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Introduction

The Ruddlesden–Popper series Srn+1IrnO3n+1 of perovskite 
iridates remain a fruitful arena for study. Of central impor-
tance in these materials is the jeff = 1/2 ground state. This 

state is formed from the interplay of a strong cubic crystal 
field and spin–orbit interaction on the 5d5 electrons of the Ir4+ 
ions. Weak electron correlations are then sufficient to split the 
jeff = 1/2 band, open an insulating gap, and form a Mott-like 
state.

The single-layer compound Sr2IrO4 (n  =  1) exhibits an 
insulating gap ∆Eg ∼ 0.4 eV, as determined from optical 
conductivity, resistivity, and scanning tunnelling microscopy 
measurements [1–3]. Similarities have been drawn between 
Sr2IrO4 and La2CuO4 in terms of its structural and magn
etic properties, initially leading to claims that Sr2IrO4 is an 
example of a 2D Heisenberg antiferromagnet on a square 
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Abstract
X-ray magnetic critical scattering measurements and specific heat measurements were 
performed on the perovskite iridate Sr3Ir2O7. We find that the magnetic interactions close to 
the Néel temperature TN = 283.4(2) K  are three-dimensional. This contrasts with previous 
studies which suggest two-dimensional behaviour like Sr2IrO4. Violation of the Harris 
criterion (dν > 2) means that weak disorder becomes relevant. This leads a rounding of 
the antiferromagnetic phase transition at TN, and modifies the critical exponents relative 
to the clean system. Specifically, we determine that the critical behaviour of Sr3Ir2O7 is 
representative of the diluted 3D Ising universality class.
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lattice (2DHAFSQL) [4–6]. However x-ray magnetic critical 
scattering [7], re-examination of previously published resonant 
inelastic x-ray scattering (RIXS) data, and electron spin reso-
nance measurements [8, 9] reveal the presence of a weak easy-
plane anisotropy. This anisotropy is caused by pseudodipolar 
interactions arising fundamentally from the intrinsic spin–orbit 
interaction, and coupling to the crystal lattice [10, 11].

Meanwhile the bilayer compound Sr3Ir2O7 margin-
ally retains the jeff = 1/2 ground state, and is proximate to 
a insulator-metal transition which can be driven either by 
injection of carriers [12–14] or control of the bandwidth [12, 
15–17]. The reduced insulating gap compared to the single-
layer material—∆Eg ∼ 0.1 eV—directly manifests from an 
increase in bandwidth due to the increased dimensionality  
[1, 3]. Interactions within the bilayer also lead to significant 
correlations along the c-axis, which are not present in Sr2IrO4. 
These correlations, combined with significant anisotropic 
exchange interactions, give rise to G-type antiferromagnetic 
order below the Néel temperature TN ≈ 280 K, with Ir magn
etic moments aligned along the c-axis [18–22]. The anisotropy 
also results in a large spin gap (∆Es = 85 meV) which has 
been observed by RIXS [23, 24] and Raman scattering [25].

Critical scattering studies provide information comple-
mentary to that obtainable from the ordered state. For ther-
mally driven transitions in classical systems, issues such as 
dimensionality, relevant anisotropies, etc, can be addressed by 
determining the critical exponents both below and above the 
transition temperature [26]. Typically one attempts to deter-
mine the dimensionality of a material by fitting the magnet
isation below the critical temperature Tc to a power law 
M ∼ (−t)β, where t = (T − Tc) /Tc. The obtained value of 
the critical exponent β can then be compared to the theor
etical value for a particular universality class. For a magnetic 
system these universality classes are governed by the spatial 
dimensions and spin degrees of freedom. A number of thermo-
dynamic parameters, including the susceptibility, correlation 
length, and magnetic specific heat, exhibit similar behaviour—
with their own critical exponents—in the vicinity of the critical 
point. Previous estimates for the critical exponent β [6, 20, 27] 
for Sr3Ir2O7 implied that the magnetic interactions were two-
dimensional at TN. However, these estimates for the critical 
exponents were obtained using local probes over a wide range 
of temperatures, and are insensitive to subtle effects driven by 
weak anisotropies close to the transition temperature.

