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Rapidly renewing tissues such as the intestinal epithelium critically depend

on the activity of small-sized stem cell populations that continuously gener-

ate new progeny to replace lost and damaged cells. The complex and tightly

regulated process of intestinal homeostasis is governed by a variety of sig-

nalling pathways that balance cell proliferation and differentiation.

Accumulating evidence suggests that stem cell control and daughter cell

fate determination is largely dictated by the microenvironment. Here, we

review recent developments in the understanding of intestinal stem cell

dynamics, focusing on the roles, mechanisms and interconnectivity of

prime signalling pathways that regulate stem cell behaviour in intestinal

homeostasis. Furthermore, we discuss how mutational activation of these

signalling pathways endows colorectal cancer cells with niche-independent

growth advantages during carcinogenesis.

provided by UCL 
1. Adult stem cells are critical for tissue homeostasis
Adult tissue homeostasis strictly depends on the balanced generation of new cells

that replenish cells that are lost through natural attrition or tissue injury. This pro-

cess of tissue regeneration is fuelled by small populations of stem cells that are

defined by their unique ability to renew themselves persistently (self-renewal)

while also giving rise to the specialized cell types of the pertinent tissue (multi-

potency) [1–3]. These adult stem cells are generally referred to by their tissue of

origin (e.g. haematopoietic, neuronal or intestinal stem cells (ISCs)). Depending

on local needs, stem cells may switch their mode of cell division from symmetric

to asymmetric. Symmetric division gives rise to two identical daughter cells, both

endowed with stem cell properties. Asymmetric division produces only one stem

cell and a progenitor cell via signals from the microenvironment and unequal

segregation of proteins or RNA, which direct distinct gene expression profiles

that control the fate of the newly generated cell [4,5].

Stem cell activity is for a large part dictated externally by the microenviron-

ment (the stem cell niche) to precisely control stem cell output and meet the

homeostatic or regenerative demands of the tissue. Extracellular cues, provided

by neighbouring niche cells, locally interact with stem cells to regulate their fate

by activating specific signalling pathways. Here, we review current knowledge

on how stem cells receive and interpret extracellular signals from their niche, focus-

ing on the prototype model of ISCs, which undergo rapid self-renewal kinetics and

give rise to the multiple specialized lineages of the intestinal epithelium [6].

2. Intestinal architecture
The intestinal mucosa has evolved to absorb water and nutrients while at the

same time protecting the body from toxic contents of the gut lumen. The
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Figure 1. Architecture of the small intestine and the controlling signalling pathways. Actively cycling Lgr5-positive crypt base columnar (CBC) stem cells reside at the
bottom of the crypt intermingled with Paneth cells. The stem cells give rise to transit amplifying (TA) cells that terminally differentiate towards all epithelial lineages
of the villus. Position 4 (þ4) stem cells are mobilized upon tissue damage. Intestinal homeostasis is governed by an interconnected network of signalling pathways,
regulating the balance between proliferation and differentiation.
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continuous renewal of the gut epithelium allows cells

towards the end of their lifetime to shed off at the tip of the

villus, while newly produced and differentiated cells migrate

up and restock the epithelial barrier. This endless process is

sustained by symmetrically dividing stem cells that reside

at the crypt base (figure 1).

The intestinal epithelial lining represents one of the most

intensively self-replenishing organs; within 5 days the entire

epithelial layer is renewed [7]. The architecture of the intestine

is designed to maximize the surface for nutrient uptake and is

folded into large numbers of villi and crypts in the small intes-

tine. The colon is also folded into crypts but does not display

villi. ISCs reside at the bottom of the crypts and are able to

replenish the whole crypt–villus axis, generating all differen-

tiated cell types required for the physiological function of the

intestine (figure 1). Newly born cells first give rise to the

rapidly proliferating subset of progenitors, also known as

transit amplifying (TA) cells, that occupy the crypts and

expand the population required for epithelial turnover. They

migrate upwards while differentiating into one of the special-

ized epithelial lineages [8]. Among the differentiated cell

types, nutrient absorbing enterocytes make up the majority

of cells lining the villi. Other major lineages are secretory

cell types such as goblet cells that produce mucus to generate
a protective barrier and enteroendocrine cells that secrete var-

ious hormones that exert both local and systemic regulatory

effects. Furthermore, specialized Paneth cells escape the

upward flow and migrate downward to constitute the niche

for ISCs at the crypt base [9,10], secreting antimicrobial pep-

tides and essential factors for stem cell maintenance. Finally,

two more rare cell types are produced, comprising secretory

Tuft cells that serve as sensors for luminal contents and

initiate type 2 immune responses to helminth infections

[11–14], and M (microfold) cells that reside in specialized epi-

thelium overlying Peyer’s patches to communicate with the

gut’s immune system [15]. The continuous proliferation of

crypt cells is ultimately balanced by shedding of apoptotic

cells at the tip of the villus into the lumen (figure 1).
3. Intestinal stem cells
3.1. Plasticity of intestinal stem cells
At present, several populations of ISCs have been described

based on their markers and localization in the crypt. Among

these are the fast-cycling crypt base columnar (CBC) stem

cells that are marked by leucine-rich-repeat containing
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G-protein coupled receptor 5 (Lgr5) [1,7,16]. In addition, a

slow dividing, ‘reserve stem cell’ population was ident-

ified, also called position 4/þ4 cells or label-retaining cells

(LRCs) [16–19].

