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Abstract 
Background 

Intrapapillary capillary loops (IPCLs) represent an endoscopically visible feature of early squamous cell 
neoplasia (ESCN), which correlate with lesion invasion depth. Accurate real time endoscopic assessment of 
depth of invasion of ESCN is vital to support decision making for local curative endoscopic therapy. Several 
classifications exist for use with magnification endoscopy (ME) based on IPCL morphology to determine 
invasion depth. IPCL patterns visualised on ME with narrow band imaging (ME-NBI) can be used to train 
convolutional neural networks (CNNs) to detect the presence of and classify staging of ESCN lesions.  
 
Methods 

7046 sequential HD ME-NBI images from 17 patients (10 ESCN, 7 normal) were used to train a CNN, using 
5-fold cross validation. IPCL patterns were classified by three expert endoscopists according to the Japanese 
Endoscopic Society (JES) classification. Normal IPCLs were defined as type A, abnormal as B1-3. Matched 
histology was obtained for all imaged areas. Images used in training datasets were not used in validation or 
testing datasets. 
 
Results 

This CNN could differentiate abnormal from normal IPCL patterns with 93.7% accuracy (86.2-98.3%). Our 
CNN achieved a sensitivity and specificity for abnormal IPCL detection of 89.3% (78.1-100%) and 98% 
(92-99.7%) respectively. Our CNN could operate in real-time with diagnostic prediction times between 
26.17-37.48ms. 
 
Conclusion 

Our novel application of computer aided endoscopic diagnosis (CAED) and artificial intelligence shows that 
such a system can accurately classify IPCL patterns as normal or abnormal using the JES classification. Such 
a system could be used as an in-vivo, real-time clinical decision support tool for endoscopists undertaking 
endoscopic assessment and directing local therapy of ESCN. 
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What	is	already	known	about	this	subject?	

Intrapapillary	capillary	loop	(IPCL)	patterns	are	an	endoscopically	visible	microvascular	feature	of	
early	 squamous	 cell	 neoplasias	 (ESCN)	 of	 the	 oesophagus,	 and	 have	 been	 well	 validated	 as	
corresponding	to	the	grade	and	invasion	depth	of	neoplasia.	Non-expert	clinicians	or	those	with	
less	experience	managing	ESCN	may	struggle	to	accurately	classify	Convolutional	neural	networks	
(CNN)	can	be	trained	to	recognise	and	classify	images	obtained	during	endoscopy.	No	such	system	
currently	exists	for	the	accurate	classification	of	IPCL	patterns	

What	are	the	new	findings?	

We	present	the	first	CNN	capable	of	accurately	 classifying	abnormal	 IPCL	patterns	as	normal	or	
abnormal	to	assist	in	the	in-vivo	detection	of	early	squamous	cell	neoplasia.	To	train	our	CNN	and	
achieve	high	accuracies,	we	have	formed	the	 largest	dataset	of	videos	and	still	 images	of	ESCNs	
reported	 in	 the	 literature	 used	 to	 train	 a	 CNN.	 We	 have	 developed	 a	 novel	 neural	 network	
architecture	 which	 utilises	 embedded	 class	 activation	 maps	 (eCAMs),	 to	 produce	 a	 clinically	
interpretable	output	of	the	CNN.	Our	system	is	the	first	reported	for	this	application	to	operate	in	
real-time,	with	endoscopic	videos	as	input	data.	

How	might	it	impact	on	clinical	practice	in	the	foreseeable	future?	

This	 platform	 provides	 proof	 of	 concept	 that	 a	 real-time	 artificial	 intelligence	 system	 can	 be	
developed	for	the	detection,	characterisation	and	prediction	of	ESCN	invasion	depth.	A	validated	
CNN,	trained	with	a	large	dataset	could	be	used	clinically	as	a	decision	support	tool	for	clinicians	
undertaking	the	assessment	of	ESCN.		

