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Abstract

Early requirements engineering and software architectural decisions are critical to the
success of software development projects. However, such decisions are confronted with
complexities resulting from uncertainty about the possible impacts of decision choices

on objectives; conflicting stakeholder objectives; and a huge space of alternative designs.

Quantitative decision modelling is a promising approach to tackling the increasing com-
plexity of requirements and architectural decisions. It allows one to use quantitative
techniques, such as stochastic simulation and multi-objective optimisation, to model
and analyse the impact of alternative decisions on stakeholders’ objectives. Existing re-
quirements and architecture methods that use quantitative decision models are limited
by the difficulty of elaborating quantitative decision models and/or lack of integrated

tool support for automated decision analysis under uncertainty.

This thesis addresses these problems by presenting a novel modelling language and au-
tomated decision analysis technique, implemented in a tool called RADAR, intended to
facilitate requirements and architecture decisions under uncertainty. RADAR’s modelling
language has relations to quantitative AND/OR goal models used in requirements engi-
neering and feature models used in software product lines. The language enables mod-
elling requirements and architectural decision problems characterised by (i) single option
selection similar to mutually exclusive option selection (XOR-nodes) of feature diagrams;
(ii) multiple options selection similar to non-mutually exclusive options selections (OR-
nodes) of feature diagrams; and (iii) constraints dependency relationships, e.g., excludes,
requires and coupling, between options of decisions. RADAR’s analysis technique uses
multi-objective simulation optimisation technique in evaluating and shortlisting alter-
natives that produces the best trade-off between stakeholders’ objectives. Additionally,
the analysis technique employs information value analysis to estimate the financial value

of reducing uncertainty before making a decision.

We evaluate RADAR’s applicability, usefulness and scalability on a set of real-world sys-
tems from different application domains and characterised by design space size between
6 and 2°°. Our evaluation results show that RADAR’s modelling language and analysis
technique is applicable on a range of real-world requirements and architecture decision
problems, and that in few seconds, RADAR can analyse decision problems characterised
by large design space using highly performant optimisation method through the use of

evolutionary search-based optimisation algorithms.



Impact Statement

Designing software systems involves deciding what software functions should be pro-
vided, what levels of quality requirements (e.g., performance, security and availability)
should be met, what software architecture to use in satisfying these functional and
quality requirements, what components and connectors to use and what deployment
strategies to use. Making the right decisions is critical to satisfy stakeholders’ goals and
ensuring successful development and evolution of software systems. Such decisions, how-

ever, are complicated by conflicting stakeholders’ objectives and significant uncertainty.

This thesis presents the Requirements and Architecture Decision AnalyseR (RADAR)
—a lightweight yet expressive modelling language and automated decision analysis open
source tool. RADAR is intended to assist requirements engineers and software architects
in making informed and confident software requirements and architecture decisions under
uncertainty. Using RADAR also benefits the end-users (customers) of the software system
as the system-to-be will be performant, reliable, secure, delivered on time and ultimately

satisfy their needs.

RADAR can be used as a stand-alone tool by requirements engineers and software ar-
chitects. The tool can be deployed as an add-on to existing goal-oriented modelling
frameworks, such as KAOS/Objectiver. RADAR can also be used as a plug-in to existing
software release planning tools, such as EVOLVE, to help elaborate domain-specific re-
lease planning decision models and analyse uncertainty in the decision models. Finally,
RADAR can be used to improve other software engineering decisions under uncertainty;
this includes decisions about test case selection and prioritisation under uncertainty and
product (set of software features) configuration decisions in Software Product Line Engi-
neering in the presence of conflicting stakeholder goals (e.g. maximising business values

and minimising costs) and uncertainty.

Preliminary work have been done to propagate the benefit of using RADAR to sup-
port requirements and architecture decisions under uncertainty. In this regard, parts of
RADAR’s implementation and its evaluation on five real-world systems (e.g., fraud detec-
tion system, security policy system, emergency response system) have been presented
in two prestigious software engineering venues (ICSE’17 and ASE’17). In the nearest
future, we intend to apply RADAR on a real-world case study and evaluate the benefit
and effort required to use the RADAR decision analysis tool in an organisation. We also
intend to investigate and implement techniques for validating and calibrating RADAR
models against run time data of a system. To achieve these future goals, we may have
to collaborate with other researchers and industry professionals in the field of software

engineering, and in particular requirements engineering and software architecture.
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Chapter 1

Introduction

Requirements Engineering and Software Architecture are key software development ac-
tivities that play significant roles in building and evolving software intensive systems.
While requirements engineering aims at identifying and documenting the problems to
be solved, software architecture defines the solution(s) to these problems. Making the
right requirements and architecture decisions is critical to the success of any software
project [264], but such decisions are confronted with significant uncertainty. The thesis
presents a novel modelling language and analysis tool to support such decisions under

uncertainty.

1.1 Requirements Engineering and Software Architecture

1.1.1 Requirements Engineering

Requirements engineering is a fundamental phase in any software development project.
It addresses a wide range of problems from project initiation, design and evolution of
software systems [264]. Requirements are statements that describe what a proposed sys-
tem must do, and conditions in which the system must operate. In general, requirements
are representations of the decisions concerning the behaviour of a software system [28§],
and they can be classified as either functional or non-functional [180]. Functional re-
quirements describe the intended functions the system is to perform i.e. how the system

responds to certain inputs. Non-functional requirements (NFR) [104], also known as soft
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goals [180, 242] or quality requirements [140], are constraints on the functions provided
by the system. Such constraints could be on the system’s performance, availability,

security, scalability and reliability etc.

Requirements engineering involves identifying and extracting the purpose of a proposed
system; system stakeholders and their needs; conditions in which the system must op-
erate; the interaction between the system and its environment; and documenting these
information in a specification that can be used for future analysis, modelling and design

[189).

