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Multi-parametric and multi-regional histogram analysis of MRI: modality
integration reveals imaging phenotypes of glioblastoma
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Abstract
Objectives Integrating multiple imaging modalities is crucial for MRI data interpretation. The purpose of this study is to
determine whether a previously proposed multi-view approach can effectively integrate the histogram features from multi-
parametric MRI and whether the selected features can offer incremental prognostic values over clinical variables.
Methods Eighty newly-diagnosed glioblastoma patients underwent surgery and chemoradiotherapy. Histogram features of diffusion
and perfusion imaging were extracted from contrast-enhancing (CE) and non-enhancing (NE) regions independently. An unsupervised
patient clustering was performed by the multi-view approach. Kaplan-Meier and Cox proportional hazards regression analyses were
performed to evaluate the relevance of patient clustering to survival. The metabolic signatures of patient clusters were compared using
multi-voxel spectroscopy analysis. The prognostic values of histogram features were evaluated by survival and ROC curve analyses.
Results Two patient clusters were generated, consisting of 53 and 27 patients respectively. Cluster 2 demonstrated better overall
survival (OS) (p = 0.007) and progression-free survival (PFS) (p < 0.001) than Cluster 1. Cluster 2 displayed lower N-
acetylaspartate/creatine ratio in NE region (p = 0.040). A higher mean value of anisotropic diffusion in NE region was associated
with worse OS (hazard ratio [HR] = 1.40, p = 0.020) and PFS (HR = 1.36, p = 0.031). The seven features selected by this
approach showed significantly incremental value in predicting 12-month OS (p = 0.020) and PFS (p = 0.022).
Conclusions The multi-view clustering method can provide an effective integration of multi-parametric MRI. The histogram
features selected may be used as potential prognostic markers.
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Key Points
• Multi-parametric magnetic resonance imaging captures multi-faceted tumor physiology.
• Contrast-enhancing and non-enhancing tumor regions represent different tumor components with distinct clinical relevance.
• Multi-view data analysis offers a method which can effectively select and integrate multi-parametric and multi-regional
imaging features.
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Abbreviations
CE Contrast-enhancing
CSI Chemical shift imaging
DTI-p Isotropic diffusivity
DTI-q Anisotropic diffusivity
LOOCV Leave-one-out cross-validation
MVDA Multi-view biological data analysis
NE Non-enhancing
OS Overall survival
PFS Progression-free survival

Introduction

Glioblastoma represents the most common primary brain ma-
lignancy in adults, characterized by dismal prognosis [1]. The
remarkable heterogeneity of glioblastoma may cause incon-
sistent treatment response among patients. Despite many mo-
lecular markers having been identified to be of prognostic and/
or diagnostic value, imaging markers provide crucial pre-
treatment information for patient management. There is a
pressing but unmet need for validated imaging markers to
assess interpatient variability, plan personalized treatment,
and predict response.

MRI shows potential in evaluating glioblastoma heteroge-
neity non-invasively. Althoughwidely used in clinical practice,
structural imaging is often non-specific. The contrast enhance-
ment on post-contrast T1-weighted images is established to be
insufficient for the reliable determination of treatment response
[2, 3], as it only provides details pertaining to contrast leakage
from damaged vessels. Measures based on the non-enhancing
region shown by increased FLAIR signals are suggested to be
incorporated into assessment. This method, however, still has
limitations in differentiating infiltrative tumors from other
cause of increased signals, such as radiation effects [2].

Advanced MRI confers physiological information and may
compensate for the non-specificity of structural imaging.
Dynamic susceptibility contrast (DSC) is one of the most
commonly-used perfusion techniques. Several biomarkers, in-
cluding the relative cerebral blood volume (rCBV), mean transit
time (MTT), and relative cerebral blood flow (rCBF), are calcu-
lated from the kinetics curve of contrast agent passing through
the capillary bed [4]. DTI describes tumor microstructure by
detecting water molecule mobility [5]. A decomposition into

isotropic (p) and anisotropic (q) components from DTI was
previously proposed [6], and showed utility in predicting tumor
progression [7] and patient survival [8]. MR spectroscopy is an
important method that detects metabolites and demonstrates sig-
nificance in assessing tumor histology subtypes, malignancy
grades, and treatment response [9, 10].