	



Introduction 
Oesophageal squamous cell carcinoma is the eighth most common cause of cancer worldwide 
and the sixth most common cause of cancer deaths1, with the highest incidence across a ‘cancer 
belt’ extending from East Africa, through the Middle East and onwards to China and Japan1–3. 
Gastroscopy remains the investigation of choice for the diagnosis of early squamous cell 
neoplasia (ESCN) of the oesophagus. The endoscopic features of these early lesions are focal, 
subtle and so are easily missed during endoscopy - several studies have shown a significant 
miss rate for UGI cancers on endoscopies undertaken with three years of diagnosis4.  Early 
detection of ESCN and prompt access to endoscopic eradication therapy (EET) is vital to 
ensure a favourable prognosis and to spare patients the attendant morbidity and mortality of 
oesophagectomy after a late diagnosis5,6. 
 
The accurate characterisation of ESCN lesions is vital, in order to predict histology and guide 
intervention. Lesions confined to the mucosa have low rates of local lymph node metastasis 
(<2%) compared to lesions invading the submucosa (8-45.9%) and so are amenable to minimal 
invasive endoscopic therapy7,8,9,10. Endoscopic resection, through endoscopic mucosal 
resection (EMR) or submucosal dissection (ESD)  is associated with excellent rates of 5 year 
survival11.  

 
Intrapapillary capillary loops (IPCLs) are microvessels that were first characterised with the 
advent of magnification endoscopy12,13. Subsequent work has established them as a marker of 
ESCN lesions and changes in their morphology correlates with the invasion depth of ESCN14,15. 
Normal IPCLs arise obliquely from the submucosal vessels, run adjacent to basal layer of the 
oesophageal epithelium and are seen as fine calibre looped structures on magnified endoscopy. 
As an ESCN progresses there is a stepwise destruction of the oesophageal wall architecture, 
which is visibly manifested in morphologic changes in the ICPL pattern. Initially IPCLs 
become more tortuous and dilated as they become engorged. As the ESCN progresses and 
begins to interrupt the mucosal layer, the IPCLs lose their looped structure and appear as linear 
dilated vessels. Avascular areas form between these non-looped vessels which also correspond 
to invasion depths deep to the mucosal layer. As the ESCN invades the deeper submucosal 
layer, the IPCLs are almost completely obliterated. In their place neovascularisation occurs 
with the formation of tortuous, grossly dilated and non-looped vessels16–18.  
 
Advanced endoscopic imaging modalities, such as narrow band imaging (NBI) in combination 
with advances in magnification endoscopy, afford endoscopists improved visualisation of the 
subtle mucosal and microvascular patterns of the oesophageal mucosa in patients with ESCN19. 
Several classifications have been proposed to define the features of abnormal ICPL 
morphology that can be correlated with histological invasion depth of ESCN lesions. 
Classifications described by Inoue et al12,13. and Arima et al.20; both associate progressive 
morphological abnormalities in IPCLs with deeper invasion of the neoplastic lesion14. Both of 
these classifications are complex and require a high degree of interpretation on the behalf of 
endoscopists – as such their utility in a clinical setting are debatable. 
 



The recently published Japanese Endoscopic Society (JES) magnified endoscopy classification 
for IPCLs is a simplified system compared to early classifications, which allows the easy 
recognition of ESCN by endoscopists21,15. The JES classification has become widely accepted 
and used by most practitioners in areas of high prevalence such as China and Japan. Importantly 
each ICPL subgroup corresponds with high accuracy to a given histological grade and invasion 
depth of ESCN – with increasing irregularity of the IPCL patterns representing more advanced, 
invasive disease15 (figure 1a and 1b). Type A vessels are small, narrow calibre looped vessels 
found within normal tissue. Type B1 vessels retain their looped structure but are more tortuous 
and dilated and may be associated with a brown discoloration of the mucosa; indicating either 
high grade dysplasia (HGD) or lamina propria (LP) invasion of ESCN. Type B2 vessels are 
severely irregular, dilated and are associated with loss of their normal looped arrangement and 
correspond with muscularis mucosa (MM) or early submucosal invasion (SM1). Type B3 
vessels are associated with advanced submucosal invasion or deeper and are a more aberrant 
formation of severely dilated B2 vessels. The accuracy of the JES classification as reported by 
Oyama et al is high compared to other classifications – with the overall accuracy for histology 
prediction 90.5% across type B1-3. Overall accuracy for histology prediction were 91.9%, 
93.4% and 95.9% for type B1, B2 and B3 IPCL patterns respectively15. Kim et al also report 
excellent interobserver agreement using the JES classification22. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 



