immaterial market, these results are

a strong encouragement to investigate if we can �nd multifractal properties

in real estate spatial patterns.

Finally, an article by Ihlen and Vereijken (2013) identi�es multifractal

structures in human behaviour. The focus is on performance to motor con-

trol tests, with hypothesised applications to a more general understanding

of underlying cognitive processes in human behaviour. The direction fol-

lowed by these �ndings is still in a preliminary state, but already show the

potentially intrinsic nature of multifractality in complex systems relying on

the behaviour of humans. Multifractal analysis is a relatively new �eld with

promising and fast developing applications. We intend to add the study of
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spatial inequality as one of these new and meaningful applications. To this

aim, we now review the theoretical and methodological multifractal knowl-

edge currently available.

2.4. Multifractal theoretical foundations and its methodologies.

From an historical perspective, the idea of extending fractals to measures

was �rst hinted by Mandelbrot (1982). The actual theorization and nam-

ing of the multifractal notion started from the mid eighties for the spe-

ci�c purpose of studying turbulence signals (Frisch and Parisi, 1983; Benzi

et al., 1984; Chhabra et al., 1989; Meneveau and Sreenivasan, 1989). In the

nineties, Mandelbrot et al. (1990); Evertsz and Mandelbrot (1992); Brown

et al. (1992); Olsen (1995); Riedi (1995) and Pesin (1997) developed strong

mathematical multifractal theories, restoring in a sense the original geomet-

rical intent of the notion. At this day, Falconer (2003) can be considered

the seminal book detailing the mathematical notion of fractality, with one

chapter in particular devoted to multifractals.

The Nature article by Stanley and Meakin (1988) popularized multi-

fractality and helped giving incentive to develop applications outside of the

turbulence �eld. From that point on, the multifractal methodology has crys-

tallised around �ve main groups of methods that optimise the computations

depending on the type of data studied (griddable data such as images, time-

series and networks).

The moment method and its variants were the �rst ones to be introduced,

and are studied in almost all of the historical papers cited above. The mo-

ment method can still be considered the reference method in the �eld because

of the simplicity of its implementation, adaptability to many di�erent types

of data, as well as the existence of many variants to enhance its accuracy

and computational e�ciency (Atmanspacher et al., 1989; Chhabra et al.,

1989; Chhabra and Sreenivasan, 1991; Cheng, 1999a,b; Salat et al., 2017).

Its main use is for griddable data, historically images. As such, it can be

easily adapted to Geographical Information Systems (GIS) by concentrating

the measure on the centroids of any relevant geographical sub-division, and

gridding the resulting cloud of points. The general mathematical formalisa-

tion of the method is canonically detailed by Falconer (2003).

The histogram method (Arneodo et al., 1987; Meneveau and Sreenivasan,

1989; Evertsz and Mandelbrot, 1992) is another method geared towards grid-

ded data. Compared to the moment method, it improves signi�catively the

run time, particularly for spaces of a dimension greater than 2, and is less

reliant on error generating techniques. However, it only works for data of-

fering a wide variety of scaling ranges, and is constructionally inaccurate.
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Because of these drawbacks, it is only rarely used in this thesis, and only as

an alternative method to con�rm the results from other methods.

Multifractal detrended �uctuation analysis (MDFA) (Kantelhardt et al.,

2002; Gu and Zhou, 2006; Kantelhardt, 2012) is a generalization of detrended

�uctuation analysis (DFA), which was originally created to detect long-range

monofractal correlations in DNA nucleotide sequences (Peng et al., 1994;

Ossadnik et al., 1994). It is used to remove artifacts created by nonstation-

arities in one-dimensional time series and otherwise uses the core idea of the

moment method as its mechanics. This �detrending� e�ect is particularly

useful to remove undesirable traits such as in�ation in land prices, and could

be advantageous for studying inequality should long and detailed spatial

time-series become available. The simplicity of its implementation allows to

extend the method to higher dimensions to recover the spatial interpretation

we are seeking, at the cost of a sharp decrease in performance.

In order to study intrinsically continuous phenomena (originally time-

series), some wavelets based methods have been created. A �rst method

called Wavelet transform modulus maxima (WTMM) was developed succes-

sively by Holschneider (1988); Muzy et al. (1991); Bacry et al. (1993) and

Arneodo et al. (2002). A second method called Wavelet leaders was devel-

oped later by Lashermes et al. (2005); Ja�ard et al. (2007) and Wendt et al.

(2009). Although there is some dispute between these two groups of scien-

tists about the respective merits of each method, they both accomplish the

same result which is replacing the square boxes of gridded data by wavelets

that �glide� smoothly along the data. These methods are better suited for

a generalization to higher dimensions than MDFA, are highly customizable,

and are able to extend, in a sense, the multifractal formalism to noncon-

servative and continuous phenomena. Their main drawback is the bursting

complexity of their implementation due to the continuous framework that

contrasts with the discretized framework of the previous methods.

Since data relating to real estate, income, energy and land use is planar,

we naturally focus on the moment-based group of methods for our analyses.

The histogram and MDFA methods are used as controls to ensure that the

results are not artefacts created by our particular methodology. In contrast,

the wavelets-based methods are not well adapted for our datasets and will

not be used. We now critically justify these choices in the next two chapters.
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CHAPTER II

Formal Multifractal Theory and its Methods

We �rst introduce monofractality and present a formal de�nition of mul-

tifractality. We then give all the necessary details to put in practice the

main historical methodologies. We justify from their respective advantages

and disadvantages which methods we choose to apply and to what extent.

This chapter should allow anyone to implement the di�erent methods, how-

ever familiarity with topology and measure theory may be necessary to fully

understand the complexity of the notions. Chapter III will reintroduce mul-

tifractality using a more intuitive approach and should be su�cient to un-

derstand the application of the methodology to studying inequality. This

chapter is largely adapted from Salat et al. (2017).

1. Monofractals: Characterizing space

The notion of monofratality, that we will simply call fractality, is closely

related to the notions of dimension and topological continuity. The dimen-

sion of a vector space can be de�ned as the minimal number of vectors

necessary to identify all the points in the space from an origin. We can then

easily extend this notion to homeomorphic deformations of vector spaces

a.k.a. manifolds. It is tempting to extend further the notion to sets that

can intuitively be decomposed or rearranged into manifolds. Consider the

following example. A �nite segment is of dimension 1 (�gure II.1(a)). A

countable number of disjoint segments is also of dimension 1 since they can

be concatenated into one bigger segment or one line (�gure II.1(b)). Now,

consider two lines. It is possible to divide each line into segments of size

one, then place these segments next to each other alternatively to create one

new line (�gure II.1(c)). For an in�nite countable number of lines, the same

idea can be applied, although it requires more work. Indeed, we can use the

known existence of an in�nite number of prime numbers to associate each

line with a prime number, then divide it into segments of size 1, and �nally

attach each segment on a new line at a place corresponding to a power of

that prime number (�gure II.1(d)). Then, all segments of all lines are iden-

ti�ed on the new line, and form one continuous line after �cutting� the holes

between two consecutive powers of prime numbers.

35
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Figure II.1. One-dimensional spaces. (a) A segment is
of dimension 1. (b) Two segments can be transformed into
one. (c) Two in�nite lines can be transformed into one. (d) A
countable number of lines can still be transformed into one.
(e) A non-countable in�nite number of lines corresponding to
the dichotomic division of [0,1] (including the boundaries).

Consider now a non-countable number of lines. For example a line as-

sociated to each real number contained in [0, 1]. It is no longer possible

to transform this set into one line, but since [0, 1] is �continuous�, we can

use two vectors instead to identify all the points in the set. The dimension

has therefore jumped to two. However, there are sets that lie somewhere

in-between the two previous examples. Consider for example the subset of

the previous set made only of the lines associated to a point corresponding

to the dichotomic dividing of [0, 1] (�gure II.1(e)). This set is quite complex:

it is transversally totally disconnected, which prevents us from de�ning a

proper second vector, but shares a density property with the full set: ev-

ery transversal segment of type [ n
2k
, n+1

2k
] contains at least one point of both

sets, no matter how large k is. To characterise the dimension of these sets,

Mandelbrot (1982) introduced the concept of fractality, coined from the latin
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word �fractus�, which means �broken�, as in �too irregular to �t into classical

geometry�.

The usual dimension associated to fractals is the Hausdor� dimension.

It uses a one-dimensional �benchmark� elevated to a power s to evaluate the

�volume� of a set D. More precisely, consider a covering of the set D at an

in�nitesimal scale, and a function that sums the diameters raised to a power

s of all its elements. As long as s is lower than the dimension of the space

D, this function will return +∞, and as soon as s becomes greater than

the dimension of the space D, the function will return 0. The Hausdor�

dimension is then de�ned as the s value for which the function transitions

from +∞ to 0. To understand intuitively this mechanic, consider a square.

Lines (power s = 1) are of negligible size compared to it, so an in�nite

number of them is needed to cover the square. In contrast, the square is

negligible compared to a cube (power s = 3), so, only an in�nitesimally

small portion of the cube is needed to cover it, or approximately 0 cube.

Finally, if we use balls (power s = 2) to cover the square, then a �nite and

positive number of balls is enough to cover the square. We deduce that the

dimension of the square is 2. Formally, if A is a metric space, s ∈ R+, and

D ⊂ A, we de�ne

Hsr(D) := inf

{∑
i∈I

(
diam(Ai)

2

)s
, {Ai}i∈I ⊂ A,

with D ⊂ ∪i∈IAi, and sup
i∈I

diam(Ai) ≤ r
}
,

(7)

and

(8) Hs(D) = sup
r>0

(Hsr(D)) .

Then, the Hausdor� dimension is de�ned as

dimHD := inf {s ≥ 0, Hs(D) = 0}

= sup {s ≥ 0, Hs(D) = +∞} .
(9)

The Hausdor� dimension is particularly convenient from a mathematical

point of view, as it is de�ned for any set D. In practice, however, it is

di�cult to compute, and is usually replaced by the box-counting dimension.

Formally, let Nδ(D) be the smallest number of balls of diameter at most δ

necessary to cover D. Then, the box-counting dimension is de�ned as

(10) dimBD := lim
δ→0
− log(Nδ(D))

log(δ)
.

Note that the limit may not exist, in which case we may consider the lower

or upper limit instead.
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For most rigorously self-similar subsets encountered, the Hausdor� and

box-counting dimensions are in fact the same thing. Finding how much of

the set A is ��lled� by the fractal subset D is the same as �nding by how

much one needs to grow a sub-element of the �gure to �nd the whole �gure

again. This is done through the relation

(11) dimH = − log(number of copies)

log(scaling factor)
.

Because of this, self-similarity is often treated as a synonym of fractality in

the literature. By extension, the word �fractal� is also used for phenomena

described by homogeneous functions, i.e. functions f : D ⊂ Rn → R for

which there exists an α such that

(12) ∀λ ∈ R, x ∈ D, f(λx) = λαf(x).

An emblematic example of an homogeneous function is the famous power-

law (Ihlen and Vereijken, 2013), which is, in a sense, a representation of

scale-invariance within the space D.

On the other hand, any dense subset made of a countable number of

points is of dimension 0 for the Hausdor� dimension and of dimension equal

to its closure for the box-counting dimension. For example Q ∩ [0, 1] in R is

of dimension 0 for the Hausdor� dimension and of dimension 1 for the box-

counting dimension. Those de�nitions are therefore far from equivalent in

all generality. A more detailed discussion on what elements are desirable to

de�ne a suitable fractal dimension can be found in chapter 3 from Falconer

(2003).

An example of a fractal set is given in �gure II.2. The middle third

Cantor set is created from an initial segment of length 1, from which two

sub-segments of length one third are extracted. This process is then repeated

for each new segment, and so on. Since the resulting set is self-similar with

two new copies of itself each scaled at a ratio of 1/3, one would get from

equation (11) a Hausdor� dimension of log(2)/ log(3). Calculating directly

the Hausdor� dimension without using equation (11) is more involving than

one would expect even for such a simple set, hence the motivation to restrict

the notion of fractals to self-similar sets. The value log(2)/ log(3) represents

how much of the initial segment is still present in the Cantor set after an

in�nite number of iterations of the generating process.

To illustrate the universality of fractality, we can name other, more rarely

seen, de�nitions of fractal dimension: the correlation dimension for sets of

random points (Grassberger and Procaccia, 2004) and the packing dimen-

sion, a dual to the Hausdor� dimension (Tricot, 1982). Also, Barnsley (1988)

proposes a more abstract approach. Denote (X, d) a complete metric space.
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Figure II.2. Fractal middle third Cantor set. From an
initial segment of length 1, two sub-segments of length one
third are created, and so on for each new segment, generating
a self-similar fractal of dimension log(2)/ log(3).

He de�nes H(X) as the set of all non-empty compact subsets of X, and con-

siders the Hausdor� between elements of H(X). Recall that the Hausdor�

distance is de�ned as

(13) dH(A,B) = max

{
sup
a∈A

inf
b∈B

d(x, y), sup
b∈B

inf
a∈A

d(x, y)

}
.

From the observation that (H(X), dH) is a complete metric space, Barnsley

de�nes fractals as any subset of (H(X), dH). This is indeed quite a general

de�nition!

2. Multifractals: A theory of measures

While monofractals are mostly concerned with spaces, multifractals deal

with measures. Recall that a measure µ de�ned on a space A is a function

from the parts of A to R+, such that µ(∅) = 0, and such that if {Bi} is a
countable collection of pairwise disjoint sets in A, then µ (∪Bi) =

∑
µ(Ei).

A measure �assigns� a size to every subset of A. In practice, the data can be

directly a mathematical measure (e.g. a probability measure), or any value

distribution that can be transformed into a measure (e.g. a weighted set,

a fractal landscape, a time-series, for example, or even a function using the

WTMM method, see below). Even if the idea behind multifractals is also to

study the complexity and to reveal the scaling properties of a mathematical

object, it is somewhat distinct from monofractality. In particular, a measure

can be a multifractal even when its support is not a monofractal (Stanley

and Meakin, 1988). Let us consider a subset D ⊂ Rn on which are de�ned:

• a �fractal� measurement methodM;

• a �nite measure µ which we want to study.

Here,M can be any method providing a way to compute a monofractal di-

mension, such as those quoted in the previous section, as deemed appropriate

for the nature of the space D.
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A multifractal measure µ on D is characterized by a distribution such

that around any x ∈ D, the measure in a ball of radius r around x scales with

r, i.e. is proportional to rα for some α, provided r is small enough, and such

that the sets formed by all points around which the scaling exponent is the

same are monofractals forM. The fractal dimension of the set corresponding

to the local exponent α is denoted f(α).

Usually, the methodM is based on de�ning a self-similar local measure-

ment Mr, such as the number of boxes of radius r necessary to cover the

set for the box-counting dimension or the quantity Hsr from equation (7) in

the de�nition of the Hausdor� measure above. In that case, the multifrac-

tality of µ is equivalently characterized by a distribution such that the two

following fundamental scaling relations hold for r small enough:

1. µr(x) ∼ rαx for an αx around any x ∈ D, where µr(x) is the

measure in a ball of radius r around x;

2. Mr(α) ∼ r−f(α) for an f(α), where Mr(α) is the Mr-measure of

the set {x, αx = α}.

The multifractal spectrum is the curve f(α) against α. It gives, roughly

speaking, the �fractal dimension� f(α) of sets where the measure scales lo-

cally with the same exponent α. Multifractal analysis should be understood

as a method to characterize and compare measures de�ned on D when they

present enough scaling properties to alleviate the intrinsic complexity of

(D,µ).

An example is given in �gure II.3. The middle third Cantor set is made

multifractal by weighting every right sub-interval twice as much as every

left sub-interval, the total weight being normalized to 1 at each step. The

�rst three steps of this process are illustrated in the top �gure. Denote

by rk the size of the new sub-intervals at step k, and �x r0 = 1. Then,

at step k = 3, height sub-intervals are obtained, each of size r3 = (1/3)3

and carrying a weight that can be expressed as rα3 for some α. At this

macroscopic state, a broadM can be de�ned such thatMrk(α) denotes the

number of sub-intervals scaling with rk for an exponent α. This number can

be in turn expressed as r
−f(α)
k . For the particular α chosen in �gure II.3,

that is α = 1 − log(2)
3 log(3) , there are 3 = (1/33)−1/3 sub-intervals carrying this

measure, hence f(α) = 1/3. By repeating this calculation for each of the

four di�erent weights carried by the sub-intervals at step k = 3, the spectrum

corresponding to the bottom line of the bottom �gure is obtained.

Of course, at such a low level of iteration,M does not make much sense.

But as k grows to in�nity, the spectrum resulting from this M converges

to the actual spectrum one would obtain for the Hausdor� measure and

the proper totally disconnected weighted middle third Cantor set. The �rst
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Figure II.3. Multifractal middle third Cantor set. On
the top, the �rst three iterations of the generation of the
weighted multifractal Cantor set are represented, while on the
bottom the �rst 500 spectra corresponding to each successive
iteration forM are plotted.

500 iterations are illustrated in �gure II.3. It can be noted that the mul-

tifractality comes from the measure created by the weights, not from the

physical support itself which is only the monofractal Cantor set presented

in the previous section. In particular, the dimension of the support, here

log(2)/ log(3), can be found at the peak of the spectrum.

Falconer (2003) derives two formal de�nitions of multifractal spectrum:

the singularity spectrum, which can be considered the most canonical and

universal de�nition, and the coarse spectrum, which is more adequate in

practice.

Consider a topological space D and a �nite measure µ on D. The local

scaling exponent αx of µ at x ∈ D is given by the Hölder dimension dimloc,
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de�ned by

(14) dimloc µ(x) := lim
r→0

logµ (B(x, r))

log r
,

where B(x, r) is the ball of center x and radius r for the topology of D. The

singularity spectrum is then de�ned by the function

(15) fH(α) := dimH {x ∈ D, dimloc µ(x) = α} .

Note that the Hausdor� dimension is chosen forM instead of the box-

counting dimension since {x ∈ D, dimloc µ(x) = α} is often dense in the sup-
port of µ, in which case the box-counting would result in a constant spectrum

equal to the dimension of the support of µ.

Let us now consider an r-mesh grid covering D and count the number of

cells for which µ is roughly rα. De�ne,

(16) Nr(α) := # {r-mesh cubes C, µ(C) ≥ rα} ,

where # stands for �number of�. Provided the limits do exist, the coarse

spectrum is de�ned by the function

(17) fC(α) := lim
ε→0

lim
r→0

log+ (Nr(α+ ε)−Nr(α− ε))
− log r

,

where log+(·) stands for max(log(·), 0).

When fC does exist, then for all α,

(18) fH(α) ≤ fC(α),

and the equality holds true for self-similar measures (Proposition 17.9 from

Falconer (2003)). When fC does not exist, one can de�ne the lower and

upper spectra by

(19) f
C

(α) := lim
ε→0

lim inf
r→0

log+ (Nr(α+ ε)−Nr(α− ε))
− log r

,

and

(20) f̄C(α) := lim
ε→0

lim sup
r→0

log+ (Nr(α+ ε)−Nr(α− ε))
− log r

.

In that case, according to lemma 17.3 of Falconer (2003),

(21) fH(α) ≤ f
C

(α) ≤ f̄C(α).

An example is given in �gure II.4 for a binomial cascade of parameter

p = 0.6. The binomial cascade is a simpler version of the multifractal middle-

third Cantor set introduced above. Here, an original interval of size 1 is

divided into two sub-intervals of length 1/2 carrying a probability 0.6 for

the left one and 0.4 for the right one. This process is then iterated on each
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Figure II.4. Multifractal binomial cascade. On the
top, an original interval of size 1 is divided into two sub-
intervals of length 1/2 carrying a probability 0.6 for the left
one and 0.4 for the right one. On the bottom, the correspond-
ing multifractal spectrum.

resulting sub-intervals, and so on. The resulting singularity spectrum fH in

the bottom �gure is computed using the same trick as for the Cantor set and

is identical to the coarse spectrum fC = f
C

(α) = f̄C(α), since the measure is

self-similar. Here, the fractal dimension of the support is 1 since the iterative

process does not create �holes� in the initial segment.

3. Practical methods to compute the spectrum

3.1. Moment-based methods. Moment-based methods are particu-

larly e�ective for spatial data and image analysis. They rely on counting

the measure at di�erent levels of aggregation and include a multitude of

variants depending on the aggregation method chosen. They are meant to

give correct results for �static� singular measures, and may not be adapted

to continuous data and to nonconservative phenomena such as turbulent ve-

locity pro�les (see Kestener and Arneodo, 2003)). For those, wavelet based

techniques are better suited.

The most basic aggregation technique, box-counting, consists in applying

square grids of increasing resolutions to the data. If it suits the data better,

grids can be based on another unit shape, such as a diamond or a triangle.
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It may also be advantageous to consider ball neighbourhoods for calculation

simplicity when using GIS software. We describe here the technique assum-

ing that the grid is a mesh of unit r. Let us call D the domain it covers. We

want to describe a phenomenon that occurs N times in D. Denote

(22) pi := Ni/N =

∫
ithbox

dµ(x)

the probability that an instance of the phenomenon occurs in the ith box,

where µ is the corresponding probability measure. To interpret the two

scaling rules from the previous section, one simply needs

1. pi ∼ rαi ;

2. N(αi) ∼ ρ(αi)dαir
−f(αi),

where N(αi) is the number of times α falls in each interval [αi, αi + dαi],

and ρ is a density function used to take into account the dimension of D.

