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 Abstract– The ability to identify respiratory motion is crucial 
during radiation therapy treatment. In our study we introduced 
a novel data driven method based on principal component 
analysis (PCA) to extract a signal related to respiratory motion 
from cone beam CT projection data. Projection data acquired on 
cone beam CT devices normally has two motion component 
information within it, (1) respiratory induced motion and (2) 
detector rotational induced motion. Our novel approach for 
extracting a respiratory induced motion signal from projection 
data was based on computing PCA for different sections of the 
data set independently, and introducing a technique of combining 
the extracted signal from each section in a manner to represent 
the respiratory signal from the entire data set. We tested our 
method using simulation data set from XCAT software and a real 
patient data set. The respiratory signal extracted with the XCAT 
simulation yielded comparable result when compared to the 
ground truth respiratory signal. Initial results for the real patient 
data set are encouraging but show need for further refinements. 

I. INTRODUCTION 

one Beam Computed Tomography (CBCT) imaging is 
commonly used for patient’s position verification during 

radiation therapy treatment, and to observe changes to 
anatomy and motion. CBCT acquisition takes approximately 1 
minutes, and such a relatively long acquisition time causes 
respiratory induced motion artefact in the reconstructed 
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images, and this could potentially reduce the accuracy of 
positional verification.  
 
Currently there are two general approaches for accounting for 
respiratory motion during CBCT acquisitions. 1) Respiratory 
bin gating over the respiratory cycle to form a 4D-CBCT data 
[1], and (2) the use of a respiratory motion model to 
compensate for motion during the reconstruction [2].  Both 
methods require a breathing surrogate signal.  
 
The most common method of extracting a breathing signal 
relies on an external measurement of the respiration [3], for 
instance, using the Real-Time Position Management (RPM) 
system (Palo Alto, USA). However, using such a system has 
some drawbacks such as the need for extra setup, and 
additional equipment cost, and signals derived from external 
device may not have a strong and reproducible relationship to 
internal motion. In contrast, respiratory signals derived from 
CBCT projection data is more advantageous because it does 
not require extra setup and eliminates the need for extra 
equipment cost. Also, signals derived from CBCT projections 
could potentially have a better correlation to the internal 
motion.  
 
Our work aims at generating a data driven respiratory motion 
signal from CBCT projection data. We use techniques based 
on Principal Component Analysis (PCA) to identify motion 
that are currently used in other imaging modalities. Other 
methods for acquiring respiratory signal from CBCT 
projections exist, such as the Amsterdam shroud [4] and the 
Local Principal Component Analysis (LPCA) [5], both of 
these methods greatly rely for the diaphragm to be present 
within the FOV of the projections in order to obtain a 
breathing signal. 
The potential advantage of our proposed method is that we 
have the flexibility of applying our approach to ROIs within 
the projection datasets (e.g. Tumor Region) and this should 
generate a signal that will be better related to the motion of 
that particular ROI, instead of a ‘global’ signal such as that 
obtained from the AS method or the LPCA technique.  
 
Though PCA so far has been successfully used for motion 
quantification in PET [6], there are additional challenges in its 
implementation for CBCT data, mainly due to the slow 
rotational motion of the CBCT scanner, while the PET 
detectors are stationary. In initial investigations, we will 
simulate CBCT data of the thoracic region of the body. 
Finally, we will test our method on a real patient data set. 
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II. METHOD 
Proposed Method  
 The proposed method works on the raw projection data. In our 
method, we can focus on any structure. Here, we chose to focus 
on the tumor, in contrast to the existing methods mentioned in the 
section I. To do this, we implemented the tumor enhancement 
method as described by Martin et al [7]. This method aims at 
removing the ‘non-tumor-region’ anatomy from the projections. 
The resulting data is then passed to PCA. To reduce the influence 
of the rotational motion, PCA is applied on a subset of the data 
corresponding to a small range of angles. A sliding window is 
then used and all data are then combined together at the end. We 
now give more details about all of the steps. 
 
Tumor enhancement method. 

1) Reconstruct the raw projection data using FDK to obtain 
an image averaged over respiration. 2) Segment the tumor 
region from the reconstruction and create the tumor region and 
non tumor region in image space. 3) Forward project the 
tumor region and non tumor regions. 4) Subtract the forward 
projections of the non tumor region away from the initial raw 
projections. 5) Create a mask of the tumor region, and apply 
the mask to the output obtained in step 4. Ideally, we should 
be left with an enhanced projection of the segment region 
where features in the background which are the stationary 
have been eliminated. 

 

 
Fig. 1.   Layout of the tumor enhancement method. 

 
Application of PCA in sliding windows. 
PCA is a form of dimensionality reduction technique. PCA is 
a method of identifying patterns in data and expressing the 
data in a form that highlights their similarities and differences. 
Here, it is used to describe dynamic data, 𝒔𝒊 as a linear 
expansion of 𝑲 orthogonal principal components. The 1st 

Principal Component (PC) weight represents the largest 
variation in the data.  

