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Abstract—Physical activity recognition is an important re-
search area in pervasive computing because of its importance for
in e-healthcare, security and human-machine interaction. Among
various approaches, passive RF sensing on the basis of well-tried
radar principle has potential to provides unique non-invasive
human activity detection and recognition solution, and draws
more attention. However, this technology is far from mature. This
paper presents a novel HMM-log-likelihood matrix based feature
characterizing of the Doppler shifts to break the fixed sliding
window limitation in traditional feature extraction approaches.
We prove the effectiveness of proposed feature extraction method
in K-means&K-medoids clustering algorithms with experimental
Doppler data gathered collected from a passive radar system. The
time adaptive log-likelihood matrix-based approach outperforms
the traditional SVD, PCA and physical feature based approaches,
and reaches 80% in activity recognizing rate.

Index Terms—Human Activity Recognition, Log-likelihood
matrix, Doppler Radar, Passive Sensing

I. INTRODUCTION

Human activity capturing and behavior modeling in resi-
dential environment draw increasing attention in communities
because of its significant importance in healthcare, security
and economic research. Physical activity recognition is one
of essential elements in these areas, particularly for its value
in tackling challenges in modern healthcare problems, for
example, Chronic Noncommunicable Diseases (NCDs) which
reported causes two million deaths every year [1]. Technolo-
gies like computer vision, Micro-electromechanical (MEMS)
based wearable sensors, and environmental sensors have been
listed as potential solutions. Research project like SPHERE [2]
dedicates in integrating above sensors in smart home context
to model human behaviors for healthcare purpose.

Among candidate technologies, we notice that videos [3]—
[5] and wearable sensors [6]—[8] like accelerometers and gyros
are most popular approaches. However, these approaches have
obvious defects in the practical residential applications. Wear-
able sensors suffer from battery life limitation, uncomfort-
ableness and oblivion in long-term monitoring applications.
While deploying of vision based sensors are constrained by
privacy issues and environmental illuminance conditions. In
this context, researchers start to shift attention to passive Radio
Frequency (RF) sensing which is based on well-tried passive
Radar principle [9]. Passive RF sensing is the option can
potentially create a seamless, ever-present, contact-less human

activity sensing approach in residential context without taking
sensitive resident’s image information.

Early attempts of the RF sensing focus on active Ultra-
Wide-Band (UWB) radar [10]-[12]. Benefiting from the high
operating carrier frequency and wider bandwidth, the active
UWRB radars have sensitive Doppler detection and high range
resolution that are advantages of capturing human target
movement. However, deploying of active UWB needs the extra
RF signal source in given environment, which may cause Elec-
tromagnetic Compatibility (EMC) problem or license issue
during deploying. Thus, researchers shift the vision from active
UWRB to passive sensing which uses the existing RF resources
in the given environment. Regarding the residential area, WiFi
signal is the most investigated passive RF source for sensing
purpose because of its ubiquitous existence in contemporary
residential space. Some works like [13] simply taking advan-
tage of Received Signal Strength (RSS) measurement on IoT
device to interpreting the signal disturbance caused by human
activities. However, RSS is a coarse index for interpreting
detailed human gesture. Then, the concept is extended to
WiFi Channel State Information (CSI) based approaches [14].
The CSI expand the single RSS parameter to Direction-of-
Arrival (DoA) [15], Angle-of-Arrival (AoA) [16] and Doppler
information [10] which are accurate enough to represent the
human activity details.

Among these parameters, Doppler information is the only
one that is differentiate from stationary clutters which make
it an ideal for detecting moving objects. Thus, we can see
many passive RF sensing systems using Doppler as the main
parameter for human activity and gesture recognition. For
example, work [17] presents a device-free Through-The-Wall
(TTW) system for personnel sensing at standoff distances
and [18] shows a solution for gait recognition using Doppler
information with WiFi signals. Our pioneer work [19]-[21]
and researchers in [12], [22] have also shown that the recorded
Doppler shifts within a gesture or activity cycle can be
potentially used for various application including non-invasive
breathing detection and home area lifestyle monitoring, even
through-wall.