The Lrg5-positive CBC cells that divide every day are con-

sidered the driving force of intestinal tissue renewal. Lineage

tracing experiments in mice showed that all epithelial cell

types originate from the CBC cells that produced clonal rib-

bons of progeny with lifelong perseverance [1]. To date,

Lgr5 has been validated as a bona fide stem cell marker

not only in the intestine but also in the stomach pylorus

[20] and corpus [21], and hair follicle [22]. Expression profil-

ing of sorted intestinal Lgr5-positive cells provided a CBC

stem cell gene expression signature [23,24], which allowed

for further functional analysis of additional stem cell

genes, such as Achaete-scute complex homolog 2 (Ascl2) [8,25,26],

tumour necrosis factor receptor superfamily member 19 (TNFRSF19)

or Troy [27], Olfactomedin 4 (Olfm4) [28] and SPARC related
modulator calcium binding 2 (Smoc2) [23].

The pool of slow cycling reserve stem cells is considered to

comprise quiescent stem cells that are mobilized upon tissue

damage [18,19]. Several markers for these cells were identified,

including polycomb protein B lymphoma Mo-MLV insertion region
1 homolog (Bmi1) [29], telomerase reverse transcriptase (Tert) [30],

homeobox-only protein (Hopx) [31] and leucine-rich repeats and
immunoglobulin-like domains 1 (Lrig1) [32,33].

Additionally, several secretory progenitor populations

showed the ability to de-differentiate and revert to stem-like

cells to replenish the crypt upon extensive tissue damage.

This property was ascribed to LRCs [34] as well as to progeni-

tors that express the Notch ligand Delta-like 1 (Dll1) [35], and

to Paneth cells upon irradiation [36]. Furthermore, in addition

to cells of the secretory lineage, a recent study showed that

the abundant enterocyte progenitors of the absorptive lineage

can dedifferentiate and replace lost ISCs upon ablation of

Lgr5-expressing stem cells as well [37].

In conclusion, crypt cells display substantial plasticity,

employing CBC stem cells for regular tissue renewal and

reserve stem cells to act upon tissue damage. Stemness, there-

fore, appears extrinsically imposed on cells, placing niche

signals centre stage for regulating ISC function and intestinal

homeostasis.

3.2. Lgr5-positive crypt base columnar stem cells
In this review, we refer to Lgr5-positive CBCs when discussing

ISCs. Lgr5-positive CBC stem cells divide once a day, generat-

ing new CBC cells that reside at the crypt base as stem cells

[38]. Owing to the limited space in the crypt base, however,

half of the ISCs are randomly pushed out of the niche to

become committed progenitor cells, a process called ‘neutral

competition’ [38,39]. In this model, all ISCs initially carry the

same properties and therefore have a similar chance to persist

as an ISC. Real-time intravital imaging confirmed this mech-

anism in vivo [39]. However, detailed quantitative analysis of

individual clonal ISC lineages showed that ‘central cells’ at

the crypt base have an advantage over ‘border cells’ in the

upper rim of the crypt niche for long-term persistence.

Border cells were more likely to be displaced into the transit-

amplifying compartment, lose their stem cell properties and

differentiate along the crypt–villus axis [39]. The spectrum

of stem cell activity displays heterogeneity, even within the

pool of cells expressing Lgr5. These cells are probably able
to transit between states of variable competence, directed

by niche-derived signals [39].
4. Intestinal stem cell niche
What constitutes and determines the niche for ISCs? The stem

cell niche provides a nurturing and guiding environment that

sustains the self-renewing, multipotent stem cell population.

At the same time, the niche provides local cues for the gener-

ation and positioning of differentiated progeny. The ISC

niche is constituted by neighbouring Paneth cells within the

epithelial layer, and by myofibroblasts, fibroblasts, neuronal

and smooth muscle cells within the subepithelial mesench-

yme that tightly line the crypt base basal lamina and the

extracellular matrix [10,40,41] (figure 1). The close association

and direct contact of these niche cells with ISCs facilitates the

supply of essential factors for ISC maintenance and prolifer-

ation. The subepithelial mesenchyme produces various Wnts

and epidermal growth factor (EGF) [42–44]. Furthermore,

these cells provide R-spondins, potent Wnt signalling ago-

nists, and Noggin, gremlin 1/2 and chordin-like 1,

inhibitors of bone morphogenetic protein (BMP), to repress

BMP-mediated differentiation [40,42,45–47]. Recently, sube-

pithelial telocytes were demonstrated to be a vital source of

Wnt ligands, as blockage of Wnt secretion from these rare,

large cells results in impaired epithelial renewal and disrup-

tion of intestinal integrity [48,49]. Similarly, subepithelial

Gli1-positive mesenchymal cells provide a crucial source of

Wnts, as blockage of Wnt secretion from these cells also

results in stem cell loss and subsequent loss of colonic epi-

thelium integrity, which ultimately leads to epithelial death

[50]. In addition, within the epithelium, Paneth cells provide

essential growth signals, including Wnt3, EGF and Notch

ligands, described in detail below [10,42]. Interestingly, abla-

tion of Paneth cells does not result in ISC depletion in vivo,

but in vitro cultured mini-guts (intestinal organoids), however,

lack the mesenchymal component and as such fully depend

on Wnt3 production by Paneth cells for stem cell maintenance

and renewal of the epithelium [10,51]. These combined find-

ings show that both mesenchymal cells, especially telocytes

and Gli1þ cells, and Paneth cells serve as important sources

for growth factors in the control of tissue renewal.

Thus, ISCs and daughter cells are subjected to and directed

by a broad array of signals present in their niche. Polarized

gradients of these mesenchymal- and epithelial-derived

signals exist both in the crypt and also along the crypt–

villus axis (figure 1). The balance between the generation of

new cells and their functional specialization is regulated by

numerous signalling pathways, which control proper ISC

maintenance and intestinal architecture. Among these are

the Wnt/b-catenin, Notch, Hedgehog, BMP, EGF and Eph–

ephrin signalling cascades (figure 2). Below, we review these

pathways and how their interconnected circuitry governs

intestinal homeostasis.