To e�ectively compute f , we generally use a trick called moment method

(Frisch and Parisi, 1983; Halsey et al., 1987; Atmanspacher et al., 1989). By

raising pi to its moment pqi for di�erent q, one can force only one value of

alpha for each q to make a signi�cant contribution to the total value of the

measure. Consider

Z(q) :=
∑
i

pqi ∼
∑
i

rαiq

∼
∫
α
N(α)rαq

∼
∫
ρ(α)rαq−f(α)dα,

(23)

then, for r small enough, the value of Z(q) is almost entirely given by the α

such that

(24) τ(q) := αq − f(α)

is minimal. Let us call α(q) this value of α. It is easy to show by a Legendre

transform that the minimality condition yields

(25) α(q) =
dτ(q)

dq
;

and

(26) f(α(q)) = α(q)q − τ(q),

so that computing τ(q) from Z(q) for each q between −∞ and +∞ is enough

to obtain the full spectrum.

It is not possible in practice to use an in�nite range of values for q, nor

is it desirable since the method becomes less and less accurate for extreme

values of q. To respect the constraints imposed by tangibility, it is necessary
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to select only the values of q such that f(α) > 0 and such that the general-

ized dimension Dq, de�ned by Dq := τ(q)/(q − 1), remains lower than the

euclidean dimension of the physical space that supports the phenomenon.

In practice, τ(q) is found directly as the slope in a log-log plot of
∑

i µ
q
i (r)

versus r obtained for di�erent grid sizes r, where µi(r) is the total measure

of cell i of size r. Since this slope is independent of the normalization of

the measure µ, µ does not need to be weighted as a probability measure.

Explicitly, τ(q) can be found directly as the limit

(27) τ(q) = lim
r→0

log(
∑

i µ
q
i (r))

log(r)
.

Compared to the mathematical de�nitions of the multifractal spectrum

(equations (15) and (20)), we have

(28) fH(α) ≤ f
C

(α) ≤ f̄C(α) ≤ fM (α),

where fM is the spectrum resulting from the moment method (corollary from

Proposition 17.2 from Falconer (2003)).

Both �nding τ(q) through linear �tting and applying numerical Legendre

transforms have a cost on the accuracy of the results. The possibility of av-

eraging over several samples can be extremely bene�cial. There are two ways

of doing this: averaging over a range of {fj(αi)}j computed independently

for di�erent samples j, or averaging �rst over a range of {Nj(αi)}j and then

deducing the corresponding f(αi) from the relation N(α) ∼ r−f(α)ρ(α)dα

on the averaged values. The �rst solution guarantees to obtain a �classic�

positive spectrum, but it can be unreliable if the �uctuations between the

fj(αi) are too important. The second solution is more reliable, but may

create an arti�cial negative part in the spectrum if N(αi) falls below 1 for

some αi as a result of the averaging process.

Chhabra and Sreenivasan (1991) argue that this arti�cial negative part

can still be of relevance when a strong underlying probabilistic process is

suspected either as a cause of the phenomenon or as a result of the experi-

mental methodology since it could describe the rarely occurring events. Un-

fortunately, since α 7→ N(α) decreases exponentially compared to α 7→ f(α)

in the negative part, one would need an exponentially increasing number of

samples as the resolution gets smaller to maintain accuracy while supersam-

pling. Paradoxically, for a constant number of samples, a better resolution

would mean a less accurate result.

To tackle this problem, Chhabra and Sreenivasan propose a multiplier

method. The self-similarity of the measure implies the existence of an un-

derlying scale-invariant multiplier distribution such that the αi at resolution

rk are only the result of k composition of said multipliers. If there is no



46 II. FORMAL MULTIFRACTAL THEORY AND ITS METHODS

correlation in the underlying probabilistic process from resolution rk−1 to

resolution rk for some k, then one can deduce the multipliers and hence α.

In particular, if all levels of resolution are uncorrelated, one can choose k = 1,

otherwise, one should choose the smallest k for which a level of resolution is

uncorrelated to the previous one.

Denote r0 the minimal resolution and rk the resolution chosen as de-

scribed above. Then, de�ne

(29) r := rk/r0,

and for each sample j and box i,

(30) Mij := µij(r0)/µij(rk).

Then, τ(q) and α(q) are given by

1

N(r)
τ(q) + d ≈ −

log
(

1/N(r)
∑

i,jM
q
ij

)
log(r)

;(31)

1

N(r)
α(q) ≈ −

∑
i,jM

q
ij log(Mij)∑

i,jM
q
ij log(r)

.(32)

where N(r) is the number of non zero values of Mij and d is the dimension

of the physical support D. Because only two box sizes are considered by

this method, the multiscale nature of multifractal analysis is not taken into

account and must be ascertained a priori. In practice, we have tested several

rk and only kept the measures for which the resulting spectra were identical,

proving scale invariance.

As will be shown in section 4 below, when applied to real data, the mo-

ment method has a tendency to fail for α values greater than the dimension

of the space occupied by the measure (that is for negative q). This may be

caused by the presence of �at noises (see Salat et al., 2018). In addition,

Huang et al. (2010, 2011) have shown that underlying large-scale structures

in the data may cause the method to fail. The multiplier method �bypasses�

these noises and large scale biases by inducing a true power-law from the

local behaviour of the measure around the point. In a way, this process can

be thought of as �tting the best multifractal model to the data.

Another way to expand the set of sample points consists in using one

grid and aggregate with a gliding box for di�erent radii of said gliding box

instead of using di�erent grid sizes (Cheng, 1999a; Cheng and Agterberg,

1996). In that case, τ(q) is given by taking the limit for r → 0 in

(33)
1

N(r)
τ(q) + d ≈

log
(

1/N(r)
∑N(r)

i=1 µqi (r)
)

log(r)
,
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where N(r) is the number of gliding boxes of size r with non zero measure,

µqi (r) is the measure inside the ith gliding box, and d is the dimension of the

physical support D.

Since it is not required that gliding boxes are mutually exclusive, contrary

to squares from a mesh grid, the number of values contributing to the analysis

remains that of the smallest resolution at all scales. The trade-o� is that only

boxes which are completely bounded in D should be included, so that only

the �inner portion� of the data can be analyzed, or the object of study needs

to be surrounded by a large neighborhood of known values (see �gure II.5).

Using gliding boxes allows a higher raw number of sample points at the cost

of restricting the range of study. It is of course possible to join gliding boxes

and the multiplier method by adapting the de�nition of µij and N(r) in

equations (30) and (31).

Figure II.5. Comparison between grid and gliding
box upscalings. In the top image, the third level of aggre-
gation, which is only 32 times the smallest resolution, only
allows to fully place 8 boxes on the �gure. In contrast, glid-
ing boxes applied on the lowest image maintain 608 sample
points at the cost of forcing to remove a wide border from
the analysis.

A �nal variant is proposed by Chhabra et al. (1989) to avoid the Legendre

transform of τ(q) when the measure arises from multiplicative processes.
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Once the pi have been established, compute

(34) µqi (r) =
pqi∑
j p

q
j

.

Then, the Legendre transform can be directly integrated in the calculation

of f and α through the formulas

f(q) = lim
r→0

∑
µqi (r) logµqi (r)

log(r)
;(35)

α(q) = lim
r→0

∑
µqi (r) log pi(r)

log(r)
.(36)

Note that here α(q) is the average value of α at resolution q. Unfortunately,

this recipe does not remove the need for linear �tting when calculating the

limits, which is usually the main cause of error.

3.2. Histogram method. A computationally fast and direct approach

is o�ered by the histogram method (Arneodo et al., 1987; Meneveau and

Sreenivasan, 1989). The idea consists in �nding the cells with extremal val-

ues of total measure for di�erent grid resolutions, and dividing the distance

between those values into regular intervals to exploit the fact that exactly

one value of α and one value of f(α) will correspond to an extremity of one

of the new sub-intervals.

Let us call µki the total measure of cell i of a grid of unit rk, and N(X)

the number of boxes presenting feature X. Step by step, the method breaks

down as follows.

1. Find Xk
i := log(µki ) for each cell i of di�erent grids of unit rk;

2. Divide [Xk
min, X

k
max] regularly in n smaller intervals for each k,

where Xk
min := min{Xk

i } and Xk
max := max{Xk

i };
3. Deduce one value of α and f(α) from the slopes of Xk and N(Xk)

versus log(rk) for each sub-interval;

4. Repeat for di�erent grid positions for a better estimate.

In step 3, for 1 ≤ j ≤ n, the value αj is given by the slope of Xj,k versus

log(rk) where Xj,k is one of the extremities of the jth sub-interval for grid

resolution rk. According to Meneveau and Sreenivasan (1989), the correct

normalization of the total measure leads to an expression of f(α) as the slope

of log(N(Xj,k)∆X
1/2) versus log(rk), where N(Xj,k) is the number of boxes

of size rk containing an X falling in the interval of size ∆X around Xj,k.

It is indeed a problem to �nd the correct normalizations of α and f(α)

since the relations pi ∼ rαi and N(αi) ∼ ρ(αi)dαir
−f(αi) depend on pref-

actors that are unknown a priori. Such a problem is absent in previous

methods since those factors are cancelled while taking the limit for r → 0,

which is not done here.
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3.3. Multifractal Detrended Fluctuation analysis. Some methods

have been developed for the speci�c purpose of studying time series. They

are therefore particularly well suited for one-dimensional data, but can be

extended to any dimension at the expense of computational complexity. In

this section, time series will be de�ned as one dimensional arrays of discrete

values representing observations taken at regular intervals.

Multifractal Detrended Fluctuation Analysis (MDFA) is thoroughly de-

scribed by Kantelhardt et al. (2002); Kantelhardt (2012). In the basic ap-

proach, time series are �rst sub-divided into smaller segments on which is

subtracted a least-squares best-�t polynomial of a chosen order to remove

the artifacts created by nonstationarities in the time series. A method simi-

lar to the moment method is then applied to the resulting detrended series.

In details, MDFA consists of the following steps.

1. Replace a time series f(·) with its cumulative sum F (·);
2. Divide F into Ns segments containing s elements each for an array

of s;

3. Detrend by removing a least-squares �tted polynomial of order n

to F on each segment;

4. Denoting F̄ the result of step 3, compute

Fq(s) :=

(
1

Ns

Ns∑
ν=1

F̄ (ν, s)q

)1/q

;

5. Find the scaling relation Fq(s) ∼ sh(q).

Here, h(q) is the hurst exponent, which relates to the classical τ(q)

through the relation τ(q) = qh(q) −Df , where Df is the fractal dimension

of the physical support of f .

Step one ensures that the transformed series F is σ-additive, which is a

necessary property to de�ne a measure that the original series f may not

possess. It also allows the use of simple polynomials of the form ani
n+· · ·+a0

with i ∈ N to detrend in step three. It should be noted that the expression

of Fq given above is not well de�ned for q = 0. It is indeed necessary to set

(37) F0(s) = exp

(
1

Ns

Ns∑
ν=1

log
(
F̄ (ν, s)

))
.

According to Kantelhardt et al. (2002), MDFA works only for positive h and

becomes inaccurate for h close to 0. A solution consists in integrating by

considering the sum
∑
F (·, s) instead of F . Following the same steps, one

would obtain h(q) + 1 instead of h(q).

The use of τ(q) as an intermediary step is given to link the method

to previous techniques (see equations (25) and (26)), but one can compute
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directly α and f(α) using the expressions

α(q) = h(q) + q
dh(q)

dq
;(38)

f(α(q)) = q(α− h(q)) +Df .(39)

MDFA can be extended to 2 or more dimensions using multivariate poly-

nomials, as proposed by Gu and Zhou (2006). The 3 dimensions extension

is particularly useful to study the evolution of a two-dimensional spatial

pattern simultaneously in space and time. Unfortunately, the necessity to

choose a common array of s for all directions at the same time, and therefore

constraining the precision and accuracy of the method to the direction along

which the data is the most scarce or irregular, as well as the rapidly growing

computational complexity are signi�cant limiting factors.

3.4. Wavelet-based methods. Kestener and Arneodo (2003) argue

that the moment method when applied to multifractal measures implicitly

supposes that the underlying cascading process is conservative across all

scales (which translates into τ(q) = (q− 1)Dq, and, in particular, τ(1) = 0).

They indicate that one can still detect and quantify the multifractal prop-

erties of measures that have a cancellation exponent τ(1) < 0 by using

the Wavelet Transform Modulus Maxima method (WTMM), introduced by

Muzy et al. (1991). Although such non conservative measures are not prop-

erly de�ned mathematical measures1, this direction allows to extend e�ec-

tively the concept to continuous phenomena.

WTMM replaces the square grids of the moment-based methods by

highly customizable wavelets. In particular, if those wavelets are chosen

orthogonal to low order polynomials, a natural detrending happens. In

addition, the �modulus maxima� technique refers to the computationally

economic possibility of analysing the data along maxima lines only. With

a judicious choice of wavelets, one can therefore integrate the advantages

of MDFA and maintain adequate computational complexity for dimensions

above 1 or 2.

In more detail, consider a function f : R → R representing either a

continuous signal or the interpolation of a discrete time series and a wavelet

ψ orthogonal to low-order polynomials. Note that the function f is not

directly a mathematical measure here, but represents instead the density of

a measure. It is implicitly transformed into a measure when integrated in

the �rst step below. The wavelet ψ is a real valued function, preferably of

1The analysis of one such measure could be seen instead as the analysis of a sequence of
measures approximating one �underlying� measure de�ned at scale r → 0
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zero mean to ensure that the method is invertible. WTMM is divided in the

following steps.

1. Operate the wavelet transform by de�ning for any x0:

Tψ[f ](x0, r) :=
1

r

∫ +∞

−∞
f(x)ψ

(
x− x0
r

)
dx;

2. Sum along the local maxima lines L(r) at scale r:

Zq(r) =
∑
l∈L(r)

(
sup

(x,r̃)∈l
|Tψ[f ](x, r̃)|

)q
;

3. Find the scaling relation Zq(r) ∼ rτ(q).

Consider the set of extrema L(r) de�ned by

(40) L(r) :=

{
x,

∂

∂x
(x 7→ |Tψ [f ] (x, r)|) = 0

}
.

Then, the set {(x, r), x ∈ L(r)} is formed of connected curves called maxima

lines. The set of maxima lines L(r) is then obtained as the set of all maxima

lines de�ned for all r′ ≤ r. Explicitly,

(41) L(r) :=
{(
x(r′), r′

)
, ∀0 ≤ r′ ≤ r, x(r′) ∈ L(r′)

}
.

Analyzing wavelets can be obtained from several ways. A classical one

is to use the successive derivatives of the Gaussian function exp(−x2/2).

Indeed, the derivative of order n is orthogonal to polynomials of order up to

n and of zero mean if n is greater than 1. See top panel of �gure II.6 for a

representation of these wavelets for order 0 to 5.

Another possible way is to process convolutions of the unit box over

Dirac type distributions. On the bottom panel of �gure II.6, three successive

convolutions of three variants of Dirac distributions are represented. The plot

Dij is obtained from the Dirac distribution denoted Dirac i by applying

j number of convolution. Note that only the last two Dirac distributions

produce zero mean wavelets and that the unit box has been centered on 0

for aesthetic preferences.

WTMM can be easily extended to n dimensions by considering the

wavelets formed by the partial derivatives of a function φ such as the Gauss-

ian function X → exp(− |X|2 /2), where X = (x1, · · · , xn). The wavelet

transform is then replaced by the higher dimensional version

(42) Tψ[f ](X0, r) := ∇Tφ[f ](X0, r).

More details on the two-dimensional case and examples are provided by

Arneodo et al. (2002).
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Figure II.6. Analyzing wavelets. Top: obtained from
derivatives of the Gaussian function exp(−x2/2). Bottom:
obtained from convolutions of the unit box over Dirac type
distributions.

Despite its apparent complexity, the WTMM method o�ers a unique in-

terface allowing to directly use functions representing continuous phenomena

as data instead of fully de�ned mathematical measures. Heuristically, the

wavelet transform does transform functions into measures. Indeed, consider

the Borel set Bn over Rn and a nonnegative integrable function f : Rn → R.
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De�ne µ : Bn → R̄, such that ∀a1, · · · , an, b1, · · · , bn ∈ R,

(43) µ(]a1, b1]× · · ·×]an, bn]) :=

∫ b1

a1

· · ·
∫ bn

an

f(x)dx.

Then µ is a measure. More generally, any increasing right continuous func-

tion F (uniquely) de�nes a measure by considering µ(]a, b]) = F (b)− F (a).

Applying the wavelet transform to a function, explicitly, de�ning Tψ such

that

(44) Tψ[f ](x0, a) =
1

a

∫ +∞

−∞
f(x)ψ

(
x− x0
a

)
dx,

is heuristically equivalent to evaluating µ(W ) for the above measure, where

W is an element of the (heuristic) Σ-algebra created by the wavelets. In

particular, if one considers the unit box as the wavelet and normalizes cor-

rectly, then Tψ is formally equivalent to the above measure. Note that the

integrability of f in the de�nition of µ is also required to apply the wavelet

transform, so no information is lost by this hypothesis. Note that MDFA

accomplishes the same kind of transformation into a measure by dividing

the original segment into smaller segments and summing on each of them,

which is the discrete equivalent of the measure µ de�ned above.

However, the ability to work directly with functions is more suitable for

nonconservative phenomena, or if one wants to integrate the multifractal

analysis in the equations the studied functions are a solution of. The sim-

plicity of box-counting techniques and the adaptability o�ered by their many

variants should nonetheless make those preferable for �static� measures.

A word must be said of another wavelet-based approach called Wavelet

Leaders (Lashermes et al., 2005; Ja�ard et al., 2007). Assuming r is de-

creased to 0 by the way of a dyadic partition of the space. Then, the wavelet

leaders method replaces for each point x0 the wavelet coe�cient Tψ(x0, r)

by the supremal coe�cient within a neighbourhood formed by a triplet of

dyadic intervals around the point. It allows to gain more stability for q < 0

and to take into account �chirp� singularities, that is singularities that have

a parasite short-range oscillatory noise.

4. Our choice of methodology

The di�erent methodologies are tested �rst on a canonical multifractal

example, the binomial cascade of probability p = 0.6 introduced in �gure II.4.

They are then tested on the London house transactions dataset to take into

account the particular needs for our type of data.
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We consider both the theoretical binomial cascade2 and a particular re-

alization of a random walk through it. In both cases, the iterative process

is stopped after the 20th step for which over a million sub-intervals have

already been created. This is done to ensure a reasonable run time and use

of memory, and because it is comparable to the size of many encountered

data types such as pixels of an HD image or data collected from a city-size

human settlement. Unfortunately, it also means that the studied cascades

are not equivalent to that produced the spectrum of �gure II.4, for which

the iterative process is repeated an in�nite number of times. As such the

resulting spectra are expected to be similar, but not necessarily identical to

the theoretical curve of �gure II.4 depending on the sensitivity of the chosen

multifractal method. The chosen range of q for the moment method goes

from −20 to 20.

The results of the standard moment method and its variants, the gliding

box and the multiplier methods, are illustrated in �gure II.7. In the theoret-

ical case on the top, the range of α is a lot narrower than what is expected

based on the reference curve (�gure II.4). The variants help improve the sit-

uation, but not by much. This problem is due to the fact that the iterative

process was stopped too soon. The top �gure of �gure II.8 evidences that

stopping the iterative process at step 25 results in a wider spectrum (circles)

than stopping it at step 10 (triangles). Aside from this problem, the result-

ing spectrum is similar to the reference one and a simple rescaling of the

range of α is enough to make both spectra harmonious. For the particular

realization of the cascade on the bottom of �gure II.7, the accuracy of the

standard and gliding box moment methods deteriorates rapidly for negative

q. The multiplier method gives the best results overall. To keep the curve

above zero, the range of q had to be restricted to q ≥ −4 for the �rst two

variants and to 17.5 ≥ q ≥ −10 for the multiplier variant.

Results of the histogram method applied to the binomial cascades can be

found in �gure II.9. Unfortunately, for such a small range of scaling, the his-

togram method is not well adapted and the resulting spectra are not smooth.

The error generated by the method makes results di�cult to interpret in this

case. As a matter of fact, Meneveau and Sreenivasan (1989) have applied the

histogram method for a binomial measure, a period doubling attractor for

a speci�c logistic map and the dissipation �eld of turbulent kinetic energy

in turbulence �ows. They found good agreement with the results obtained

from the moment method for the �rst two cases but it was evidenced that

2That is the result of averaging an in�nite number of random walks through the iterative
process de�ning the cascade.
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Figure II.7. Moment method and variants applied to
multifractal binomial cascades. The standard moment
method (plain line), the gliding box method (circles), and
the multiplier method (crosses) are applied to the theoretical
cascade on the top and to a particular random walk through
the cascade on the bottom.

errors are generated by the histogram method for measures with small scal-

ing ranges such as the third case. In fact it was evaluated that the exponent

found by this method is only accurate up to order log(L/r)−2, where L rep-

resents a characteristic value intrinsic to the problem (a translation of the

unknown prefactor). It was recommended to use this method only for mea-

sures such that the largest obtainable scale is at least 103 times bigger than

the smallest measurable scale. The method has however the advantage of

being faster than the moment method and gives a range of α closer to the

reference in this particular case.
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Figure II.8. In�uence of the number of iterations on
the spectrum. On the top, the spectrum made of triangles
is obtained for 10 repetitions of the iterative process gen-
erating the cascade, while the spectrum made of circles is
obtained for 20 repetitions. Increasing the number of itera-
tions makes the spectrum larger and therefore closer to the
theoretical curve. On the bottom, a rescaling of the range of
alpha on the curve resulting from the moment method (plain
line) is enough to make it harmonious with the reference curve
(circles).