We performed critical scattering and specific heat measure-
ments on Sr3Ir2O7, in order to precisely determine the spin and 
lattice dimensionality in the vicinity of the Néel temperature. 
In contrast with the previous results, we find that the critical 
fluctuations are three-dimensional in nature. Fundamentally 
this is a consequence of the significant interlayer coupling and 
intrinsic anisotropy, giving rise to significant differences in 
the observed behaviour compared to Sr2IrO4.

Methods

The critical scattering experiments were performed on beam-
line I16, Diamond Light Source. A single crystal of Sr3Ir2O7 

(dimensions 0.5 × 0.5 × 0.3 mm3) was flux grown from the 
phase-pure polycrystalline compound using techniques 
described elsewhere [12], and attached to the copper sample 
mount of a He closed-cycle refrigerator (Displex 4K). This 
was in turn mounted on a six-circle diffractometer configured 
to operate in a vertical scattering geometry. The energy of the 
incident photon beam was set to 11.218 keV, just below the L3 
edge of iridium, a value found to maximise the intensity of the 
x-ray resonant magnetic scattering (figure 1(a)). The incident 
beam size was determined to be 200 × 20 µm2 (H ×V). The 
polarization of the scattered x-rays was determined by using 
a pyrolytic graphite (0, 0, 8) crystal analyser mounted on the 
detector arm. The temperature was measured to a precision 
of ±0.01 K via a thermocouple secured to the sample mount 
by Teflon tape. The wavevector resolution of the instrument, 
including the effects of sample mosaic, was determined by 
mapping Bragg peaks in reciprocal space10. This was found to 
be typically (at FWHM) 1.3 ×10−3 Å

−1
 and 1.5 ×10−3 Å

−1
 

perpendicular and parallel to Q in the scattering plane respec-
tively, and 6.3×10−3 Å

−1
 out of the plane (figures 1(b)–(d)).

Results

The first objective was to determine the Néel temperature 
and the critical exponent β. Scans of the 

( 1
2 , 1

2 , 24
)
 magn

etic Bragg peak were performed parallel to the scattering 

Figure 1.  (a) Energy scan of the 
( 1

2 , 1
2 , 24

)
 magnetic Bragg 

peak with σ − π′ polarisation (symbols). Overlaid is the total 
fluorescence yield from the sample (solid line). Peaks marked with 
asterisks result from multiple scattering. (b)–(d) Reciprocal space 
scans of the (0, 0, 24) peak at 200 K, which was used to represent 
the resolution function. Nearby structural peaks exhibited similar 
behaviour. Added are the best fit (solid lines) of the data to a Voigt 
function.

10 The profile of the resolution function is dictated by a number of factors. 
These include the shape of the source, choice of monochromator, use of col-
limating slits and focussing mirrors [28].
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wavevector Q (θ–2θ scans) as a function of temperature. At 
each temperature the observed peak was fitted to a Lorentzian 
squared lineshape convoluted with the experimental resolu-
tion function, which was found to best represent the data. The 
resulting integrated intensity is plotted in figure  2(a). One 
can see that the intensity decreases continuously as a func-
tion of increasing temperature—as would be expected for a 
second-order magnetic phase transition—going towards zero 
around 290 K. Unlike a perfect second-order phase transition, 
however, the transition is not especially sharp, but exhibits 
a degree of rounding. Rounding of the transition can occur 
due to sample inhomogeneity or defects within the scattering 
volume, since different areas of the sample will have slightly 
different ordering temperatures (random Tc disorder).

Consequently the integrated intensity was fitted between 
250 and 290 K (corresponding to a reduced temperature 
−0.12 � t � 0.023) with a power law: IM ∝ (−t)2β. This 
was then convoluted with a Gaussian distribution of transition 
temperatures with FWHM Γ to model the effect of disorder. 
Note that such a functional form is no longer linear when 

plotted on double logarithmic axes, unlike a conventional 
power law. It was found that the best fit to the data was obtained 
with TN = 283.4(2) K , β = 0.361(8) and Γ = 2.7(1) K . The 
deviation of the model from the experimental data at high 
temperatures is due to critical scattering in the paramagnetic 
phase. This is characterised by a different exponent, and 
shall be discussed in more detail later in the manuscript. Our 
value for TN is in good agreement with that obtained from 
bulk magnetisation measurements and neutron powder dif-
fraction [20]. On the other hand, the value of β differs sig-
nificantly from previous neutron scattering {β = 0.25 [20], 
0.20(2) [6]} and µSR {β = 0.143(3) [27]} measurements on 
the same material. We suggest the discrepancies arise because 
in the previous works, β was determined from power law fits 
which included a significant number of data points far from 
TN. Strictly speaking, power law scaling for thermodynamic 
parameters is only exact precisely at TN. The results presented 
here provide a more reliable estimate for TN and β. We note 
that β = 0.361(8) is consistent with the theoretical value for a 
3D Heisenberg model (β = 0.367).