A series of quantitative imaging features can be extracted
from MRI. In particular, histogram features can characterize
tumor heterogeneity by measuring voxel distribution within
tumor, and were related to tumor malignancy and patient sur-
vival [3]. As emerging advanced MRI modalities are devel-
oped to reflect tumor physiology, increasing numbers of fea-
tures are generated. It remains a challenge to effectively incor-
porate the physiological information to reflect the multi-
faceted characteristics of tumor. Further, selecting optimal fea-
tures for clinical decision making is crucial.

Although machine learning algorithms have been successful
in stratifying patients [11], classical machine learning tech-
niques may not be effective in integrating the complementary
information thatmulti-parametricMRI confers, with all features
merged at an early stage, which may lead to highly noisy pat-
terns. Further, the unique advantages from each individual fea-
ture viewmay be lost with data early integrated. Themulti-view
approach is a data integration method that was initially devel-
oped to jointly analyze multiple genomic data, i.e., gene expres-
sion and copy number variation [12]. It also has been applied to
brain connectivity images for neurodegeneration type clustering
[13]. This approach offers the advantage of parallelized feature
selection from each individual view, and synthesizes the com-
plementary information at a late stage. By doing so, it can avoid
representation bias, since the analyses on each view are inde-
pendent and integrated for final clustering [12].

As multi-parametric imaging may describe complementary
information and because including multiple tumor regions
may have additional value, here we hypothesized that the
multi-view approach may be applied to improve tumor char-
acterization through the fusion of multi-parametric MRI [13,
14]. Therefore, the purpose of this study was to determine
whether the multi-view approach can effectively integrate his-
togram features of multi-parametric MRI for patient cluster-
ing, and whether the selected features can offer incremental
values in survival prediction. The clinical characteristics and
MR spectroscopy profiles of the identified patient clusters
were compared.
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Material and methods

Patients

From July 2010 to August 2015, suspected patients with
supratentorial newly diagnosed glioblastoma were prospec-
tively recruited. Patients were required to have good perfor-
mance status (World Health Organization performance status
0-1) before surgery. Patients were excluded when they had the
history of previous brain tumor, cranial surgery, radiotherapy/
chemotherapy, or contraindication for MRI scan. This study
was approved by the local institutional review board. Signed
informed consent was obtained from all patients.

Treatments

Neuronavigation and 5-aminolevulinic acid fluorescence were
used to guide surgery, with other adjuvants (e.g., cortical and
subcortical mapping, awake surgery, and intraoperative electro-
physiology, when appropriate) to allowmaximal safe resection.
Extent of resection was assessed according to postoperative
MRI within 72 h, classified as complete or partial resection of
enhancing tumor or open biopsy [15]. Patient postoperative
treatment was determined by the multi-disciplinary team in
each case according to their postoperative status. All clinical,
radiological, and histological data were collected prospectively.
Clinical and radiological data were incorporated to evaluate
response according to the Response Assessment in Neuro-
oncology criteria [2]. Specifically, within the first 12 weeks

after the completion of radiotherapy, progression was only de-
termined if new enhancement was predominantly outside of the
radiation field, unless pathological evidence was available.
When patients were suspected of having pseudoprogression,
our multi-disciplinary team continued current treatment, with
close observation, until new evidence of true progression was
confirmed. Therefore, for these patients, the progression-free
survival was determined retrospectively.

Preoperative MRI acquisition

MRI sequences were acquired on a 3-Tesla scanner
(Magnetron Trio; Siemens Healthcare, Erlangen, Germany)
with a standard 12-channel receive-head coil. MRI sequences
included post-contrast T1W, T2W, T2W-FLAIR, DSC, DTI,
and multi-voxel 2D 1H-MRS chemical shift imaging (CSI).
PRESS excitation was selected to encompass a grid of 8
rows × 8 columns on T2W images. The scanning details are
in Supplementary Methods.