JES	
type	
	

V1	
	

Typical 
morphology 

Typical histology 

A 

 

Small, non-dilated, fine calibre looped 
vessels with no gross abnormality. Some 
vessels may take a more elongated form 
with inflammation or LGIN. 
Submucosal vessels may be visible with 
the background mucosa of a uniform 
colour 
 

Normal/LGD 

B1 

 

Subtle abnormalities in IPCLs observed. 
Increased tortuosity, increased vessel 
calibre and density but looped structure 
is retained. There may be a brown hue to 
the mucosa 
 
 
 
 

HGD/LP 

B2 

 

Grossly abnormal IPCLs. Linear vessel 
formation with loss of the normal loop 
structure. There is also gross dilation and 
tortuosity of vessels. Formation of 
avascular areas between vessels 
observed 
 
 
 
 

MM/SM1 

B3 

 

Dilated non-looping vessels typically 3x 
calibre of B2 vessels seen. IPCLs are 
tortuous and highly irregular in 
appearance. Evidence of extensive 
neovascularisation and avascular areas 
seen. Mucosal contour may be distorted. 
Other adjacent IPCLs are typically 
abnormal 

SM2 or deeper 

    
Figure 1a: Representative examples of lesions containing each of the JES IPCL subtypes, with a description of 
key features and the associated histological invasion depth which correlates with each type. LGD – low grade 
dysplasia, HGD – high grade dysplasia, LP – lamina propria, MM – muscularis mucosa, SM - submucosa 
 
 
 

IPCL	classification	 Neoplastic	 Typical	histology	 Amenable	to	EET?	
A	 No	 Normal/LGD	 Yes 
B1	 Yes	 HGD/LP	 Yes 
B2	 Yes	 MM/SM1	 Possibly 
B3	 Yes	 SM2 or deeper	 No 

 
Figure 1b: Summary of the Japanese Endoscopic Society magnification endoscopy IPCL classification system; 
typical invasion depths of ESCN compared with the observed IPCL patterns. LGIN – low grade intraepithelial 
neoplasia. HGIN – high grade intraepithelial neoplasia. LP – lamina propria. MM – muscularis mucosa. SM - 
submucosa 
 



Computer aided endoscopic diagnosis with artificial intelligence could provide a useful adjunct 
to endoscopists assessing ESCN lesions; a system capable of recognising and highlighting the 
presence of ESCN could improve detection rates. CAED using convolutional neural networks 
(CNNs) has shown great potential in a range of medical specialties, but its use in the recognition 
of endoscopically detected neoplasia is in its infancy23. We propose that the distinct patterns 
observed in IPCL morphology, which are well validated as corresponding to histologic findings 
and invasion depth, could provide the input data to train a CNN to classify such 
microvasculature patterns as normal or abnormal. A CNN capable of accurately classifying the 
oesophageal mucosa as normal or abnormal based on IPCL patterns could improve and 
automate the detection and recognition of invasion depth of ESCN. This would be particularly 
useful in settings where endoscopists are unfamiliar with the endoscopic appearance of early 
squamous lesions. Furthermore, such a system would enable the in-vivo assessment of ESCNs, 
allowing endoscopists to direct appropriate endoscopic therapy where required and to 
potentially facilitate in the endoscopic delineation of resection margins.  
 
In addition, a downstream application of such a validated system, trained to differentiate 
individual IPCL subtypes has a role as a support tool for endoscopists to triage lesions as either 
amenable or unamenable to EET – based on the predicted invasion depth ascertained from the 
IPCL patterns. Such a system could reduce procedure time and prevent endoscopic resection 
being used in patients for whom it would be either inappropriate or futile. 
 

 
We aimed to develop a CNN capable of the automated classification of oesophageal mucosal 
tissue visualised using ME-NBI as non-neoplastic (type A) or neoplastic (type B1/2) based on 
the JES IPCL system. We chose only to include lesions containing type B1 or B2 IPCL 
patterns, since only these lesions would typically be deemed endoscopically resectable 
according to the JES classification. Our CNN was designed to work in real-time to facilitate its 
downstream application for the in-vivo detection and classification of ESCNs. Importantly we 
aimed to use images that were minimally pre-processed, in order to train a network with images 
typically seen at endoscopy. 
 