5. Wnt signalling controls maintenance
and size of the intestinal stem cell zone

5.1. Wnt signalling
The conserved Wnt signalling pathway determines crucial

developmental processes and, importantly, controls tissue
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homeostasis in adult organisms. It has emerged as a pivotal

player in the specification and maintenance of stem cell compart-

ments in a wide array of tissues and organs. In the intestine,

Wnt signalling is the main driving force of crypt proliferation.

Wnt ligands, produced by both Paneth and surrounding

stromal cells, bind to their cognate receptors Frizzled (FZD)

and low-density lipoprotein receptor-related protein 5/6

(Lrp5/6) at the surface of adjacent stem cells. Subsequent

activation of the canonical Wnt pathway leads to the accumu-

lation and nuclear entry of the transcriptional co-activator

b-catenin to drive the expression of target genes involved in

stem cell maintenance [6,52]. Wnt-induced stabilization of

b-catenin involves the inactivation of a large multi-protein

complex composed of the scaffold proteins Axin and adeno-

matous polyposis coli (APC) as well as the kinases

glycogen synthase kinase 3b (GSK3b) and casein kinase 1

(CK1). In unstimulated cells, this destruction complex cap-

tures b-catenin and earmarks it for proteolysis through

Ser/Thr phosphorylation of its flexible N-terminus [53,54].

Recognition of phospho-b-catenin by the ubiquitin ligase

b-TrCP subsequently mediates its rapid ubiquitin-mediated

proteasomal degradation [55,56].
Binding of Wnt to the FZD and Lrp6 receptors at the cell

surface interferes with b-catenin degradation by a number of

molecular rearrangements. After formation of a trimeric

Wnt–FZD–Lrp5/6 complex, the cytoplasmic effector protein

Dishevelled (Dvl) is recruited. Next, the activated receptor

complex captures the destruction complex organiser Axin,

probably through heterodimerization of the Axin and Dvl

DIX domains [57–59]. The Axin-associated kinases GSK3b

and CK1 turn their activity to the cytoplasmic tail of Lrp6,

which, upon phosphorylation, provides a docking site for

further Axin proteins. The redistribution of Axin–kinase

complexes to the plasma membrane is considered a key

step in the inactivation of b-catenin destruction. As a conse-

quence, the pool of intracellular b-catenin increases and

migrates to the nucleus to bind the T-cell factor (TCF)

family of DNA-bound transcription factors and induces tran-

scription of Wnt target genes (figure 2) [60]. Among the

earliest target genes discovered is c-Myc, a well-known

driver of proliferation of undifferentiated cells [61]. The

Wnt target gene list has vastly expanded ever since, revealing

multiple layers of positive and negative feedback regulation

in the control of stem cell identity [23,62–65].
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5.2. Wnt signalling in the intestine
The first clues for the crucial role of Wnt in the intestine ori-

ginated from mouse genetic experiments. Neonatal mice

deleted for TCF4, one of the main downstream effectors of

Wnt, completely lack proliferative crypts, illustrating the

requirement of Wnt signalling for establishment and main-

tenance of the stem cell compartment [66]. Maintenance of

adult crypt proliferation remains dependent on Wnt signal-

ling as conditional deletion of TCF4 in adult mice resulted

in the loss of nearly all proliferating crypts, coinciding with

progressive loss of Wnt target gene expression [67]. Further-

more, conditional deletion of b-catenin as well as

overexpression of the diffusible Wnt inhibitor Dickkopf 1

(Dkk1) results in complete ablation of intestinal crypts in

the adult mouse [68–71]. Moreover, transgenic expression

of R-spondin 1 (R-Spo1), a strong Wnt agonist that acts

through the Lgr4/5–Wnt receptor complex (described in

more detail below), results in a massive hyperproliferation

of intestinal crypts [72]. On the other hand, simultaneous del-

etion of both Lgr4 and Lgr5, the receptors for R-Spo, leads to

the disappearance of crypts [73].

The fact that Wnt signalling plays a vital role in ISC main-

tenance is further illustrated by the nuclear b-catenin levels

that are highest at the crypt base and gradually decrease

along the crypt–villus axis [74,75]. Concordantly, the

expression of various Wnt ligands (Wnt3, Wnt6 and

Wnt9b) as well as their cognate receptors FZD5/7 is also

highest at the crypt base [42,43,76,77]. Wnts produced by

Paneth cells decorate the membranes of adjacent stem cells

by binding to the highly expressed FZD receptors [78].

Through the regulation of FZD turnover and cell division,

the membrane-bound reservoir of Wnts at the crypt bottom

is gradually diluted, sculpting a gradient of Wnt along the

crypt–villus axis [78]. Accordingly, Wnt target genes display

maximum expression in the crypt base and gradually

decrease moving upward along the crypt domain [40]. Inter-

estingly, Paneth cells themselves also depend on Wnt signals

[42,77,79] and require expression of the Wnt target gene Sox9
for their development and formation [80,81].

5.3. Stem cell-specific Wnt target genes
As described above, ISCs are marked by the Wnt target gene

Lgr5. Transcriptome and proteome analysis of sorted Lrg5-

positive cells unveiled multiple Wnt target genes among

the stem cell-specific gene set [23,82]. Many of these genes

have proven to be essential for stem cell maintenance and

activity, regulating both positive and negative feedback

signalling loops.