Imaging processing

All images were co-registered to T2W images, where the CSI
was planned. The image co-registration was performed using
the linear registration tool (FLIRT) in Oxford Centre for
Functional MRI of the Brain Software Library (FSL) v5.0.0
(Oxford, UK) [16, 17]. DSC was processed and leakage correc-
tion was performed using NordicICE (NordicNeuroLab). The
arterial input function was automatically defined. The rCBV,

Fig. 1 Study design. DTI-p and DTI-q maps are generated from diffusion
tensor imaging (DTI). The relative cerebral blood volume (rCBV), mean
transit time (MTT), and relative cerebral blood flow (rCBF) maps are
generated from dynamic susceptibility contrast (DSC) imaging.
Histogram features extracted from the multiple modalities and regions
(contrast-enhancing and non-enhancing) are treated as four independent
views. Each view is firstly clustered to select centroid features, which are

later used to cluster patients. The resulting clusters from each view are
integrated to yield two final patient clusters. A leave-one-out cross vali-
dation is performed. Patient clusters are assessed in survival analysis and
their metabolic signatures are compared. The centroid features are ranked
according to the importance in the clustering and selected features are
used to build multi-variate prognostic model
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MTT, and rCBF maps were calculated. DTI was processed
using the diffusion toolbox in FSL [18]. Normalization and eddy
current correction were performed. The isotropic (p) and aniso-
tropic (q) components were calculated [6].

Regions of interest

Tumor ROIs were manually delineated on the post-contrast
T1W and FLAIR images using 3D slicer v4.6.2 (https://www.
slicer.org/) [19]. The delineation was independently performed
by a neurosurgeon (CL, > 8 years of experience), and a
researcher (NRB, > 4 years of image analysis experience),
and reviewed by a neuroradiologist (TM, > 8 years of
experience). Each author used consistent criteria in each
patient, and was blinded to the patient clustering and
outcomes. Non-enhancing (NE) ROIs were defined as the
non-enhancing regions outside of contrast-enhancing (CE) re-
gions, obtained by a Boolean subtraction of CE and FLAIR
ROIs in MATLAB (version 2016a, MathWorks, Inc.). For each
subject, regions of normal-appearing white matter were manu-
ally segmented in contralateral white matter and used as normal

controls [20]. This region was typically located in the white
matter which was furthest in distance from the tumor location
and has no perceivable abnormalities. Each tumor voxel was
normalized by dividing it by the mean value of normal-
appearing white matter. Inter-rater reliability was performed
using Dice similarity coefficient scores.

Histogram features

The study design is summarized in Fig. 1. Histogram features
were extracted using MATLAB. Perfusion images (rCBV,
MTT, and rCBF) and diffusion images (DTI-p and DTI-q)
were analyzed separately. The CE and NE ROIs were also
analyzed independently. Therefore, four categories of feature
sets (CE-diffusion, NE-diffusion, CE-perfusion, NE-perfu-
sion) were obtained. Intensity histograms were constructed
using 100 bins. As shown in Fig. 1, a total of 10 histogram
features were calculated, including mean, standard deviation
(SD), median, mode, skewness, kurtosis, and 5th (Prc5), 25th
(Prc25), 75th (Prc75), and 95th (Prc95) percentiles. Therefore,
altogether 100 features were extracted from each subject.

Table 1 Clinical characteristics
Variable Patient number p value

Total (n = 80) Cluster 1 (n = 53) Cluster 2 (n = 27)

Age at diagnosis

< 60 35 18 16 0.058
≥ 60 45 35 11

Sex

Male 58 41 17 0.201
Female 22 12 10

Extent of resection (of enhancing tumor)

Complete resection 56 35 21 0.267
Partial resection 22 17 5

Biopsy 2 1 1

MGMT-methylation status*

Methylated 37 24 13 0.929
Unmethylated 41 27 14

IDH-1 mutation status

Mutant 7 4 3 0.622
Wild-type 73 49 24

Preoperative tumor volumes (cm3) #

Contrast-enhancing 49.7 ± 28.1 50.2 ± 28.4 50.4 ± 28.1 0.823

Non-enhancing 64.7 ± 48.3 48.7 ± 27.9 92.8 ± 53.5 0.007

Survival (days)