The variation in lattice dimensionality between Sr2IrO4 
and Sr3Ir2O7 should also manifest in differences in the critical 
phenomena above the Néel temperature. The same magnetic 
Bragg peak was followed out to 288 K (TN + 5.2 K) for both 
the in-plane (Q ‖ k) and out-of-plane (Q ‖ l) directions, with 
a comparison plotted in figure  3. Compared to Sr2IrO4 [7], 

Figure 2.  (a) Integrated intensity of 
( 1

2 , 1
2 , 24

)
 magnetic Bragg 

peak in terms of the absolute reduced temperature |t| = |1 − T/TN|, 
as obtained from θ–2θ scans. Solid line: best fit to power law 
convoluted with a Gaussian distribution of TN with FWHM 
2.7(1) K. Dashed line: corresponding power law assuming single 
value of TN. Inset is the same data plotted on linear axes in the 
vicinity of TN, highlighting the rounding of the transition. Dotted 
line: Gaussian distribution of TN. (b) Variation of χ2 (solid line) and 
β (diamonds) as a function of TN. The minimum of the χ2 surface 
occurs for TN = 283.4(2) K  and β = 0.361(8), which is consistent 
with the theoretical value for 3D Heisenberg interactions.

Figure 3.  Evolution of the 
( 1

2 , 1
2 , 24

)
 magnetic Bragg peak above 

TN in the k- and l-directions (left and right columns respectively). 
The critical scattering is nearly isotropic. Solid lines are best fit to 
a Lorentzian-squared function convoluted with the instrumental 
resolution function.
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the critical scattering in Sr3Ir2O7 appears practically isotropic, 
and decays much more quickly with temperature. This would 
be expected for systems where 3D interactions are important. 
Remember that the Néel temperature is associated with the 
onset of long-ranged three-dimensional antiferromagnetic 
order. The intensity previously observed for Sr2IrO4 above TN 
only arises as a result of dominant 2D correlations in-plane 
which have a much larger energy scale than those out-of-plane. 
If the dominant magnetic interactions are three-dimensional, 
then one would expect both the in-plane and out-of-plane 
interactions to behave in a similar manner (to first order). In 
this sense Sr3Ir2O7 is more ‘conventional’. Consequently the 
correlation length ξ and equal-time structure factor S0 should 
be expected to follow the simple power laws: ξ ∼ t−ν and 
S0 ∼ t−γ.

Within the Ornstein–Zernike approximation, the spin-spin 
correlation function decays exponentially as a function of 
distance. In reciprocal space, this leads to a Lorentzian func-
tional form in the vicinity of the critical temperature. X-ray 
magnetic critical scattering has the advantage of satisfying 
the condition �ω < Ei, where �ω refers to the energy of the 

critical fluctuations. Moreover, one typically collects data by 
collecting all scattered x-ray photons without regard to their 
energy. Thus the static approximation holds, and the resulting 
scattering cross-section for the critical fluctuations should 
also have a Lorentzian functional form. The amplitude of this 
Lorentzian S0 is proportional to the staggered susceptibility 
χ0, whilst the inverse half width at half maximum (HWHM) 
Γ−1 corresponds to the correlation length ξ.

Yet upon fitting the lineshapes of the magnetic Bragg peaks 
above TN, one finds that a Lorentzian squared function (convo-
luted with the instrumental resolution function) is consistently 
more representative of the data than a Lorentzian function 
(figure 4). Note that the background for each fit was fixed 
based on scattering well away from the magnetic Bragg peak. 
However the discrepancies in the lineshape are almost entirely 
in the tails of the peak; the fitted values of the peak width are 
almost identical for both lineshapes. Furthermore for data col-
lected along Q‖, the differences between the Lorentzian and 
Lorentzian squared functional forms are small. Given that a 
Lorentzian squared form is a better fit to both the Q⊥ and Q‖ 
data, this is what has been used in the subsequent analysis11.