Among the ISC-specific Wnt target genes are the trans-

membrane receptor tyrosine kinase genes EphB2 and EphB3
[63]. Their expression is highly enriched on ISCs and Paneth

cells, while transcription of their repulsive ligand, ephrin-B1,

is concomitantly repressed in the crypts. Only upon exiting

the crypt do cells start to express ephrin-B1 as a result of the

decline of Wnt signals. Subsequent repulsive interactions

between EphB-positive and ephrin-B-positive cells results in

segregation of these cells, thereby controlling correct position-

ing of the cells. Indeed, EphB2/3 deficiency in mice results in a

random localization of cells, including Paneth cells, along the

crypt–villus axis. Hence, Wnt signalling controls architectural

integrity of the stem cell zone [63,83–85].
The Wnt target gene Ascl2 is expressed in a Wnt-dependent

and highly restricted fashion in ISCs [23–25,62,82,86]. Con-

ditional knockout of Ascl2 in the adult intestinal epithelium

leads to the elimination of CBC stem cells, whereas ectopic

intestinal expression of Ascl2 induces hyperproliferation

of crypts and de novo cryptogenesis in villi [62]. For this

reason, Ascl2 is suggested to be a master regulator of the

crypt stemness programme. Recent research showed that

Ascl2 cooperates with b-catenin/TCF to activate the genes

fundamental to the stem cell state. Ascl2 is activated when

cells reach a specific Wnt/R-Spo signalling threshold and,

as Ascl2 is capable of self-activation, is suggested to translate

the Wnt gradient present in the crypt into a discrete ‘on’ or

‘off’ decision for stemness [25].

Another example of a stem cell-specific Wnt target gene is

Tnfrsf19 or Troy, which is proposed to interact with Lgr5 and

to negatively regulate Wnt/R-Spo signalling. As such, Troy is

proposed to constitute a negative feedback loop to avoid over-

activation of Wnt signalling, thereby preventing subsequent

crypt enlargement and ultimately tumourigenesis [27].

In addition, the stem cell-specific and homologous Wnt

target genes Ring finger 43 (RNF43) and zinc and ring finger
3 (ZNRF3) were shown to act in a negative feedback

manner in the gut [87,88], as discussed below.

In summary, Wnt signalling constitutes the major driving

force behind homeostatic self-renewal of the crypt through

regulation of expression of critical regulatory genes.
5.4. Wnt pathway regulation by R-spondin and RNF43/
ZNRF3

R-spondins are a group of small, secreted proteins (R-Spo1–4)

that strongly potentiate Wnt/b-catenin signalling [72,89–93].

R-Spo proteins function as stem cell growth factors and can

promote tissue regeneration [72,94]. Despite their biological

significance there is no consensus on the exact mechanism

by which R-Spo increases Wnt signalling. Various membrane

proteins were proposed to act as R-Spo receptors, including

Wnt receptors FZD and Lrp6 [95,96], Kremen [97], syndecan

4 [98], Lgr4/5 [73,99,100] and membrane E3 ubiquitin ligases

RNF43/ZNRF3 [88,101–107].

To date, Lgrs are largely accepted as the primary receptors

for R-Spo. Lgrs belong to the seven-span transmembrane

receptor family and are known for their large extracellular leu-

cine-rich repeats domain that is involved in ligand binding

[108]. All four members of the R-Spo family can bind to the

leucine-rich domain of Lgr4, Lgr5 and Lgr6 [73,99]. Lgr pro-

teins have been identified as components of the Wnt

receptor complex, and R-Spo binding to Lgr is hypothesized

to stimulate the formation of higher order receptor complexes,

thereby leading to enhanced Wnt signal transduction [73].

A new hypothesis emerged with the discovery of the two

homologous genes RNF43 and ZNRF3 that display strongly

enriched expression in the ISC population [87,88]. These

genes encode for single-span transmembrane E3 ubiquitin

ligases and operate as potent negative feedback regulators

of Wnt signalling to control aberrant expansion of the

crypts. Upon genetic removal of these negative regulators

of Wnt signalling in the intestinal epithelium, mice showed

very rapid tumour formation in the intestine. RNF43 and

ZNRF3 inhibit Wnt signalling by targeting the Wnt receptors

FZD and Lrp6 at the cell surface for ubiquitin-mediated
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endocytosis and lysosomal degradation, regulating cellular

sensitivity for incoming Wnt ligands [87,88]. The underlying

mechanism of RNF43/ZNRF3-mediated Wnt receptor target-

ing remains unknown but involves the cytoplasmic effector

Dvl that was found to interact with the cytoplasmic tail of

RNF43 [109]. Another regulatory layer emerged through the

discovery that both RNF43 and ZNRF3 interact with R-Spo

[101,104,106,110–114]. In current models, binding of R-Spo

to Lgr4 recruits the RNF43/ZNRF3 receptors and induces

their membrane clearance [88,105]. R-Spo-mediated removal

of RNF43/ZNRF3 leads to stabilization of Wnt receptors at

the cell surface, strongly enhancing cellular responses to

Wnt (figure 2) [105].

A recent study demonstrates a distinct, non-redundant

cooperation between Wnt and R-Spo ligands in ISC homeo-

stasis and suggests that Wnt ligands act as priming factors

that confer basal proliferative competence to ISCs by main-

taining R-Spo receptor expression, which then drives the

further expansion of stem cells via R-Spo ligands present in

the niche [115].