Median OS (range) 461 (52–1259) 424 (52–839) 689 (109–1259) 0.020†

Median PFS (range) 264(25–1130) 248 (25–607) 318 (279–1130) < 0.001†

Italics: p < 0.05

*MGMT-methylation status unavailable for 2 patients; #mean ± SD of original data; † log-rank test

MGMTO-6-methylguanine-DNAmethyltransferase, IDH-1 isocitrate dehydrogenase 1,OS overall survival, PFS
progression-free survival
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Multi-view feature selection and clustering

The analysis was performed using a multi-view late integra-
tion methodology called multi-view biological data analysis
(MVDA), implemented in R and available from GitHub
(https://github.com/angy89/MVDA). Late integration
methodologies allow analyzing each view independently and
then merging the results [21].

The analysis was divided into multiple steps [12]. Briefly,
the features were firstly clustered using the hierarchical ward
clustering method in each view. The number of features was
reduced by selecting the centroids of feature clusters, accord-
ing to the correlation within each feature cluster. Next, for
each view, the patients were clustered by applying a hierarchi-
cal ward clustering method using the features selected from
last step. Lastly, the clustering results of each view were inte-
grated in a late integration method to yield two final patient
clusters. Analysis details are in Supplementary Methods.

Leave-one-out cross validation

To validate patient clustering was not obtained by random, a
leave-one-out cross-validation (LOOCV) procedure was ap-
plied. Briefly, all steps of MVDA approach were repeated by
leaving one patient out at each repetition. The consensus anal-
ysis was performed in the 80 clustering results obtained from
the LOOCV approach. An 80 × 80 co-occurrence consensus
clustering matrix M was created, where M (i, j) indicating
percentage of times that the patients i and j were clustered
together across the 80 dataset perturbations.

Multi-voxel MRS processing

CSI data were processed using LCModel (Provencher).
Choline (Cho) and N-acetylaspartate/creatine (NAA) were
calculated as a ratio to creatine (Cr). All relevant spectra
from CSI voxels were assessed for artifacts using described

Fig. 2 Multi-view feature selection. In each view, all features are clustered using the hierarchical ward clustering method. The centroid features (marked
by yellow stars) are selected to represent each view. a View 1 (CE-DTI); b view 2 (NE-DTI); c view 3 (CE-PWI); d view 4 (NE-PWI)
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criteria [22]. The values of the Cramer-Rao lower bounds
were used to evaluate the quality and reliability of CSI
data. CSI values with SD > 20% were discarded. The DTI
and PWI images were co-registered to T2-space, which
was used to plan CSI acquisition. To account for the reso-
lution difference between T2- and CSI space, all co-
registered data were projected to CSI space, according to
their coordinates using MATLAB. The proportion of T2-
space tumor pixels occupying each CSI voxel was calcu-
lated. Only CSI voxels containing more than 50% tumor
T2-voxels were included for further analysis.

Feature ranking

To estimate the contribution of each centroid feature in the
clustering, the variable importance evaluation function
BvarImp^ in the R package BCaret^was used [23]. The patient
clustering result was firstly used to train a logistic regression
model, which was used to evaluate the importance of each
feature, according to the model performance. The feature im-
portance was scored and scaled with a maximum value of 100.