In order to interpret human gesture or activity information
from the Doppler information, a ’good feature vector” need to
be defined. In most research and practices, popular Doppler
feature extraction approaches include Physics Features [11],
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[21], [23], Principal Component Analysis (PCA) [12], [24],
and Figenvalue based features [25], [26]. However, these
approaches need Sliding-Window (SW) algorithm which re-
quires a pre-designed fixed window sliding on the Doppler
sequence...may be a definition of Doppler sequency.... This
fact makes the SW based features are insufficient or need to
be tuned for high accurate activity recognition for varying du-
rations of different activities [27]. To overcome the limitation
of SW algorithm, we propose the clustering methods on the
basis of Hidden Markov Model (HMM) based log-likelihood
matrices to adapting the varying activity durations problem.
HMM is a widely used statistical model for sequence cluster-
ing problems like the DNA sequence and speech recognition
[28]. In [22], HMM is used for micro-Doppler signatures
classification in the SW category. In this work, we creatively
use the HMM as middle-processing for log-likelihood feature
extraction of each individual human gesture/activity Doppler
sequence which presents strong time sequential characteristics.

The methodology described in this paper makes following
contributions the research community:

« Time-Adapting log-likelihood Feature: The log-
likelihood matrix derived from HMM training brings
adjustable window size to improve the time diversity
of different Doppler sequence. This operation brings
more than 15% improvement in activity recognition rate
compared with previous approaches. Furthermore, we
propose the symmetric log-likelihood matrix rather than
the original matrix to further extend diversity in clustering
process and improves the recognition performance.

« Novel Framework: A framework which systematically
connects functional blocks of RF signal processing, the
HMM-based log-likelihood feature extracting, clustering
and applications are proposed for passive RF sensing.

¢ Prove-of-Concept (PoC) System: A Software Define
Radio (SDR) based passive RF sensing platform is de-
signed as the PoC system to implement passive RF signal
processing and proposed log-likelihood feature and clus-
tering to prove the concept. The recognition performance
of the PoC system is supported by lab experimental data.

The rest of this paper is organized as follow: Section II

presents the system design and experiment setup; the prepro-
cessing for passive radar sensor is outlined in Section III; the
descriptions of proposed HMM-based log-likelihood matrix
are expressed in Section IV; Section V presents the recognition
performance for the log-likelihood based clustering in contrast
with other classical features; Conclusions are given in Section
VL

II. FRAMEWORK, SYSTEM AND EXPERIMENT DESIGN

The top-level block diagram of our passive activity recog-
nition radar system is presented in Fig 1. Three main pro-
cessing stages are included: RF IQ samples preprocessing,
log-likelihood calculation and clustering. The data formats of
input/output ports of each block are also given in top-level
diagram and will be discussed in corresponding sections. The
signal processing stage is the preprocessing of received RF
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Fig. 1: Block diagram of our proposed passive radar activity
recognition system

IQ signals from RF front end which is NI USRPs in this
paper. This stage outputs Doppler sequence corresponding to
each activity sequentially. Afterwards, in feature calculation
stage, we use HMM to train those Doppler sequences with the
classical Baum-Welch algorithm. The idea is that for Doppler
sequences captured from same activity shall receive similar
log-likelihoods from HMMs trained from other Doppler se-
quences. Then those log-likelihoods should be clustered into
different activity groups (if the predict HMM is correct). The
outputs at current stage are the log-likelihood matrix.

K-means and K-medoides clustering algorithms are then
used to allocate activities to clusters according to the value
in the log-likelihood matrix. Different from previous works
[11], [12], [25], [29] which all use the supervised classifier
(like SVM or decision tree), both K-means and K-medoides
belongs to unsupervised learning that no labels are required
from dataset. In this work, these clustering algorithms group
the activities into several clusters on the basis of distance
among the value in log-likelihood matrix. This approach
shows an attractive solution for the data from weak labelling
environment. Only at final stage, we use labels to evaluate the
clustering and recognition performance.