In �gure II.10, MDFA is applied to the binomial cascades. When the

values of s are chosen as powers of 2 in the theoretical case, the Ns intervals

are only translated copies of themselves, resulting in a completely �at spec-

trum (on the top). MDFA is particularly well suited for data such as the

random realization (on the bottom) and gives the closest results to what is

expected from the mathematical study, with only a slight o�set to the left
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Figure II.9. Histogram method applied to binomial
cascades. On the top, a theoretical binomial cascade of pa-
rameter p = 0.6 and on the bottom a particular realization
of it.

of the range of α which is explained by the fact that the iteration process

generating the cascade was stopped at a relatively low level of iterations.

Since wavelet-based methods are primarily meant to be used on con-

tinuous phenomena and time-series, no application to binomial cascades are

given. The �chirp� singularities in particular are irrelevant to our data whose

scale is too broad to posses such a �ne noise. As a result, the WTMM and

Wavelet Leaders methods were discarded.

The standard moment method applied to real data sometimes seems to

fail for α values greater than 1 or 2 (e.g. Murcio et al., 2015; Hu et al., 2012;

Cheng, 1999a). This can be explained by the following observation. Assume
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Figure II.10. MDFA applied to binomial cascades.
On the top, a theoretical binomial cascade of parameter
p = 0.6 and on the bottom a particular realization of it.

that a non-negative signal φ is de�ned on a one-dimensional space, say R.
We can create a measure µ from this signal by de�ning for any a < b ∈ R

(45) µ([a; b)) =

∫ b

a
φ(x)dx.

If the signal φ is of the form rβ + k for some β and a real constant k > 0.

Then, once integrated, the measure will be either of the form rα + k ∗ r or
rα + k ∗ r2 for one-dimensional or two-dimensional signals respectively. The

noise introduced by k is therefore negligible for α values below 1 or 2 (resp.)

when r → 0, while the measure is negligible compared to the noise for α

values greater than 1 or 2 (resp.) when r → 0.
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In contrast, the multiplier variant assumes by construction that the signal

would actually reach 0 (i.e. that the noise k does not exist even when α >

1, 2, corresponding to negative q values), and computes an approximation of

the α values from the growth of the signal around the point despite the noise.

This process could be thought of as �calculating the best multifractal �t� for

the measure. The relevance of the spectrum resulting from the multiplier

method for α above 1 or 2 would depend on how close the data is to a true

multifractal.

The methods have been tested against the London house transaction

prices for the year 1995. A grid of size 200 × 200 (corresponding to a rect-

angular grid unit of 450 meters by 300 meters) was used to sort the data.

The basic moment method (circles), MDFA (plus symbols), and multiplier

method in conjunction with gliding boxes aggregation (cross symbols and

thick line) are plotted in �gure II.11. All the methods agree for α values

below the point for which f(α) = α. After this point is reached, the moment

and MDFA methods fail, while the multiplier method remains stable. This

is due to the noise e�ect explained above. After subtracting the minimum

price to all values, the moment method (red line and triangles) is able to

pass the previous failing point. It also produces a right-part to the spec-

trum whose curvature corresponds to a translation of the multiplier method

(cross symbols). As expected from the discussion above, only the multiplier

method was able to produce convincing results.

The green lines in �gure II.11 are �control� lines. It is expected that the

multifractal spectrum will touch the line y = x on exactly one point, and

that it will not go above the y = 2 line. As a matter of fact, the highest point

of the spectrum should be the fractal dimension of the space occupied by

the measure. By construction, the multiplier methods forces this dimension

to be equal to the euclidean dimension of the embedding space. For that

reason, we advocate for applying a rescaling to the spectrum that ensures

that the point f(α) = α remains identical, and such that the highest point

of the spectrum is the correct fractal dimension. This is done by changing

equations 31 and 32 to

τ(q) + d0 ≈ −
d0
d

log(1/N
∑

iM
q
i )

log(rk/r0)
,(46)

α(q) =
d0
d

∑
iM

q
i log(Mi)∑

iM
q
i log(rk/r0)

,(47)

where d0 is the fractal dimension of the space covered by the measure. Such

In all subsequent analyses, boxes are de�ned as Moore neighborhoods of

radius r around each point such that a full box can be included inside the

study area. In practice, this means that points too close to the border to
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Figure II.11. Multifractal methods applied to real
data. London house transaction prices for the year 1995
were sorted in a grid of 200× 200 pixels. The basic moment
method (circles), MDFA (plus symbols), multiplier method
in conjunction with gliding boxes aggregation (cros symbols
and thick line), a translation of it (cross symbols), and the
moment method on simpli�ed data (triangles and red line)
are plotted. The green lines are control lines.

�t a box of maximal size are ignored in the calculations. The values µi(r)

are then the sum of all the lot price whose centroid falls inside each box

i. The chosen radius r0 is the minimum allowed by the resolution (i.e. 1

pixel), and we average the results over several rk to limit the e�ect of local

inaccuracies in the data. To test the scale invariance of the datasets, we use

several series of rk: {1, 2, 4}, {1, 2, 8} and {1, 4, 16}. We do not use radii

above 16 to avoid removing too much of the data when applying the gliding

box technique and because the behaviour far away from the centre of the

box has no consequences on the limit for r → 0. If the spectra resulting

from di�erent series do not match, then we discard the dataset. The results

shown in the �gures of chapter IV are the curves obtained for the series

{1, 2, 8}. The q range is de�ned as all values such that the resulting f(α) is

non-negative.

In summary, the main advantage of the multiplier method is that it al-

lows to compute a spectrum even in the presence of underlying large-scale
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structures and �at noises. These anomalies in the data are usually respon-

sible for the failing of the more rigorous methods, as identi�ed by Huang

et al. (2010, 2011) and Salat et al. (2018). In particular, the method is able

to produce a spectrum even for negative q values. The main drawback is

that the method assumes the multifractality of the data a priori, and there-

fore requires preliminary scale invariance checks. It also forces some arbitrary

rescaling choices, and there is no easy way to control the error induced. How-

ever, it is well adapted to our context. Indeed, inequality and segregation are

subjective notions whose de�nitions and traditional measurement methods

are riddled with arbitrary choices. Meanwhile, the multifractal multiplier

method focuses on describing the heterogeneity of the spatial patterns and

will produce directly comparable results as long as the method is applied

consistently over the di�erent datasets. As a matter of fact, we prove in

chapter V that the method provides more reliable and scale resilient results

than the traditional segregation indices.

An interesting information can be added to the spectrum by using the

generalized dimension de�ned by the equation D(q) := τ(q)/(q − 1). Three

values in particular relate to well known dimensions: D(0), D(1) and D(2).

The �rst one, D(0), is the fractal dimension of the physical space support-

ing the measure (the spectrum maximum height). The dimension D(1) is

the information (or entropy) dimension, it relates to Shannon's entropy and

provides a measure of the density evenness in the data. Finally, D(2) is the

correlation dimension, which provides a measure of scattering in the data.

By de�nition, the full range of D(q) is the same as the full range of α. The

D(0) dimension can be computed directly using box-counting, while theD(1)

and D(2) values can be deduced from the direct expressions

D(1) = lim
r→0

∑
i µi(r) log(µi(r))

log(r)
,(48)

D(2) = lim
r→0

log(
∑

i µi(r)
2)

log(r)
.(49)

We have produced these three values in tables for the �rst studied datasets

to con�rm the validity of the results. Since the information they contain

is fully covered by the spectrum, and since the Dq values are particularly

unstable around 1, they will not be reported thereafter.

In conclusion, the histogram method is only used for preliminary test

runs, and the basic moment method (including its direct variant) and MDFA

are only applied to corroborate the results from the multiplier method. The

multiplier method is used together with the gliding-box technique to maxi-

mize the number of data points. We justify further this choice in the speci�c

urban context in the next chapter. The spectrum rescaling described above
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is applied to the results for better interpretative value. In chapter IV, only

the �nal results from the chosen methodology are shown. The method has

been applied as consistently as possible to maximize the comparability of

the results.



CHAPTER III

Applying multifractality to study urban inequality

We present multifractal theory from an interpretative perspective and

illustrate visually the meaning of the main variables. The purpose is to

explain how multifractal analysis can be adapted to cities and used to gain

new insights in regards to urban inequality. We address some of the limits

arising from this particular context and emphasize the role of the multifractal

methodology as a comparative and potentially predictive tool. We present

the advantages of undertaking multi-directional comparisons, that is through

time, between di�erent cities, between several neighbourhoods inside one

city, with models and also between di�erent inequality variables for a single

city.

From this discussion, the epistemology of our methodology should appear

clearly. In particular, we will justify the selection of a number of measures to

study urban inequality. For each measure, we will explain how it is related to

studying inequality, present the corresponding available datasets, and indi-

cate how they were processed to �t with the requirements of the multifractal

framework. Some parts of this chapter are adapted from Salat et al. (2018).

1. Heuristics and spectrum interpretation in terms of inequality

Recall from the previous chapter that multifractal theory can be used to

study the heterogeneity and irregularity of measures de�ned on sets that are

too irregular for classical geometric tools, when those measures present two

separate scaling properties. Consider a measure µ de�ned on a set A1. It is

required that

1. locally around any point x of the set A, the measure is scaling with

a local exponent αx;

2. the set formed by all points around which the measure scales with

the same local exponent αx is a fractal set of dimension f(αx).

1A mathematical measure on a set can be understood as a way of assigning a size to every
subset of that set, with the minimal conditions necessary to extend the intuitive notion
of area. Formally, µ is a function from the parts of A to R+, such that µ(∅) = 0, and if
{Bi} is a countable collection of pairwise disjoint sets in A, then µ (∪Bi) =

∑
µ(Bi).

63
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Since the canonical Hausdor� dimension is impractical in most case stud-

ies, we will de�ne a fractal set as any set such that the more �exible box-

counting dimension can be computed. Both dimensions match for self-similar

sets, but the box-counting dimension may be less accurate, for example when

the studied set is a dense subset of its environment. It will nonetheless ade-

quately suit our needs. We will also consider sets with an integer dimension

as particular cases of fractality, rather than as non-fractal sets.

The curve f(α) against α is the multifractal spectrum. It gives, roughly

speaking, the �fractal dimension� f(α) of sets formed by points where the

measure scales locally with the same exponent α. In order to get a heuristic

idea of what the α values represent, assume that we want to study the

multifractality of a non-negative signal φ de�ned on a one-dimensional space,

say R. We can create a measure µ from this signal by de�ning for any

a < b ∈ R

(50) µ([a; b)) =

∫ b

a
φ(x)dx.

In particular, the �rst scaling rule µ([0, r)) ∝ rα translates into φ(x) ∝
xα−1 on the interval [0, r). Assuming there is a re�ectional symmetry around

0, this formalization allows us to illustrate the typical limiting behaviour

of a multifractal signal around a point (here arbitrarily represented by 0)

corresponding to some particular α when r → 0 (see �gure III.1(a)). Note

that the vertical scaling is arbitrary in this example.

If we were to consider instead a perfectly isotropic two-dimensional sig-

nal, then the cross-cut along any particular direction would be the same

as the curves above at the condition of adding 1 to the corresponding α.

A representation of such a signal for particular α values can be found in

�gure III.1(b). The real signal does not have to be isotropic, for example

�bumps� on one side of a circle of radius r0 can be compensated by �holes�

on the other side of the same circle. Note that α values represent the rate at

which a signal, and more generally any measure considered, grows around a

point in contrast to the actual value of the measure at the point.

We use for f(α) the box-counting dimension of the set formed by all

squares in a grid whose measure shares the same local strength α. This

is illustrated in �gure III.2, using the land price distribution for Kyoto in

1912 as an example. On the top left, the actual land price distribution is

represented in a blue continuous logarithmic scale applied over a 512x512

grid. In the three other images, the 4x4 squares corresponding respectively

to a strength of α = 3, α = 6, and α ≥ 7 (counting clockwise) are highlighted

in red. The values f(α = 3), f(α = 6), and f(α ≥ 7) are the box-counting

dimension of each highlighted zone. The �nal aim would be to infer from the
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Figure III.1. Meaning of the α values. (a) Idealized
local behaviour of a one-dimensional signal around a point
of strength α. (b) Idealized behaviour of a two-dimensional
signal around a point whose strength α is indicated on the
scale below.

data the α and f(α) values when the size of the neighbourhoods approaches

0, not 4x4. As a result, the α values in this illustration are overestimated.

The link to inequality and segregation stems from several characteristics

of the spectrum. The most obvious one is its width. The range of α values is

more representative of the variety of neighbourhoods than it is of the spread

of the variable distribution. For example, expensive mansions surrounded

by low-cost houses will be represented by a very low α value. If the group

of mansions is reduced to just one odd isolated manor, then the α value will

be moderately low. In contrast, if an urban planner decides to erect modern

social housing in the middle of traditional detached houses, then it will result

in a high α value. Meanwhile, intermediary α values are reached when the

houses are all locally similar. The range of α values therefore represents

all the di�erent �types� of neighbourhoods in the city. A narrow spectrum
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Figure III.2. Meaning of the f(α) values. Top left: real
land price distribution for Kyoto in 1912 in a log-scale. The
other �gures represent the corresponding α distribution with:
top right: α = 3 highlighted in red; bottom left: α = 6
highlighted in red; and bottom right: α ≥ 7 highlighted in
red. For each α value, the dimension f(α) is akin to the
box-counting dimension of the highlighted zone.

means local homogeneity everywhere, while a large spectrum indicates a lot

of heterogeneity.

Recall that segregation is de�ned as �the degree to which two or more

groups live separately from one another in di�erent parts of the urban envi-

ronment� (Massey and Denton, 1988). Assume that the α distribution of the

spectrum of a price distribution is narrow. Since lower and higher α values

mean sharper growth, while values around 2 (in the case of 2-dimensional

measures) are a sign of local homogeneity (with only a few isolated singu-

larities), it means that the prices are clustered into groups of locally similar

α values (for which the f(α) dimension will be close to 2). In this case,
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the lower and higher α values represent the sharp edges of the clusters (for

which the f(α) dimension will be closer to 1). As a result, segregation is

high. Note however that if the spread of prices is limited, then there is still

no segregation (and the local homogeneity is the result of the presence of

only one economic group).

Moreover, the f(α) values represent in a sense the spatial �density� of

each type of α value. As such, in reference to Massey and Denton (1988),

high f(α) values mean concentration and clustering, while low f(α) values

mean dispersion and exposure. Taking the example of income, the left part

of the spectrum represents the �richer� living in the middle of the �poorer�,

while the right part of the spectrum represents the �poorer� living in the

middle of the �poorer�. A �round� shape for one part of the spectrum would

then indicate high exposure of the economic group it refers to. A particular

interest should therefore be given to the vertical asymmetries between the

left part and the right part of the spectrum. Beware that a generally low

f(α) value distribution for the entire city is more a sign of low density in the

city rather than low exposure everywhere, although one may argue that the

former implies the latter. These considerations will be easier to grasp for the

reader after reading section 2.2 of chapter V where they will be illustrated

directly on an example drawn from the results of the multifractal analyses.

In addition to these spatial descriptions of the studied variable, multi-

fractal analysis is best used for making comparisons. It could be argued that

full homogeneity of house prices is a favourable sign of equality. However,

if there is no evidence that such an homogeneity could also be imposed on

income, then it is perhaps more bene�cial to match the spectrum of house

prices with the spectrum of income rather than to create a situation where

all houses are equally una�ordable to most.

2. Scope for cities and limitations

Contrary to the notion of monofractality that can be easily extended to

sets that are irregular in a loose sense, and even to non geometric objects,

such as homogeneous function2, the notion of multifractality is quite rigid.

Most practical techniques usually rely on a strict compliance to the two

rules mentioned in the previous section. In particular, we showed in the

previous chapter that the α values are not entirely invariant through vertical

translation of the measure. Indeed, if the signal φ de�ned previously is of

the form rβ +k for some β and a real constant k > 0. Then, once integrated,

the measure will be either of the form rα + k ∗ r or rα + k ∗ r2 for one-

dimensional or two-dimensional signals respectively. The noise introduced

2Functions that have a multiplicative scaling behaviour.
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by k is therefore negligible for α values below 1 or 2 (resp.) when r → 0,

while the measure is negligible compared to the noise for α values greater

than 1 or 2 (resp.) when r → 0.

We explained that for this reason, the standard moment method applied

to real data may fail for α values greater than 1 or 2 (Murcio et al., 2015;

Hu et al., 2012; Cheng, 1999a). In contrast, the multiplier variant ignores

the noise and computes an approximation of the α values from the growth

of the signal around the point. This process is akin to �calculating the best

multifractal �t� for the measure. It is di�cult to evaluate precisely the error

created by the choice of this particular multifractal method. However, urban

systems are in essence extremely chaotic, so that strict scaling laws are not to

be expected in relevant datasets. For that reason, we have chosen to use the

results from this more forgiving multiplier variant, but we still compare them

with the stricter methods and only use them if they match on a signi�cant

portion of the spectrum (classically, the part that lies below 2 for the reasons

mentioned above).

In addition, we abide by the idea developed by Batty (2018) that mod-

els should be useful rather than truthful. Batty argues against the real

predictive value of theories and models for social complex systems, and en-

courages restricting their use to �structuring and focussing debate�. Rather

than seeking the most truthful description of an overly noisy phenomenon,

we aim at �nding a useful improvement of the current inequality analysis.

To that end, we compare extensively the multifractal methodology to the

results from classic inequality and segregation measures in chapter V. We

�nd that the methodology recovers the main results, while often conforming

better to intuition in particular cases. It also solves many technical di�cul-

ties encountered by the classical segregation measures, such as the reliance

on arbitrary administrative boundaries or the need to prioritize arbitrarily

either the spread or the distributional shape of the inequality variable.

The real power of multifractal analysis resides in its capacity to detect

change and hence compare spaces at di�erent points in time, or to compare

di�erent neighbourhoods. There are many combinations of objects that can

be compared. Indeed, we can study the temporal evolution of a single city

(ie compare a single city at di�erent time intervals), we can compare a city

with another city (intercity comparison), or compare several neighbourhoods

inside one city (intracity comparison), or compare a city to some abstract

models of urban development, or compare a model with another model, and

even compare an inequality measure to another inequality measure. We

have chosen several cities (London, Paris, New York and Kyoto) represent-

ing the epitome of economically e�cient urban developments, and for which
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quality datasets can be easily obtained, and some static basic models (uni-

formly random, polycentric and Di�usion-Limited Aggregation), to serve as

a comparison basis for an initial assessment of inequality in modern urban

development. Obviously, it is not realistic to make every possible combina-

tion of comparisons, so we focus on exploiting the most promising features

for each city or model as evidenced in the next section.

The input for multifractal analysis needs to be a formal mathematical

measure. As such, densities and categorical variables cannot be used directly.

Some non-measure distributions, such as betweenness centrality for nodes in

a network, could be interpreted as a measure representing an idea of point

�potential�. However, claiming that these potentials can be summed over

several points is a risky assumption. In the next part, we justify the choice

of �ve urban parameters as inequality indicators, and explain how they have

been transformed into satisfyingly rigorous measures. For each of the newly

formed measures, we present the datasets they have been applied to.

3. Urban measures selected for analysis

In accordance with Dalton (1920) and Sen (1997), we believe that in-

equality measures should aim at being a good translation of economic wel-

fare, rather than being restricted to the analysis of household income only.

As such, we explore four directions that could translate household economic

welfare: real estate, energy consumption, income and accessibility to a di-

verse neighbouring urban environment.

According to (Tannier et al., 2016), the spatial di�erentiation in cities

results from three main processes: the competition for economically advan-

tageous space, cooperation processes, and processes by which individuals try

to minimize the energy used for exchanges and movements3. As a result,

individuals tend to cluster with other individuals belonging to the same so-

cial groups. This is known as the peer e�ect : individuals identify to certain

social groups, then �collective references lead individuals above all to reside

in the same place, frequent the same places and use the same means of trans-

ports as other members of the social group(s) they belong to� (Tannier et al.,

2016).

Real estate, energy, income and accessibility spatial distributions can be

seen as the outcome of these processes. In turn, these distributions help

de�ning the opportunities and social identi�ers for future generations. In

this thesis, we do not analyse the processes themselves, but only their con-

sequences in terms of individual economic welfare.

3In this case, the energy cost can result from physical distance, but also from social or
cultural distance for example.
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3.1. Real estate. Access to quality housing is an obvious aspect of eco-

nomic welfare. From a functional perspective, housing location determines

the number and types of jobs accessible and, together with accommodation

quality, can have direct consequences on health (through air quality for ex-

ample) and perceived happiness. In addition, according to Fielding (2004),

housing is traditionally seen as an important sign of social status in the West,

while the functional aspects prevail in the Japanese culture. For that reason,

we expect house prices to re�ect segregation in western cities, and be more

evenly distributed in Japan. We have at our disposal datasets in London,

Kyoto, New York and Paris to study both the inequality and segregation

dimensions of house prices.