Statistical analysis

All analyses were performed in RStudio v3.2.3. CSI data were
compared with Wilcoxon rank sum test using Benjamini-
Hochberg procedure for controlling the false discovery rate
in multiple comparisons. Kaplan-Meier and Cox proportional
hazards regression analyses were performed to evaluate patient
survival. For Cox proportional hazards regression, all relevant
covariates, including IDH-1 mutation andMGMTmethylation
status, sex, age, extent of resection, and contrast-enhancing
volume were considered. For Kaplan-Meier analysis using
log-rank test, each feature was dichotomized using optimal
cutoff values calculated by Bsurv_cutpoint^ function in the R
Package Bsurvminer.^ Patients alive at the last known follow-
up were censored. Logistic regression was used to test prog-
nostic values of covariates for 12-month overall survival (OS)
and progression-free survival (PFS). The baseline models were
constructed using all relevant clinical covariates. Histogram
features were subsequently added into baseline models. The
incremental prognostic values of the models with histogram
features were determined by comparing AUC using one-way
ANOVA. The hypothesis was accepted at a two-sided signifi-
cance level of alpha = 0.05.

Results

Patients and regions of interest

A total of 136 patients were recruited for MRI scan and sur-
gery. Twenty-one patients were excluded due to non-

gl ioblas toma pathology diagnosis af ter surgery.
Postoperatively, patients received concurrent temozolomide
chemoradiotherapy followed by adjuvant temozolomide fol-
lowing the Stupp protocol (73.0%, 84), short-course radiother-
apy (17.4%, 20/115), or best supportive care (9.6%, 11/115),
respectively. Among the 84 patients, four patients were lost in
follow-up and excluded. A total of 80 patients were finally
included into the study. Characteristics of 80 patients and two
patient clusters were summarized in Table 1.

Inter-rater reliability testing of ROIs showed fair agreement
between the raters, with Dice scores 0.85 ± 0.10 (mean ± SD)
for CE and 0.86 ± 0.10 of FLAIR ROIs respectively.

Identification of patient clusters

From the four views, 5, 4, 7, and 6 centroid features were
respectively selected (Fig. 2, Table 2). Using the centroid fea-
tures and optimal cluster numbers determined in the algo-
rithm, patients were firstly divided into 7, 8, 9, and 10 clusters
in each view, using the hierarchical ward clustering. Late in-
tegration of four views yielded a final clustering of two patient
clusters, with 53 and 27 patients in each cluster respectively.

Table 2 Centroid features in each view

View Features

View1: CE-diffusion Mean-p-CE

Prc25-p-CE

Kurtosis -p-CE

Mean-q-CE

Kurtosis-q-CE

View2: NE-diffusion Mean-p-NE

Kurtosis-p-NE

Mean-q-NE

Kurtosis-q-NE

View3: CE-perfusion Prc75-rCBF-CE

Prc5-rCBV-CE

Kurtosis-rCBV-CE

Kurtosis-rCBF-CE

Prc95-MTT-CE

Median-MTT-CE

Kurtosis-MTT-CE

View4: NE-perfusion Prc25-rCBV-NE

SD-rCBV-NE

Skewness-rCBV-NE

Median-MTT-NE

SD-MTT-NE

Kurtosis-MTT-NE

CE contrast-enhancing region, NE non-enhancing region, Prc25/Prc75/
Prc95 25th/75th/95th percentiles of histogram
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Leave-one-out cross validation of patient clustering

After leave-one-out cross validation, the co-occurrence con-
sensus clustering matrix was computed. The result showed
that the two patient clusters generated from the unsupervised
clustering were stable. The mean values of the co-occurrence
consensus clustering matrix were 0.79 for Cluster 1 and 0.68
for Cluster 2 (Fig. 3).

Clinical relevance of patient clusters

The two patient clusters showed no significant differences in
clinical characteristics (Table 1). Interestingly, two clusters had
similar contrast-enhancing tumor volume (p = 0.823). Cluster 1,
however, had significantly smaller non-enhancing tumor vol-
ume (p = 0.007) than Cluster 2. Further, the two clusters showed
significant difference in survival. Specifically, Cluster 2 showed
better OS (log-rank test, p = 0.020) and better PFS (log-rank
test, p < 0.001) than Cluster 1 in Kaplan-Meier analysis
(Table 1, Fig. 4a and b).