 
 
 
 
 
 
 
 
 
 
 



Methods 
 
Patient recruitment, inclusion and exclusion criteria  
 
Patients attending two specialist high volume referral centre for ESCN in Taiwan |( National 
Taiwan University Hospital and -Da Hospital/I-Shou University) were recruited to this study. 
Patients were required to give valid consent. Patients with ESCN were only included if 
pathological samples (EMR or ESD or biopsy for invasive cancer or oesophagectomy 
specimens) were acquired at the time of their endoscopy or subsequent surgery. Patients with 
active oesophageal ulceration or anatomical abnormalities of the oesophagus were excluded. 
Our study complied with the Declaration of Helsinki. The Institutional Review Board of the E-
Da Hospital approved this study to collect the videos (IRB number: EMRP-097-022).  
 
Endoscopic procedures and image acquisition 
Gastroscopies were performed by two expert endoscopists (WLW, HPW), defined as those 
performing >50 ESCN assessments per year). Endoscopies were performed using a high 
definition ME-NBI GIF-H260Z endoscope. An Olympus Lucera CV-290 processor (Olympus, 
Tokyo, Japan) was used. The oesophageal mucosa was cleaned with a solution of Simethicone 
prior to the interrogation of the IPCL pattern using ME-NBI. Magnification endoscopy was 
performed on areas of interest at 80-100x magnification. After assessment of the lesion 
pathological samples of the imaged area were acquired through EMR or ESD. 
Histopathological analysis was undertaken by two expert gastrointestinal pathologists and 
reported according to the Vienna classification system24. 
 
Labelling ME-NBI videos and establishing an expert consensus 
HD endoscopic videos were reviewed independently by three expert upper gastrointestinal 
endoscopists (WLW, RJH and HPW) with extensive experience in the endoscopic assessment 
and treatment of ESCN lesions. For each video, the visualised IPCL patterns were classified 
by consensus based on the JES classification system. Classifications were then correlated with 
histology taken from the imaged area before a final classification was assigned to each group 
of images. Type A IPCLs were considered normal, type B1, 2 and 3 IPCLs were considered 
abnormal and indicative of the previously described grade of neoplasia. Videos were sampled 
at 30fps to generate sequential still images which were stored as the lossless .png format.  
 
Image quality control 
Images were manually quality controlled by a senior clinician study member, with those that 
were blurred, contained no visible IPCLs or where the mucosa was obscured by blood or mucus 
deemed uninformative and removed from both the training and testing datasets. Images were 
cropped to remove all black borders and any identifiable or discriminative patient or clinician 
demography labels. This prevented the CNN identifying discriminative features on the images 
to distinguish between normal and abnormal cases that were not related to the IPCL patterns. 
 
 
 



Formation of image datasets 
The full dataset consisted of 7046 images, with resolutions ranging from 458x308 to 696x308 
pixels. We employed 5-fold cross validation to generate five distinct datasets with different 
combinations of images. For any given fold, images of patients used within the training dataset 
were not used in the validation or testing dataset. On average, each fold used 3962 images for 
training, and 1637 unseen images (846 normal and 791 abnormal) for testing. The composition 
of the datasets is summarised in table 1 and 2. 
 
 

Fold	 Training	 Validation	 Testing 
1	 2620	 201	 577	
2	 1792	 891	 715	
3	 1822	 685	 891	
4	 1792	 715	 891	
5	 1559	 685	 1154	

Average 1917 635 646 
Table 1: Number of frames in each fold used for cross validation containing normal IPCL patterns 
 

Fold	 Training	 Validation	 Testing 
1	 2803	 258	 587	
2	 2205	 739	 704	
3	 1549	 1360	 739	
4	 1912	 961	 775	
5	 1754	 743	 1151	

Average 2045 812 791 
Table 2: Number of frames in each fold used for cross validation containing abnormal IPCL patterns 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Convolutional neural network  
 