A real estate measure needs to be counted on a suitable base unit of land.

Di�erent units can be chosen, inferring di�erent interpretations. To describe

the spatial distribution of land value, the unit could be each square meter

of land. Note that this is di�erent from counting the average square meter

price: the price is counted additively for each square meter, so that the price

of two square meters of land combined is equal to the sum of the prices for

each square meter. To describe property value instead of land value, the

unit should be based on �oor space (one square meter times the number of

stories for example). Indeed, considering only house price per square meter

would miscalculate the total housing value carried by the land. To study

housing inequality, each accommodation can be considered as a unit of its

own, independently of its size. The results would then give information on

the a�ordability of suitable housing assets and on the spatial repartition of

each price category. From the contrasting point of view of policy makers,

one may want to choose a set number of people as the base unit and try to

calculate the cost of accommodating that number of people.

The choice of a unit, however, may be constrained by the data available.

For example, for London, the HM Land Registry (Data, HMLR:1995-16) pro-

vides a highly detailed dataset containing all the housing transactions that

have happened in Greater London since 1995. For a highly dynamical mar-

ket such as London, we can assume that houses do not stay unsold for long

periods, so that the unit de�ned by each transaction represents adequately

what was available in that year. In contrast, for Kyoto a digitalization of

a cadastral map �rst published in 1912 (�rst year of Taishō era) was made

available by Yano et al. (2007). At the smallest level, all land is divided into

lots registered to a single owner for which the tax assessed price is known.

Taking each lot as the unit represents accurately all existing residential land

assets in the city, but we cannot distinguish which land plots were actually

available for sale.
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Other datasets include a land tax assessed road valuation around 2012 for

Kyoto, as provided by the o�cial Open Data website maintained by Kyoto

City (Data, KC:2012a). After transformation, those values can be seen as

approximations comparable to the 1912 lot values. The PLUTO4 database,

from NYC Planning, provides all assessed tax values for land prices in New

York at `Borough Block Lot' (BBL) level since 2002 (Data, NY:2002-18).

These prices are quite comparable with the data for Kyoto. In addition, a

second dataset containing the actual transactions, obtained from the NYC

Open Data website (Data, NY:Sales), can be used for comparison with the

London dataset. Finally, a dataset obtained from the Urban Morphology

Institute in Paris, provides the average square meter prices at 'aggregated

units for statistical information' (IRIS) level for Paris in 2014. IRIS were

implemented to gather statistics throughout France and aim at subdividing

the territory into units containing around 2000 people. Choosing IRIS as the

base unit meets the policy makers' perspective mentioned earlier of analysing

the cost of accommodating a set number of people. Because square meter

prices are a density that cannot be used directly, it is necessary to multiply

the prices by the population count inside each IRIS.

Based on the characteristics of each dataset, we decide to use the data for

Paris solely for comparison with other variables, such as the number of jobs

and average income. In contrast, the data for London, Kyoto and New York

is also used for intercity (and even intracity comparisons for New York) and

for comparisons through time. Due to the high quality of the Kyoto data,

it is further used for comparisons with static models. These models are

shu�es of the Kyoto land prices representing the null (fully random) model,

the polycentric model typical of modern cities, and a maximally multifractal

case using Di�usion-Limited Aggregation (DLA) models. They are presented

in full details in the next chapter.

3.2. Income. Income has been the most studied variable in relation to

inequality ever since the notion was formalized (see notably Pigou, 1912;

Gini, 1912; Dalton, 1920; Atkinson, 1983; Sen, 1997; Atkinson, 2015). To

transform income into a spatial measure, we need to consider the total in-

come carried by a unit of land, or alternatively, received by a �xed number

of people. In simpler terms, the average income needs to be known and mul-

tiplied by the number of people considered (either directly or inside the land

unit considered). This is more restrictive than it seems, since data is often

presented with median values or with a limited number of income categories

that cannot be used to determine the average value. Moreover, the sampling

4Primary Land Use Tax Lot Output
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polling methods usually applied to gather the data prevent reaching a �ne

enough resolution that satis�es multifractal analysis.

The estimated unequivalised mean household income at Lower Layer

Super Output Area (LSOA) level was obtained for London from the Greater

London Authority (GLA) (Data, LonIncome:2002-13). For New York, the

best data found was taken from the Census FactFinder and includes the 2010

population count and the estimated mean household income at Census Tract

(CT) level (Data, NYIncome:2010). For Paris, the estimated average income

and population count in 2014 at IRIS level was obtained from INSEE5 (Data,

ParIncome:2014a).

These three datasets share a common resolution, a common time pe-

riod, and a common �o�cial� estimations quality. They are therefore highly

suitable for intercity comparisons. In addition, these datasets have good

comparative value respectively with the house transactions dataset for Lon-

don (aggregated at the LSOA level), the BBL transaction dataset for New

York (aggregated at the CT level), and the square meter price dataset for

Paris described in the real estate section. This allows good inter-measure

comparisons. Finally, the London dataset covers over 13 years, including the

2008 �nancial crisis, and is therefore suitable for a temporal analysis.

3.3. Energy consumption. Energy consumption represents the inten-

sity of activity of the professional sector and can be considered a proxy for

land development (Garrett, 2011; Kasperowicz, 2014). At the household

level, there is a connection between energy consumption and standard of

living (Dzioubinski and Chipman, 1999). Joyeux and Ripple (2007) found

out that residential energy consumption is not explained by income alone,

so that measures of standard of living should take into account both param-

eters. Energy consumption being additive (at the condition of converting

energy from all sources into a common normalized unit, such as kW), there

is no particular di�culty in transforming it into a measure.

Primary spatial data on energy consumption proved di�cult to obtain.

For New York, Howard et al. (2012) propose a methodology to estimate

energy consumption from land use. It is based on the land use description

from the PLUTO database described above (Data, NY:2002-18), coupled

with data from the New York City Mayor's O�ce gathering the annual

electricity, natural gas, steam and fuel oil consumption for 191 zip codes.

This approach contains several accuracy issues, described in detail in chapter

IV, limiting the value of the results. In addition, the assessed tax values

5Institut National de la Statistique et des Etudes Economiques
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used for land prices being also estimated from land use, it is unlikely that

the results of the two analysis will be signi�cantly di�erent.

Furthermore, for London, a dataset based on the energy certi�cates

that are created when a house was sold between 2008 and 2016 is available

from the Ministry of Housing, Communities & Local Government (Data,

LonEnergy:2008-16). It contains in particular a �eld corresponding to the

estimated consumption, and the expected consumption if the property is im-

proved. We are not able to directly compare it with the New York dataset

since it only reports the domestic consumption, while for New York the do-

mestic consumption is considered homogeneous. It complements nonetheless

the di�erent measures to be compared inside London.

3.4. Diversity of accessible activities. We want to �nd a measure

that represents the quality of life in terms of diversity of professional, leisure

and social opportunities. Instead of counting the total number of jobs or

amenities reasonably reachable, here we want to describe the accessibility to

amenities through the actual composition of the surrounding neighbourhood

at di�erent scales. The rationale is that the types and proportions of each

activity shape the potential lifestyle of an individual. For example, if a

neighbourhood has low racial segregation but is deprived of leisure facilities

favouring social interactions, its population may feel more isolated than in

a neighbourhood where the segregation is high, but where interactions are

encouraged. To be able to di�erentiate between each type of activities and

to be able to calculate their respective proportion, we intend to use detailed

land use data.

Land use cannot be integrated directly as a measure as it is by essence

categorical. In the description of the previous inequality factors, we have

already alluded to ways of transforming land use into a measure through the

way tax assessed value was assigned and through the way energy consump-

tion was estimated. We want however to translate a di�erent perception

of land use, which is the diversity of activity accessible at di�erent scales

from an individual perspective, assuming for simplicity that the di�erent

types of activities are equipollent. To do that, Barner et al. (2018) propose a

methodology based on Shannon's entropy formula that takes into account the

multiscale diversity of activity. A phase space is created whose coordinates

are represented by a matrix, called state matrix, where the rows represent

the proportion of each activity at a scale de�ned by the column index. The

probability distribution {pi}i corresponding to the frequency of each state

in the discretized phase space is then used as the variable of the entropy



74 III. MULTIFRACTALITY AND URBAN INEQUALITY

formula, resulting in the entropy H de�ned by

(51) H := −
∑
i

pi log(pi).

This method gives one global entropy value H for the system. However,

we can create a local version of it by considering the local �contribution� to

the entropy at any given point x given by log(1/px) where px is the frequency

in the phase space of the state corresponding to the point considered. This

local contribution de�nes an adequate mathematical measure. Alternatively,

we can use the probability distribution {pi}i directly, as it is by de�nition a

measure normalised to be equal to 1 for the entire system.

This approach is di�cult to interpret. Choosing the {log(1/pi)}i distri-
bution can be understood as computing the diversity that each local situation

adds to the city in its whole. Inversely, choosing the {pi}i distribution mea-

sures how similar each local situation is compared to the other situations

(how homogeneous the city is). A highly diverse city is probably prefer-

able when coupled with an e�cient transportation system, while a locally

homogeneous city is more equalitarian when transportation is lacking. Al-

ternatively, we could include the e�ciency of the transportation system in

the choice of the multiple scales de�ning the state matrix and aim for homo-

geneity. For now, we hope to �nd multifractality in these new, not yet fully

re�ned, measures.

As mentioned in the energy section, the PLUTO database presents highly

detailed land use data for New York (Data, NY:2002-18). Although irregu-

lar, the description is detailed enough to create six broad working categories

(residential, o�ce, store, education, health and other) to test the method-

ology. Other datasets exist for London and Kyoto, but were discarded due

to the New York results not presenting the same level of interest as those

obtained for the other measures.

In summary, we have chosen to apply the multiplier multifractal moment

method to calculate the �best multifractal �t� of four inequality measures

(real estate, energy consumption, income and diversity of activity) in four

cities (London, Paris, New York, Kyoto and a few basic models (uniform,

polycentric and DLA). These case studies will be presented in the next chap-

ter and will operate the comparisons that are represented in the diagram of

�gure III.3, based on the datasets summarized in table III.1. The scienti�c

soundness of the methodology will be ascertained in the following chapter

based on the obtained results by comparing them to the classic inequality

and segregation indicators.
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Table III.1. Summary of all datasets. PC means post-
code, BBL means Borough-Block-Lot, IRIS means �Ilots Re-
groupés pour l'Information Statistique�, LSOA means Lower
Layer Output Area and CT means Census Tract.

Land/house prices

CITY TYPE DATES SCALE ORIGIN
London Transactions 1995-2016 PC HM Land Registry
New York Transactions 2003-2015 BBL NYCOpenData
New York Tax estimations 2002-2016 BBL PLUTO
Kyoto Tax estimations 1912-2012 Lot KCOpenData
Paris Prices (sqm) 2014 IRIS UMI

Energy consumption

CITY TYPE DATES SCALE ORIGIN
New York Estimations 2009 BBL PLUTO
London Certi�cates 2008-16 PC HCLG

Income & Job accessibility

CITY TYPE DATES SCALE ORIGIN
London Mean estimations 2001-2013 LSOA GLA
New York Mean estimations 2010 CT Census FF
Paris Mean estimations 2014 IRIS UMI
Paris # Jobs access. 2014 IRIS UMI

Land use

CITY TYPE DATES SCALE ORIGIN
New York > 200 Categories 2002-2016 BBL PLUTO

New York

Land

House prices ⧖

Mean income

Energy (est.)

Land use

Paris

Sqm prices

Mean income

Job access.

London

House prices ⧖

Mean income ⧖

Energy

Kyoto

Land 1912

Land 2012

Other

Static models

⧖: Time series

Intra-city

Other

Energy

Income

Real Estate

Legend

Figure III.3. Summary of all comparative analyses.
Dataset on a same arrow are compared. An hourglass indi-
cates a time series and an elliptical box means that several
boroughs of the city are compared to one another.
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CHAPTER IV

Case studies: London, New-York, Paris and Kyoto

In this chapter, our selected multifractal methodology, the multiplier

method with a vertical rescaling, is applied to several urban measures in

real case situations. Due to the high quality of available datasets for real

estate and due to the particularly interesting results that stem from those,

the real estate dimension of inequality will nourish the largest part of the

results. Additional results on income, job accessibility, energy consumption

and diversity of land use are also presented. The �rst section is devoted

to a more in depth presentation of all the datasets. The second section

gathers and compares the results from real estate and income distributions

across Kyoto, New York, Paris and London. The third section is focused

on comparing several measures inside a same city. We will in particular

evidence that income alone is not enough to characterize inequality and that

real estate and energy consumption should also be considered.

Throughout the chapter, we will prove that many urban measures indeed

possess multifractal characteristics, and that the method is able to di�erenti-

ate e�ciently between di�erent situations and to provide useful information.

We will show in particular that multifractality is particularly adequate to

study the spatial dimension of the measures rather than their distributional

characteristics. We will also con�rm that there is a trend of cities evolving

from multifractality towards monofractality, and that income alone is not

enough to characterize inequality.

The functions and codes in the R language used for the main analyses

are available in the following repository: Codes (2018) (see references).

1. Datasets

We present the di�erent datasets used to conduct the analysis, and ex-

plain the technical decisions taken to make them suitable for comparison

post analysis. The richness and quality of the real estate data is re�ected

by the particularly detailed way in which we display them. Although some

of the raw datasets used for the analysis contain personal information, the

data was treated anonymously and no personal information is disclosed in

this chapter. The maps shown are aggregated to larger scales and the results

77
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only provide information for the city as a whole. All the data has been con-

verted into grids. Each cell of the grid contains the sum of the measures of

all the geographic areas considered whose centroid fall inside the cell. The

grid is then processed as described in section 4 of Chapter II. A summary of

all grid resolutions and equivalent distance in meters is given in table IV.5.

1.1. Real estate. For London, the HM Land Registry provides a highly

detailed dataset containing all the housing transactions that have happened

in Greater London since 1995 (Data, HMLR:1995-16). Although the trans-

actions are given individually with full address and date of transaction, they

are aggregated by Postcode (PC) and year using a sum. The resulting mea-

sure represents the total housing market value for each PC. Considering that

London is a highly dynamical market, we can assume that houses do not stay

unsold for long periods, so that the actual transactions are a truthful repre-

sentation of what was available for each year at each PC. The distribution

for the year 2016 (aggregated by LSOA) can be seen in �gure IV.1.

Figure IV.1. London house transactions in 2016.
Prices are represented from red (most expensive) to yellow
(least expensive). Gray indicates unavailable data.

In �gure IV.2, the distributions from 1995 to 2017 are presented in a

common price scale. Note that 2017 is incomplete, and was not used for the

analysis. It is noticeable that in the 90s the eastern parts of London were
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not considered attractive, which is evidenced by a lot of grey indicating no

transactions in the corresponding LSOAs. As prices became more and more

una�ordable, the city expands to previously neglected zones. The in�uence

of the 2008 crisis is obvious, with the appearance of dispersed grey areas

(particularly in 2009) indicating a shaken market.

Figure IV.2. London house transaction distributions
from 1995 to 2017. The price scale is common for all years
and identical to �gure IV.1.

The lowest price paid is consistently kept at around ¿50k throughout the

years, while the average and maximum price paid increase every year, with

the exception of 2009. See �gure IV.3 for more details. The maximum price

paid has increased exponentially in the few recent years. It is to be noted

that transactions cover any sell made to a private buyer at one registered

address. As a result, privately buying a multi-�at building as investment
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counts as one transaction. The typical number of values, range, mean and

standard deviation for these sets is given in table IV.2.
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Figure IV.3. London average and maximum price
paid from 1995 to 2017. The scale for the maximum price
paid is indicated on the left while the scale for the average
price paid is indicated on the right. Prices are in GBP.

For Kyoto, two datasets were made available by Yano et al. (2007, 2008,

2009, 2011). The �rst one is a digitalization of a cadastral map �rst pub-

lished in 1912. All land is divided into lots registered to a single owner for

which tax assessed price, category, and area are known. We used the total

price of each lot marked as residential (82% of all lots) as the base unit for

the analysis. Assuming that the land lots are not meant to be divided, it

represents accurately all existing residential land assets in the city. The val-

ues are paired with the centroids of their corresponding lots. The data is

then processed as a matrix representing a grid overlay over the Kyoto map.

A second dataset consists in land tax assessed value by road valuation

around 2012, as provided by the o�cial Open Data website maintained by

Kyoto City (Data, KC:2012a). The price is given as mean land price per

square meter along each road segment, where a road segment is de�ned as

any part of a road included between two street intersections (or dead ends).

Most road segments are edges of a block, and some are smaller intra-block

streets. Making the unavoidable assumption that the di�erence in depth

between di�erent residential buildings is negligible compared to the length

of the roads segment, we have multiplied the mean price along each segment
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by the length of said segment. The result are values proportionate to the sum

of all land lot prices along each segment. Since multifractals are invariant

under a linear transformation, those values can be seen as approximations

comparable to 1912 lot values (although at a broader scale). Both the full

extent of modern Kyoto and its intersection with the extent of 1912 Kyoto

will be considered.

To be able to compare accurately Kyoto in 1912 and in 2012, it would

have been preferable to use the same resolution in both cases. Unfortunately,

the road valuation data for 2012 creates undesired �gaps� between data points

when plotted at the resolution used in the 1912 case. Those gaps do not

describe real land value well, as price lots should be contiguous or almost

contiguous, with only big natural obstacles (such as the Kamo river for

Kyoto) representing an actual empty space. To tackle this problem, the

resolution used for present Kyoto has been reduced by 4 to obtain a relatively

compact grid. A �rst map was created representing the full extent of the

present city at a resolution of 256x256, the same resolution that was used

for the 1912 extent of the city, despite the new city being roughly four times

bigger than the old city. A second map was created to represent the evolution

of the old city alone. It comprises only the roads that are fully included in

the boundaries of the 1912 city. This map is at a resolution of 128x128,

i.e. four times lower than for the 1912 map, despite the geographical extent

being identical. The study areas for each case are illustrated in �gure IV.4.

Refer to table IV.2 for a statistical description and to �gure IV.9(b & c) for

an histogram of the distributions.

For New York, the Department of City Planning has released the PLUTO

database, which provides all yearly assessed tax values for land prices at

`Borough Block Lot' (BBL) level since 2002, except for the year 2008 (Data,

NY:2002-18). The prices are divided into prices for land alone and prices

for land and built assets bundled together. The prices for land alone are

similar to those for the lots de�ned for Kyoto, although the BBL scale is

somewhat intermediary between the smaller 1912 lots and the bigger 2012

blocks. However, since multifractal analysis is scale invariant, this di�erence

in scale does not diminish the high comparative value with Kyoto's land

prices. The dataset for the year 2016 is represented in a logarithmic scale in

�gure IV.5.

According to the documentation, the land tax assessed prices appearing

in the PLUTO database for New York are estimated by the Department of

Finance from the market value as if the land was vacant and unimproved.

The prices are then multiplied by a percentage for the property's tax class,

itself depending on its use. Since the lot shapes and sizes have known little
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Figure IV.4. Kyoto land price dataset. (a) Kyoto, 1912
extent; (b) Kyoto, 2012 extent; (c) 2012 Kyoto cropped to the
1912 extent. All prices are expressed in Yen (1 Yen of 1912
is worth approximately 2000 Yens of 2012).

change, especially in Manhattan, since the last development works of the

early twentieth century, it can be hypothesized that today's prices are still

in good distributional correspondence with what they were then. As a matter

of fact, between 2002, when the PLUTO data was �rst gathered, and 2016,

only marginal adjustments were made from one year to another. Those

adjustments are reported in table IV.1. Note that the period from 2008 to

2010 is disrupted due to a reworking of the database.

In addition, a second dataset containing the actual transactions with full

address, obtained from the NYC Open Data website (Data, NY:Sales), was

used for comparison with the London dataset. Similarly, the values have been

aggregated to the BBL level. In �gure IV.6 pannel (a), we can see the max

and mean price paid per transaction. Each year, between 20% and 35% of the

transactions are recorded as free, in addition to many transactions occurring

at symbolic prices. These are transfers of ownership without money involved,

such as inheritance. The total volume and portion of free transactions are

shown in panel (b). The e�ect of the 2008 crisis is clearly visible with a

sudden decrease in prices, a gradual decrease in transaction volume, while the

portion of free transactions increases signi�cantly. The map corresponding

to the transactions averaged at CT level for the year 2015 can be seen in

�gure IV.7. The visual di�erences from one year to another being minimal,

we do not show the map for the other years. As before, more details can be

found in table IV.2 and in �gure IV.9(d & e).
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Figure IV.5. New York land price 2016 dataset.
Prices are represented with a logarithmic scale from red (most
expensive) to yellow (least expensive). Gray indicates un-
available data.