Since MGMT promoter methylation status was missing in
two patients, the multi-variate Cox proportional hazards re-
gression modeling was tested in the remaining 78 patients.
The results showed that Cluster 2 displayed significantly

better OS (p = 0.007, HR = 0.32) and PFS (p < 0.001, HR =
0.33) than Cluster 1, considering relevant covariates. Among
these covariates, extent of resection (p = 0.019, HR = 2.20)
and contrast-enhancing tumor volume (p < 0.001, HR =
1.02) significantly affected OS. Extent of resection (p =
0.003, HR = 2.84) significantly affected PFS. No significance
was found in other clinical factors.

Metabolic signatures of patient clusters

Due to the abovementioned rules excluding CSI voxels contain-
ing less than 50% tumor, CSI data were missing in four patients.
Our results showed NAA/Cr ratio in NE region of Cluster 2 was
significantly lower than Cluster 1 (p = 0.040) after controlling
multiple comparisons. The comparison of CSI data in two pa-
tient clusters are detailed in Supplementary Table S1.

Feature ranking and prognostic performance
of features

Seven features with a score over 50 were selected, according to
the importance of centroid features in the clustering (Fig. 5).
All the seven features showed significance in survival analysis
(Table 3). Particularly, higher Mean-q-NE was associated with

Fig. 3 Leave-one-out cross
validation of patient clustering.
After multi-view clustering, con-
sensus analysis was performed
based on the 80 clustering results
obtained after the leave-one-out
cross validation. The mean value
of the co-occurrence consensus
clustering matrix was 0.79 for
patient Cluster 1 and 0.68 for pa-
tient Cluster 2
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worse OS (HR = 1.40, p = 0.020) and worse PFS (HR = 1.36,
p = 0.031). The Kaplan-Meier curves showing the relevance of
Mean-q-NE in OS and PFS are demonstrated by Fig. 4c and d.

For prediction of 12-month OS and PFS, the AUC of baseline
multi-variate models were 0.81 (95% CI, 0.70–0.93) and 0.77
(95% CI, 0.65–0.88) respectively. The results of model compar-
ison showed that the seven features significantly improved both
OS model (AUC, 0.91; 95% CI, 0.84–0.99; p = 0.020) and PFS
model (AUC, 0.89; 95% CI, 0.81–0.97; p = 0.022) (Fig. 6).

Discussion

This study showed that integrating multi-parametric and
multi-regional MRI histogram features may help to identify

tumor phenotypes correlating patient prognosis, using a multi-
view approach. The histogram features from advanced MRI
showed incremental prognostic value over clinical variables.

Evidences support the utility of histogram features from
advanced MRI in patient stratification and survival prediction
[24–26]. Limited studies, however, have investigated both
perfusion and diffusion imaging parameters simultaneously
[27–29]. Further, as perfusion and diffusion imaging reflect
different physiological facets, we hypothesized that integrat-
ing them effectively may lead to a better tumor characteriza-
tion. With this unsupervised algorithm, we separated patients
into two clusters with distinct survivals and metabolic signa-
tures, suggesting the importance of appropriately integrating
multiple modalities for tumor characterization. One recent
study, however, showed that diffusion and perfusion

Fig. 4 Survivals of patient clusters. Log-rank test showed patient Cluster 2 displayed better OS (p = 0.020) (a) and PFS (p < 0.001) (b). Higher man value
of DTI-q in the non-enhancing region (Mean-q-NE) was associated with a worse OS (p = 0.002) (c) and PFS (p < 0.001) (d)
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histogram parameters showed marginal values [27]. The dif-
ferent findings may result from the differences in selection of
imagingmarkers and features, and patient treatment strategies.
Future studies using prospective design are needed to further
validate the prognostic value of these imaging parameters.