The fitted values of the inverse correlation length κ and 
the peak amplitude S0 are plotted in figure 5 for data collected 

Figure 4.  Lineshape comparison of fits to critical scattering for 
the in-plane ((a) and (c)) and out-of-plane ((b) and (d)) directions. 
Solid black (dashed orange) line indicates a fit using a Lorentzian 
(squared) scattering function. Results are displayed on a logarithmic 
scale to highlight differences in the peak tails. The displayed data 
has been rebinned in the momentum direction ∆Q⊥ for clarity; all 
fits were performed on the full dataset. Bottom panels: variation of 
reduced χ2 as a function of reduced temperature t = T/TN − 1, for 
scans along Q⊥ (e) and Q‖ (f). Open circles (filled squares) indicate 
fits to a Lorentzian (squared) scattering function.

Figure 5.  Inverse correlation length (a) and intensity (b) 
of 
( 1

2 , 1
2 , 24

)
 magnetic Bragg peak as a function of reduced 

temperature t=T/TN − 1. Green diamonds: in-plane direction. 
Purple squares: out-of-plane direction. Solid and dashed purple 
lines are fits of the out-of-plane data to the relevant power law for 
two different temperature regions as described in the main text: 
ν1 = 0.49(4), γ1 = 1.86(3); ν2 = 1.4(1), γ2 = 8.2(3). Solid black 
lines are the best fit to a power law convolved with a Gaussian 
distribution of TN [FWHM 2.7(1) K]: νc = 0.64(2), γc = 1.36(2). 
Inset in (b) is the same as the main panel, only plotted on linear 
axes.
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along Q‖ and Q⊥. The two datasets appear isotropic, with the 
exception of the correlation length for t < 0.005. Some of 
this discrepancy may be due to the deviation of the observed 
lineshape from an ideal Lorentzian. The precise form of the 
spin-spin correlation function is dependent on the critical 
exponent η, which is defined at T = TN  and becomes increas-
ingly relevant close to that limit. However for three-dimen-
sional systems, η ≈ 0 and so this is likely to be a minor effect. 
An alternative is that two components may contribute to the 
observed scattering close to TN. The second component could, 
for example, result from defect mediated scattering, which 
experimentally [29–33] and theoretically [34, 35] has been 
shown to have a Lorentzian squared lineshape. However it 
was not possible to unambiguously resolve more than one 
component in the data. As the Q‖ data shows qualitatively 
more ideal behaviour, quantitative analysis shall be restricted 
to this dataset from now on.

The saturation of κ and S0 for t < 0.005 suggests that a 
single power law is insufficient to fully describe the data. Two 
distinct temperature regions can be observed in which the 
data appears linear on logarithmic axes (0.003 < t < 0.01 and 
0.007 < t < 0.015 respectively). However upon performing 
simple power law fits (κ ∼ tν , S0 ∼ t−γ) to the data in these 
regions, one finds that the critical exponents associated with 
these fits do not correspond to the theoretical values associ-
ated with any conventional universality class. Recall that the 
order parameter data showed a rounding of the phase trans
ition, which was best described by the convolution of a power 
law I ∼ −t2β with a Gaussian distribution of TN. Yet the 
simple power law fits to κ and S0 assume a single value of 
TN. Convolution of a single power law with a Gaussian dis-
tribution of TN (of the same width as that used for the order 
parameter data) provides a much better description of the data.

The critical exponents arising from the order parameter, 
inverse correlation length, and susceptibility are all con-
sistent with three-dimensional magnetic interactions (table 1). 
However there is some discrepancy in the spin dimensionality 
that these exponents represent. This may (in part) be due to a 
slight underestimate of ν , as a consequence of the complica-
tions with the lineshape close to TN. We note that the critical 
exponent η, obtained using the scaling relation γ = ν(2 − η), 
is considerably smaller than the theoretical value for any 3D 

spin model. The same goes for the experimental ratio β/ν , 
which only marginally agrees with theory. Assuming that ideal 
scaling is satisfied, and that β and γ  are correct, then this 
would imply that in fact ν = 0.69(1).