For Paris, a dataset obtained from the UMI1, based on data from INSEE2

and estate agencies public data, provides the average square meter prices at

'aggregated units for statistical information' (IRIS) level in 2014. IRIS were

implemented to gather statistics throughout France and aim at subdivid-

ing the territory into units containing around 2000 people. Although their

de�nition varies widely in the countryside and small towns, they are quite

regular inside Paris with 5262 IRIS for a population of around 10 millions,

and an average size of 2.29 square kilometres. Because square meter prices

are a density that cannot be used directly, it is necessary to multiply the

prices by the population count inside each IRIS. In a sense it forces to make

1Urban Morphology Institute
2Institut National de la Statistique et des Etudes Economiques
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Table IV.1. Yearly change in land tax assessed value
in Manhattan from 2003 to 2016. #LC is the percentage
of lots changed, MAC is the mean absolute change, and TC is
the total change of the mean. Data is missing for year 2008,
and year 2009 has been omitted as a result. Note that year
2010 yields a unusually high MAC due to lot renaming.

Year #LC MAC TC

2003 26.7% 5.7% 3.9%
2004 67.1% 14.6% -5.0%
2005 62.0% 26.4% 4.7%
2006 52.8% 8.8% 1.8%
2007 51.4% 17.8% 1.4%
2010 50.1% 50.9% 3.4%
2011 53.2% 11.9% 1.0%
2012 42.9% 20.0% 0.6%
2013 43.4% 6.6% 0.1%
2014 44.8% 6.4% 0.4%
2015 44.2% 9.2% 1.0%
2016 44.6% 8.8% 0.6%
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Figure IV.6. House transactions from 2003 to 2015 in
Ney York. (a) Evolution of the max and mean sale price.
(b) Evolution of the number of transactions and percentage of
transactions that were given for free (note that these exclude
transactions at a symbolic rate).

the factually wrong assumption that the average accommodation size is the

same across all IRIS. The assumption is not unreasonable, however, since

according to INSEE, the standard deviation of the average accommodation

size by department is only 2.89 for an average of 32.575. Additionally, this

hypothesis can be thought of as an interesting equality ideal. Only 5000

data points is in the low limits of multifractal analysis requirements, and

compares poorly with the much �ner scale of the other datasets. Moreover,

the nature of the data for Paris is quite di�erent from the rest. This data



1. DATASETS 85

Figure IV.7. New York transactions 2015 dataset.
Prices are represented with a logarithmic scale from red (most
expensive) to yellow (least expensive). Gray indicates un-
available data or transactions below 100$.

comes handy, however, when it is related to the INSEE census variables,

such as number of jobs and average income, also at IRIS level. Both the true

prices per square meter and the prices per square meters multiplied by the

population count are represented in �gure IV.8.

In the calculations below, since the IRIS are represented by their cen-

troids, we have discarded all IRIS of size greater than 3km2 for which the

centroid is not a good approximation of their geometry (accounting for 23%

of all IRIS). The dataset remains quite sparse even after this process, as

indicated by a low (mono)fractal dimension.

The data characteristics are summarized in table IV.2. The price distri-

butions can be seen in �gure IV.9. They are all akin to either a log-normal

distribution, or two intertwined log-normal distributions.
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Figure IV.8. Paris housing price in 2014. Prices are
represented from red (most expensive) to yellow (least ex-
pensive). Gray indicates unavailable data. (a) True prices
per square meter. (b) Prices per square meter multiplied by
the population count in each IRIS.
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Figure IV.9. Price distributions. (a) London transac-
tions, 2016. (b) Kyoto tax assessed land prices, 1912. (c)
Kyoto road valuations, 2012. (d) New York tax assessed land
prices, 2016. (e) New York transactions, 2015. (f) Paris Sqm
price, 2014.

Table IV.2. Summary of data characteristics for Real
Estate. All prices are indicated in their original currency,
without taking in�ation into account. For datasets covering
multiple years, the typical number of values for one year is
given. # stands for number of values, Sd stands for standard
deviation.

City Type # Min Max Average Sd.

London <2016s Transactions 132k 30k 55M 291k 400k
Kyoto 1912 Land Tax 53k 0.05 2.45M 345 11k
Kyoto 2012 Road valuation 42k 15k 2.22M 116k 93k
New York 2000s Land Tax 83k 5 3.21B 108k 6.0M
Manhattan 2000s Land Tax 43k 110 2.86B 1.18M 15M
New York 2000s Transactions 50k 0 400M 1.04M 14M
Paris 2014 Sqm prices 2.5k 710 18k 3.8k 3.1k

We expect that the ranking in width of the spectra will be consistent

with the ranking in Gini coe�cients for the di�erent cities. The Gini coe�-

cient for the Kyoto land price distribution in 1912 is 0.666, although it can

be lowered to 0.606 by removing the Imperial palace and the temples. In

2012, it is lowered to 0.479 for the entire city, and to 0.520 for the extent

corresponding to the 1912 city. A more extensive comparison of traditional

inequality indicators for the evolution of Kyoto and with models based on

rearrangements of the land price distribution and the multifractal spectra

is proposed in section 2.1 of chapter V. The Gini coe�cient for one year

of transactions in London is 0.366 on average, with a standard deviation

of 0.031, and for one year of transactions in New York, it is 0.771, with a
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standard deviation of 0.050. A detailed breakdown of the evolution of these

prices is given in section 2.3 of chapter V, together with an analysis around

the 2008 �nancial crisis. The Gini coe�cient is intermediary for Paris with

0.481. It is by far the highest for New York with 0.902. Inside New York, the

coe�cients are similar with 0.840 in Manhattan, 0.808 in the Bronx, 0.834

in Brooklyn, 0.830 in Queens, and 0.739 in Staten Island. We will see in the

result section and in chapter V that the spectra are consistent with these

coe�cients.

1.2. Income. The Greater London Authority (GLA) has released an

estimation of the unequivalised mean household income at Lower Layer Su-

per Output Area (LSOA) level (Data, LonIncome:2002-13). The LSOA level

aims at separating the population into groups of around 1700 people (with

a minimum of 1000). There are a little under 5000 LSOAs in Greater Lon-

don, which is in the low limits of acceptability for multifractal analysis. The

dataset covers two yearly estimates from 2001 to 2013, one taking into ac-

count the in�ation while the other does not. For New York, the best data

found was taken from the Census FactFinder and includes the 2010 popula-

tion count and the estimated mean household income at Census Tract (CT)

level (Data, NYIncome:2010). For Paris, the median income and popula-

tion count in 2014 at IRIS level was obtained from INSEE (Data, ParIn-

come:2014a). Median income does not hold the same value for this analysis

as average income, and we only use it for reference to a scenario where the

average and the median income would be equal. The data characteristics are

summarised in table IV.3. Corresponding maps are shown in �gure IV.10,

each with its own income scale from the city's minimum value to the city's

maximum value. The distributions are shown in �gure IV.11. Similarly to

price distributions, all three are close to log-normal distributions.

Table IV.3. Summary of data characteristics for In-
come. All income are indicated in their original currency,
without taking in�ation into account. # stands for number
of values, Sd stands for standard deviation.

City Type # Min Max Average Sd.

London 2000s Average 4.8k 20.7k 183k 43.3k 13.7k
New York 2010 Average 2.2k 11k 436k 84.7k 43.1k
Paris 2014 Median 3.8k 11.8k 89k 34.7k 10.3k
Paris 2014 #Jobs 30m 4.2k 0 2.1M 154k 353k
Paris 2014 #Jobs 45m 4.2k 0 3.2M 513k 839k

It is to be noted that these datasets have good comparative value re-

spectively with the house transactions dataset for London (aggregated at
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Figure IV.10. Income datasets. Average income for Lon-
don (2013), New York (2010), and median income for Paris
(2014). Each map is plotted according to its own continuous
income scale, from the minimum values (light green) to the
maximum values (dark green) reported in table IV.2.
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Figure IV.11. Income distributions. (a) London, 2000s;
(b) New York, 2010; (c) Paris, 2014.

the LSOA level), the BBL transaction dataset for New York (aggregated at

the CT level), and the square meter rent price dataset for Paris described

in the real estate section. Additionally, the London dataset also has some

time evolution analysis value, limited by the short time frame (13 years), but

interesting nonetheless since it covers the 2008 �nancial crisis. It is similar

in that respect to the house transactions dataset.

For all these datasets, the actual variable we study is the income multi-

plied by the number of people living in the area. This is to guarantee that

the measure is indeed additive, and to represent the total carried income

value. The relatively large size of LSOA, IRIS and CT is a severe limitation

for a �ne analysis of the income distribution itself.

A quick observation of �gure IV.11 suggests that the geographical zones

where the income is high are in good correspondence with those where the

house prices are high. We therefore expect that the spectra for income

and real estate will be similar. Furthermore, the Gini coe�cient for the

income distribution multiplied by the population count in London is 0.155

on average, with very little variation from one year to another3. This is a

3The standard variation of the set of yearly Gini coe�cients is only 0.005.



90 IV. CASE STUDIES

particularly low number compared to Paris (0.302) and New York (0.479).

Inside New York, the Gini coe�cient is the highest in Manhattan (0.470),

while it is very similar for the other four boroughs (0.356 in Bronx, 0.320

in Brooklyn, 0.342 in Queens and 0.298 is Staten Island). We therefore

expect a narrower spectrum for London than for Paris and New York. A

more extensive analysis of the datasets with traditional inequality indicator

is provided in section 2.2 of chapter V.

In addition to these datasets, we include here some data describing the

number of jobs accessible in 30 minutes and 45 minutes from every IRIS in

Paris. This data is presented in �gure IV.12. It is part of the data also

describing square meter prices and median income. Since the number of jobs

accessible induces competition within the job market, it has an in�uence

on the potential salary, work conditions and average time to �nd a job an

individual can expect. It is therefore thematically linked to income. We pri-

marily intend to use this dataset to check the potential correlations between

house prices and accessibility.

Figure IV.12. Number of jobs accessible in Paris. (a)
Jobs accessible in 30 minutes. (b) Jobs accessible in 45 min-
utes.

1.3. Energy consumption. For the city of New York, Howard et al.

(2012) estimate energy consumption from the land use description from the

PLUTO database described above, coupled with data from the New York

City Mayor's O�ce gathering the annual electricity, natural gas, steam and

fuel oil consumption for 191 zip codes. The average consumption per type of

land use is estimated using a multilinear regression from the values measured

for the 191 zip codes. A map of energy estimates is then deduced for all of

New York. They chose the year 2009 due to the weather conditions for

that year being the closest to the 30 year average values, so as to limit

meteorological bias.
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This approach contains several issues. First, the land use description in

the PLUTO database is irregular. A land use code is �rst used to sort the

lots into 11 broad categories depending on the main social function, then

a building class code is used to sort the lots into over 200 more technical

categories. For computational simplicity, Howard et al. (2012) reduced the

number of categories to a total of 7: residential 1-4 families, other residen-

tial, o�ce, store, education, health and warehouse. However, a closer look

at the content of the categories enlightens some unresolved overlapping (for

example, education, although mainly made of school-type buildings, encom-

passes at least one store and one warehouse). Another issue is that fuel oil

consumption in the Mayor's O�ce data is only estimated and not measured.

Since these limits are due to the nature of the available data, there is no

particular solution to avoid them.

Nonetheless, we have reproduced their approach for that same year 2009

on Manhattan using the PLUTO database for land use reference. The other

four Boroughs (Bronx, Brooklyn, Queens and Staten Island) are not consid-

ered in order to save computational time as they do not add new elements

to the discussion. The resolution is identical to the one used for the PLUTO

assessed land price to ensure comparability. This dataset is mapped in �g-

ure IV.13, the statistical description is given in table IV.4.

For London, the Ministry of Housing, Communities & Local Govern-

ment has released a dataset containing the energy performance certi�cate

for many domestic buildings in England and Wales (2.2M datapoints Data,

LonEnergy:2008-16). Those were established when a sale took place between

2008 and 2016. We make use of the energy consumption �eld estimating the

yearly consumption in kWh/m2, the estimated potential energy consump-

tion (after improvement suggested by the contractor would be carried out),

as well as individual lightning, heating and water heating costs in GBP. The

energy consumption is multiplied by the given �oor area in square meter,

to obtain the total consumption. The statistical summary is presented in

table IV.4. This dataset is not comparable to the New York one, since it is

focused on domestic use only.

1.4. Diversity of accessible activities. We implement an entropy

formula to quantify the diversity of land use. We use the same land use data

that allowed us to derive the energy estimates for Manhattan in 2009. The

buildings are all sorted into 8 broad categories (residential 4 families or less,

residential more than 4 families, o�ce, store, education, health, warehouse,

and other). The result can be seen in �gure IV.15. In the �gure, only

the category covering the most space is represented for each lot. For the

actual entropy computation, both residential categories were combined and
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Figure IV.13. Energy consumption estimations in
Manhattan. The scale goes from green (low consumption)
to pink (large consumption)

Figure IV.14. Energy consumption estimations in
London. (a) Estimated consumption by square meter from
low consumption (1 kWhm−2, green) to high consumption
(1000 kWhm−2, pink). (b) Estimated total consumption from
low consumption (32 kWh, green) to large consumption (15.8
BWh, pink).
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Table IV.4. Summary of data characteristics for En-
ergy. # stands for number of values, Sd stands for standard
deviation.

City Type # Min Max Average Sd.

Manhattan 2009 Electricity (kWh) 44k 0 1.4B 5.6M 28M
Manhattan 2009 Fuel (kWh) 44k 0 2.0B 8.1M 32M
Manhattan 2009 Total (kWh) 44k 0 2.8B 14M 54M
London 2008-16 Sqm energy (kWh) 83k 1 1k 266 130
London 2008-16 Total (kWh) 43k 32 15M 21k 21k

the warehouse category was ignored in order to decrease the total number of

categories to a more manageable six.

Figure IV.15. Primary land use in Manhattan in
2009. Non available data is represented in white.

The methodology is based on a working paper by Barner et al. (2018),

where more details and applications to London land-use can be found. In
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this approach, the data is converted into a grid. For each cell x, we denote

xri the proportion of category i in a neighbourhood of radius r around x.

Then, assuming we have n categories and N scales, the state of cell x across

several scales is fully characterized by the matrix

Mx =


xr11 xr12 . . . xr1n
xr21 xr22 . . . xr2n
...

...
...

...

xrN1 xrN2 . . . xrNn

 .
By de�nition, the elements of the matrix are all between 0 and 1. We aggre-

gate them into 8 bins. For our study, we consider 3 scales: immediate prox-

imity (200m), proximity (2km), and proximity via transport (6km). Each

matrix is therefore made of 6∗3 = 18 elements that take one out of 8 possible

values. Each cell is therefore represented by one out of 144 possible matrix

states. The total entropy of the system is then given by Shannon's entropy

formula

(52) H := −
∑
i

pi log(pi),

where pi is the probability of state i, i.e. the frequency of cells in state i in

the system.

For Manhattan, this formula gives a global entropy of 2.25. For the

purpose of multifractal analysis, each point is given a value corresponding

to its �local� contribution to the total entropy, i.e. log(1/px), where px is

the frequency in the matrices space of the state corresponding to the cell

considered. Figure IV.16 represents Manhattan entropy map in a grid of

size 187× 277.

The di�erent grid resolutions that we used for each city are presented

in table IV.5. These are the �nal resolutions chosen to ensure maximum

comparability, although others were tested. Kyoto, in particular, has been

tested with a resolution twice as precise. The spectra were not signi�cantly

changed, which is consistent with multifractality's scale invariance. The

resolution for Paris is broader than for the other cities due to the relatively

large scale of the IRIS. It is the minimum resolution that allowed a fractal

dimension f(α0) higher than 1.5. The sizes chosen to operate the gliding

boxes are 1, 2 and 8 times these resolutions, as discussed in section 4 of

chapter II.

2. Comparisons between cities

In this section, we present cross-cities analysis on real estate and in-

come data. We �rst look at the early 20th century Kyoto and New York
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Figure IV.16. Land use entropy map of Manhattan
in 2009. Each pixel represents the local contribution to the
total land use entropy of Manhattan. An exact scale is not
provided as these values have no tangible meaning and only
depend on the frequency of similar pixels.

land assessed tax prices, complemented with some static models based on

the Kyoto data. Those models are of two kinds: spatial, including a fully

uniform random repartition of the prices taken as a null model, realistic

polycentric repartitions, and di�usion-limited aggregation (DLA) reparti-

tions representing �maximal� cases; and distributional, including uniform,

normal and Pareto distributions of the prices. The technicalities of build-

ing the models are given as and when they appear. Next, we study early

21st century real estate in London, New York, Kyoto and Paris and compare

the results with the 20th century data. A particular attention is given to

the change in spectrum around the 2008 �nancial crisis in London and New

York. We �nally compare London, New York and Paris income distributions.
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Table IV.5. Grid resolutions used for analysis for all
cities. The boxes are rectangular shapes of size 1, 2 and
8 times these resolutions. Kyoto inter is the intersection of
Kyoto in 2012 and the 1912 extent.

City Resolution (px) Resolution (m)

London 200x200 450x300
Kyoto (1912) 256x256 15.5x17.5
Kyoto (2012) 256x256 66x90
Kyoto inter 128x128 31x35
New York 1280x1280 120x120
Manhattan 187x277 200x250
Bronx 208x179 200x250
Brooklyn 251x246 200x250
Queens 353x356 200x250
Staten Island 280x221 200x250
Paris 100x100 700x250

2.1. Real estate in the early 20th century. Starting with the 1912

Kyoto data, a �rst batch of models is built by changing the spatial pattern

while the price distribution is kept identical to the true distribution. Three

types of spatial distributions are chosen to supplement the true pattern: uni-

form, polycentric, and DLA. The �rst one is used as a null model, the second

one as a representation of how modern megacities develop (Odland, 1978;

McMillen and Smith, 2003; Louf and Barthelemy, 2013), and the third one

as a multifractal reference since it is known to generate strong multifractality

(Witten and Sander, 1981; Vicsek et al., 1990; Murcio and Rodríguez-Romo,

2009; Rodríguez-Romo and Murcio, 2014). All these models are plotted in

�gure IV.17 alongside the true distribution. The latter is represented in the

top left image. Next to it is the price distribution drawn uniformly. The

four �gures on the bottom left are DLA models with either 1 or 3 centres ex-

erting di�erent levels of attraction. Finally, the nine models on the right are

polycentric models with di�erent number of centres exerting varying levels

of attraction. The true spatial distribution uses a logarithmic overlay of the

real price distribution, while all other images use an overlay representing the

rank of each point in the price distribution after it has been drawn into the

space. All images are represented in a grid of resolution 256× 256.

The uniform distribution has been drawn 50 times. To generate the

polycentric models, a number of centre coordinates (between 1 and 30) are

chosen randomly in the grid. Then, all the cells in the grid are ranked
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Figure IV.17. Spatial models. Top left: logarithmic over-
lay of the real price distribution over the real Kyoto pattern
in a grid of resolution 256x256. Next to it: corresponding
rank distribution drawn uniformly. Four on the bottom left:
rank distribution overlayed over four DLA models with 1 or
3 centres and di�erent levels of attraction. Nine on the right:
rank distribution overlayed over nine polycentric models with
di�erent number of centres and levels of attraction.

according to the formula

(53) si =
∑
k

bk/d
γ
ik,

where si represents the strength of cell i, bk a weight given to centre k,

dik the distance between point i and centre k, and γ a global �attractivity�

parameter. Similarly, the DLA models are generated by �rst choosing ran-

domly either one or three �anchor� coordinates in the grid. Then, the cells

are ranked by introducing �particles� carrying a rank tag (lowest ranks �rst)

into the system. Each particle operates a random walk until it encounters

an anchor or a cluster of particles attached to an anchor, and attaches to it

with a probability of either 1 or 0.5.

Once all the cells in the grid have been ranked (ties are resolved by

a random draw), the prices are mapped over the points by rank order, so

that the most expensive prices are closer to the centres or anchors. A noise

is previously introduced in the ranked price distribution, by redrawing the

price ranks according to a probability distribution

(54) rpi /
∑

rpi ,
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where ri is the current rank in the distribution, and p is a power set to 2 for

the polycentric models, and either 1 or 8 for the DLA models.

The spectra resulting from the �rst batch of models plotted against the

true Kyoto distribution can be seen in the top of �gure IV.18. On the bot-

tom, the local idealized shapes corresponding to the α values are represented

for reference. We have in total: the �ve most relevant polycentric models

(referred to as C− in the legend, where − is the number of centres), �fty

iterations of the uniform draw (U in the legend), and two fully ranked one-

centre DLA models with normal and halved centre attraction weights and

�fty iterations of each DLA model with a noise added to it (respectively Dr,

D.5r, Dn, and D.5n). We can immediately observe that the real distribution

(red circles) seems to maximize the width of the spectrum, while minimizing

its height. Only some of the DLA models with added noise could create a

wider right-spectrum and remain close on the left side. Polycentric models

generate fairly weak multifractality, especially considering that the multi-

plier method tends to arti�cially widen the spectrum in weak cases. The

uniform distribution lays between the polycentric and DLA distributions.

A second batch of models is built by changing the price distribution while

the spatial pattern is kept identical. Three distributions are considered:

uniform, truncated normal, and Pareto. The uniform distribution is taken

as a null model, while the normal and Pareto distributions are the most

recurrent distributions observed in urban science (in particular, the Pareto

distribution is usually associated to the distribution of wealth). The true

distribution is log-normal. To create the distributions, range, mean and

standard deviation can be adjusted. Since it is by construction impossible

to match all three parameters for each distribution, priority was given to

matching the range with the true distribution. When the exceptionally high

priced imperial palace is removed, this range consists of values between 0

and 10000 yens. These three distributions are plotted in �gure IV.19. In

addition to the price distributions being laid over the true spatial pattern,

they have also been laid over the uniform spatial distribution for reference.