In summary, the importance of Wnt signalling in collabor-

ation with R-Spo as a major driving force of crypt proliferation

is underscored by its tight regulation through multiple positive

and negative regulatory feedback loops. Both R-Spo and

RNF43/ZNRF3 represent prime examples of Wnt regulators

with key functions in intestinal homeostasis.
6. Notch signalling regulates cell fate
decisions and stemness in the crypt

The Notch signalling cascade is a highly conserved cell com-

munication pathway that directs cell fate decisions in

multicellular organisms. The mammalian Notch family com-

prises four single-span transmembrane Notch receptors

(Notch1–4) and five single-span transmembrane Delta/Ser-

rate/Lag2 (DSL) ligands (Jagged (Jag) 1 and 2, Delta-like

(Dll) 1, 3 and 4). Notch signalling is triggered via direct

cell-to-cell contact, through which the membrane-bound

ligands exposed at the juxtaposed cell membrane bind and

activate the Notch receptor. This ligand–receptor engagement

results in the initiation of several proteolytic steps that modu-

late Notch receptor activity. Ultimately, the Notch intracellular

domain (NICD) is released through g-secretase protease

activity (reviewed in [116,117]). Subsequently, NICD translo-

cates to the nucleus to drive gene expression upon binding

of the transcription factor CSL (CBF1, suppressor of hairless,

Lag-1). CSL represses transcription of target genes in unstimu-

lated cells but is converted into a transcriptional activator upon

binding of NICD (figure 2) [118].

In the intestinal crypt, Notch signalling critically regulates

the cell fate decision between absorptive and secretory cell

types. This is illustrated by the use of g-secretase inhibitors,

which block Notch receptor signalling and mediate a massive

conversion of proliferative cells into secretory cells [119,120].

Conversely, enhancement of Notch signalling via intestine-

specific transgenic expression of NICD blocks the commitment

of cells to adopt a secretory lineage fate [121].

The switch between lineages is mainly decided by two

basic helix-loop-helix transcription factors. Notch signalling

induces expression of the transcription factor Hes1 (hairy

and enhancer of split 1) that in turn antagonizes the transcrip-

tion factor Math1 (or Atoh1 (atonal homolog 1)) [122]. Math1
is the crucial regulator of the transcriptional programme for

secretory lineage differentiation. Its depletion results in a

complete absence of goblet, Paneth and enteroendocrine

cells in the intestine [123–125], and Math1 overexpression

directs progenitor cells into the secretory lineage [126].

Math1 expression is restricted to the secretory cells of the

intestine, while Hes1 is expressed in most proliferative

crypt cells. Inhibition of Notch signalling rapidly decreases

Hes1 expression and results in upregulated Math1 expression in

all crypt cells [120]. In line, deletion of Hes1 is associated with

an excess of secretory cells at the expense of enterocytes [122].

Notably, similar phenotypes are observed upon simultaneous

deletion of Notch1 and Notch2 genes and genetic ablation of

CSL [120,127]. In summary, Notch signalling induces Hes1

levels to suppress Math1-dependent differentiation towards

secretory lineages (figure 2).

How does Notch signalling affect ISCs? Lgr5-positive

CBC cells predominantly express Notch1 and Notch2 recep-

tors at the cell surface and Notch1 receptor mRNA was

found enriched in these cells, signifying a regulatory role of

Notch within the CBC stem cell compartment [62,128].

Neighbouring Paneth cells express Notch ligands Dll1 and

Dll4, providing the ligands to activate Notch signalling in

ISCs [10,129]. Notably, lineage-tracing experiments of cells

undergoing active Notch signalling identified long-lived pro-

genitors able to give rise to all the mature epithelial cell types

[129,130]. Inhibition of Notch signalling results in rapid loss

of CBC cells, indicating its requirement for stem cell prolifer-

ation and survival [131]. In particular, the stem cell-specific

marker Olfm4 was shown to be a direct target gene of

Notch signalling [131]. Thus, active Notch signalling is cru-

cial for maintenance and activity of the ISC pool. Recently,

it was shown that Notch signalling also plays a crucial role

in intestinal renewal upon injury by irradiation. Interestingly,

Paneth cells were shown to dedifferentiate and proliferate

and start to line the crypt–villus axis. This newly gained

stem cell-like capacity of Paneth cells is attributed to activated

Notch signalling in the Paneth cells themselves [36].

In summary, Notch signalling regulates different aspects

of intestinal homeostasis, stimulating both stem cell mainten-

ance and cell fate determination of progenitor cells, and can

induce Paneth cells to dedifferentiate upon tissue damage.
7. Hedgehog signalling regulates intestinal
mesenchyme

The Hedgehog (Hh) family of secreted ligands consists of

three subgroups; the Desert Hedgehog (Dhh), Indian Hedge-

hog (Ihh), and Sonic Hedgehog (Shh) groups [132]. Binding

of Hh to the twelve-pass transmembrane receptors Patched

1 or 2 (Ptch1/2 or Ptc1–2) activates a signalling cascade

that ultimately drives the activation of the zinc-finger tran-

scription factor glioblastoma (Gli) (Gli1, Gli2 and Gli3),

leading to the expression of Hh specific target genes. In

the absence of Hh ligands, Ptch blocks the activity of the

seven-span transmembrane protein Smoothened (Smo), and

full-length Gli proteins are proteolytically processed to

C-terminally truncated ‘GliR’ (Gli repressor) that actively

repress a subset of Hh target genes. Binding of Hh to Ptch

results in loss of Ptch activity and subsequent activation of

Smo, which transduces the Hh signal to the cytoplasm,

blocks the production of GliR and induces the conversion
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of Gli proteins into transcriptional activators (GliA) and

thereby induces target gene transcription (figure 2) [132–

136]. Target genes include Ptch1/2, Gli1, Hedgehog-interacting
protein (Hhip) for feedback regulation [132–134,137,138],

and genes that drive proliferation and survival, such as

cyclin D1, myc and Bcl2 [135,139,140].

In the intestine, Ihh is the main hedgehog expressed.