Requirements engineering involves a series of activities that clarify the software system
goals, deal with conflicts, uncertainty and risks in requirements [264]. These activities
form the basis and prerequisite for a successful delivery of a software project [264], and
are mostly iterative and performed in parallel [129]. These activities generally include:
requirements elicitation [12], requirements modelling and analysis [11], requirements

specification [260], validation & verification and requirements management.

1.1.2 Software Architecture

Software architecture has gained recognition as a key aspect of software engineering.
This is due to the increasing complexity and the need for reliable software systems [29].
The architecture of a software intensive system represents the first design artefact, and
it is mainly developed at the early stages of a software development process. Devoting
substantial effort in designing and documenting the architecture of software systems not
only helps to ease the attainment of certain functional requirements, quality require-
ments (e.g. security, availability, performance etc.) and organisation‘s business goals
[86], but also provides a software developer with control of how to evolve and maintain

the system [146].

The software architecture of a system is the set of significant decisions that describe the
structure(s) of a system in terms of the software elements (e.g. modules, object-oriented
classes or packages, database stored procedures, services, data files); the externally vis-
ible properties of those elements in terms of quality attributes; the relationships among
the elements; and the architectural styles that guide the system structure(s), deployment

and evolution [214]. In this definition, the system’s structure can be viewed as static
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and dynamic: the static structure defines the elements and their arrangement whereas
the dynamic structure shows how the system responds to external or internal events at

run time.

In general, software systems possess an architecture, whether implicitly or explicitly
designed [86]. A good software architecture is one that reduces risk and is flexible to
handle changes in requirements, hardware and software technology. Deciding an opti-
mal software architecture is an iterative process and involves some activities that guide
the derivation of a software architecture from the functional and non-functional re-
quirements. These activities can be categorised into three phases [86]: the first phase is
domain understanding of the problem a proposed system intends to solve, and the stake-
holder objectives in order to elicit the requirements that are architecturally significant.
The second phase involves evaluating alternative software architectures to determine the
extent at which it solves the stakeholders’ goals. The last phase involves deciding the
optimal architectural solution(s) that fulfils the stakeholders’ goals. These activities end
when decision-makers are confident that the selected candidate solution can solve the
problem to an acceptable level, otherwise, the requirements are re-analysed and other

alternative solutions are considered.

1.2 Requirements Engineering and Software Architecture

Decisions

Requirements engineering decisions involve deciding what software functions should be
provided and what levels of quality requirements the system should deliver at run time
[42]. In goal-oriented requirements engineering, requirements decisions involves deciding
among alternative system designs; making decisions about alternative ways to resolve
conflicts and decisions about assigning responsibilities to humans, software or hardware
systems [264]. Software architecture decisions involves deciding the structure(s) of a
software system; what software and hardware components and connectors to use; and

the deployment strategies [214].

Requirements and architecture decisions often have critical impacts on the software
development costs, duration, and the system’s ability to satisfy stakeholders’ goals and

deliver business value [214, 264]. Such decisions are complicated by large number of
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possible alternatives; multiple conflicting stakeholders’ objectives; and high levels of
uncertainty which may include: uncertainty about the impact of the dynamic nature
of the organisation or system run time environment; uncertainty about the accurate
project estimations; uncertainty about the availability of human and technical resources;
uncertainty about the presence of obstacles that may hinder the achievement of goals;
and uncertainty about the possible impacts of decision choices on the stakeholders’

objectives [166].

In engineering, uncertainty is commonly defined as the lack of complete knowledge about
some entity, such as an unknown quantity, a future event, or even a past event about
which we are unsure [87]. There is more than one possible value for the quantity or more

than one possible outcome for the event, and the ”true” value or outcome is uncertain.

Uncertainty can be measured by assigning probabilities to the different possible values

and outcomes.

In this thesis, we will be concerned with analysing the software architects’ uncertainty
about the impacts of design decisions on stakeholders’ objectives. We will not address
other design-time uncertainties such as the software architects’ uncertainty about having
identified all relevant stakeholders’ objectives and having identified a suitable set of

design alternatives.

We will also not address run-time uncertainties dealing with uncertain information that
software systems have about their environment, design goals, and assumptions [231].
Research on adaptive systems aims to manage such run-time uncertainty and have pro-
posed various classification of run-time uncertainty and their sources [172, 200, 207].
In contrast, in this thesis, we are dealing with design-time uncertainty due to incom-
plete knowledge about the impacts of design decisions on goals. In the final chapter, we
will revisit how the design-time techniques presented in the thesis might be adapted to

support run-time decisions in self-adaptive systems.

Motivating example. Suppose an architect wants to improve the efficiency of a bank’s
plastic card financial fraud detection system (shown in Fig. 1.1) so that the system
minimises financial loss due to undetected frauds; minimises the cost of investigating

frauds; and minimises cardholders’ inconvenience due to false alerts that result in their
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cards being blocked unnecessarily. In this situation, the architect is faced with design

decisions such as [42]:

e the processing type that can be continuous or batch; continuous processing analyses
transactions individually as they arrive, whereas batch processing performs an

overnight analysis of the transactions that occurred during the day.

e the fraud detection method which can be a two-class supervised classification
method in which a classifier is trained from samples of past fraudulent and non-
fraudulent transactions, or a non-statistical rule-based method that flags transac-

tions matching configurations known to be high risk.

e if the classifier fraud detection method is chosen, the alert threshold defines some
threshold above which the classifier should flag a transaction as suspect. A low
alert threshold means more alerts will be generated and thus a higher ratio of false

alerts.

e the blocking policy that can include blocking an account as soon as the fraud
detection method flags a transaction as suspected fraud, or only blocking the
account after human investigators (e.g., bank staff) have confirmed the suspected

fraud.

These decisions impact the number of fraud alerts generated and the speed at which
compromised accounts are blocked, which ultimately affects how much effort the bank
needs to devote to investigate alerts manually and how much money it loses to fraud.
Therefore, the optimisation of plastic card fraud detection systems typically includes
two conflicting objectives [115]: minimising financial loss, and minimising manual inves-
tigation costs. Deciding what combination of processing type, fraud detection method
and blocking policy to use is not trivial. The decisions are complicated by uncertainty
about domain quantities, such as the ratio of compromised accounts, and the uncertainty

about the impact of decisions on future financial loss and investigation costs.