The measurements were carried out in the lab at the Univer-
sity of Bristol, the system layout is shown in Fig 2. The mon-
itoring area is 7 m x 5 m with equipments, chairs, and tables
surrounded. A table is cleared of any other items and used to



Wall
0.2m

D{

Computing
Unit

v
Energy Harvesting
(l) Transmitter

Surveillance Channel

T
0.5m 4
|
|
1
1
i

Fig. 2: Experiment Setup

collect the Doppler data with an energy harvesting transmitter
(TX91501 POWERCASTER) as the signal source. Our passive
radar sensor contains two synchronized channels, one is the
surveillance channel which aims to capture the reflected signal
from surveillance area, the other one is reference channel
which aims to receive the transmitted signal from a comparable
stable channel - a direct channle in most cases. The location
of the signal source was near to the wall in the room, whereas
the system was located 0.5 m away from the source and faced
to the monitoring area. This layout minimizes the influence
of the system geometry to the profile of Doppler sequence
since the monitoring area is within the range of surveillance
antenna. For the proposed system, the unsupervised learning
discovers the similarity between activities that can properly
functional even the activity like walking and running receive a
low power profile due to the low Doppler signature. Due to the
nature of bistatic geometry, there will be no Doppler observed
if the subject moving along the bistatic contour [30]. Thus,
adding additional surveillance channels from different angles
is necessary to cover blind spots. Our passive radar sensor
is implemented based on a Software Defined Radio (SDR)
platform, where two NI USRP-2920s are used as reference
and surveillance channels respectively, each USRP equipped
with a directional PCB antenna (P2110-EVB) and connected to
a laptop through an Ethernet port. For this pilot study, the data
of five basic activities and one inactivity from four volunteers
(three males and one female, ages from 25 to 38). The details
are presented in Table L.

The total number of the dataset is inactivity (1) x (20
repetitions) + 5 activities (2-6) x (40 repetitions) = 220.

III. PREPROCESSING FOR PASSIVE RADAR SENSOR
A. Cross Ambiguity Function

In passive radar, Cross Ambiguity Function (CAF) is an
effective tool to obtain the range and Doppler information by
taking Fast Fourier transform of cross-correlated signals from
surveillance channel S,(t) and reference channel S, (t).
However, there are two inherent limits of CAF. Firstly, long
integration time of bandwidth signal will contain a significant
amount of samples that the FFT process becomes impractical
to be implemented. Secondly, the FFT algorithm expands all
frequency components which may bury the desired Doppler

TABLE I: Description of Measured Activities

Activity
(1) Standing

Description

Standing still in front of the surveillance antenna for
10 seconds at distance with 1 m, 2 m, 3 m and 4 m.
This represents low-level body movements.
Walking in the area between two random points,
forward and backward. This represents long middle-
level body movements.

Running in the area between two random points,
forward and backward. This represents long high-
level body movements.

2) Walking

3) Running

4) Jumping | Jumping in front of the antenna at distance with 1 m,
2 m, 3 m and 4 m. This represents short high-level
body movements.

5) Turning Turning the body into different directions in front of

the antenna at distance with 1 m, 2 m, 3 m and 4 m.
This represents short middle-level body movements.
Standing up from a chair in front of the antenna at
distance with 1 m, 2 m, 3 m and 4 m. This represents
another type of short middle-level body movements.