The results of the second batch of models are represented in �gure IV.20.

In the �rst case, overlaying over the true spatial distribution, there is almost

no di�erence in the left part of the spectra, while the right part are very

similar, with Pareto distribution giving the widest spectrum. Meanwhile,

as can be inferred from �gure IV.18, changing the spatial distribution has

noticeable consequences on the curves. However, the price distribution does

have an impact on the spectrum, as evidenced by the second case, where all

four price distributions have been drawn randomly in space. The uniform and

truncated normal distributions present almost no multifractality, the very
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Figure IV.18. Spectra for 1912 Kyoto price distribu-
tion mapped over several spatial models. The mod-
els are polycentric (C-, where - is the number of centres),
ranked DLA (Dr), ranked DLA with half centre attraction
(D.5r), uniform (U, 50 draws), DLA with a noise (Dn, 50
draws), DLA with half centre attraction and a noise (D.5n,
50 draws), and true distribution (True). The corresponding
idealized two-dimensional signal is added below the α axis for
reference.

narrow spectrum being identi�able to an artefact of the multiplier method.

The Pareto and the real distributions produce more convincing spectra, close

to one another.

An analysis was performed over the �ve boroughs of New York: Manhat-

tan, Brooklyn, the Bronx, Queens, and Staten Island at a common resolution

to avoid any bias. The results are reported in �gure IV.21. The multifractal

spectra are quite similar in width for all �ve boroughs, except Manhattan.

However, since the results provided by the method are more stable for the

left part of the spectra, it may be more interesting to notice that Brooklyn

has a narrower left spectrum than the other boroughs. This can be explained

by a lesser presence of big isolated lots there. In any case, the di�erence re-

mains very small compared to what have been observed in the previous and
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Figure IV.19. 1912 price distributions. Top left: real
Kyoto price distribution (note the logarithmic x-axis), top
right: uniform distribution, bottom left: truncated normal
distribution, bottom right: Pareto distribution.

Figure IV.20. Spectra for 1912 Kyoto and price mod-
els. (a) Uniform (U), truncated normal (TN), Pareto (P) and
true (red circles) distributions mapped over 1912 Kyoto true
spatial distribution. (b) Same distributions and true price
distribution (K) uniformly drawn into space.

future comparison. The di�erence in height between Brooklyn, Queens and

the other boroughs is due to more compactness in these two places. The

spectrum for all of New York at once appear to be an average of all �ve

boroughs. In the following analyses, we will separate Manhattan from the

other boroughs to make comparisons with other cities more signi�cant.

When compared to the 1912 Kyoto land assessed tax value (�gure IV.22),

the similarity between the two spectra is striking considering how far apart

the two cities are. The spectrum for Kyoto �ts nicely between the spectrum

for Manhattan alone, and the spectrum for all of New York. Once again, the
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Figure IV.21. Comparison between New York's boroughs.

slightly higher curve for New York can be explained by a higher compactness

in that city. We will now see if the cities evolved in a similar way into the

early 21st century.
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Figure IV.22. Comparison between Kyoto and Manhattan.

2.2. Real estate in the early 21st century. Considering that the

data for present Kyoto is less reliable than the data for 1912, we will not

repeat the same analysis on spatial models. Instead, we only reshu�e ran-

domly the price distribution while preserving the actual locations of all road
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segment centroids. Fifty iterations of this process produced the spectra that

can be seen in �gure IV.23(a). Contrary to the 1912 case, the real placement

seems to minimize the spectrum width. In �gure IV.23(b), the spectrum

for the 2012 distribution cropped to the 1912 extent is plotted against the

spectrum for the full extent. Only minimal changes are observable, indi-

cating that there is no signi�cant discrepancy in the development of new

neighbourhoods compared to how the old city evolved.

The price distribution for 2012 Kyoto is almost log-normal, akin to the

price distribution for 1912, although it is less symmetrical and only spans

over two orders of magnitude compared to four in the previous case (�g-

ure IV.24). Similarly to the previous analysis, we generated 50 iterations of

some corresponding uniform, normal and Pareto distributions. The spectra

for each distribution can be found mapped over the true spatial pattern in

Fig IV.23(c), and uniformly drawn into space in Fig IV.23(d). The results

are similar to those obtained for 1912. In the true pattern case on the left,

the spectra follow the same ranking in width as for 1912, with only slightly

more pronounced di�erences. In the uniform pattern case on the right, the

actual price distribution gives results closer to the uniform distribution, while

the Pareto distribution provides signi�cantly wider results. This is coherent

with the narrower range and higher maximum of the true price distribution,

re�ected in a more dispersed corresponding Pareto distribution.

We now run the multifractal analysis on the housing transactions occur-

ring in London between 1995 and 2016. As can be seen in �gure IV.25, the

results for each year are very close from one another, especially in the left

part of the spectrum (�gure IV.25(b)). Due to the presence of many �grey�

no-transactions zones for the year 2008 (highlighted in red), the fractal di-

mension of the support of the measure is one of the smallest one, hence the

curve is one of the lowest one. This corresponds to a low fractal dimension

and tells more than just the size of the empty zones. In fact, it means that

the empty zones are densely spread throughout the city. The fact that the

2008 curve is signi�cantly shifted to the left on both sides compared to the

other curves means a higher presence of �spike-type� heterogeneities and a

lesser presence of �cup-type� heterogeneities in the spatial distribution of this

variable. This is a sign of increase in inequality in the sense that some iso-

lated people are still able to buy expensive houses while the a�ordability is

problematic for their would-be neighbours. Interestingly, the only year that

matches the situation of 2008 is the last one available: 2016.

The results when the methodology is applied to New York transactions

are quite similar to those for London (�gure IV.26). The same loss in height

and increase in width for the left portion of the spectrum is observed around
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Figure IV.23. Spectra for 2012 Kyoto and models. (a)
True Kyoto distribution (blue triangles) and spatially reshuf-
�ed distribution (grey lines). (b) Full Kyoto distribution com-
pared to the extent of 1912 (green crosses). (c) Uniform (U),
truncated normal (TN), Pareto (P) and true (red circles) dis-
tributions mapped over 2012 Kyoto true spatial distribution.
(d) Same distributions and true price distribution (K) uni-
formly drawn into space.

the 2008 crisis. The spectra are however signi�cantly larger on both sizes,

although the very steep left half and asymetrical shape is an indication of low

multifractality (compare for example to the results of Murcio et al. (2015)).

This con�rms (and quanti�es) the visual impression that the prices are more

evenly spread for New York in the map of �gure IV.7. Note that all of New

York is considered here to maximize the number of datapoints per analysis.

The spectra for these Kyoto, London and New York datasets are plotted

together with the 2014 Paris dataset against the spectra representing the

early 20th century in �gure IV.27. It could be hypothesized that the increase

in spectrum height for the modern city is representative of densi�cation. For

example, the eastern half of Kyoto city is much more compact in 2012 than it

was in 1912. Unfortunately, it can also be an artefact of the lower resolution,

so no de�nite conclusions can be drawn.

The evolution of the width of the spectrum is more interesting. For

example, comparing the 2012 spectrum to the 1912 spectrum for Kyoto,

there is an observable loss of extreme α values, corresponding to the steepest

spatial increase in price, while the relatively homogeneous zones, i.e. those
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Figure IV.24. 2012 price distributions. Top left: real
Kyoto price distribution (note the logarithmic x-axis), top
right: uniform distribution, bottom left: truncated normal
distribution, bottom right: Pareto distribution.

around α = 2, are of higher f(α) dimensions in the 2012 case. This is

representative of a noticeable increase in local homogeneity. It can also be

noted that the shape is more symmetric in 1912 compared to 2012, with

a rounder left half of the spectrum. It means that the diversity in 2012

is created more by (small) local �bumps�, and less by (small) local �gaps�

compared to 1912.

Interestingly, despite resulting from datasets representing di�erent real

estate variables, the spectra for modern London, Kyoto and Paris match on

the left (most stable) half of the spectra, while remaining the narrowest ones

on the right part of the spectra. Similarly the two datasets representing the

early 20th century match on the left part, and stay close on the right part.

This trend of multifractal loss in modern cities has already been observed for

road networks Ariza-Villaverde et al. (2013); Nie et al. (2015); Murcio et al.

(2015). Although, the New York transactions curve is in the middle on the

left half, its steepness is also an indication of loss of multifractality.

The D0, D1 and D2 generalized dimensions for Kyoto in 1912, 2012 and

2012 intersected with 1912 boundaries, for the uniform, polycentric and DLA

models for 1912 data and shu�ed model for 2012 data, as well as for Man-

hattan assessed tax land value in 2016 and London house price transactions

in 2016 can be found in table IV.6. We recall from chapter II that D(0)
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Figure IV.25. London house transactions from 1995
to 2016. (a) Full spectrum. (b) Zoom on the left part.

is the fractal dimension of the physical space supporting the measure (cor-

responding to the spectrum maximum height). The dimension D(1) is the

information (or entropy) dimension, which provides a measure of the density

evenness in the data (corresponding to the point where the spectrum touches

the identity line). Finally, D(2) is the correlation dimension, which provides

a measure of scattering in the data. Those values show the same decrease

in multifractality for modern data as the spectra in the main text. Three

problematic values with slightly higher D1 than D0 have been obtained for

Kyoto in 2012 (1.74 vs 1.70), DLA 1 ranked (1.70 vs 1.67) and DLA 1.5
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Figure IV.26. New York house transactions from
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0 1 2 3 4 5

0.
0

0.
5

1.
0

1.
5

2.
0

α

f(
α

)

Kyoto 2012
Paris 2015
London 1995−16
New York 2003−15
Kyoto 1912
New York 2016 (tax)

1.74

1.61

Figure IV.27. Real estate spectra. Spectra correspond-
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prices (blue triangles), Paris square meter prices in 2014
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transactions from 1995 to 2016 (grey lines), New York trans-
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tax land value in 1912 (red circles), New York assessed land
value in 2016 (black diamonds).
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ranked (1.78 vs 1.74). This is an indication of small irregularities in the

multifractal scaling.

Table IV.6. D0, D1 and D2 generalized dimensions for
the previous analyses.

Model D0 D1 D2

Kyoto 1912 1.61 1.50 0.23
Kyoto 2012 1.70 1.74 1.70

Kyoto 2012 (part.) 1.72 1.70 1.58
Uniform (1912) 1.91 1.34 0.03

Polycentric (1912) 1.91 1.57 0.14
DLA 1 (ranked) 1.67 1.70 1.23
DLA 1.5 (ranked) 1.74 1.78 1.35
DLA 1 (noise) 1.67 1.62 0.98
DLA 1.5 (noise) 1.74 1.54 0.70
Shu�ed (2012) 1.68 1.51 1.37
Manhattan 2016 1.71 1.51 1.37
London 2016 1.80 1.76 1.60

In summary, the su�ciently wide spectrum for the real dataset indicate

that multifractality o�ers a valid methodology to analyse land prices in cities.

This is in concordance with Hu et al. (2012) who also found multifractal-

ity for land price distributions in Wuhan City in China. In addition, the

methodology allowed to di�erentiate between real and simulated data, be-

tween di�erent time periods, and to identify to some extent the 2008 �nancial

crisis. This proves that the methodology can be informative.

2.3. Income in London, New-York and Paris. The results of mul-

tifractal analysis applied to income data in Paris (2014), New York (2010)

and London (2002 to 2013) is shown in �gure IV.28. Recall that the vari-

able considered is the average income (median income for Paris) multiplied

by the population count in each IRIS, CT and LSOA (respectively). These

geographies being quite large, the monofractal dimensions of all curves are

low, especially for Paris. All curves are relatively narrow indicating weaker

multifractality than for the house prices. The curves for London around the

2008 crisis in particular are the narrowest. However, the di�erence with the

rest of the full period is not conclusive, as all the curves match on the left

half of the spectra. A much �ner analysis of the curves in terms of segre-

gation is presented in chapter V where they are compared to the results of

classical indicators.
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Figure IV.28. Income spectra. Spectra corresponding to
Paris in 2014, New York in 2010 and London from 2002 to
2013 (with years 2007,08 and 09 highlighted in yellow).

3. Comparisons between measures

We present the results of the previous section complemented by energy

and land-use diversity analyses grouped respectively for New York, Paris

and London. The goal is to make comparisons between measures and to

relate the results to the elements of the discussion occurring in the previous

chapters. We will in particular evaluate the pertinence of each measure and

show that income alone is not su�cient to study inequality. We will also

point out how we could use multifractality to guide future city planning.

3.1. Manhattan. Detailed results for energy are shown in �gure IV.29.

The only signi�cant di�erence is between the �global� measures (total energy,

total electricity and total fuel) and the partial sub-measures, both being

gathered in distinct group. As expected, the partial measures o�er less di-

versity than the global measures. Overall, energy is harmoniously distributed

between its di�erent sources, and we can consider total energy alone.

The spectra corresponding to the land assessed tax value in 2016, house

transactions (2010), income in 2010, energy in 2009 and land-use entropy in

2009 can be seen in �gure IV.30. The spectra for land prices and energy

consumption are quite similar, in particular on the left part. This was to be

expected since they are based on linear transformations of the same land use

dataset. The income spectrum appears to be homothetic to the tax value

distribution, which comforts the idea that the taxes are intelligently calcu-

lated. It is however much narrower than the actual transaction spectrum.
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Figure IV.29. Energy in Manhattan in 2009. Spectra
corresponding to the total energy consumption in Manhattan
in 2009. Energy is divided into electricity and fuel consump-
tion, further subdivided into basic and cooling use and into
water heating and heating (respectively).

This means than some local distributions, in particular the cup type carried

by the right part of the spectrum, are not matched. Finally, the entropy

spectrum is extremely narrow and includes a steep left part, which indicates

almost no multifractality. This can be explained by the �smoothing� to the

land use diversity induced by the multi-scale entropy function.

These curves support the idea presented in chapter I that income alone

does not contain all the information on inequality. Although a tight corre-

lation can be seen between income and the transaction and energy distribu-

tions, they only match on a part of the spectra. The parts of the spectra

where they do not match are indicative of the type of neighbourhood whose

development should be prioritized if we were to make the house a�ordabil-

ity match the current spatial distribution of income. Alternatively, we may

decide that the current income spatial distribution is not satisfactory and

should be more homogeneous. In that case, we should aim to narrow both

curves at the same time.

3.2. Paris. The income and square meter price distributions are very

similar in Paris, as can be seen in �gure IV.31. There is however an observ-

able asymmetry, with the price spectrum being slightly tilted to the right,

while the income spectrum is slightly tilted to the left. The broad resolu-

tion of the IRIS and the fact that the true prices are only deduced from the
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Figure IV.30. Diverse urban measures in Manhattan.
Spectra corresponding to the land assessed tax value (2016),
transactions (2010), income (2010), energy (2009) and land-
use entropy (2009) distributions.

square meter price does not allow to draw �rm conclusions on this asymme-

try, although it is a direction that may be worth investigating should more

data become available.
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Figure IV.31. Diverse urban measures in Paris in
2014. Spectra corresponding to the square meter prices, in-
come, and 30 and 45 minutes accessibility distributions.
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The spectra corresponding to the 30 and 45 minutes accessibility are

however noticeably di�erent from the spectra we have encountered so far.

Their shape is very �round�, particularly in the left part. This indicates a

pronounced multifractality. It also shows that accessibility alone can not

fully explain the house prices. As referenced in chapter I, it has been hy-

pothesized that the origin of fractality could be the result of cities growing

by bottom up processes resulting from an intense competition for space con-

strained by the underlying transport network (Batty, 2008b). As a matter of

fact, these accessibility measures are directly built on the transport network

and support the competition assumption not only creating fractality, but

also multifractality.

Considering these results, it could be interesting to try the multifractal

methodology directly on networks. Although this fall out of scope of this

thesis, it is to be noted that some work has been done in this direction for the

standard moment method (Palla et al., 2010; Wang et al., 2012; Liu et al.,

2015; Song et al., 2015; Rendon de la Torre et al., 2017). These articles use

the sand-box algorithm which is a super-sampling box-counting method. It

is however possible to extend these methods to suit the multiplier method

required for the analysis of urban data, and to adapt a gliding-box algorithm

instead of a sand-box algorithm.

3.3. London. All the previous curves for London, together with energy

distribution can be seen in �gure IV.32. Energy consumption is divided into

total consumption with minor di�erences between the true distribution and

the potential distribution if improved, and lightning, heating and water heat-

ing costs. Similarly to New York, all the energy curves are grouped together.

We referenced in chapter II a case made by Joyeux and Ripple (2007) that

energy distribution is not explained by income alone, so that measures of

standard of living should take into account both parameters. These results

con�rm this idea. The di�erence between the income distribution and the

house transaction distribution is particularly striking.

In summary, we have shown that multifractality is better suited to cap-

ture the spatial patterning of a variable rather than its value distribution.

We have also evidenced that the multifractality of land prices has globally

evolved from a �maximum� multifractality situation to an almost �minimal�

situation nowadays, representing an homogenisation and loss of diversity.

We have enlightened the (limited) potential of multifractality to detect cri-

sis situations. We have also shown that real estate and energy consumption

measures could provide additional insights on inequality compared to income

alone in our case. We have put forward some evidence that job accessibility
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Figure IV.32. Diverse urban measures in London
from 1995 to 2016. Spectra corresponding to the trans-
actions, income, and energy distributions.

is not su�cient to explain the spatial distribution of prices. Finally, we have

demonstrated with a land use analysis that multifractality does not always

exist in potential urban measures.



CHAPTER V

Evaluation of the multifractal spectrum compared

to the traditional inequality and segregation

indicators

We evidence throughout this chapter that multifractal analysis is a po-

tent inequality indicator free of the issues usually associated with analysing

spatial inequality, such as the modi�able areal unit problem or the lack of

useful details provided by global economic segregation indices. Our purpose

is not to redo all the analyses previously presented with the classical indica-

tors. We select instead some striking results that should su�ce to evidence

the advantages and some limitations of our methodology.

The �rst section recalls the formal de�nitions of the indices that will

be used in the rest of the chapter. The second section presents three inde-

pendent analyses using the Kyoto land price data, the income distributions

for Paris, London and New York, and the property transactions time series

for London and New York. The �rst analysis, also presented in Salat et al.

(2018), will underline some incoherences in the results computed by the clas-

sical indicators that do not exist with our methodology. The second analysis

will serve as a basis to discuss which �dimensions� of segregation are best

described by the spectrum. The third analysis will acknowledge the limits of

multifractals in detecting crisis, although we show that they are less prone

to fall in some traps that the a-spatial inequality measures did not manage

to avoid.

1. Formal de�nitions

According to Sen (1973), a-spatial inequality indices can be sorted into

two main categories: descriptive and normative indices. Descriptive indices

take the distribution (generally income) directly and apply a function to it to

extract information. Normative indices (the Dalton index and the Atkinson

Index) apply a utility function �rst to the distribution to link it to a notion

of �economic welfare�. Since the de�nition of such a utility function is both

subjective and reliant on complex local policies and living cost practices,

we will focus exclusively on the purely objective descriptive indices. Out of

these, we retain the well-known Gini coe�cient (G), and the less intuitive

113
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Theil coe�cient (T) de�ned in chapter I. We also consider the relative dis-

persion (RD) to represent the broader family of indices characterizing the

di�erence to the mean (also including variance, variation coe�cient, logarith-

mic standard deviation e.g.). For a distribution {xi}1≤i≤n of n observations

of average µ, it is de�ned as

(55) RD =

∑
i |µ− xi|
nµ

.

The result is a number in the interval [0, 2(n−1)n ], or more simply [0,2[, when

n→ +∞.

In turn, economic segregation measures can be divided into two main

categories depending on whether the studied variable is categorical or or-

dinal. Our measures are all ordinal, so we only need to take the ordinal

indices into considerations. These indices all work on the same principle:

comparing the variation inside each neighbourhood to the global variation

inside the city.

Assume that the space is divided into n di�erent neighbourhoods, de-

note {nk}1≤k≤n the population count inside each neighbourhood, and de-

note {µk}1≤k≤n the average value inside each neighbourhood. Then, the

neighbourhood Sorting Index (NSI) is de�ned as

(56) NSI =

√√√√∑
k nk(µk−µ)2

n∑
i(xi−µ)2
n

.

In simpler terms, the NSI index is the fraction between the variance of the

average values per neighbourhood and the total variance in the city. The

centile gap index is de�ned as

(57) CGI = 1− 1

4n

∑
i

∣∣∣Pi − Pmedi

∣∣∣ ,
where Pi is the percentile of household i in the city's distribution, and Pmedi

is the percentile of the median household of the neighbourhood to which

household i belongs in the city's distribution. The main advantage of the

CGI index is that is does not require the full distribution of the variable, but

only the distribution by percentile (or a broader unit). Since we have the

full distribution for our variables, we will not compute the CGI index.