Relying on intuitions alone to make such critical and complex decisions is not ideal.
Intuitive decisions, even by experts, are subject to many cognitive biases and errors [141],
which may lead to sub-optimal solutions. Some of these biases have been shown to

happen in software engineering contexts [26].
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FIGURE 1.1: The plastic card fraud detection system: detects when plastic card ac-

counts may have been compromised by fraudsters who are using the account to steal

funds [115]. The system generates fraud alerts when authorised card transactions are

suspected to be fraudulent. The bank staff investigates fraud alerts and blocks the card
if it is confirmed that such transactions are not performed by the cardholder.

In this thesis, we aim to support requirements engineers and software architects in
making this kind of decisions. The thesis introduces a decision support tool that enables

modelling and analysing such requirements and architecture decisions under uncertainty.

1.3 State of the Art

The scientific literature has a large body of research works devoted to assist decision-
makers in modelling and analysing requirements engineering and software architecture
decision problems. Typical problems studied in the literature include: decisions about
which set of software requirements (features) to implement in the next release of a prod-
uct [30]; selection and evaluation of software architectures that meet certain functional
and non-functional requirements; the selection of software and hardware components,
their replication, the mapping of software components to available hardware nodes, and

the overall system topology.

Many requirements and architectural decision support approaches exist to aid decision-
makers in selecting decision choices that produce the best trade-off between conflicting

objectives. These approaches can be grouped into three categories [41]:
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1) Qualitative decision models such as the NFR framework [180] introduced to model,
analyse, refine and expose the impact of alternatives on non-functional requirements
[180]; the ¢* [277] framework which adapts the NFR to model and reason about soft-
ware systems and the organisational environments where they are used [276]; and the
GRL framework that combines i* and NFR frameworks to model goals, non-functional
requirements, alternatives and decision rationale. These approaches are used to model,
reason and analyse the impact of decisions on stakeholders’ goals. However, they only
provide information about how the decisions positively or negatively impact stakehold-
ers’ goals. They provide no quantitative information about the impact of alternatives

on goals.

2) Generic quantitative decision models such as the CBAM (Cost-Benefit Analysis
Method) [149] —an economic modelling approach to support software architecture de-
cision making in a multi-stakeholder context; the EVOLVE evolutionary and iterative
release planning method to optimally allocate requirements incrementally to software
releases subject to resource and budget constraints [216]; and other search based soft-
ware engineering methods [201]. These approaches employ pre-established model equa-
tions (e.g. typically weighted sums) to specify “cost” and “value” scores to alternative
solutions. The cost and value scores in these methods usually represent abstract (non-
observable) quantities rather than financial metrics expressed in monetary units (e.g. in
Dollars or Euros). While the generic decision objectives and models ease the applicabil-
ity of these methods, they may not express the actual stakeholders’ goals and may not

correctly predict the impacts of alternatives on these goals.

3) Problem-specific quantitative decision models such as the quantitative extensions to
NFR/i* [3, 199], KAOS [126, 165] and the Bayesian decision analysis approach in soft-
ware engineering [166]. These approaches are more accurate in modelling, reasoning and
analysing domain-specific decision problems. However, they require higher modelling ef-
fort and generally have limited automated tool support for decision analysis. Using
these approaches involves manual encoding of decision models in widely used statistical
programming languages, such as R and MATLAB. This results in modellers spending
time on implementation details rather than concentrating on the conceptual decision

problem.
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To mitigate the limitations of existing approaches, this thesis aims to introduce a quan-
titative approach that supports the elaboration and analysis of domain-specific require-

ments engineering and software architecture decision problems under uncertainty.

1.4 Thesis Objectives and Contributions

The objective of this thesis is to develop a new modelling language and automated deci-
sion analysis technique for requirements engineering and software architectural decisions.
The result is a tool called RADAR —Requirements and Architecture Decision AnalyseR.
RADAR’s modelling language is a simplified form of quantitative goal models designed
to be similar to simple equations that software architects use for back-of-the-envelope
calculations (i.e. rough, imprecise calculations) [214]. RADAR, however, provides sophis-
ticated analysis that cannot be performed through back-of-the-envelope calculations:
it allows analysing uncertainty through Monte-Carlo simulations, shortlisting Pareto-
optimal solutions through multi-objective optimisation, and computing expected value
of information that can be used to decide whether to seek more information or perform

a more detailed analysis before making a decision [166].

The proposed modelling language and automated decision analysis tool provide decision-
makers with useful information about: which decisions are better than others in the
decision model of a particular software intensive system; what objective values can be
attained with different designs; what trade-off can be made between shortlisted designs
(solutions); what parameter uncertainty may deserve additional data collection and
analysis before making their decision; and what parameter uncertainty does not matter

to their decision.

In this thesis, we define a novel modelling language and automated decision analysis
tool that facilitates the application of the earlier MODA requirements and architec-
ture decision method [166]. The thesis contribution with respect to MODA and other

requirements and architecture decision methods are:

1. A novel modelling language that facilitates the elaboration of domain-
specific requirements and architecture decisions under uncertainty. The

modelling language has relation to AND/OR quantitative goal models used in
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requirements engineering [126, 165] and similar to feature models used software
product lines [236]. The language enables decision-makers model problem-specific

decision problems at different level of complexities:

(a) Decisions characterised by single option selection similar to mutually exclusive
option selection (XOR-nodes) of feature diagrams used in software product

lines.

(b) Decisions with multiple options selection similar to non-mutually exclusive

options selections (OR-nodes) of feature diagrams.

(c) Decisions characterised by constraints relationships between options of deci-
sions. The constraint relationship considered are excludes and requires con-
straints widely used in feature diagrams and the coupling constraints com-

monly studied in requirements selection and optimisation [216, 285].