Further thermodynamic parameters also exhibit power-
law behaviour in the vicinity of the critical temperature. Of 
these, the most easily accessible experimentally is the spe-
cific heat. Specific heat data published by Nagai [41] shows 
a cusp around 280 K, which corresponds to a second-order 
phase transition. The authors proposed a magnetic origin for 
the feature, given that it coincides with TN determined from 
susceptibility data. We obtained specific heat data on a single 
crystal of Sr3Ir2O7 from the same batch as the sample used 
for the critical scattering measurements. Our data (plotted as 
inset of figure 6) is consistent with the previously published 
results. Note that an additional broad peak can be observed at 
310 K. The origin of this peak is unclear at present, but may 
be related to some degree of two-dimensional magnetic fluc-
tuations [42]. We comment that a similar feature (albeit much 
weaker) can be seen upon careful examination of the data in 
[41]. Our focus remains upon the sharp peak at 283 K.

In general the specific heat Ctot  is the sum of two contrib
utions: a non-singular component Clatt (expected to be domi-
nated by the lattice at the temperatures studied), and the 
fluctuation specific heat Cf . We fitted the experimental data 
(including the unexplained peak at Tp = 310 K) using the 
expression:

Ctot = aT + bT2
︸ ︷︷ ︸

Clatt

+C0 − A±(±t)−α

︸ ︷︷ ︸
Cf

+Ape
− (T−Tp)

2

2σ2
p

︸ ︷︷ ︸
Cpeak

,� (1)

with the positive sign required if the reduced temperature 
t = T/TN − 1 > 0, and vice versa. This function was then 
convolved with a Gaussian distribution, in order to account 
for the rounding of the phase transition. The distribution of TN 
was assumed to have an identical FWHM (Γ = 2.7(1) K) as 
that used for the critical scattering data. Treating Γ as a free 
parameter, or using a simple Debye model (with ΘD = 380 K) 
to describe Clatt, did not alter our results appreciably.

The best fit to the data (figure 6(a)) was obtained 
with TC

N = 283.3(1) K, U0 = A+/A− = 1.03(1), and 
α = −0.028(2). However, we note that the χ2 surface (figure 
6(c)) exhibits a number of sharp anomalies, which coincide 
with the locations of experimental data points. This is due 
to limited data for |t| < 1 × 10−2. Nevertheless, the general 

Table 1.  Comparison of critical exponents and universal amplitude ratio U0 obtained experimentally for Sr3Ir2O7 with theoretical 
results summarised by various authors [26, 36–40]. The experimental value for η has been calculated using the Widom scaling relation 
γ = ν(2 − η). For reference the expected scaling laws have also been added.

β ν γ α η α+ 2β + γ α+ dν β/ν U0

3D Ising 0.327(1) 0.630(1) 1.237(1) 0.110(1) 0.036(1) 2.000(2) 2.000(2) 0.518(1) 0.53(3)
3D XY 0.345 0.669(7) 1.316(9) −0.01 0.03 1.996(9) 2.00(3) 0.516(6) 1.06(3)
3D Heisenberg 0.367 0.707(3) 1.388(3) −0.121 0.037 2.001(3) 2.00(1) 0.519(2) 1.52(3)
3D dilute Ising 0.354(2) 0.683(3) 1.342(6) −0.049(9) 0.035(2) 2.00(1) 2.00(1) 0.518(4) 1.6(3)
Sr3Ir2O7 (raw) 0.361(8) 0.64(2) 1.36(2) −0.03(1) −0.13(1) 2.05(3) 1.89(6) 0.56(4) 1.0(1)
Sr3Ir2O7 
(adjusted ν )

0.69(1) 0.03(1) 2.04(4) 0.52(2)

11 We remark that the HWHM of any Lorentzian raised to a power n is 
obtained by dividing the corresponding width parameter Γ by a factor of [
21/n − 1

]1/2
. All data displayed has been corrected in this way.
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trend can be clearly observed. We thus propose the following, 
more conservative, estimates for the relevant parameters: 
TC

N = 283.3(5) K, α = −0.03(1), U0  =  1.0(1).
The value of the Néel temperature obtained from the 

specific heat measurements is in good agreement with that 
obtained from critical scattering. Moreover, the determined 
values of α and U0 are intermediate between the 3D XY and 
3D Heisenberg universality classes, again consistent with the 
results presented earlier in this manuscript.