In order to take into account the variance inside each neighbourhood

rather than only the average value, Reardon et al. (2006) have added a

layer of complexity to the NSI index. De�ne �rst a segregation measure S
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comparing inter-neighbourhood variation and total variation by

(58) S(v) =
N∑
k=1

nk
nv

(v − vk),

where the variable v is the chosen variation function, and vk is its value

inside neighbourhood k. Depending on the choice of a variation function,

the index takes di�erent names. The Ordinal Information Theory Index

(OITI) and Ordinal Variation Ratio Index (OVRI) are de�ned respectively

for the following variation functions v1 and v2

v1 =
1

K

K∑
i=1

−[ci log(ci) + (1− ci) log(1− ci)];(59)

v2 =
1

K

K∑
i=1

4ci(1− ci),(60)

where K is the number of ordinal categories considered and ci is the cu-

mulative proportion of values inside a sample (here, either a singleton or a

neighbourhood) of category i or below. Other possibilities that we will not

consider here include the Ordinal Square Foot Index (OSFI)

(61) v3 =
1

K

K∑
i=1

2
√
ci(1− ci)

and Ordinal Absolute Di�erence Index

(62) v4 =
1

K

K∑
i=1

1− |2ci − 1| .

All the indicators presented in this section return a value within [0, 1].

2. Tables and analyses

We present �rst a comparison between multifractal analysis and classical

indices on Kyoto land prices and its model. This comparison will establish

that multifractal analysis can provide more coherent results across situations,

in particular since its results are not changed by modifying the de�nition of

administrative boundaries. The second section is devoted to the analysis of

income distributions. Income is the classical variable associated to inequality.

It will show that multifractal analysis is in accordance with the a-spatial

inequality indicators. More importantly, it will reveal multifractality as a

potent tool to assess the exposure and clustering dimensions of segregation,

which is usually a prerogative of categorical segregation analysis. Finally

the third section will use the house transactions in London and New York to
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critically compare multifractal analysis and a-spatial inequality indicators in

a situation of crisis.

2.1. Land prices in Kyoto (and models). For the practical compu-

tation of the segregation measures in this section, Kyoto has been divided

into 100 arti�cial square neighbourhoods of same size.

The results for 1912 Kyoto are shown in table V.1 for the full residential

land price distribution (Tot.), for a partial price distribution (Part.) that

excludes a few outstandingly expensive lots (such as the Imperial palace), as

well as for the uniform (Unif.), truncated normal (TN) and Pareto (Pareto)

price distributions mapped over the true spatial distribution. The RD, Gini,

Theil and NSI coe�cients concord with multifractal analysis (�gure IV.20)

and indicate similar values between the partial and Pareto distributions on

the one side, and between the truncated normal and uniform distribution

on the other side. Also in accordance with the multifractal analysis, the

RD and Gini coe�cients indicate more distributional variety for the partial

and Pareto distributions than for the uniform and truncated normal ones.

This translates into higher levels of spatial segregation for the truncated

normal and uniform distributions, which is coherent with the values of the

NSI coe�cient. It is noteworthy that the NSI coe�cient is made irrelevant

for the full price distribution. Indeed, its de�nition o�ers no counter to the

Imperial palace making all other lots negligible compared to it. In contrast,

multifractal analysis is more resilient to unique outstanding value, which can

only add to the total variety. Finally, by construction, the OITI and OVRI

indicate no di�erence between all price models.

Table V.1. Classical inequality measures for di�erent
price distributions based on 1912 Kyoto.

Indicator Tot. Part. Price:Unif. Price:TN Price:Pareto

RD 0.998 0.904 0.498 0.402 0.905
Gini 0.666 0.606 0.332 0.281 0.610
Theil 1.833 0.786 0.192 0.133 0.734
NSI 0.033 0.234 0.500 0.502 0.338
OITI 0.147 0.147 0.147 0.147 0.147
OVRI 0.166 0.165 0.166 0.166 0.166

Another set of results is presented in Table V.2. The partial 1912 distri-

bution has been mapped over the uniform spatial distribution (Unif.), over

one centre and �ve centres polycentric models (C1A4 and C5A1B3), and

over one seed and three seeds DLA models (DLA1 and DLA3). None of the

indicators show segregation for the uniform distribution, which is expected.
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OITI and OVRI failed to distinguish between C1A4, DLA1 and DLA3 mod-

els, and NSI between C1A4 and DLA1 models. The C5A1B3 model shows

signi�cantly less segregation than the C1A4 model because it is made roughly

of 5 copies of the same concentric distribution, even though the repartition

would feel identical from an inhabitant perspective. This shows that these

measures are not completely free from the modi�able areal unit problem

(MAUP), contrary to the multifractal analysis.

Table V.2. Classical inequality measures for di�erent
space distributions based on 1912 Kyoto.

Indicator Part. Space:Unif. C1A4 C5A1B3 DLA1 DLA3

NSI 0.234 0.043 0.530 0.396 0.451 0.241
OITI 0.147 0.004 0.480 0.170 0.488 0.451
OVRI 0.165 0.002 0.442 0.155 0.511 0.476

The results for 2012 Kyoto are shown in Table V.3 for the entire dataset

(Tot.), for the part of the dataset that corresponds to the extent of the

1912 city (Part.), for a shu�ing of the full dataset (Shu�ed), and for the

uniform (Price: Unif.), truncated normal (Price: TN), and Pareto (Price:

Par.) distributions mapped over the real city. The RD, Gini and Theil

coe�cients are by construction invariant through price shu�ing. Overall, the

same decrease of inhomogeneity between 1912 and 2012 is picked up by all

coe�cients, especially the spatial ones (NSI, OITI, OVRI). Contrary to the

multifractal analysis, the shu�ed distribution appears more homogeneous

than the real distribution, which is true at the broader scale used to compute

the NSI, OITI and OVRI coe�cients, but not at the micro-scale used for

multifractal analysis. Also contrary to the multifractal analysis, the partial

distribution is slightly more unequal than the total one. This is due to the

property of multifractal analysis that the spectrum of the total measure must

be wider than the spectrum of a part of it. In a sense, multifractality �adds�

all the variety in the measure whereas the classical indicators are �rescaled�

inside each subset. Finally, the ranking between price distributions is similar

to the one found in �gure IV.23.

2.2. Income distributions. The results when the inequality and seg-

regation measures are applied to our three income distributions are shown

in table V.4. To make the variables coherent with the multifractal analysis,

we have kept the same de�nitions: mean income for London and Manhat-

tan, and median income multiplied by population count for Paris. Several

scales were chosen for the segregation measures: a common arti�cial sub-

division into 100 neighbourhoods, a common arti�cial subdivision into 2500
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Table V.3. Classical inequality measures for di�erent
space distributions based on 2012 Kyoto.

Indicator Tot. Part. Shu�ed Price:Unif. Price:TN Price:Par.

RD 0.701 0.768 0.701 0.498 0.282 0.991
Gini 0.479 0.520 0.479 0.332 0.199 0.661
Theil 0.400 0.479 0.400 0.192 0.067 1.02
NSI 0.267 0.376 0.044 0.251 0.260 0.203
OITI 0.041 0.074 0.002 0.041 0.041 0.041
OVRI 0.043 0.079 0.002 0.043 0.043 0.043

neighbourhoods and speci�c subdivisions according to greater administrative

areal units (the 14 Communal Districts (CD) and 140 Census Blocks (CB)

for New York, the 33 Local Authorithy Districts (LAD), more commonly

known as Boroughs, for London, and the 248 Communes for Paris for which

data was available).

Table V.4. Classical inequality measures for the in-
come distributions in Manhattan (2010), London
(2013) and Paris (2014). The Theil index is given in mil-
lions. NY refers to New York, L to London and P to paris.
The number or code following the letter indicates which scale
the results refer to.

Indicator NYCD NY100 NYCB NY2500 LLAD

RD 0.696 0.696 0.696 0.696 0.211
Gini 0.479 0.479 0.479 0.479 0.149
Theil (M) 113 113 113 113 1617
NSI 0.789 0.659 0.407 0.896 0.585
OITI 0.468 0.212 0.107 0.618 0.200
OVRI 0.481 0.228 0.113 0.607 0.218

Indicator L100 L2500 P100 PCom. P2500

RD 0.211 0.211 0.416 0.416 0.416
Gini 0.149 0.149 0.302 0.302 0.302
Theil (M) 1617 1617 66.5 66.5 66.5
NSI 0.631 0.831 0.404 0.582 0.740
OITI 0.167 0.558 0.116 0.235 0.437
OVRI 0.184 0.549 0.127 0.244 0.431

The inequality measures rank the cities in the same order as the spectra

of �gure IV.28. The segregation measures return very di�erent values de-

pending on the chosen scale. The three cities are ranked in the same order

for �xed scales, however the broadest scale implies low segregation every-

where and almost equal segregation levels in London and New York, while



2. TABLES AND ANALYSES 119

the �nest scale implies distinct but close segregation levels in all three cities.

These indices only provide a global estimate of segregation and can only be

taken into account for a speci�c scale. Multifractal spectra are unchanged by

modi�cations of the boundary de�nitions. As a matter of fact, Semecurbe

et al. (2016) propose a method to use multifractality to detect and quantify

the MAUP for measures based on population densities.

It is di�cult to interpret them in relation with the �ve dimensions of

segregation identi�ed by Massey and Denton (1988). Recall that they were

• Evenness is de�ned as the �di�erential distribution of two social

groups among areal units in a city�;

• Exposure is the �degree of potential contact, or possibility of in-

teraction, between minority and majority group members within

geographic areas of the city�;

• Concentration is the �relative amount of physical space occupied

by a minority group in the urban environment�;

• Centralisation is the the �degree to which a group is spatially

located near the centre�;

• Clustering is the �extent to which areal units/minority adjoin one

another�.

Also, refer to �gure I.1 for an illustration.

Concentration and centralisation are methodologically ignored by mul-

tifractal analysis. Indeed, an uniformly rich neighbourhood is indistinguish-

able form an uniformly poor neighbourhood as both case will correspond to

α = 2. It is therefore impossible to count directly the amount of space occu-

pied by a speci�c income category, and it is a fortiori impossible to know if

this space is located near the centre or not. Evenness, for the same reason,

is taken into account locally rather than globally. However, the D(1) value

of the generalized dimension is based on the information dimension and is

generally interpreted as a measure of the density evenness in the data. This

dimension can be identi�ed on the spectrum at the point where it touches

the identity line.

Information about exposure and clustering can be extracted from the

spectrum. Exposure is best represented by the extremities of the spectrum,

since they correspond to isolated elements surrounded by homogeneous ele-

ments (for example an exceptionally rich individual near the left extremity,

and exceptionally poor near the right extremity). The steeper the part of the

curve is, the less exposure exists. Clustering is best represented by the width

and roundness of the top spectrum. A very narrow spectrum indicates that

almost all neighbourhoods are locally homogeneous, which is exactly cluster-

ing. These features are well visible in �gure V.1 where the methodology is
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applied to the two examples of �gure I.1 representing clustering and low ex-

posure1. As an example, a right tilted spectrum, for example, indicates that

the rich individuals tend to cluster together while the poor individuals are

more frequently found in heterogeneous locations. According to �gure IV.28,

this is the case for Paris and even more clearly for New York.
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Figure V.1. Multifractal analysis of low exposure and
clustering examples from chapter I. The spectra result
from the examples of �gure I.1. The increase in roundness
of the top of the curve for clustering and in steepness of the
extremities for low exposure are well visible.

Note that exposure is not necessarily reciprocal. Indeed, it is de�ned as

the �degree of potential contact, or possibility of interaction�. Imagine for

example that a neighbourhood contains only white individuals, except for

exactly one black individual. Then, the probability that any given white

individual would encounter a black individual while walking through the

neighbourhood is extremely low. In contrast, every single person encountered

by the black individual is white. In this case, the black population is exposed

to the white population, but the white population is not exposed to the

black population. This observation is by nature true in every case where

the size of the minority group is extremely small compared to the size of

the majority group. However, if the size of the minority group becomes

large compared to the number of neighbourhoods, then, by construction,

1The fact that the spectra are very narrow and incomplete is due to the fact that the
datasets are not multifractal per se, however the �gure clearly shows that the spectra
evolve in the way we expect when the exposure is decreased or when the clustering is
increased.
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members of the minority group that are isolated inside their neighbourhoods

are no longer representative of their own group. In fact, one cannot say

that an hypothetical entire black population is exposed to an hypothetical

white population because a few of its individual happen to live isolated in

fully white neighbourhoods. In our case, the rich or poor individuals in

neighbourhoods for which α remains close to 2 are indeed exposed, however

their number are (mathematically) negligible compared to the number of

individuals of the same category living in neighbourhoods for which α is

further away from 2. For this reason, exposure is better represented at the

extremities2.

In the end, our spectra o�er a much more precise characterization of

segregation than the global indices. They imply that in New York it is

common to have poor individuals living somewhat isolated and being very

exposed to rich individuals, while rich individuals cluster together and are

rarely exposed to poverty. This is also true, but to a signi�cantly lesser

extent in Paris. Meanwhile, in London the situation is more equilibrated.

The narrow spectrum indicates that the neighbourhoods are more even (in

the sense of homogeneity), however the symmetrical higher portion of the

spectrum suggests that the situation is relatively balanced between the poor

and the rich. This proves that multifractal analysis can adapt the notions of

exposure and clustering, which are normally limited to categorical variables,

to a continuous framework using an ordinal variable.

2.3. Housing transactions in New York and London. The results

by year for the inequality indicators applied to the transactions occurring in

New York between 2003 and 2015 are shown in table V.5. The segregation

indices presented no signi�cant di�erences and are subject to the scale issues

identi�ed above. They are therefore not reported here.

The mean and standard deviations of the RD, Gini and Theil coe�cients

are respectively 1.143, 0.771 and 11488k, and 0.123, 0.051, and 4327k. We

highlight the di�erences to the mean in �gure V.2 to visualize if these indica-

tors picked up the �nancial crisis. As a matter of fact, they did in the same

2An analogy can be drawn with the property stating that the set of accumulation points
of any series de�ned on a countably compact space is non-empty. Denote u the series and
K the space. By de�nition, any covering of K by open sets contains a �nite covering of K.
Since u has an in�nite number of elements, at least one of the open sets of K must contain
an in�nite number of elements of u. This is true at any scale, which concludes the proof
of the property. Heuristically, the series u is concentrated around its accumulation points,
and any open set not containing an accumulation point can be ignored if one wants to
characterize the topological structure of u. Our case is very similar: multifractal analysis
infers the measure's behaviour at an in�nitesimally small scale and any neighbourhood
that does not contain a sizeable �peak� (our equivalent of an accumulation point) can be
ignored to characterize the overall repartition of the population.
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Table V.5. Classical inequality measures applied to
transactions in New York from 2003 to 2015. The
Theil index is given in thousands.

Indicator 2003 2004 2005 2006 2007 2008 2009

RD 0.971 0.962 0.974 1.089 1.219 1.135 1.052
Gini 0.695 0.691 0.697 0.749 0.800 0.777 0.737
Theil (k) 4965 6714 8692 12202 15179 10276 6775

Indicator 2010 2011 2012 2013 2014 2015

RD 1.151 1.223 1.256 1.236 1.291 1.297
Gini 0.786 0.808 0.818 0.808 0.826 0.827
Theil (k) 9154 11570 12756 14022 17655 19373

relatively limited way as the multifractal analysis in �gure IV.26 (the plot

ampli�es the di�erences). The Theil coe�cient performs slightly worse than

the other coe�cients since it did not identify the small variations around

2004 and 2013.
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Figure V.2. Di�erence to the mean of the RD, Gini
and Theil coe�cients applied to the transactions in
New York from 2003 to 2015. Note that the left axis of
the plot is for the RD and Gini coe�cients, while the right
axis is for the Theil coe�cient.

A similar table is created for the transactions in London between 1995

and 2016, see table V.6.

As before, we also plot the di�erence to the mean in �gure V.3. The

Theil index indicates a steady increase and does not identify the 2008 crisis,
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Table V.6. Classical inequality measures applied to
transactions in London from 1995 to 2016. Note that
the Theil index is given in thousands.

Indicator 1995 1996 1997 1998 1999 2000 2001 2002

RD 0.536 0.551 0.564 0.561 0.550 0.555 0.518 0.483
Gini 0.372 0.381 0.390 0.389 0.382 0.386 0.362 0.340
Theil (k) 1149 1249 1437 1638 1943 2352 2562 2939

Indicator 2003 2004 2005 2006 2007 2008 2009 2010

RD 0.439 0.441 0.452 0.474 0.489 0.515 0.539 0.559
Gini 0.310 0.308 0.314 0.328 0.338 0.354 0.370 0.384
Theil (k) 3168 3487 3713 4076 4595 4736 4747 5402

Indicator 2011 2012 2013 2014 2015 2016

RD 0.577 0.586 0.600 0.592 0.534 0.509
Gini 0.396 0.402 0.411 0.408 0.372 0.356
Theil (k) 5597 5845 6368 7112 7368 7942

while the RD and Gini index are particularly close and suddenly decrease

during the crisis. The mean and standard deviations for the RD, Gini and

Theil coe�cients are respectively 0.528, 0.366 and 4065k, and 0.048, 0.031

and 2075k. These all indicate less inequality in London than in New York,

which is coherent with the spectra.

The classical indicators are more e�cient than multifractality to charac-

terize the evolution of inequality around the 2008 crisis. In fact, the curves

in �gures V.2 and V.3 follow a similar horizontal �Z� shape, however the

crisis is interestingly located in the decrease part of the shape for New York,

while it is located in the second increase for London. This may be due to the

crisis producing a particularly pronounced deterring e�ect in New York for

the highest investors (as can be seen in �gure IV.6), temporarily narrowing

the spread of the transaction prices distribution. In comparison, although

the 2008 curves stand out visually in �gures IV.26 and IV.25, it is a result

of a mix of low minimum α, maximum α and maximum f(α), while no sin-

gle value characterizes e�ciently the crisis period. However, a decrease in

inequality after 2013 in London as evidenced by �gure V.3 should not exist

in view of �gure IV.3. This is clearly due to the large increase in maximum

price paid making other transactions look equally cheap compared to it. We

can relate this issue to the outstandingly expensive imperial palace in Kyoto

having the same consequences as evidenced in the previous section. It is a

major �aw of these indices.
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Figure V.3. Di�erence to the mean of the RD, Gini
and Theil coe�cients applied to the transactions in
London from 1995 to 2016. Note that the left axis of the
plot is for the RD and Gini coe�cients, while the right axis
is for the Theil coe�cient.



Further considerations and conclusions

One of the limits when creating segregation measures for ordinal vari-

ables is computational performance. For example, exposure and clustering

may be easy to code for a few (ideally two) categories, but become di�cult to

adapt in the case of a continuous ordinal variable. One strategy could be to

discretise the variable into many categories and use a categorical algorithm,

however this is likely to prove di�cult for the computer. As a matter of fact,

the operation of sampling the ordinal variable is added to the operation of

sampling the two natural spatial dimensions. Even the global measures such

as the NSI, CGI, OITI and OVRI may require intensive computations if cus-

tom neighbourhoods are created and the performance declines steeply when

the scale is decreased. In contrast, the moment strategy in the multifractal

methodology ensures that complex operations inside each neighbourhood are

never required. The process remains manageable at all scales.

Chapter V has proved that multifractal analysis is not sensitive to the

modi�able areal unit problem contrary to the global segregation measures.

Section 2.1 in particular shows that it can yield more coherent and resilient

results. Reardon and O'Sullivan (2004); Reardon et al. (2006) additionally

suggest that the measure should be insensitive to order preserving change

in the distribution. Sections 2.1 and 2.2 of chapter IV demonstrate that the

multifractal spectrum is largely dominated by the spatial repartition of the

variable (as identi�ed in �gure IV.18, IV.20 and IV.23). However, we argue

that its ability to pick up di�erences in the value distribution of the variable

when appropriate, such as when the distribution is randomized (�gures IV.20

and IV.23), is an advantage.

It was also required that the measure would have �scale interpretability�,

meaning that it reaches 0 when group proportions are uniform and the max-

imum value only when there is no proximity between any two members of

each group. Instead, our measure reaches its maximum value (the fractal

dimension of its support) when the spatial distribution is uniform, and its

minimum value (0) when groups are isolated. This situation is equivalent, up

to an easy inversion. Other criteria that were devised for multi-categorical

segregation, but that can have an interpretation for ordinal segregation are

brie�y discussed in relation to our method in appendix B. In conclusion,
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the multifractal approach fares well against the generally agreed criteria in

the �eld, while o�ering a computationally e�cient improvement over clas-

sical measures, particularly since it has an important and unique capacity

to quantify the exposure and clustering dimensions of segregation, even for

ordinal variables, as identi�ed in chapter V.

This ful�ls our �rst and primary goal, which was to improve the charac-

terisation of the spatial patterns that emerge from inequality over the current

existing methods. We also aimed at consolidating the nascent literature that

suggests that the multifractal framework is well adapted to study cities (and

may be more truthful to reality than monofractal analysis). We have proved

in chapter IV that cities often do present the scaling properties that make the

multifractal framework relevant. Indeed, we have identi�ed particularly con-

vincing multifractal patterns for real estate measures in several cities spread

across the globe: London, Paris, New York and Kyoto. We have also shown

that income and energy consumption are good candidates for multifractal

analysis. However, all measures are not suitable, as section 3.1 of chapter

IV has illustrated for the diversity of land use measure.