2. An automated decision analysis approach for analysing domain-specific

requirements and architecture decision models under uncertainty.

The analysis technique generates AND/OR goal graphs and decision graphs from
the model’s equations; generates design space and infers decision dependencies
from model’s equations; analyses model uncertainty through Monte-Carlo simu-
lations, shortlists Pareto-optimal solutions through multi-objective optimisation,
and employs information value analysis technique to compute expected value of in-
formation that can be used to decide whether to seek more information or perform

a more detailed analysis before making a decision.

3. Implementation of the modelling language and automated decision anal-
ysis technique in a tool, called RADAR —Requirements and Architecture
Decision AnalyseR. The tool is open source with a GUI and command line ca-
pabilities to facilitate wider adoption in practice and can be used as an add-on to

existing goal-oriented modelling frameworks, such as KAOS/Objectiver [220].

4. An evaluation and validation of the applicability, usefulness, scalability
and performance of the modelling language and the automated deci-
sion analysis technique on a set of real world systems from different

application domains.

The thesis used the following real-world software systems for evaluation: Plastic

Card Fraud Detection System introduced earlier; Emergency Response System,
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NASA Satellite Processing System, Building Security Policy System, Public Bike
Sharing System; the London Ambulance System; Microsoft Word Processor; Com-
mercial Decision Support tool; Berkeley Relational Database Management System:;
Amazon Web Service Elastic Computing Cloud System; Drupal PHP framework

for web content management; E-Commerce Web Portal.

Using these real world systems will help to evaluate the expressiveness and gen-
erality of RADAR’s modelling language and analysis techniques. We evaluate the

RADAR tool by answering the following research questions:

e RQ1 (Applicability): Is the RADAR tool applicable to real-world require-

ments and architectural decision problems (chapter 7.3.1)7

e RQ2 (Usefulness): Does RADAR’s decision analysis technique provide useful
improvements to real-world requirements and architecture decisions (chapter
7.3.2)7

e RQ3 (Scalability): What is the scalability of RADAR’s exhaustive simula-

tion and optimisation approach (chapter 8)?

e RQ4 (Performance Analysis): What is the performance of RADAR’s al-

ternative search-based evolutionary algorithms (chapter 8)7

1.5 Scope and Assumptions

The thesis focuses on developing a new modelling language expressive enough to model
real world requirements and architecture decisions; implementing the decision analysis
technique and evaluating the modelling language and analysis technique on real world
examples. However, the thesis did carry out any user study to evaluate the effort required

to develop a decision model and the benefit of our approach in industrial case studies.
As in most research works, we have made some assumptions as follows:
1. The thesis assumes modellers have some analytical skills and can identify design
decisions and elicit stakeholders’ objectives/goals.

2. The thesis assumes that the requirements specification about stakeholders’ and

system goals are not vague.
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3. We also assume modellers can use existing methods for systematic model elabora-

tion [162, 264] when developing decision models.

4. Finally, we assume the modelling language is applicable to a variety of applica-
tion domains. However, like many other requirements and architecture decision
methods, the thesis has not considered techniques for validating decision models

against run time data.

1.6 Research Methodology

The research presented in this thesis is both theoretical and empirical. At the early
phase, the first task was to identify the research problem and justify its significance to
requirements engineering and software architecture research community. I performed a
comprehensive literature review summarising the state-of-the-art approaches for mod-
elling and analysing requirements and architecture decision problems, their strength and
weaknesses are identified as presented in Chapter 2 of this thesis. The findings in this
phase serve as a basis for proposing a new modelling language and automated decision

analysis tool.

The next phase involves a number of research activities to design and implement the

proposed modelling language and automated decision analysis tool [155]:

e Identify the requirements of the new modelling language and automated decision

analysis tool as presented in Section 1.4.

e Identify and document the prototype tool’s components and their relationships

(see chapters 4, 5 and 6).

e Design the tool’s data structure; design the tool’s language and automated decision
analysis techniques and integrate the different components that make up the tool;

implement a GUI for the tool (see chapter 6).

The final phase involves the evaluation of the prototype tool against the formulated
research problem. We answer the research questions presented section 1.4 (see chapters

7 and 8).

Yhttps://ucl-badass.github.io/radar/
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1.7 Thesis Outline

In this chapter, we gave an overview of requirements engineering and software architec-
ture decisions; described state of the art requirements and architecture decision methods
and their limitations; described the thesis objectives and contributions; clarified the the-

sis scope and assumptions. The remaining parts of the thesis are as follows:

Chapter 2 presents a background and the state-of-the-art in requirements engineering
and software architecture in detail. Since many requirements and architecture decision
problems are multi-objective in nature, we first present an overview of multi-objective op-
timisation. Next, we summarise and review the state-of-the-art models and approaches

employed to tackle requirements and architecture decisions.

Chapter 3 presents a guided tour of the proposed Requirements and Architecture
Decision AnalyseR (RADAR) to give a high-level overview of the language capability and

to provide background on the decision analysis method used.

Chapter 4 formally describes the modelling language. We describe the language con-
struct for modelling decisions with single option selection; decisions with multiple options

selection; and decisions with constraints relationships between options of decisions.

Chapter 5 details the automated decision analysis technique. We describe the technique
for analysing model uncertainty using Monte-Carlo Simulation; shortlisting Pareto-
optimal solutions through exact and evolutionary algorithms; estimating expected value
of information to help in identifying parts of the decision model that need detailed

analysis or additional data collection before making a decision.
Chapter 6 describes the tool design and implementation.

Chapter 7 shows the modelling language and analysis technique in action by applying
the tool on a set of real world examples. Here, the focus on evaluating the applicability
and usefulness of RADAR. For each example real-world requirements and architecture
decision problem, we describe the problem statement of the decision problem, present the
decision model, presents the results of the model analysis, and where possible compare
the analysis results to previous analysis in the literature. We conclude this section with
conclusions from the experiment by discussing the applicability, usefulness and threats

to validity.
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Chapter 8 presents a critical evaluation of RADAR’s optimisation analysis technique.
The evaluation focuses on the tool’s performance in analysing real-world requirements

and architecture decision problems. We also discuss the threats to validity.