Discussion

There is, however, one point that has only been briefly 
touched upon thus far: the effect of disorder. The Harris cri-
terion (dν > 2) reflects the stability of a clean critical point 
against the effect of disorder. If the inequality is satisfied, 
then the critical point is stable against disorder. Weak disorder 
decreases under coarse graining, and becomes unimportant 
on large length scales. On the other hand, if dν < 2, the con-
verse is true, and disorder becomes a relevant perturbation. 
A new universality class results, with exponents which now 
satisfy dν > 2. The global phase transition can also become 
smeared, as while the global magnetization develops gradu-
ally, rare regions order independently. For instance, a clean 
3D Heisenberg system [ν = 0.707(3)] is stable against weak 
disorder, while a 3D Ising system [ν = 0.6301(4)] is not. 

Consequently a dirty 3D Ising system is characterised by crit-
ical exponents which differ from the clean case. One theor
etical description of a dirty 3D Ising system is given by the 
following Hamiltonian:

H =
∑

i,j,α,β

Jαβij εiεjSα
i Sβ

j .
� (2)

Here the ε’s are quenched, uncorrelated random variables, 
chosen to be 1 with probability p  (the spin concentration), 
or 0 with probability 1  −  p  (the impurity concentration, or 
spin dilution). In the literature it is also known as the three-
dimensional diluted Ising model (3DDI). It has been found 
that the critical exponents are independent of disorder above 
the percolation limit (pc = 0.31), and are clearly distinct from 
the clean 3D Ising case. Note that the 3D Ising model with 
random-Tc disorder has also been shown to lie in the same 
universality class [43].

The theoretical results for the 3DDI model were compared 
with the critical behaviour observed for Sr3Ir2O7. Our exper
imental values for the critical exponents (after adjusting for 
ν  as described above) are in good agreement with the calcu-
lated ones [36, 40]. It is possible to go further and compare 
the theoretical transition temperature with the experimental 
value of TN. Ballesteros et  al performed a Monte Carlo 
finite size scaling (FSS) analysis of the 3DDI model, and 
calculated the critical temperature Tc for various levels of 
p . Extrapolating their data to the limit p → 1—since we 
expect the level of disorder in Sr3Ir2O7 to be small—we find 
that Tc( p → 1) ∼ 0.21J̃ , where J̃ is some effective next-
nearest neighbour coupling strength. The Hamiltonian for 
Sr3Ir2O7 includes a number of further neighbour and aniso
tropic exchange terms, the magnitude and uncertainty of 
which have been previously determined by resonant ine-
lastic x-ray scattering [23]. Through evaluating the sum: 
J̃ =

∑
i ziJi, where Ji are the individual coupling parameters 

(including anisotropies), and zi the number of neighbours, we 
obtain J̃ = 128(18) meV for Sr3Ir2O7. This corresponds to a 
transition temperature of Tc = 320(40) K, which is in agree-
ment with the experimental value of TN = 283.4(2) K . Both 
observations confirm that the critical behaviour in Sr3Ir2O7 is 
consistent with a 3D Ising model with quenched disorder.

Conclusion

We have studied the critical fluctuations in the spin–orbit Mott 
insulator Sr3Ir2O7 via resonant elastic x-ray scattering and 
bulk specific heat measurements. In contrast with previous 
studies, we determine that the magnetic fluctuations are three-
dimensional in the vicinity of the critical temperature TN. 
Weak disorder leads both to a smearing of the global phase 
transition, and deviation of the critical exponents from those 
expected for a clean 3D Ising system. We further establish that 
the observed behaviour can be well described by the diluted 
3D Ising universality class. Our observations are consistent 
with the significant uniaxial anisotropy present in the magn
etic ground state.

Figure 6.  (a) Specific heat data collected on Sr3Ir2O7 with zero 
applied magnetic field. Solid line is the best fit to the data as 
described in the main text (equation (1)). Dashed and dotted lines 
represent a polynomial phonon background Clatt and 310 K peak 
Cpeak respectively. (b) Fluctuation contribution to heat capacity 
Cf  with respect to reduced temperature |t|. Filled (open) symbols 
refer to data collected below (above) TC

N respectively. Note that 
the contribution from the anomalous peak at 310 K was subtracted 
from the experimental data. (c) Variation of χ2 (solid line) and |α| 
(diamonds) as a function of fixed TN. The best fit to the data was 
obtained using TC

N = 283.3(5) K, |α| = 0.03(1) (dotted line).
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