6) Standing

Doppler spectrogram
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Fig. 3: Example of Doppler sequence from our passive radar
sensor: activity (1) standing still, (2) Walking, (3) Running,
(4) Jumping, (5) Turning and (6) Standing
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Fig. 4: Example of Doppler power intensity for time align-
ment: activity (1) standing still, (2) Walking, (3) Running, (4)
Jumping, (5) Turning and (6) Standing

shift in the wide frequency spectrum. ...I feel confused about
the ’Secondly...”... In another hand, the decimation technology
can solve the computational issue by dividing a long sampled
signal into group of short signal for the FFT transformation.
This operation will lead to faster CAF processing. One of such
technology is known as the batching process [31] by splitting
the baseband signal into several batches (each contains small
but equal portion of signal). The equation for CAF with
batching process can be presented as:

nb—
CAF(vafd /Sbu’! (1)
k= OT
N R”)eﬂ”fcfdtdt
(2)

where Ry, and f; represents the range and Doppler information

respectively, St (t) and S?, #(t) are down converted baseband



signals from surveillance and reference channel with batching
length T's and ny is the number of batches, ¢ donates the light
speed, f. is the carrier frequency and [«] indicates the complex
conjugate. The range resolution is defined as AR, = ¢/2B
where B is the bandwidth of the RF signal (normally 20 MHz
to 40 MHz for typical indoor communication/transmission
system). This gives range resolution from 7.5 m to 3.75 m
which obviously is too coarse for activity recognition purpose.
On the other hand, the Doppler resolution is defined as
Afyg= % which can be adjusted by the length of integration
time.

B. Direct Signal Interference

The major limitation of CAF is that the signal source
to surveillance antenna signal leakage which contains much
higher energy compare to the target’s refections, thus, gener-
ates a strong interference at the zero Doppler bin. This strong
interference could bury the target reflection and significant
reduce the detection sensitivity. To remove this interference,
the CLEAN algorithm [32] in introduced. The principle is
to iteratively subtract scaled self-ambiguity function CAFy.;y
surface. C AF,; is calculated from reference channel S, (%)
signal. The cleaned CAF CAF i(Rb, fd) at sy, iteration can be
then calculated as:

CAF'(Ry, fg) = CAF'" (Ry, f4) — &' CAFse15(Ry — fi, fa)

3)
where scaling factor o is the maximum absolute value of
the shift factor related to the location of o’ and f; is the
corresponding phase shift factor. Note that, the batching pro-
cess is also applicable in the DSI cancellation. Afterwards, the
dominant peak caused by DSI will be removed and the desired
Doppler peak can be detected. Finally, a Doppler sequence
D(fq,t) is generated by combining a group of columns with
the maximum Doppler peak from each CAF [19]. An example
of the Doppler sequence measured from six activities is shown
in Fig 3.

C. Time Alignment

One challenge in this system is to determine the starting
point of an event. As there is no sign to label the start
point of an activity, the system should be capable of auto-
matically identifying the inactive and active periods. Tradi-
tional methods such as manifold alighment and dynamic time
wrapping (DTW) [33] transform the general problem to high-
dimensional vectors and therefore require high computational
power which is not ideal for our system. In comparison, we
transform this challenge into a pulse detection problem by
calculating the power intensitx P1I of Doppler sequence:

b

PI(t) = D(fa,.t) @)

We plot the corresponding 1]3})ppler power in Fig 4. As can
be seen, the peaks for middle and high-level body movements
are clear and distinguishable. However, for low-level body
movement, there are few patterns in Doppler sequence that
can be hardly detected. For this reason, we treat the low-
level body movement as inactivity period and other levels as

activity periods. We set the reference level at 10% of the
waveform amplitude to detect the start point and duration
of activity. Overall 97.3% (214 out of 220) accuracy has
been observed between the activity and inactivity period. The
average measured durations of each activity are shown in Table
I

TABLE II: Average Duration of Each Activity

Activity walking | running | jumping | turning | standing
Duration (s) 2.5 2.6 1.4 0.8 1.2