 
Figure 2: Schematic representation of our study workflow and CNN design 
 
A full description of our technical methodology is described by our group in Herrera et al (cite 
Luis), a summary is provided in figure 2. Quality controlled ME-NBI images of ESCNs were 
used as the input data. Each image was labelled as representative of a specific IPCL subtype. 
In training, input images are passed through layers of the CNN, which develops filters for 
features on the image, at various magnifications. As images pass through the layers of the CNN, 
the network develops filters to detect various visual features such as edges and borders, colours 
and the shape of IPCL patterns. Explicit class activation maps (eCAMs) are generated to depict 
visually areas of each image that the CNN finds most discriminative when classifying them as 
normal or abnormal.   In a final output layer the CNN will make a prediction whether the IPCL 
pattern is normal or abnormal. If the prediction is correct compared to the clinician labelled 
input image, those filters will be conserved. Once training is complete new, unseen images are 
inputted into the CNN and its classification performance is assessed. 
 
Statistical analysis 
Accuracy, F1 scores (a weighted average of precision and sensitivity), sensitivity and 
specificity for abnormal IPCL detection were calculated. 
 
 
 
 



 

Results 
 
Patient characteristics 
17 patients were included in our dataset; 10 with ESCN and 7 with a normal squamous 
oesophagus. All included patients were deemed to have endoscopically resectable lesions, with  
a summary of the histological invasion depth given in table 3. 
 

Patient	demographic	 	

ESCN	characteristics	 	
	
IPCL	patterns	

	
Type A                          
Type B1                        
Type B2                        
 
	

	
7 
5 
5 
	

Histology	
	

Normal																											
HGIN	(M1)	
Lamina	propria	(M2)	
Muscularis	mucosa	(M3)	
Submucosa	(SM1)	

7	
1	
4	
4	
1	
	

Table 3: Summary of demographics and lesion information for patients recruited	
 
 
 
 
 
 
Analysis of explicit class activation maps (eCAMs) 
 
The distribution of abnormal IPCL patterns are heterogeneous between images, eCAMs were 
therefore generated to elucidate which visual features within the images the CNN was using to 
discriminate healthy and unhealthy tissue. This served as a further validation step to ensure that 
the CNN was using the IPCL patterns in order to classify images as normal or abnormal, rather 
than other subtle discriminative features. Analysis of the eCAMs patterns (figure 3), offers 
several interesting insights into the decision-making process of our CNN. Firstly, as expected, 
our CNN appears to use the IPCL patterns as its most discriminative feature. Secondly it is 
capable of recognising discrete areas of abnormal IPCL patterns within otherwise normal 
mucosa and appears to ignore other uninformative features such as specular reflections. 
Interestingly, the CNN did not use avascular areas between the grossly abnormal B2 IPCLs 
seen in figure, but remained able to discriminate the abnormal vessels highly selectively. We 
also note that within some images of healthy tissue the CNN has a tendency to classify the deep 
submucosal vessels as abnormal – which may potentially lead to false positive classifications 
of normal tissue as abnormal. 



 
 

Figure 3:  Input images (left column) with corresponding eCAMs (right column), illustrating visual features 
recognised by the CNN when classifying images. a) recognition of abnormal IPCLs patterns. b) specular 
reflections are ignored by the CNN c) high selectivity between normal mucosa and abnormal IPCLs. 
 
 
CNN performance for IPCL classification  
Our CNN operates at video rate, capable of classifying sequential HD-images acquired from 
endoscopic videos. The classification interval time varied according to the size of the images 
analysed, but ranged from 26.17ms to 37.48ms. The CNN demonstrated a mean accuracy for 
the differentiation of abnormal IPCL patterns (B1/B2/B3) from normal type A patterns of 
93.3% (range 86.2-98.3%). The average F1 score (a weighted average of precision and 
sensitivity) for identifying ESCN based on the IPCL pattern was similarly high at 92.7% (range 
85.4-98.2%). Our algorithm achieved a sensitivity and specificity for abnormal IPCL detection 
of 89.7% (range 78.1-100%) and 96.9% (range 92-99.7%)respectively. There was some 
variability in performance statistics between folds, which likely represents that the CNN is still 
not adept at distinguishing all of the varied IPCL features that represent abnormal tissue (Type 
B1/2/3). While our dataset is the largest in the published literature it is highly likely that more 
images are required to fully train the network to recognise the full spectrum of variability in 
IPCL patterns. Our CNN performance statistics are summarised in table 4. 
 