Low levels of Shh may be expressed at the base of the

small intestinal and colonic crypts [141–144]. Ihh is secreted

in a paracrine manner by epithelial cells to act on the sur-

rounding mesenchymal cells, including smooth muscle

precursor and myofibroblast cells [142,145]. In addition, intes-

tinal macrophages and dendritic cells may directly respond to

Hedgehog signalling [145]. Ihh and Shh ligands secreted by

TA cells interact with Ptch receptors localized on mesenchymal

cells to induce BMP production [144,146,147]. BMPs negatively

regulate intestinal epithelial proliferation and restrict the

number of stem cells in the crypt [40,148,149] (see paragraph

below). Furthermore, (Hh downstream factor) Gli1-positive

mesenchymal cells secrete Wnt ligands that are essential for

stem cell renewal in the colon and in the small intestine can

act as a reserve Wnt source [50].

Constitutive activation of Hh signalling, either by sys-

temic deletion of Ptch [144] or by selective overexpression

of Ihh in the intestinal epithelium (Villin-Ihh transgenic

mice) [150], results in an accumulation of mesenchymal

cells. Moreover, experiments in which Hh signalling was con-

ditionally lost in the adult intestine showed that Hh not only

signals for expansion of the mesenchyme but is also required

to maintain smooth muscle and myofibroblast cells [150,151].

Furthermore, analysis of Ihh mutant mice showed that loss of

Ihh signalling ultimately results in the loss of smooth muscle

precursor cells, leading to complete loss of the villus core sup-

port structure [141]. Decreased Hh signalling in the adult

intestine was also shown to enhance Wnt pathway activity,

thereby compromising differentiation and driving crypt

hyperplasia [143].

Thus, in current models, Hh signalling indirectly affects

ISCs via (i) induction of repressive BMP signalling and (ii)

modulation of adjacent stroma for supportive structure.
8. Bone morphogenetic protein signalling
regulates crypt formation and terminal
differentiation

BMPs were initially discovered for their ability to induce

bone formation [152] but are now known to play crucial

roles during organ development and tissue homeostasis

[153]. BMPs comprise a class of extracellular signalling mol-

ecules that belong to the transforming growth factor-b

(TGF-b) superfamily of proteins. BMPs signal via the canonical

Smad-dependent pathway and can induce various non-

canonical signalling pathways as well. In the canonical path-

way, BMPs initiate signal transduction by binding to BMP

type I and type II receptors (Bmpr1–2) that form a hetero-

tetrameric complex. BMP receptors are single transmembrane

proteins that carry serine/threonine kinase activity in their

intracellular domains. Upon BMP binding, the constitutively

active Bmpr2 transphosphorylates Bmpr1. Subsequently,

Bmpr1 phosphorylates the receptor-bound R-Smads1/5/8

(receptor-regulated Smads). Phosphorylated Smad1/5/8
then associate with the core mediator Smad4, and the resulting

Smad complex translocates to the nucleus to associate with

coactivators or corepressors and regulate gene expression pat-

terns (figure 2) [153,154]. BMP target genes include Msx

homeobox genes and the proto-oncogene JunB [155,156]. Path-

way activity is regulated by extracellular antagonists, such as

Noggin, follistatin or gremlin, that sequester BMP ligands,

thereby blocking interaction with BMP receptors [157].

In the intestine, the BMP pathway acts as a negative

regulator of crypt formation and drives the terminal differ-

entiation of mature intestinal cells [148,158,159]. BMP-2

and -4 ligands are expressed by both mesenchyme and epithelial

villus cells and mainly act on the epithelial compartments

that contain differentiated cells expressing BMP receptors

[148,160]. Mesenchyme-to-epithelium BMP signalling pro-

motes differentiation of progenitor cells while restraining

cell proliferation [149]. BMP signalling within the crypt

base stem cell niche is carefully regulated by BMP antagon-

ists, such as gremlin1/2, chordin, Noggin and ANGPTL2,

expressed by the mesenchyme surrounding the crypt

[40,161,162]. Inhibition of BMP signalling in the mouse

villus using transgenic expression of the BMP inhibitor

Noggin, results in ectopic crypt formation [148]. Similarly,

conditional deletion of Bmp receptor 1A results in hyper-

proliferative crypts [149]. BMP represses Wnt signalling

and is expressed in an opposing gradient along the

crypt–villus axis, with highest BMP signalling in the cells

at the luminal surface (figure 1) [149].
9. EGF signalling is required for intestinal
stem cell proliferation

EGF is an extracellular ligand that stimulates cell growth,

proliferation, and differentiation by binding to its cognate

receptor the epidermal growth factor receptor (EGFR). EGFR

is also known as ErbB1/HER1, and is a member of the

ErbB family of receptor tyrosine kinases. Upon activation by

EGF binding, EGFR undergoes a transition from an inactive

monomeric form to an active homodimer. EGFR dimerization

stimulates its intrinsic intracellular protein-tyrosine kinase

activity. As a result, several tyrosine residues in the C-terminal

domain of EGFR are autophosphorylated, which drives

downstream pathway activation. Downstream signalling

effectors associate with phosphorylated tyrosines in the EGF

receptor via their SH2 domains and initiate major cellular

pro-survival and proliferation signalling cascades, including

the mitogen-activated protein kinase (MAPK), phosphatidyl-

inositol 3-kinase (PI3K)/Akt, c-Jun N-terminal kinases (JNK),

Jak/STAT and phospholipase C (PLC) pathways (figure 2)

[163,164]. Of note, the small GTPase KRAS (Kirsten rat sarcoma

viral oncogene homolog) acts as a crucial central relay in a

number of these signalling cascades and is commonly mutated

in colorectal cancers [165,166].