IV. HMM TRAINING AND LOG-LIKELIHOOD

After the preprocessing on the baseband signal, we can
obtain a set of Doppler sequences from different activities. The
problem in this paper is to allocate those Doppler sequences
into K different groups. This is normally handled by using
classifier like Support Vector Machine (SVM) or decision
tree based on feature vectors. As discussed before, those
feature vectors from [11], [12], [22], [23], [26] are all on the
basis of the fixed sliding window algorithm. While in this
work, we aim to use the original Doppler sequences instead
of their segmentations from a fixed window. This is not a
straightforward task since the Doppler sequences are varying
in time length (shown in Table II). For this reason, we propose
to use the Hidden Markov Model (HMM) as the representation
of Doppler sequences. Different from previous HMM work
[22], we train one HMM for each individual Doppler sequence.
The trained HMM will contain the activity information, not
rely on activity start/end points inside a Doppler sequence.
So that the limitation of fixed data length in HMM training
process can be avoided. The outcome of Doppler sequence
tests by HMM is the log-likelihood value which indicates
how well the Doppler sequence fits the model. The details
are present in this section.

A. Training with Hidden Markov Model

Hidden Markov Model is a popular statistical models for
recognition/categorization. In the graphical model of HMM,
there are two types of node: observations and hidden nodes.
The observation nodes contains the input data which can either
be continuous or discrete. The hidden states are discrete and
characterized by a joint probability distribution. An HMM A
model follows the first order Markov assumption and can be
defined as following [34], [35]:

« A finite set of hidden states X = {X;, X5, ...X,,, }.

o A state transition matrix A represents the probability
from state X; to state X; as:

aij =plar = Xj [ ¢ = Xi o)

where ¢, is the state at time ¢, a;; > 0, Zjvzl a;; =1
with 1 <7 and 5 < m.

o« A set of observations O, here it represents Doppler
sequences as O = {Dy, Dy, ..., Dy}

o Emission matrix B = {b(o | X;)} indicates the probabil-
ity of the emission of output o € V at the state X;. V



TABLE III: State transition matrix and initial state vector for
walking

Walking State Transition Matrix Initial
State 1 State 2 | State 3 | State 4 | State 5 | Vector
State 1 0.12 0.23 010 0.30 0.26 0.70
State 2 0.02 0.04 0.05 0.40 0.48 0
State 3 0.01 0.37 0.22 0.23 0.16 0
State 4 0.18 0.28 0.22 0.26 0.06 0.30
State 5 0.33 0.36 0.27 0.03 0 0

is a continuous set with the probability density function
blo| X;)
« Initial state probability vector
7 = plg = X (6)
where m; > 0 and Zfilm =1lwithl<i<m
For convenience, an HMM can be written with a triplet
defines as A = (A, B, ). And the hidden states X in this
work represent the relationship between two adjacent columns
within a Doppler sequence at time ¢ and ¢ + 1.
We train an m-states HMM A; for each sequence D,,
1 < i < N from the dataset. Firstly, two matrices Agy; and
o, are randomly initialized as the input. This is because we
have no priori knowledge about the model of any Doppler
sequence. Secondly, Expectation Maximization (EM) is used
as the optimization tool for calculating initial state vector
and state transition matrix. An expectation (E) step is to
create a function for expectation of current estimation, and a
maximization (M) step is to compute the maximized expected
log-likelihood found in E step. In this work, ten iterations
are selected to find the best parameters that fit the Doppler
sequence. Finally, we have the optimized matrix A;; and 7y,
as the parameters for HMM A;. Moreover, the size of m is
decided by performing a preliminary test over the recognition
accuracy with state number from 2 to 7. We observe that
HMMs with high state number are very easy to receive "NaN”
value when calculating the covariance matrix. From the test,
m = 5 states are found to be the optimized configuration
which has the best performance 2% higher than others. An
example of the transition matrix and initial vector for a
walking sequence is shown in Table III. We use the Murphy’s
HMM toolbox [36] in this work.

B. Log-likelihood Calculation

After HMM training for each Doppler sequence, a log-
likelihood matrix L = {L(D; | D;)} is generated to present
the similarities between each Doppler sequence and models.
For each log-likelihood value L;; is calculated as:

TDi
Li; = ZP(Di,t | Aj) @)

where p(D;; | Aj) is tflelforward probability of a testing
Doppler sequence D; with HMM A; and Tp, is the length of
sequence. Note that, since the inactivity period ((1) standing
still activity) can be recognized by using time alignment
method (described in Section II), thus the rest 200 sequences
(5 activities) will be considered in this log-likelihood matrix

L. Moreover, for the purpose of convenience, we use log-
likelihood value instead of the likelihood as it is the direct
output of HMM.