Chapter 9 presents the conclusion by summarising the thesis contributions and high-

lights potential future works.



Chapter 2

Background and State of the Art

As mentioned in Chapter 1, this thesis proposes a new modelling language and auto-
mated decision analysis techniques for requirements engineering and software architec-
ture decisions under uncertainty. In order to provide a good perspective and foundation
for the thesis, this chapter presents a background and state-of-the-art in software require-
ments and architecture decisions. Requirements and architecture decisions are generally
multi-objective optimisation problems. Thus, Section 2.1 provides an overview of multi-
objective optimisation problems and the algorithms commonly used to solve these prob-
lems. The thesis modelling language is a simplified version of quantitative AND/OR
goal models. To this end, we give a brief background on goal-oriented requirements
engineering in Section 2.2. Requirements prioritisation and release planning are a vital
activities in requirements engineering decisions, therefore we presents its overview in
Section 2.3. Software architecture decision methods for evaluating and selecting the op-
timal architecture of software systems are described in Section 2.4. Finally, Section 2.5
presents some works related to this thesis on product configuration decisions in Software

Product Lines.

2.1 Multi-Objective Optimisation

Optimisation is at the heart of software engineering; it entails making decisions aimed
at optimising software products and their development processes [28, 107, 205, 226].

Many requirements and architecture decision problems are characterised by multiple and

14
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usually conflicting objectives. For example, minimising cost, maximising stakeholders’
values and minimising project risks. Additionally, the large number of possible alterna-
tive decision choices makes it difficult to explore the design space manually. Decision

problems of this nature are known as multi-objective optimisation problems.

Multi-objective optimisation problems have been well studied in a field known as Search-
Based Software Engineering (SBSE) [121] — a term, coined by Harman and Jones [119],
that seeks to transform software engineering problem to a search based optimisation
problems, and then search through a search space of possible solutions guided by objec-

tive function to obtain optimal or near optimal solutions.

In the rest of this section, we present a formal definition of multi-objective optimisation
problems and Pareto optimality. Then, provide a brief description of the algorithms

used to solve multi-objective optimisation problems.

Definition 2.1. A multi-objective optimisation problem (MOOP) [59] is a set of objec-
tive functions {Oq,...,O,}, to be either maximized or minimized, where each objective
function O; : S — R assigns a real value to each solution s in the problem solution
space S. The solution s is also known as decision vector —a vector of decision vari-
ables {s1,s2,...,S,}, where s1, s9,..., s, could be Boolean variables commonly used in
encoding requirements selection problems in which a value of 1 (or 0) for s; means a

requirements 7 is selected (or not selected).

Definition 2.2. A solution s dominates another solution s’ if (i) it is better than s’ in
at least one objective and (ii) not worse than s’ in all other objectives. Assuming all
objective functions have to be maximised, these conditions are formalised as (i) there
is an objective function O; such that O;(s) > O;(s’), and (ii) for all other objective
functions O; with j # 4, O;(s) > O;(s).

Definition 2.3. A solution s € S is Pareto-optimal if it is not dominated by any other
solution when all objectives are considered. The set of all Pareto-optimal solutions is
called the Pareto set. The Pareto front is the set of objective values allowed by the

Pareto set.

MOOPs can be solved through exact algorithms [72, 112, 139] that evaluate possible so-

lutions in the solution space and find exact optimal solutions. MOOP can also be solved
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through approximate algorithms or meta-heuristics techniques to search a problem so-
lution space guided by objective (fitness) function to obtain optimal or near optimal

solutions [119].

Exact algorithms guarantee finding optimal solutions, if they exist [112], but spend
longer time for large-scale problems. Exact algorithms, such as dynamic programming
[33, 53], branch and bound [154, 160, 183], explore the search space in a non-exhaustive
way, i.e. a huge size of the sub-space are dropped on the basis that the sub-space cannot
contain the optimal solutions [187]. Enumerative methods, such as exhaustive search
[187, 252] and Guided Improvement Algorithm (GIA) [139], however, scan all possible
alternative solutions in the search space. In general, when the size of the problem is very
large, exact algorithms scale poorly [79, 112, 139, 193]. Parallel exact approaches have
been developed to improve the scalability of exact algorithms. Examples of parallel exact
algorithms includes: Two Parallel Partitioning Method [161] and K-Parallel Partition
Method (K-PPM) [72] used for the job scheduling problem, Parallel Guided Improvement
Algorithm (ParGIA) [112] used for the feature selection in software product lines. While
these parallel algorithms have been attempted on relatively large problems, they still do
not scale for many real world problems with extremely large solution space [112]. There
has been considerable amount of efforts devoted to developing approximate algorithms

that scale well in tackling real world problems with extremely large solution space.

Approximate algorithms address the scalability limitations of exact algorithms, but they
do not guarantee finding exact optimal solutions and are sensitive to algorithmic pa-
rameter settings, which determine the accuracy of their search process. Approximate
algorithms can be classified into single point local-search methods and population based
methods [122]. In the case of the former, a single candidate solution is considered at
a time and improved by making alterations incrementally until an optimal solution is
found. The population based methods evolve and improve a set of solutions simulta-
neously by iteratively making changes to highly fit solutions in the population until a
pre-defined terminating criterion (e.g. number of iterations or fixed run-time) is at-
tained. Hill climbing [58, 240], simulated annealing [58, 78], tabu search [105, 106]
are single point local search, while evolutionary algorithms [287], such as NSGAII [69],
SPEAII [289] and IBEA [288], and evolutionary strategies [93, 245] are population based
methods. Among these approximate techniques, evolutionary algorithms are the most

widely used to solve multi-objective optimisation problems. They use the principles of
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natural selection and evolution to evolve a set of encoded solutions, called a population,

towards Pareto-optimality [287].