The non-enhancing peritumoral areas visualized on
FLAIR images may include both infiltrative tumor regions
and edematous brain parenchyma, and thus may not be

specific in indicating tumor aggressiveness. Several recent
studies showed that pre-treatment FLAIR volume is not pre-
dictive of patient survival, whereas the increased volume on
FLAIR during adjuvant therapywas associatedwith worsened
survival [30–32]. The above findings may imply that a better
characterization of pre-treatment non-enhancing region using
advanced MRI may have potential to extract clinically rele-
vant information, which contributes to our motivation for

Fig. 5 Feature ranking. The
centroid features were ranked
according to the importance in the
clustering. The scores were scaled
with a maximum value of 100

Table 3 Survival statistics of selected feature

Feature Progression-free survival* Overall survival*

HR 95% CI p value
(Cox regression)

p value (log-rank) HR 95% CI p value
(Cox regression)

p value (log-rank)

Mean-p-NE 0.79 0.58–1.08 0.143 < 0.001 0.74 0.53–1.04 0.083 0.015

Mean-q-NE 1.40 1.05–1.86 0.020 < 0.001 1.36 1.03–1.79 0.031 0.002

Prc25-rCBV-NE 1.28 0.94–1.74 0.121 0.052 1.53 1.09–2.14 0.014 0.019

Kurtosis-p-NE 1.18 0.85–1.63 0.326 0.168 1.66 1.15–2.39 0.007 0.048

Mean-q-CE 1.17 0.90–1.51 0.245 0.029 1.17 0.89–1.55 0.268 0.197

Prc25-p-CE 0.88 0.66–1.17 0.369 0.032 0.79 0.56–1.10 0.165 0.004

Prc95-rCBF-NE 1.11 0.88–1.40 0.358 0.049 1.15 0.88–1.51 0.307 0.063

Italics: p < 0.05

*Cox models accounted for IDH-1 mutation status, MGMT methylation status, sex, age, extent of resection, and contrast-enhancing tumor volume

HR hazard ratio, CI confidence interval, p isotropic diffusivity of DTI, q anisotropic diffusivity of DTI, Prc25/Prc95 25th/95th percentiles of histogram,
CE contrast-enhancing region, NE non-enhancing region
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separating non-enhancing regions from contrast-enhancing
regions.

Our results showed higher Mean-q-NE (mean value of
DTI-q in NE region) was associated with worse survivals.
Correspondingly, MRS showed that the worse survival group
had higher NAA/Cr in NE region. Glioblastoma is recognized
to preferentially migrate along white matter tracts, which may
lead to increased anisotropic diffusivity. NAA is a marker of
neuronal integrity [9], while DTI-q indicates anisotropic dif-
fusivity [33]. Previous studies showed that an increased an-
isotropic diffusivity and decreased isotropic diffusivity in the
non-enhancing tumor region could indicate tumor infiltration
in this area and was associated with tumor progression [20]. A
retrospective study revealed that more extensive resection of q
abnormalities was associated with better overall survival [34].
Our results suggest that the worse survival group may have
more intact neurons that may facilitate tumor infiltration.
Since this cohort has received maximal safe surgery aiming
to resect CE region, the infiltration in NE region thus would be
more responsible for treatment failure.

Radiomics approach can extract high-throughput features
from medical images [35, 36]. The increasing number of fea-
tures, however, may pose the challenges of effective feature
selection and modality integration for robust phenotyping [37,
38]. Currently, many techniques have been developed for this
purpose [39]. To maximize the specific tumor biology infor-
mation conferred by physiological imaging, new approaches
with biological hypothesis might be needed to characterize the
complex tumor. Considering the interpretability and robust-
ness of features, our current study investigated the feasibility
of applying a genomic tool to histogram features. Future work
may be extended to broader imaging feature sets and bioinfor-
matics tools.

Our study has limitations. Firstly, although we used a leave-
one-out cross validation, the patient population reported is from
a single center. The purpose of this study however is to intro-
duce a method that could potentially integrate multi-parametric

MRI. Future studies aim to validate the findings of this study
using a multi-center cohort. Secondly, although previous stud-
ies have validated the histological correlates of the imaging
markers, our current findings need further biological validation.
Lastly, as the 1H-MRS voxels were larger than T2 space voxels,
we had fewer patients with CSI data available.

In conclusion, our results showed that the multi-view clus-
tering method can provide an effective approach of integrating
multiple quantitative MRI features. The histogram features
selected from the proposed approach may be used as potential
prognostic imaging markers.
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