In addition, we propose to apply a ’symmetrizing’ process
over the log-likelihood matrix before the clustering. We know
that the log-likelihood value L;; presents the similarity be-
tween Doppler sequence D; and D;, which is calculated by
testing the D; with HMM A; trained from D ;. However it has
not actually take account the sequence D;. In other words,
it does not consider how good the HMM J; is trained by
Doppler sequence D; but assumes all sequences have same
training quality. Thus we believe its necessary to consider
the quality of HMM for the log-likelihood matrix. Following,
three symmetric log-likelihood matrices used in this paper are
presented.

1) Log-likelihood Symmetric (Lg): The most straightfor-
ward approach for ’symmetrizing’ is simply to summing up
L;; and Lj; for the point L;;. This symmetric matrix Lg can
be defined as follow:

LY = 3 [Lij + Lji] (8)

2) Log-likelihood B-Pair (Lpp): Paper [37] extends the
idea of Lg and proposes the matrix Lpp to better evaluate
the log-likelihood value. Lpp also takes account the L;;
when calculate the sequence D;. Since the log-likelihoods in
diagonal of the matrix represents the log-likelihood generated
with the sequence itself which can be used as the reference
for the point L;;. The matrix Lpp is defined as:

Lip =g |72+ ©)
3) Log-likelihood Kullback-Leibler (L ): Despite Lpp
normalizes the log-likelihood L;; with its corresponding ref-
erence at L;;. However, the L gp matrix uses linear normal-
ization is quite simple and insufficient for the log-likelihood
value. In comparison, we purpose to use the Kullback-Leibler
(KL) number for L;; and L;;. The advantage is that it is more
suitable for the log-likelihood value which provides better
diversity in distance matrix in the clustering process. The

matrix Ly, is defined as:
L;; Ly
Zij L |1
ij] " [ ! }

iy o1
LIJ(L:—|:L” |:l’fl L.
Jt

_|_

3 } (10)

where || means the absolute value, the — sign is to reverse the
matrix since the values on diagonal are Os and should be the
highest value in a log-likelihood matrix.

To better present the idea of log-likelihood matrix, we
plot the log-likelihood matrix in Fig. 5 (a) L matrix, (b)
Ls matrix, (¢) Lpp matrix and (d) Ly matrix. we get
together all Doppler sequences from same activity to allow
easier understanding of the log-likelihood matrix with orders
as: Doppler sequence 1-40 are (2) Walking, 41-80 are (3)
Running, 81-120 are (4) Jumping, 121-160 are (5) Turning,
and 161-200 are (6) Standing from a chair. Same orders apply
to HMMs. As the Fig 5 shows, all matrices show the clear
border between different activity groups at both horizontal
and vertical axis. This indicates that HMMs trained from one
type of activity outputs similar log-likelihoods to other type
sequence and allows the feasibility of activity recognition.
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TABLE IV: Differences in log-likelihood matrix

Log-likelihood | Mean Value | Max Value | STD
L -32.26 150.56 27.28
Lg -32.26 150.56 11.05
Lpp -1.56 0.23 0.33
Ly -292.32 0 77.96

As expected, the most significant value of each row is at
the diagonal of the log-likelihood matrix. It can be seen the
clear line in each log-likelihood matrix due to the self-testing
that generate the highest similarity. We also observed that Lg
matrix is very similar to Lpp matrix with some difference
in magnitude. This is because that the log-likelihood values
at diagonal L;; are similar to each other, which makes the

21 é—f) close to (L;; + Lj;). In addition,
11 J7

for L matrix (Fig. 5 (a)), we can see the log-likelihoods in
activity (3), (4) and (5) are generally higher than (1) and
(2), even with the HMMs generated from (1) and (2). This
indicates that the training quality is various for different group
activity. However, in case of activity recognition, the diversity
in log-likelihood values actually shows advances in recognition
performance. Therefore, this uncertainty in log-likelihood does
not effect the clustering process in this work.