 



Fold	 Accuracy	(%)	 Sensitivity	(%)	 Specificity (%)	 F1 score (%) 
1	 86.2 80.4	 92	 85.4	
2	 89.0 78.1	 99.7	 87.6	
3	 97.7 100	 95.9	 97.6	
4	 98.3 99.4	 97.3	 98.2	
5	 95.1 90.6	 99.6	 94.9	

Average 93.3 89.7 96.9 92.7 
Table 4: Summary of CNN performance statistics for detection of abnormal IPCL patterns 
 
	

 

Discussion 
We have introduced the first application of CAED and artificial intelligence for the accurate, 
real-time characterisation of ESCN through the classification of intrapapillary capillary loops 
seen during magnification endoscopy based on the widely used clinical endoscopic JES system. 
 
Accurate assessment and characterisation of ESCN lesions is vital, in order to predict histology 
and invasion depth to guide appropriate intervention. Lesions confined to the mucosa have low 
rates of local lymph node metastasis (<2%) compared to lesions invading the submucosa (8-
45.9%) and so are amenable to minimal invasive endoscopic therapy7,8,9,10. Prompt access to 
endoscopic eradication therapies and the low incidence of metastasis, mean that superficial and 
mucosal ESCN can be resected with 5 year survivals of 75-100%11.  
 
Several classification systems exist to assist clinicians with the accurate characterisation of 
IPCL patterns. Inoue et al (2001) were the very first to propose a five-part classification of 
IPCL patterns25. Type I-III IPCL patterns were associated with normal mucosa, inflammation 
or LGIN. Type IV IPCLs were suggestive of HGD. Type V IPCL patterns were subdivided 
into V1 (M1 carcinoma in situ), V2 (M2 carcinoma in situ), V3 (M3 or early SM1 invasion) and 
V4 (invasion to at least SM2) based on the progression of abnormal IPCL morphology25. In one 
study, the Inoue classification enabled identification of early mucosal lesions (M1-2) with 
89.5% sensitivity14. The Inoue classification sensitivity for prediction of ESCN invasion into 
SM1 and SM2 was much lower at 58.7% and 55.8% respectively14. Arima et al (2005) 
proposed an alternative four-part classification system with type 1, 2, 3 and 4 IPCLs 
representing normal mucosa, inflammatory changes, M1-2 carcinoma in situ and >M3 invasion 
respectively20. The Arima classification also introduced the concept of avascular areas as a 
marker of invasive cancer, with AVAs <5mm suggestive of SM1 invasion and >5mm of >SM2 
invasion20. 
 
We elected to use the JES IPCL classification of ESCN as the input and output for our neural 
network as it is the most contemporary and, as described above, accurate classification system 
that has been proposed and is widely used in areas of high ESCN prevalence. We believe that 
a CNN that functions using this classification will remain clinically relevant as it becomes more 
widely used. We suggest that the classifications proposed by Inoue25 and Arima20 are complex 
and may not be as intuitive to use in clinical practice. 



 
Our study, the first reported use of CNNs for this purpose, uses sequential still images captured 
from HD videos of endoscopic examinations, to train a CNN to characterise ESCN lesions 
based on the IPCL patterns visualised at endoscopic assessment. This CAED platform achieved 
an accuracy of 93.7% for the characterisation of abnormal IPCL patterns. The sensitivity and 
specificity of our CNN also compares favourably to other published work at 89.7% and 96.9% 
respectively. Furthermore, our CNN can operate at video rate, with rapid prediction times 
meaning that it could be used for real-time in vivo classification of imaged mucosal tissue.  
 