In summary, requirements engineering and software architecture decisions are generally
multi-objective optimisation problems. In this section, we have provided an overview of
multi-objective optimisation problems and the algorithms commonly used to solve these

problems.

2.2 Goal-Oriented Requirement Engineering

In this thesis, the proposed RADAR modelling language has relations to AND/OR quan-
titative goal models commonly used in Goal-oriented requirement engineering (GORE).
Therefore, this section provides a background on GORE; the common GORE framework-
s/approaches (e.g., NFR [180], i* [277], KAOS [264]); quantitative extensions to these
approaches and their limitations with respect to making requirements and architecture

decisions.

Goal-oriented requirement engineering (GORE) research emerged to address some of the
limitations of requirements engineering approaches [212; 219], which failed to capture a
proposed system’s motive and reason about the system and its operating environments
[159]. GORE have gained popularity over the past years as they have been widely
used to provide systematic support for eliciting, modelling and reasoning about the
proposed software system and its environment. Some research areas where GORE has
been successfully applied include: goal elicitation [20, 73, 74, 258, 263], goal refinement
and analysis [66, 66, 75, 103, 137, 163, 165, 180, 237, 248], obstacle analysis [19, 256, 266,
agent-oriented requirements engineering, handling conflicts [36, 132, 210, 256, 257] and
variability [137, 165, 211] in GORE, from requirements to architecture design [55, 108,
125, 261, 279] and analysing security requirements [24, 170, 262, 277, 280].

2.2.1 Goals

Goals are prescriptive statements of the objectives a proposed system should achieve
through the cooperation of agents that form the system and the environment [125, 260].

Goals can also be defined as statements of high-level objectives of the system, which
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provide information about the purpose of the system and the guidance on both strate-
gic and operational decisions during the different activities of the system development

process [22].

Goals have been classified based on different taxonomies in the literature [56, 259].
The first classification is functional and non-functional goals [259]. Functional goals,
also known as satisfaction or behavioural goals are declarative statements about the
services the proposed system is expected to achieve, while non-functional goals refer
to the constraints on the functions provided by the system. Such constraints could be
on the performance, availability, security, scalability and reliability etc. For example,
in the design of the plastic card fraud detection system introduced in Chapter 1.2, a
functional goal could be: “the system should send a fraud alert once a fraud is suspected
on a customer’s card” and a non-functional goal for this system might be that “the
system should generate such alerts within 8 hours”. Goals can also be classified as
either hard goals [65] or soft goals [180]. Hard goals can be satisfied in an unambiguous
manner, while soft goals are goals whose satisfaction cannot be established in a clear-cut
manner. Soft goals are related to the concept of goal satisficing [159]: they may never
be satisfied, which implies that a good enough solution is only needed to satisfice them
to an acceptable level. Soft goals are particularly used when comparing alternative goal
refinements to determine the one that produces the best contribution towards the overall

goal [259].

Goals have also been classified according to the temporal behaviour prescribed by a goal
[65, 259]. For example, an Achieve (or cease) goal can be used to describe some target
future state required by the system to satisfy (or deny). A maintain (or avoid) goal can
be used to restrict the behaviour of the system to constantly satisfy (or deny) all future
states of the system. Optimise goal can be used to compare alternative system designs,

and favours the alternatives that best meet some soft target property.

Another classification of goals proposed by Sutcliffe et al. [246] is based on the desired
states of the system (e.g. positive, negative, alternative, feedback, or exception-repair)
and desired goal level (i.e., policy level, functional level and domain level). These taxon-
omy of goal types have been used in formulating goals [21, 180, 211], defining heuristics
for acquiring goals, refining goals, deriving goals, and for checking semi-formal consis-

tency and completeness [21, 23, 56, 65, 246].
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In GORE, the system of interest and the environment where the system operates are
considered as a series of agents [159, 259]. An agent in this context refers to an active
component, such as human, hardware or software component that has some responsi-
bility towards satisfying a goal. A goal whose responsibility is assigned to a human
agent is regarded as a domain assumption, and when a responsibility of satisfying a goal
is assigned to a single software agent, it is termed a requirement. While requirements
can be enforced by the proposed system, domain assumptions rely on an organisation’s

policies and norms to be enforced.

2.2.2 Goal Refinement

Goal refinement (or decomposition) is another vital aspect of GORE. Goals can be
refined (or decomposed) and related into sub-goals using AND/OR refinement graphs
[259]. The AND/OR graphs capture alternative goal refinements [65, 182, 211], possible
goal conflicts [40, 65], and how the lower level goals contribute partially, positively or
negatively to higher level goals through the use of AND/OR contribution links [56, 180,
182]. The AND-refinement link implies the satisfaction of sub-goals ensures the parent
goal is satisfied. An OR-refinement link relates the parent goal to a set of alternative
AND-refinements, such that any one of the AND-refinements is sufficient to satisfy
the parent goal. The OR-refinements are commonly used to model alternative design

choices for satisfying a parent goal.

Goals are continuously refined into sub-goals until their sub-goals are assigned to system
agent(s). At this point, only the agent can restrict the goal’s behaviour to ensure their
satisfaction. OR-responsibility assignments are used to model alternative assignment of
goals to agents [126]. This corresponds to alternative design choices called options at
decision points, where a decision point could be OR refinement or an OR responsibility

assignment in the goal model.

To illustrate the concept of goal refinement, we have used Fig. 2.1, an example goal
model of the plastic card fraud detection system introduced in Section 1.2. The paral-
lelograms represent goals. Agents in this figure are the human, software and hardware
devices attached to the goals. In Fig. 2.1, the goal ACHIEVE[Card Fraud Detected
and Resolved] is AND-refined into the goals ACHIEVE[Card Transactions Processed|
and ACHIEVE[Compromised Card Resolved]. The goal MAINTAIN|Accurate Fraud
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FIGURE 2.1: AND/OR goal model of the plastic card fraud detection system.