EGF signalling is required for proliferation and mainten-

ance of ISCs and is produced in the niche by the surrounding

Paneth cells and subepithelial mesenchyme [10,42]. In turn,

EGFR is highly expressed in ISCs and in TA cells [167].

Indeed, luminally applied EGF strongly induces proliferation

of the small intestinal epithelium in rats [168,169]. By con-

trast, blockade of EGF signalling in organoids converts

actively dividing ISCs into quiescent Lgr5þ reserve stem

cells that retain expression of various Wnt target genes
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[170]. Evidently, tight control is necessary to balance EGF-

induced proliferation of ISCs. To this end, ISCs express

high levels of the EGFR/ErbB inhibitor leucine-rich repeats

and immunoglobulin-like domains protein 1 (Lrig1) trans-

membrane proteins. Lrig1 is an inducible negative feedback

regulator of the ErbB receptor family that mediates the ubiqui-

tination and subsequent degradation of canonical EGFRs

[32,33,171]. Accordingly, genetic ablation of Lrig1 in mice

results in enhanced EGFR/ErbB expression leading to an

increase in ISC numbers and significant expansion of

crypts [32,33]. This activity of EGFR signalling in intestinal

maintenance is highly conserved, as shown by studies using

Drosophila [172,173].

In summary, controlled expression of Lrig1 forms a nega-

tive feedback loop that allows stem cells to fine-tune their

cellular response to EGF ligand-mediated signalling and

ensures proper crypt size and tissue homeostasis.

Of note, a recent study demonstrated redundancy

between EGF and hepatocyte growth factor (HGF) in the

intestine. HGF regulates intestinal homeostasis and regener-

ation by engaging its receptor MET, and interestingly HGF/

MET signalling can fully substitute EGFR signals in intestinal

organoid cultures [174].
10. Eph – ephrin signalling directs
appropriate cell positioning along the
crypt – villus axis

Eph–ephrin signalling occurs via direct cell–cell contact and

is involved in a wide spectrum of biological processes,

including the regulation of cell positioning. Ephrin ligands

are divided into two subclasses based on their structure

and mode of linkage to the cell membrane (ephrin-A and

ephrin-B). Ephrin-A proteins are anchored to the membrane

by a glycosylphosphatidylinositol (GPI) linkage and lack a

cytoplasmic domain, while ephrin-B proteins pass the mem-

brane by their single transmembrane domain and contain a

short cytoplasmic part. Eph receptors constitute the largest

family of tyrosine kinase receptors and can be divided into

the subclasses EphA and EphB, based on sequence similarity

and binding affinities for either ephrin-A or -B [175,176].

A unique feature of Eph–ephrin signalling is that both

receptor and ligand are competent to transduce signalling

upon interaction. This concept of bidirectional signalling

has emerged as an important mechanism by which Ephs

and ephrins control cell–cell communication. Eph- and

ephrin-mediated signalling are generally referred to as for-

ward and reverse signalling, respectively [176]. Essentially,

Eph signalling controls cell morphology, adhesion and

migration by modifying the organization of the actin cyto-

skeleton and influencing the activities of integrins and

intercellular adhesion molecules [85,176]. Upon binding of

an ephrin ligand to the extracellular domain of an Eph recep-

tor, intracellular tyrosine and serine residues of the receptor

are auto-phosphorylated, allowing the cytoplasmic tyrosine

kinase to subsequently activate and modulate downstream

signalling cascades, such as MAPK, Ras and ERK signalling

(figure 2) [85,177].

Although Eph–ephrins were initially studied mainly in a

developmental context, their physiological functions in adult

tissues are rapidly coming to light. In the intestine, high
levels of Wnt signalling induce expression of EphB2 and

EphB3 in the lower parts of the crypts with simultaneous tran-

scriptional repression of their repulsive ephrin-B1 ligand [63].

Of note, Notch signalling activates the expression of ephrin-B1

in differentiated intestinal cells [178]. ISCs display high levels

of EphB2 expression, while Paneth cells are EphB2 negative

but express EphB3 [63,179]. The decline in Wnt cues along

the crypt–villus axis results in de-repression of the repulsive

ephrin-B1 ligand. At the same time, EphB2 expression pro-

gressively declines in TA cells as they migrate upwards. The

gradient of repulsive EphB2/3–ephrin-B1 interaction coordi-

nates appropriate cell positioning along the crypt–villus axis

with differentiated cells moving upwards towards the villus

tip [63,83,180,181]. Differentiated Paneth cells that highly

express EphB3 escape this upward flow and move towards

the crypt bottom. Indeed, in EphB3 null mice, Paneth cells

are not restricted to crypts but spread randomly along the

villi in the small intestine [63].
11. Interconnectivity of signalling pathways
governs crypt – villus homeostasis

Each of the above-described signalling pathways controls

intestinal homeostasis, through either a direct or indirect

modulation of ISC behaviour. ISCs interpret these signals

derived from the niche to ensure the balance between cell

loss and cell replenishment, thereby safeguarding tissue

maintenance. The interconnectivity of the signalling path-

ways further secures an appropriate strength and timing of

signals within the stem cell niche. The Wnt pathway is the

main force behind intestinal epithelium homeostasis and

requires tight regulation to prevent hyperproliferation of

ISCs. The expression of stem cell regulatory Wnt ligands dis-

plays a diminishing slope along the crypt–villus axis. At the

þ4 position, a local production of Wnt antagonists is

observed, including Wnt binding secreted Frizzled-related

proteins, likely to keep the reserve stem cells at that position

in the quiescent state [76]. In the crypt, the Wnt pathway

synergizes with Notch signalling to sustain undifferentiated

and proliferative stem and progenitor cells in the crypt.

Additionally, both pathways are essential for specific lin-

eage commitment of progenitor cells along the absorptive

(Notch) and secretory (Wnt) cellular differentiated states.