We envisage that our CNN could provide a ‘red-flag’ type system to assist endoscopists in the 
recognition of abnormal IPCL patterns in patients undergoing assessment for suspected ESCN 
and consideration of endoscopic treatment.  Such a validated system could potentially shorten 
the time required for endoscopic evaluation, reduce interobserver variability and importantly 
inform in-vivo clinical decision making on what lesions require or are amenable to endoscopic 
resection. Wang et al (2017) demonstrate that in a non-expert panel of endoscopists accuracy 
of histology prediction using the JES classification ranged from 48-57% after a short training 
program26. Kim et al (2017) also demonstrated an overall accuracy of 78.6% for the correct 
prediction of histology22.  Our CNNs overall accuracy of 93.7% therefore compares very 
favourably to this. We would therefore expect that our system would yield most benefit for 
non-expert endoscopists or in centres where the endoscopic assessment of ESCN is less 
common and so clinicians may feel less confident in recognising and classifying IPCL patterns. 
   
Our study has several limitations which we have tried to mitigate; further work currently 
underway seeks to address them too. Firstly, our patient sample size is small, using 7046 
images generated from 17 patients. Although we note that this is currently the largest image 
dataset used to train a CNN for this specific application reported in the literature. To mitigate 
this, we utilised 5-fold cross validation, as outlined in table 4, in order to benchmark the ability 
of the CNN to generalise – defined as its ability to recognise a range of IPCL patterns under 
different operating conditions. This method ensures that our network was trained and tested on 
all available images, whilst ensuring that no images that were used for training were used for 
testing. Our novel use of eCAMs also acts as an additional form of validation; despite the low 
total patient numbers, we have already demonstrated that the ICPL patterns are the visual 
features the network finds discriminative when classifying images. We therefore expect that 
with greater numbers of patients we should continue to see such high accuracies for IPCL 
characterisation. 
 
Secondly, our system is able to differentiate normal (type A) compared to abnormal (type B1-
3) IPCL patterns, but is not yet able to differentiate between individual subtypes with sufficient 
accuracy for clinical use. This is comparable to other studies using the Inoue and Arima 
classifications which reported less accurate characterisation of >SM1 lesions based on IPCL 
patterns. We have only included images of type A, B1 and B2 IPCLs as an input to our CNN 
for this study, since we currently seek to develop a system that can highlight abnormal areas 
of potentially resectable lesions to clinicians in the first instance. A system capable of 
identifying type B3 lesions, which have typically invaded beyond SM2 and so are currently 



not typically endoscopically resectable requires further work and robust validation before it 
could be used routinely.  
 
Lastly, our gold standard used only three expert clinicians. We feel that for such a pilot study 
this is sufficient to provide accurate ground truth to develop a CNN, particularly since all of 
the consensus classifications were correlated with histological results. We recognise however 
that future work will be needed to externally validate this CNNs performance against a larger 
panel of clinicians of varying levels of experience before it could be used in a clinical 
environment. It is important to note that published work on the JES classification reports 
interobserver variability of between  0.6127 and   0.8622. A CNN developed to classify IPCL 
patterns should therefore only be expected to obtain this level of variability during external 
validation.  
 
Based on further work currently being undertaken we aim to produce a CNN capable of more 
precise classification based on the individual JES subgroups – type A, B1, B2 and B3. Such a 
validated, accurate system would also improve the characterisation of ESCN. Furthermore, this 
system could allow clinicians to triage, in real—time, ESCN lesions that would be amenable 
to EET, compared to those lesions which would be too advanced to be cured endoscopically. 
This would both prevent patients with advanced disease undergoing unnecessary endoscopic 
therapy, as well as ensuring that they were referred promptly for surgical management. Such a 
system would need to be validated in a prospective clinical trial before it could be adopted into 
routing clinical practice. Work already underway by our group aims to develop a segmentation 
tool which could be used in real time to delineate borders of neoplastic lesions to ensure 
adequate resection margins. 
 
 
In conclusion, our pilot study introduces a novel CNN, capable of classifying IPCL 
patterns as neoplastic or non-neoplastic in real-time, using ME-NBI images acquired 
during endoscopy. Our system demonstrates an impressive accuracy and could 
potentially assist clinicians in the recognition of neoplastic tissue, as well as providing a 
clinical decision support tool to guide endoscopists considering whether lesions are 
amenable to endoscopic resection. We believe that our system provides a performance 
benchmark for the assessment of other CNNs designed for this purpose in the future.  
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