Afterwards, the mean, maximum and standard deviations
(STD) of four log-likelihood matrices are shown in Table
IV. As can be seen, L and Lg matrices have a very similar
structure with the same value in mean and max. This is
reasonable because the Lg symmetric the value of L, as a
result, it reduces the STD value but no effect to mean and
max value (max value is at diagonal). Lg; matrix has the
lowest max value at 0 due to the value on diagonal ln%
gives 0 and the highest value in STD, While Lpp has the
lowest value in both max and STD value.

In the case where dataset is very large, the generation of
log-likelihood matrix is not practical. It is possible to build a
small log-likelihood matrix with a certain amount of dataset,
then compute the log-likelihood for new sequence separately.
Alternatively, the K-nearest neighbors (K-NN) algorithm could
also be used to predict the activity group for new Doppler
sequence by searching the closest data point. This enables
the proposed log-likelihood approach to be used in a real
application.
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V. RECOGNITION PERFORMANCE & COMPARISON

In this section, the activity recognition performance base
on two popular clustering algorithms including K-means and
K-medoids are presented. Then we compare the proposed log-
likelihood matrix with classical feature extraction methods in-
cluding SVC, PCA, and physical meaning features. The results
illustrate that the robustness of proposed log-likelihood matrix
outperforms classical features more than 15% in recognition
accuracy.

Here we provide two examples of confusion matrices for the
K-means and K-medoids clustering on log-likelihood matrix
L as shown in Fig 6 and 7 respectively. As can be seen
from the confusion matrix, the accuracy of walking and
running are better than others as expected due to the more
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TABLE V: Overall Recognition Accuracy for K-means and
K-medoids with four Matrices

L LLS LBP LKL Overall
k-means 0.70 | 0.79 0.82 0.85 0.79
k-medoids | 0.73 | 0.80 0.82 0.86 0.80

significant diversity in log-likelihood values. Especially, the
(3) running activity reaches 100% in both algorithms. While
the (4) jumping has the lowest accuracy with lots of error
recognition into (6) standing due to they have similar body
upward movements.

Afterwards, the overall recognition performance for k-
means and k-medoids with all four log-likelihood matrices
are shown in Table V. To avoid the uncertainty during the
clustering process, each matrix has been repeatedly tested for
10 times so that the effect of random selection on the initial
centroids can be minimized. As can be seen from the table,
most recognition accuracies are above 80%, while the highest
accuracy is obtained with Ly distance with the k-medoids
algorithm. Moreover, the overall performance of k-medoids is
slightly better than k-means due to the reason that k-medoids
minimize the sum of dissimilarities between the clustered point
and the labeled point.

A. Accuracy Comparison between Different Features

Following statements are three popular features which have
been widely used in many radar-based activity recognition
[11], [12], [21], [23], [24], [26]. Those features are generated
from the same dataset to compare with the proposed log-
likelihood matrix regarding the recognition performance.

1) Singular Value Decomposition: SVD is a tool to reduce
the data dimension and has been used in analysis micro
Doppler signatures [26]. Given the matrix D of Doppler
sequence, the SVD decomposition can be carried out as
D = USVT where U and V are the matrices with left and
right singular vectors, S is the diagonal matrix with singular
values of D. We output the eigenvalue from both U and V' as
the features.

2) Principle Component Analysis: PCA is known as a
powerful technique in feature extraction. It breaks the data into
its component vectors based on the eigenvectors of covariance
matrix which has been widely used in radar application [12].
The matrix contains only the variation from the mean of the
Doppler sequence is noted as D?. Then the covariance of
DDT is calculated and the corresponding eigenvectors W are
computed. Afterwards, a truncated eigenvectors W, is used to
further reduce the data dimension. Then the matrix is projected
as Y = DTWp, where Y/ is the PCA coefficients.