Interestingly, inhibition of Notch signalling, using Notch

blocking antibodies, caused conversion of Lgr5-expressing

ISCs to secretory cells, leading to stem cell depletion. This

coincided with Wnt pathway upregulation and increased

secretory cell differentiation. Repression of canonical Wnt

signalling rescued this phenotype, suggesting opposing

and interconnected activities of Notch and Wnt signalling

to guide gut homeostasis [182].

Furthermore, Wnt signalling induces high crypt-specific

expression of EphB2 and EphB3, while the decreasing Wnt

gradient along the crypt–villus axis generates an opposing

gradient of the repulsive ephrin-B ligand, securing spatial

segregation and accurate positioning of distinct cellular com-

partments within the crypt. In the upper part of the crypt and

within the villus, the output of Wnt signalling is modulated

by cooperative activity of the paracrine Hedgehog and BMP

signalling cascades. As the progenitor cells move upwards

from the crypt base, the Hedgehog-induced, mesenchyme-

to-epithelium BMP signalling promotes differentiation while
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restraining cell proliferation. Importantly, at the crypt

base, the pro-differentiation activity of the BMP pathway

is counteracted by locally secreted mesenchyme-derived

BMP antagonists. Also, Paneth cell-derived EGF-induced

mitotic signalling at the crypt base is balanced by expression

of EGFR inhibitor Lrig1.

Collectively, an interconnected network of developmental

signalling pathways governs intestinal homeostasis by balan-

cing the processes of cell proliferation and differentiation

(figure 3).
12. Sequential mutation of ‘niche-like’
signalling pathways drives intestinal
carcinogenesis

Disruption of the delicate balance between proliferation and

differentiation governed by key signalling pathways in the

crypt can lead to hyperproliferation and ultimately tumour

growth. Indeed, cancer cells inappropriately turn on a gene

programme for self-renewal and survival by acquiring

mutations in key components of signalling pathways that are

normally provided by the external cues from the niche [183].

The majority of colorectal tumours evolve from benign to

malignant lesions by acquiring a series of mutations over

time: the adenoma–carcinoma sequence [184,185]. Formation

of benign adenomas is initiated by activation of the Wnt sig-

nalling pathway, most commonly through inactivating

mutations in APC [186]. Subsequent activating mutations in

the EGFR pathway (KRAS, PIK3CA), and inactivating
mutations in the TGF-b/BMP pathway (SMAD4) as well

as in p53 (TP53) promote progression to an invasive and

metastatic phenotype [184,185,187]. Mutations in these

genes are presumed to drive colorectal carcinogenesis as

they provide selective growth advantages to the mutated

cells and are therefore called ‘driver’ mutations. Each

human colorectal carcinoma (CRC) is regarded to harbour

three to six recurrent driver mutations [187]. Recently,

two elegant studies showed, using CRISPR–Cas9-engin-

eered organoid cultures, that a combination of at least

four of such driver mutations liberates the ISC from the

need of niche factors, rendering gut organoid growth

entirely self-sufficient [188,189]. Importantly, such mutant

organoids form tumours after transplantation in mice

[188,189]. Hence, the introduction of driver mutations in

organoids fully copies the CRC phenotype and provides

final proof that the sequential disruption of key signalling

pathways governs the adenoma–carcinoma sequence.

Activation of the Wnt and the EGFR signalling pathways

represent key steps in the initiation and early progression of

CRC, by favouring stemness and proliferative characteristics.

Subsequent blockade of BMP/TGFb signalling suppresses

differentiation and further tilts the balance towards prolifer-

ation of the cancer cells. Ultimately, inactivation of p53

results in loss of DNA damage control and, more impor-

tantly, allows CRC cells to escape apoptosis. Together, this

establishes an optimal combination of events for cancer cell

survival and carcinogenesis.

Interestingly, the combined inactivation of both APC and

p53 appears already sufficient to induce extensive aneu-

ploidy, a hallmark of tumour progression. Remarkably, the
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number of driver mutations in CRC is variable, with a frac-

tion of CRCs carrying only a single pathway alteration

[190]. In these cases, acquired microsatellite and/or chromo-

somal instability and epigenetic changes might alter driver

pathway signalling instead.

Clearly, the sequential accumulation of driver mutations

drives tumour progression towards CRC, but are the initial

genetic alterations also required to maintain CRC cells at

later stages of tumour progression? This question was

recently addressed by Dow et al. [191] using a conditional

short hairpin RNA approach to control APC levels in a

subset of ISCs in the mouse. The strong reduction of

APC levels initiated tumour formation along the intestine,

including the colon. Upon restoration of APC expression,

tumours regressed and CRC cells underwent differen-

tiation toward normal intestinal cell types, thereby

reinstating crypt –villus homeostasis. Strikingly, invasive

tumours harbouring additional KRAS and TP53 mutations

were also reverted to normal functioning cells after rein-

troduction of APC [191]. This illustrates that loss of APC

is not only essential for CRC onset but remains critical

for CRC maintenance even in the presence of sequential

driver mutations.
13. Concluding remarks
In this review, we summarized our understanding of the

unique properties and regulated activity of ISCs. A plethora

of genetic studies have provided instrumental insights into

the signalling networks that govern intestinal homeostasis.

Crypt cells display substantial plasticity that is influenced

by signals from the stem cell niche. Perturbations within

these signalling pathways, most prominently the Wnt cas-

cade, can induce tumourigenesis. A better understanding of

the relationships and interconnectivity between homeostatic

signalling and distinct aspects of tumour initiation and pro-

gression will be critical in the discovery of potential targets

and development of strategies for therapeutic intervention.
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