Detection] is OR-refined into the goals ACHIEVE[Fraud Detected Using Classifier
Method] and ACHIEVE|[Fraud Detected Using Rule-Based Method]. The agent fraud
investigator attached to the goal ACHIEVE[Compromised Card Investigated Before
Blocked] is expected to manually carry out the investigation on a suspected compromised
account (this is an example of a domain assumption), whereas the agent alert generator
attached to the goal ACHIEVE[Alert Generated For Matched Fraud] is required to
generate alert when a card transaction is suspected to be fraudulent (an example of a
requirement). The leafgoal MAINTAIN[Fraud Detection Rules Stored] could be as-
signed to a system agent Data Store, with option choices of either using a local database

or cloud-based database system (this is an example of OR responsibility assignment).

2.2.3 Goal-Oriented Requirement Engineering Approaches

Many goal modelling approaches exist, but the main ones include: NFR [180], */TROPOS
[47, 276], URN/GRL [14] and KAOS [264]. These approaches rely on having sufficient

conceptual meta-model to systematically capture a complete and consistent functional
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and non-functional requirements of a proposed system [65]. These goal modelling ap-
proaches provide diverse notations, refinement patterns and support for analysing goals
using informal, semi-formal and formal methods [20, 103, 164, 165, 180, 237, 256]. In
the rest of this section, we present a brief description of the core ideas of the main

goal-oriented approaches.

2.2.3.1 NFR Framework

The NFR framework [56, 180] was proposed to reason, model, refine and analyse non-
functional requirements. The NFR framework is a process oriented approach that ratio-
nalises the development process with respect to non-functional requirements [180]. Its
main activities deal with the vagueness, priorities, dependencies and trade-off among
non-functional requirements; also, it deals with capturing and exposing the positive and
negative contributions of design alternatives on non-functional requirements. The NFR
framework’s main modelling tool is the Softgoal Inter-dependency Graph (SIG), which
is a graph that represents non-functional requirements as softgoals and their AND/OR~
refinements, positive/negative contributions, operationalisation and claims. The softgoal
operationalisation models low-level technical details of satisficing non-functional require-
ments softgoals, and the softgoal claims enable architects to document design rationale

for the refinements of softgoals [56].

The NFR framework uses a label propagation algorithm to determine which design
decisions best satisfice the high-level non functional requirements[180]. The algorithm
starts from the leaf-level softgoals, which encode the design decisions of the architect, and
traverses the graph upward towards the top-level softgoals, while considering the labels
on the softgoal refinement links. This type of alternative operationalisation guides an
architect in selecting the design that gives the best contributions towards the high-level

non-functional requirements.

The NFR framework provides an architect with three main types of directory or cata-
logue for storing a list of design knowledge [56]. First, it provides directory for storing
the ideas about the different types of non-functional requirements, such as performance,
availability, security, scalability and reliability etc. Second, it provides a directory for
storing methods used in guiding softgoal refinements and operationalisation. For exam-

ple, this catalogue could have a method which states that when a softgoal is applied to



Chapter 2. Background and State of the Art 22

a data item with different sub-components, then the softgoal can be refined into other
subgoals for each of the components in the item. Third, the correlation directory encodes

knowledge to assist in identifying softgoal dependencies.

2.2.3.2 ¢* Framework

The ¢* framework [276, 278] is an agent-oriented modelling framework to support both
early and late requirements engineering phases. At the early phase of requirements
engineering, ¢* framework facilitates domain analysis by enabling visualisation of the
current organisational /business processes, the stakeholders relationships and objectives.
The models developed in this phase provide rationale for the proposed software and
organisational processes. In the late requirements engineering phase, emphasis is on
how to use the ¢* models to present a new system design and organisational processes,
and an evaluation of how the processes and design impact the stakeholders’ functional

and non-functional requirements.

The i* modelling approach is based on the idea of intentional actor and intentional
dependency [170]. Actors in this context can be agents of the proposed system, a role
and a position. An agent could be a software, hardware or human designated with certain
functionalities; a role is an “abstract actor embodying expectations and responsibilities”
[170], e.g. a Fraud Investigator in the Plastic Card Fraud Detection System; and a
position is a list of roles carried out by a single agent. In general, actors have certain
attributes, notably goals, capability and responsibility. They depend on other actors to
achieve their goals and task executions efficiently. However, an actor is at risk when
other actor(s) it relies on fail to deliver. Thus, it becomes imperative for actors to strike
an equilibrium between the opportunities they are presented with and the possible risks
in order to achieve their objectives. Intentional dependency captures the relationship
between actors. For example, an actor may depend on another actor(s) to achieve a
goal. Dependency relationships can be classified according to the goal, softgoal, task

and resource [170].

The ¢* framework consists of two main components, namely the Strategic Dependency
(SD) model and the Strategic Rationale (SR) model. An SD model is “a network of
intentional dependencies”[170]. An SD model is used to analyse: actor dependencies,

organisational changes due to the proposed new system and the possible opportunities
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and risks an actor could face. An SR model enables the exploration and description of
the rationale for the system and organisational processes in terms of the process elements
(e.g. goals, softgoals, tasks and resources) and their relationships. Unlike SD model,
which focus on the external relationships among actors, SR model focus on the internal
processes of actors, thus providing fine-grained abstraction for representing intentional

features of the organisations and systems.

In the i* model, AND/OR refinements of process elements, such as goals, softgoals, tasks
and resources, can be achieved using the decomposition, means-ends and softgoal contri-
bution links. The decomposition link attaches a goal/task with a subtask and soft goals.
The means-ends links are mainly used for goals and the alternative means of achieving
them. The softgoal contribution links can be used to relate a softgoal/goal /task to other
softgoals. The softgoal contribution link, which are similar to the contribution links in
NFR framework, uses two levels of positive (“+” and “++”) and negative (“-” and “-
—7) contributions links. The i* meta-framework, which describes the semantics and con-
straints of the i* are elaborated in a tool called Telos [181] —a tool that enables diverse

analysis of the 7* models, such as consistency checking and scalability management.