3) Features with Physical Meaning: Another type of fea-
ture extraction is to obtaining the physical meaning from
Doppler sequence [11], [21], [23]. The following six features
are selected according to our previous work [21]: (1) the
duration of the activity, (2) the maximum upper Doppler shift
of the activity, (3) the maximum lower Doppler shift of the
activity, (4) the peak-to-peak bandwidth of Doppler, (5) the
mean power of the activity and (6) the standard deviation of
the power of the activity.

As mentioned before, above feature extraction methods
require a fixed time window. For this reason, a 2.5s time
window has been applied which has been determined as
the optimized window length after we test the performance
from 0.5s to 4s. Also we further test the clustering algorithm



with four distance metrics including Euclidean, Chebycheyv,
Minkowski and Cityblock. The test on those distance metrics
can further reveal the robust of log-likelihood matrix over
the previous approaches. The recognition accuracy for both
K-means and K-medoids with SVD, PCA, Physical features
and four log-likelihood matrices are shown in Fig 8 and
Fig 9 respectively. As can be seen, the overall accuracy of
log-likelihood matrix clustering outperform the previous ap-
proaches. For SVD, PCA and physical features, they have the
accuracies around 60%, while the accuracies of log-likelihood
matrix are mostly above 80%. There are two main reasons
for the robust of log-likelihood matrix. Firstly, as mentioned
before, the log-likelihood matrix avoids the sliding-window
algorithm so that the time-varying feature of Doppler spec-
trogram are also included. Secondly, unlike previous feature
extraction methods (SVD, PCA and physical feature) which
all features for one Doppler sequence are generated from its
own. The log-likelihood values for each Doppler sequence
are generated from the HMMs from other Doppler sequences.
This means the log-likelihood matrix also takes into account
the relationship between every two Doppler sequences, as a
result it provides more diversity in distance matrix. In addition,
the proposed “symmetrizing” process including Lg, Lpp and
L1, show more improvements in recognition accuracy when
compared to the original log-likelihood matrix L. Especially,
the Lx gives the best performance with average 5% higher
than the rest. This is benefited by considering the training qual-
ity of HMMs as the normalization with self log-likelihoods at
L;; during the “symmetrizing” process. Moreover, the only
degradation performance for log-likelihood matrix is with the
Chebychev distance metric. This is due to the Chebychev
metric picks the maximum difference between two vectors
as distance. However, this is insufficient for vectors with
large amount of elements due to the diversity cannot be fully
presented. But for Lg, Lpp and Ly, they are still better than
SVD, PCA and physical features.

These results indicate that the proposed log-likelihood ma-
trix can largely improve the recognition performance over the
previous approaches. Motivated by this result, we envision that
the idea of use log-likelihood as the representation for Doppler
pattern can be extended to other machine learning methods or
classifiers like SVM, classification tree, etc.

VI. CONCLUSIONS

This paper presents a novel approach for passive RF sens-
ing based activity recognition which breaks the limitation
of traditional sliding window feature extraction techniques,
provides adaptive capability in recognizing the daily activities.
Our HMM-based clustering copes directly with this funda-
mental challenge by using the HMM-log-likelihood as the
measurement of similarity between Doppler sequences. We
apply this novel feature construction method in our passive
radar system which uses K-means and K-medoids clustering
for categorizing different activities. The experimental results
show that the HMM-log-likelihood based feature outperform
traditional SVD, PCA features and represent robustness to

varying activity durations. However, RF sensing based ac-
tivity capturing is still a promising area with open topics.
Our future work will focus on tackling other challenges in
passive indoor RF sensing like multiple signal sources and
multiple users problems on the basis of time-adaptive feature
characterization. We also plan to deploy this system in the
SPHERE house [2] for out-of-lab trials in coming future with
even larger number of random subjects.
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