 
𝑠 is the mean of the data. 
𝑃& is the PC 
𝑤(& is the weight factor 
 
In order to extract the respiratory trace from the tumor 
enhanced projection, we applied PCA in a column wise 
method as shown in figure 2. We computed PCA by choosing 
20 time points (corresponding to 20 degrees movement of the 
detector), we shifted the window size by one angle and 
computed PCA on each window as illustrated by the different 
colours in figure 2. For each window, we computed weights 
corresponding to the 1st principal component (PC) which 
represents the largest variation in the data. The PCA signal has 
an arbitrary sign. Therefore, we compute the Pearson 
correlation between two adjacent PC weights over the 
overlapping time points, and, if they are inversely correlated, 
we change the sign of one weight. As a result of this step, we 
end up with correlated, weights as shown in figure 2 D. For 
the final step, we superimpose all the weights together by 
averaging all weight values available at each time points. 
 

 
Fig. 2.  Layout of our proposed method. A represents the projection data. B 
shows the weights for the 1st PC for each window (Red, Blue, and Green). C 
shows the 3 weights in the same space. D shows the weights after applying the 
correlation. E shows the output after superimposing the 3 weights. 
 
 
 
 



 

  
 

Simulation  
 
XCAT is a software package that is commonly used for 
anatomical modelling for medical imaging research [8]. We 
used XCAT to simulate CBCT images for the thoracic cavity 
of the human body where a lesion was inserted into the right 
region of the thoracic cavity. Using XCAT, we simulated a 4D 
data set, whereby the first three dimensions represent the 3D 
volume of the body and the 4th dimension represents the 
ground truth respiratory motion which was introduced into the 
data. The acquisition model parameters for the XCAT 
simulation were (lesion diameter = 10mm, slice width = 
0.25cm, pixel width = 0.0976cm, volume size = 512 × 512 × 
100) and the motion was in the Superior Inferior (SI) 
direction. For the ground truth motion, two motion parameters 
were used respectively, a periodic sinusoidal signal and a 
breathing signal acquired from a patient’s respiratory trace.   
 
CBCT data were simulated as follows. Projections of the 
phantom model were obtained with an open source 
reconstruction software (RTK) [9]. Each 2D projection image 
represents a specific time point (and therefore detector 
position) with the corresponding induced motion in the XCAT 
simulation. 
 
Clinical Data 
 

We also tested our proposed method on real clinical data. 
The patient CBCT data was acquired using an on-board 
imaging (OBI) system (Varian Medical System, Palo Alto, 
CA). The detector contains 1024 × 768 pixels. 683 projections 
were collected over 360° (11.3fps).  The reconstruction and 
forward projection steps required for the enhanced tumor 
method were also performed using RTK [9]. 

III. RESULTS 
The respiratory signal obtained from using our proposed 

method with the simulation data was similar to the ground 
truth respiratory trace. We extracted a signal based on the 
simulation setup described in section II (simulation). In 
addition, included in the results is a signal extracted from a 
simulation which used a real patient breathing trace as input. 

 

 
Fig. 3.  Respiratory trace obtained using our proposed method and the ground 
truth respiratory signal introduced into the data. The ground truth signal was a 
periodic sinusoidal breathing pattern.  
 

 
Fig. 4. Comparison between our proposed method and the ground truth input 
signal. The ground truth signal was a trace of a real patients signal acquired 
with an external device (RPM). For the first 50 projections, the sign of the 
signal extracted via our technique seems to be inversely related to the true 

ground truth signal. The inverse in the sign could potentially be due to a local 
failure of the the correlation based method described in figure 2.  
 
The initial result obtained for the clinical data is shown in 
figure 6. Further validation is needed. 

 
Fig. 5.  Projections of the clinical dataset. 

 

 
Fig. 6. Respiratory trace obtained from the clinical data set. 

IV. CONCLUSION  
 

We have developed a method of extracting a respiratory 
signal from CBCT projection data. We evaluated our method 
on XCAT simulations and real patient data. Our proposed 
method was able to extract a respiratory signal similar to the 
ground truth for the periodic input signal and to a lesser extent 
for the variable motion signal. The difference in amplitude in 
both respiratory motion cases presented could be due to the 
presence of detector motion in the input to PCA. Nevertheless, 
the phase of the respiratory cycle extracted via the proposed 
method was consistent with the input signal.  

In addition, we expect that noise would affect the enhanced 
tumour region created as well as the PCA signal. This will be 
investigated in future studies. 

Ground truth was not available for the clinical data, thus 
there was no “true” means of comparison for the respiratory 
output extracted.  However, truncation was an issue for the 
respiratory signal obtained as seen from the projection images 
of the clinical data shown in figure 5. The full extent of the 
data is not covered by the FOV. 
 

We plan on improving our method by applying iterative 
reconstruction, potentially reducing the effect of truncation on 
the patient data. We will apply our proposed method to more 
clinical data. In addition, we will also compare our method to 
other techniques such as the AS method, and LPCA technique. 
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