We now recall the main practical results of chapters IV and V. Sections

2.1 and 2.2 of chapter IV have enlightened a decrease in multifractality with

modernisation that can be understood as an arguably positive reduction of

inequality, but also as a negative loss of diversity that can imply situations

where all properties become una�ordable. These two sections have also pre-

sented convincing similarities in the independent evolution of the spatial

repartition of real estate measures across three di�erent continents during

the 20th century. Section 3 of chapter IV has revealed discrepancies be-

tween the spectra of income and the spectra of the other measures. Finally,

Section 2.2 of chapter IV, complemented by section 2.2 of chapter V, led

to an observation that in New York the rich tend to live clustered and iso-

lated from the poor, contrary to London which presents a di�erent pro�le

composed of clustered, but balanced in terms of economic class exposure,

neighbourhoods. As a matter of fact, there has been an active strategy to

orient London's recent development in that direction. More than just observ-

ing these situations, multifractal analysis has allowed to obtain a detailed

quanti�cation containing a full range of values.

Outside from the academic analysis of current and past situations, the

fact that the information contained inside the spectra is delivered over this

range of values (rather than through a unique global parameter) makes it

particularly useful for practical urban planning. We can not only observe if

inequality is evolving through time or space, but we can also observe how

it is evolving and observe which end of the distribution is most a�ected by
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the evolution. Ideally, we would want to go further and be able to predict

how a development scenario will impact inequality before it is actually im-

plemented. A natural extension to this thesis would therefore be to couple

the methodology with urban modelling tools. We make a step in that direc-

tion in appendix A where we present an agent-based model that emphasises

the role of economic segregation in the process of choosing a domestic prop-

erty to buy. Contrary to other locational models that are oriented towards

relating the population distribution to economic e�ciency, we focus on build-

ing a model that correctly represents the evolution of economic segregation

following a new urban development.

Another natural extension of this work could consist in �nding other ap-

plications to the identi�ed multifractal urban patterns. One could think for

example of testing if industrial energy consumption measures are multifrac-

tal, and if the spectrum can be associated with economic e�ciency.

In conclusion, we have devised a new computationally e�cient method-

ology to study the spatial patterns emerging from inequality in the urban

environment that solves many of the issues usually encountered in this �eld.

It provides richer insights due to its results being presented as a continuous

spectrum instead of one global parameter. We have taken particular care

to develop an interpretative framework for our results focused on studying

inequality and have presented the analysis in a way that aims at emphasiz-

ing the advantages of the multifractal methodology for comparing diverse

situations and their evolutions through time. This is done to invite planners

and policy makers to incorporate the impact on inequality induced by their

future projects.
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APPENDIX A

An agent-based model to test the impact on

inequality of future urban development planning

We de�ne an agent-based representing people relocating inside a city

according to the purchasing power granted by their income and their prefer-

ences in terms of the economic composition of their neighbourhoods, where

neighbourhood is de�ned by accessibility rather than physical proximity.

This model can be used (or can be added to an existing model) to test the

impact on inequality of future urban development planning scenarios. Its

main originality lies in the strong integration of social considerations in the

agents' locational choices. It is aimed at producing a correct economic segre-

gation output, rather than at identifying the dynamics that favour economic

productivity. We �rst present a brief overview of modelling in urban science

and justify our approach within this framework. We then detail the con-

struction of our model and de�ne a basic autonomous system that can be

used as a null model.

1. Models in Urban Science

A city is more than a physical space as it is also the support of intensive

human activity. There are several ways of representing the space-activity

pair (Batty, 2013). If the emphasis is on interactions between people or

between activity sectors and if the friction of distance is the only required

spatial element, then an immaterial network representation and its associ-

ated tools are ideal. When a network is inherently spatial, such as a street

network, space syntax o�ers an extensive analysis method (Hillier and Han-

son, 1984). However, for our purpose, we are required to link immaterial

interactions dynamics with their induced spatial patterning. We therefore

turn our attention to another archetype of models: the land use-interaction

models. They have evolved from aggregative static systems in the �fties to

dynamic systems that take into account micro-scale interactions nowadays.

According to Batty (2008a, 2016), this transition is explained by the progress

in computational power that allows handling bigger and more disaggregated

systems, and by the role of policy making that drove the attention towards

testing the dynamic impact of public investments on cities.
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To successfully implement such a model, one has to de�ne a system and

choose a way of iterating it through time. To that end, the methodology

has settled around three main basic iteration principles that can be further

complexi�ed and combined (Batty, 2007). The cellular automata (CA) ap-

proach uses a static grid whose cells' state at time tk is determined by the

states of their neighbouring cells at time tk−1 (Engelen et al., 1995; White

et al., 1997; Batty, 1997). The agent-based model (ABM) approach relies

on agents that can move freely through the space and whose characteristics

are modi�ed by their interactions with other agents and with the environ-

ment after each movement iteration (Batty, 2005; Heppenstall, 2012). A

third, more aggregated, approach is based on the gravity interaction equa-

tion (Wilson, 1971). Flows between di�erent zones of a city are assumed to

depend proportionally with some characteristics of the origin and of the des-

tination zones and inversely proportionally with the distance separating said

zones. Several inter-dependent interaction equations can be looped together

allowing the system starts evolving through time. This process is the basis

of the well-known land-use transport interaction (LUTI) model (Wegener,

2014).

Although Wegener (2011) warns that excessively small scale should not

become harmful to the model's usefulness, we are more interested in com-

pletely disaggregated models, since multifractality identi�es patterns from

the characteristics of the system at an in�nitesimal scale. Cellular automata

appears to be a reasonable approach to represent the local evolutions of

house prices due to gentri�cation or pauperisation. It has been shown in

particular that the fractal nature of cities can be recovered from this type

of growth processes (White and Engelen, 1993, 1994; Batty and Longley,

2014). Contrary to the price patterning inside the city which is mostly sta-

ble, or at least controlled, the income distribution is best described through

agent-based modelling. Income is carried by agents who make decisions as

to where they want to live, creating the actual income spatial distribution.

Agents decisions are usually modelled through location theory (McDon-

ald and McMillen, 2011; Wegener, 2013; Delloye, 2018). In that con�gura-

tion, it is assumed that agents try minimize a utility function taking into

account rent price and travel cost. However, since we are only interested in

the spatial distribution of inequality, we can consider two agents sharing the

same income as interchangeable, independently of their source of income.

As a consequence, we do not need to take into account where speci�c agent

would chose to locate in relation with their sector of activity. We need in-

stead to take into account how agents belonging to speci�c social categories

would choose to locate in relation with their neighbours' social categories.
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Interestingly, Ibraimovic and Hess (2018) have recently made a strong case

that social interactions should not be ignored in location models as it is too

often the case.

Some successful modelling platforms have already been implemented,

such as the well known UrbanSim (Waddell, 2002; Waddell et al., 2003),

which includes real estate location behaviour modelling (Waddell, 2000),

and more recently SimMobility (Adnan et al., 2016), which can be applied

to add the role of accessibility into microsimulation of real estate dynamics

(Zhu et al., 2018). Mustafa (2018) in particular has created a rich integrated

cellular automata and agent-based model to simulate future urbanization.

However, we want to create a rather simple environment where we can fully

control both the real estate market and accessibility, and, more importantly,

that emphasizes the role of social interactions in the decision making pro-

cesses of agents. We therefore choose to test our policy scenarios on our

own ad hoc model based on cellular automata and agent-based modelling

principles. We follow Wegener (2011) who argues that models should be

multi-level, and integrate space, time and policies.

A question remains about de�ning the time scale for our models. It

has been argued that cities are systems that remain far from equilibrium

(Pumain, 2017; Batty, 2017). The necessity to translate this observation

in urban modelling has been argued by Jin and Wegener (2013); Simmonds

et al. (2013). The way we intend to tackle this issue is by creating an

autonomous model that represent perpetual movement inside a city. This

model is used as a null model representing the non-equilibrium state of the

city. Scenarios are run for a few decades for short-range scenarios and for

a few centuries for long-range scenarios until the city stabilizes back to its

regular perpetual movement state.

2. Model construction: autonomous null model

We now implement an autonomous null model that translates the �nor-

mal� movements inside the city. This model is an hybrid between CA and

ABM. It is composed of a grid of real estate prices, a transport network and a

street network de�ning the topology (i.e. the notion of neighbourhood), and

agents each possessing an income and a preferential accommodation choosing

behaviour. Each year, a number of agents leave the system (either by dying

or by moving elsewhere), and a number of agents arrive into the system,

inducing movements inside the city from the new entrants and occasionally

from agents no longer satis�ed by their changing environment.

Since the aim is to study the spatial distribution of income, two agents

with the same salary are interchangeable in this model. In practice, we create
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a bigger �reservoir� of agents and we draw from it the agents that get involved

with buying houses (hence excluding the renting market). In particular,

migration is translated by a change to the general pro�le of the population

reservoir, rather than by an exchange of uniquely identi�ed agents. Similarly,

the global distribution is stable enough that we do not have to model sharp

changes in income resulting for example from climbing the social ladder or

from divorce at an individual scale. The rules governing the evolution of the

autonomous model are �exible and its core functioning is simple enough to

easily support the addition of extra layers of parameters. We �nally use data

from London to test the model.

2.1. The city. It is modelled by a grid whose unit represents a distance

of about 100 meters. Each cell has a distribution of prices and availability

attached to it. In addition, there exists a street network and a transport

network linking cells to other cells.

2.2. Topology. For each cell in the grid, two types of neighbourhoods

are de�ned. The true neighbourhood consists of all the cells within a 7

minutes walking distance (or 6 cells) from the original cell through the street

network. The extended neighbourhood gathers all the cells within a distance

from the original cell corresponding to 25 minutes through the transport

network, as well as the cells within a 5 minutes walking distance from these

cells. Note that the true neighbourhood is not included in the extended one,

so that the two de�nitions are separated.

2.3. Agents. An agent x is characterized by a set of parameters Ax =

{a0, I0, t, g, r, Ts, Tr, Td, B}, where a0 is their age at time t when they �rst

interact with the system, I0 is the yearly income they will earn when they

reach age Ts and start working, g is the rate at which their salary increases

until they reach retirement at age Tr, at which point they will earn r×I0 until
they eventually die at age Td, and B is their location choosing behaviour (see

below). In practice, we set g, r and Tr globally, while Ts and Td depend only

on I0. The subset {a0, I0, t0, B} is therefore enough to fully characterize an

agent.

Since the data available to us is more precise for individuals than for

households, we add a step consisting in merging up to three agents into

�household� agents according to household composition data. This is done

by summing the I0 of several agents sharing the same a0
1, while taking the

average of Ts and Td, and choosing a B at random.

1Preferentially to de�ning complex age compatibility rules and then compute the average
age of the household
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2.4. Income function. It is de�ned for an agent of age a with param-

eters Ax = {a0, I0, t, g, r, Ts, Tr, Td, B} by

(63) I(a) =


0 if a < Ts

I0 ∗ g(a−Ts) if Ts ≤ a ≤ Tr
I0 ∗ r if Tr < a ≤ Td

.

In simpler terms, if t = tk, then the agent's income at time tn will be

I(a0 + n− k).

2.5. Behaviour. An agent has one of the following preferences regard-

ing the composition of their true neighbourhood when they choose a location

to move in.

(SQ) Status-quo: the agent wants to live in a cell whose true neighbour-

hood are similar (income wise) to their current one;

(MS) Maximum similarity : the agent wants to live in a cell whose true

neighbourhood is in majority of the same income level as their own;

(KH) King of the hill : the agent wants to live in a place whose true

neighbourhood is poorer on average than they are;

(PB) Prince of Bel-Air : the agent wants to live in a place whose true

neighbourhood is richer on average than they are;

(RR) Rooted : the agent will not move no matter what happens in the

neighbourhood.

An agent has one of the following preferences regarding the composition of

their extended neighbourhood when they choose a location to move in.

(sq) Status-quo: the agent wants to live in a cell whose extended neigh-

bourhood are similar (income wise) to their current one;

(mo) Maximum opportunity : the agent wants to live in a cell whose ex-

tended neighbourhood maximizes income;

(np) No preference.

Every agent is assigned a random combination of one true neighbourhood

and one extended neighbourhood behaviour. If an exogenous agent draws

SQ or sq, then the income of their current (initial) neighbourhood is chosen

randomly.

In practice, denoting the sorted income distributions

• ix for agent x (singleton);

• Ixt inside the initial true neighbourhood of agent x;

• Ixe inside the initial extended neighbourhood of agent x;

• Ikt inside the true neighbourhood of cell k;

• Ike inside the extended neighbourhood of cell k,
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then, the agent tries to optimize the following functionals:

SQ = arg min
k

{∣∣∣mean(Ixt )−mean(Ikt )
∣∣∣}(64)

MS = arg min
k

{∣∣∣ix −mean(Ikt )
∣∣∣}(65)

KH = 1
(
ix > mean(Ikt )

)
(66)

PB = 1
(
ix < mean(Ikt )

)
(67)

sq = arg min
k

{∣∣∣mean(Ixe )−mean(Ike )
∣∣∣}(68)

mo = arg max
k

{
mean(Ike )

}
(69)

where 1(·) is equal to 1 if the condition is veri�ed, 0 otherwise (the cell is

chosen randomly among all the results equal to 1). Rich agents have priority

for choosing their cells.

The behaviours can alternatively be de�ned in the following more precise,

but more computationally intensive, way.:

SQ = arg min
k

{∑
p

∣∣∣Ixt [p]− Ikt [p]
∣∣∣}(70)

MS = arg min
k

{∑
p

∣∣∣ix − Ikt [p]
∣∣∣}(71)

MS = arg max
k

{∑
p

1
(
Ikt [p]− ε < ix < Ikt [p] + ε

)}
(72)

KH = arg max
k

{∑
p

1
(
ix > Ikt [p]

)}
(73)

PB = arg max
k

{∑
p

1
(
ix < Ikt [p]

)}
(74)

sq = arg min
k

{∑
p

∣∣∣Ixe [p]− Ike [p]
∣∣∣}(75)

Alternatively, heuristic rules such as MS requires that more than half of

the cells of the neighbourhood lie within ix ± ε, or KH requires that more

than half the cells are lower than ix can be considered.

2.6. A�ordability. Each year, a number of properties become avail-

able, as determined in the next section. A number of agents exceeding that

number make the choice of buying a property and start competing to get the

most suitable one. Each unoccupied property is given a rating based on the

agent's B (For example by normalizing the true and extended behaviours



2. MODEL CONSTRUCTION: AUTONOMOUS NULL MODEL 135

out of 100 and adding the two scores). This rating is then modi�ed by an

a�ordability index given by

(76) aff(x) =


exp(− exp((0.7(N + p)− x)/5)) if x ≤ N + p

1

1 + exp((x− 1.5(N + p))/6)
if x > N + p

,

where x is the price of the considered property, N is the usual ratio between

price paid to income for the city (for example, N = 6 · I in London), and

p is 0 if the agent comes from the reservoir, or p is the price of the vacated

property if the agent just sold his current house. In mathematical terms, the

a�ordability function is a Gompertz function on the �rst part, and a classical

logistic function on the second part. Its shape can be seen in �gure A.1.
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Figure A.1. A�ordability function. The x-axis is nor-
malized so that N + p = 100.

A freeze period lfreeze during which a property cannot be vacated (unless

death occurs) is then added to the property corresponding to the estimated

length of the mortgage:

(77) lfreeze = �oor(3 · ltv · (P − p)/I),

where ltv is the loan to value coe�cient, P is the price of the property and

p is the same as above.

2.7. Autonomous model. An initial reservoir of agents is created by

drawing the parameters Ax according to the data and by merging some

agents into households accordingly. An initial grid of property availability
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and prices is created and �lled with initial compatible agents (by construc-

tion, SQ is always a compatible behaviour).

At each time step tk:

1. A number of agents with age 0 and other parameters drawn from

the global distribution are added to the reservoir;

2. All agents whose age is greater than Td die whether they are in the

reservoir or occupying a grid cell;

3. Empty grid cells are �lled with random agents whose age is within

[Td − 35, Td − 18];

4. Agents who are too dissatis�ed with the evolution of their neigh-

bourhood vacate the cells they occupy and are added to a waiting

list;

5. A number of additional agents (set by the data) choose to vacate

the cells they occupy for reasons best known to them;

6. Empty grid cells are �lled �rst with agents on the waiting list, then

with agents from the reservoir competing according to their B and

purchase power;

7. Grid cell prices are raised/lowered depending on the average income

in the cell true neighbourhood.

The steps are ordered in a way designed to take into account the dynamic

of agents whose B is not compatible with the property they have inherited

or who wish to sell their newly inherited property to get a more expensive

one. In the fourth step, agents become dissatis�ed if at any time the average

income in the neighbourhood falls out of the interval [Ixt/e(1− q), I
x
t/e(1 + q)]

for a chosen q (unless their behaviour is RR). Finally, in step 7, if Ikt
increases or decreases by more than (1± l), then the prices carried by cell k

are increased or decreased by (1±m).

2.8. Initial data. The model was set up according to London data.

The following sources were used either directly or indirectly to evaluate the

di�erent parameters:

• Age distribution in London (Data, ONS:2017a);

• Income distribution for individuals in London (Data, HMRC:2014b);

• Income characteristics and housing tenure (Data, DWP:2012b);

• Life expectancy in England and Wales (Data, ONS:2007-11);

• Household composition (Data, ONS:2011);

• Price paid data in London (Data, HMLR:1995-16);

• Mortgage characteristics and loan to value (Data, GLA:2018,F);

This data provides the initial distribution of age (a0) and income (I0) in

the city. The initial grid of prices and availability is established according
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to the Land Registry dataset already used in chapter IV to compute the

spectra of real estate measures in London. All years between 1995 and 2016

are considered to establish the availability. Redundancy is not an issue here

since if a same property has been sold twice during that period, then it means

that the probability of it being available was twice the average. All the prices

are adjusted to the standard of 2016 according to the global in�ation in the

city. Other parameters are derived as reported in table A.1.

Table A.1. Global parameters of the model.

Model parameter Value

Yearly income rise (g) 0.8%
Pension rate (r) 68.21%
Starting age (Ts) 18 + {1 every decile}
Retirement age (Tr) 65
Life expectancy (Td) 79 + {1 very hexadecile}
Price paid to income (P ) 6 · I
Loan to value (ltv) 65%
Dissatisfaction (q) 0.5
Income measured change (l) 0.75%
Price readjustment (m) 0.05%

In addition, we found that 32% of households are composed of one in-

dividual, 53% of one family (simpli�ed in 2 incomes counted) and 15% of

more than one family (simpli�ed in 3 incomes counted). The total number

of tenured households is 1.635 Millions out of a total population of 8.825

Millions. Each year, 118000 properties are vacated in total (i.e. counting

properties vacated both at step 4 and at step 5). Finally, the distribution of

behaviours B is set according to table A.2. The birth rate in London was

found to be around 130000 birth per year.

Table A.2. Behaviour distribution.

Behaviour (B) Value

SQ 40%
MS 10%
KH 5%
PB 5%
RR 40%
sq 25%
mo 70%
np 5%
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Additional data relating to tenure by household composition, the spatial

distribution inside London of ages and income, and mortgage length can be

used as controls to ensure that the agents autonomous movements stay in

line with the real distributions.

The model was coded in Java by Dr Sarah Wise, UCL. After the initial

steps, the income distribution created by the agents behaviours when com-

peting to �ll the property grid cells produced the encouraging spectrum of

�gure A.2.
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Figure A.2. Spectrum of the income distribution pre-
dicted by our model. The real distribution and the pre-
dicted distribution are close.



APPENDIX B

Additional criteria for segregation measures

(Reardon and O'Sullivan, 2004) (partially based on James and Taeuber

(1985)) suggest that a good segregation measure should have:

(1) Location equivalence. This means that if the local environment

of two points have the same population composition, then treat-

ing them as one single environment should not change segregation.

In the case of multifractal analysis, such two local environment

will correspond to the same α value, so the α distribution will not

change. However, the corresponding f(α) may change if enough

points are removed. This criterion can be related to organizational

equivalence from James and Taeuber (1985), which states that when

units are subdivided with preserved proportions or combined, then

segregation does not change. In our case, we only have the prop-

erty that combining several units with the same spectra will result

in a unit with still the same spectrum. In addition, �gure IV.21

shows that dividing an area (New York) into several similar areas

(its boroughs) results in similar spectra.

(2) Population density invariance/Size invariance. This criteria

is equivalent to invariance through linear transformation of the vari-

able distribution, which is a well known property of multifractals.

(3) Composition invariance. It means that increasing uniformly the

proportion of one category, but not of the others should leave seg-

regation invariant. This criterion is presented as controversial, and

we stand with the opposite point of view.

(4) Transfers and exchanges. It means that it is expected that indi-

viduals moving to or exchanging their place with other individual of

an area where their category is less represented will reduce segrega-

tion. In our case, the multifractal spectrum conversely shrinks when

people move towards area where their category is over-represented.

(5) Additive spatial decomposability. It is presented as �If X spa-

tial sub-areas are aggregated into Y larger spatial areas, then a seg-

regation measure should be decomposable into a sum of within- and

between-area components.� This is a done through the σ-additivity

property when the measure is de�ned pre-multifractal analysis.

139
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(6) Additive grouping decomposability. It is presented as �If M

groups are clustered in N supergroups, then a segregation measure

should be decomposable into a sum of independent within- and

between-supergroup components.� This does not make sense in our

context, since it contradicts the continuous nature of our ordinal

variables.
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