2.2.3.3 TROPOS Framework

The TROPOS framework [47] is a requirement-driven agent oriented development ap-
proach that guides the analysis, design and implementation of agent-based systems. This
framework models, reasons and analyses system requirements and design choices using
the ¢* framework. However, it extends i* by providing textual symbols for ¢* models

and methodology for describing dynamic constraints in first order temporal logic [47].

2.2.3.4 URN/GRL Framework

The GRL framework [14] is one of the sub-languages of a semi-formal, goal and sce-
nario based modelling language known as User Requirements Notation (URN) [1]. GRL
means Goal-oriented Requirement Language. GRL combines the ¢* and NFR frame-
works to model goals (represented by rounded rectangle); softgoals (represented using
cloud shape); alternatives and the impact of decisions on high-level softgoals; and ra-

tionales, which are declared as beliefs and represented using eclipse shape. GRL is
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implemented in the jJUCMNav tool [2], which is currently integrated in the Eclipse de-

velopment environment.

2.2.3.5 GBRAM Framework

GBRAM [19, 20] is a Goal Based Requirements Analysis Method that emphasises early
elicitation and abstraction of goals from diverse sources. The framework supports goal
analysis and refinement process. Goal analysis entails three main activities, namely
the exploration, identification and organisation activities, in which the different sources
of information are explored in order to identify goals and agents responsible for those
goals, and then organise the goals using dependency relations (similar to inter-actor
dependency in i* models) that declare which goals must be satisfied before other goals.
Similarly, goal refinement involves three activities, such as refinement, elaboration and
operationalisation activities, i.e. the identified goals are refined so that redundancy
among goals are discarded; goals are elaborated to identify hidden goals and obstacles
to the goals; and operationalisation of the goals to identify agents (e.g. entities or
processes) that ensure the goals. GBRAM does not support graphical syntax, rather it

uses goal schemas to specify agents, goals and stakeholders in textual form.

2.2.3.6 KAOS Framework

KAOS means Keep All Objects Satisfied [266] or Knowledge Acquisition in autOmated
Specification [65]. The KAOS framework is a multi-paradigm language characterised by
a two-layer structure, namely: (i) the outer conceptual modelling layer for specifying
concepts, their attributes and relationships with other concepts; (ii) an inner formal
layer for accurate reasoning about the concepts [162]. A KAOS specification consists of
core models, which can be related to one another by inter-model consistency rules. The

core models are enumerated below [162]:

1. A goal model made up of a two-layer structure. The first layer is an outer semantic
net [38] used to declare goals and their links. The second layer is a textual com-
ponent used to define goals in natural language, or formally in real time temporal

logic.



Chapter 2. Background and State of the Art 25

2. An object model which represents objects of interest, their attributes and associa-
tion links to other objects. Objects are classified as entities, relationships, agents

or events.

3. An agent responsibility model which represents assignment of goals to agents re-
sponsible for ensuring the satisfaction of the goals. Goal responsibility assignment
provides the basis for halting a goal refinement process. Thus, when a goal is
assigned to a single agent, such goal cannot be refined further. Alternative goal

responsibility assignment is possible using the OR-refinement link.

4. An operation model that represents transitions between states within an appli-
cation domain. Operations are defined by domain pre, post and trigger condi-
tions and the operational model uses these conditions to specify operational re-
quirements, which are related to goals by operationalisation links and ensure the

achievements of goals assigned to agents.

2.2.4 Quantitative Goal Oriented Requirements Engineering

The GORE approaches described in previous section, such as the NFR and KAOS
frameworks, have quantitative extensions [3, 4, 44, 57, 64, 81, 126, 165, 199, 222, 223,
265, 270] that provide more precision for decision support than qualitative approaches
[103, 165]. In addition, quantitative GORE approaches help to clarify decision models

and evaluate the impact of decision choices on the stakeholders’ objectives.

The NFR framework and its variants (e.g * [276, 278], TROPOS [47] and GRL [14])
have been quantitatively extended by replacing the “++/+” and “-~ —/-” symbols on
the goal refinement contribution links with numbers (usually between -1 and 1), and
attaching weight values (between 0 and 1) to the leaf goal/softgoal to denote the extent
of satisfaction of the goal/softgoals [3, 4, 81, 199, 270]. The degree of satisfaction of a
goal /softgoal is computed using the weighted average of the degree of satisfaction of the

sub-goals.

Giorgini et al. [103] developed a formal framework that uses NFR AND/OR refinements
to qualitatively and quantitatively reason about the goal model of a US car manufactur-
ing company. The authors also presented a qualitative and quantitative axiomatisation

for goal model primitives, and label propagation algorithms for each axiomatisation.
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This approach does not capture uncertainty in decision models explicitly and lacks tool

support for decision analysis.

Affleck et al. [3, 4] extended the NFR framework by proposing an optimisation model
that aims to maximise the attainment score (i.e. a score representing the degree of
satisfaction of the softgoals); minimise denial of softgoals; and avoid superfluous im-
plementation through the acceptance and rejection of leaf softgoals according to their
scores and decomposition. Developing the optimisation model involves converting the
NFR softgoal inter-dependency graph (SIG) to a directed graph with associated con-
stants and variables, and the objective function is constructed from the graph constants
and variables. The authors evaluated the optimisation model through simulation-based
analysis of synthetic test data. While this approach aims at tackling the scalability
issues in SIG, the optimisation model does not support elaboration of domain-specific
decision models, and does not take into consideration the fact that real world problems
have multiple objectives, for example, the model did not consider the cost of alternative
operationalisations in determining the optimum solution; it analysed uncertainty in the
graph variables through sensitivity analysis, which does not consider the probability of
change in decisions that optimise stakeholder goals and probability of changes in model

parameters’ values [166]; and finally, it lacks tool support for automated analysis.

Pasquale et al. [199] introduced an approach to quantitatively analyse security goals
and their trade-offs between other goals, such as availability and cost, for a service-based
email system. Their approach consists of three phases, namely: modelling, formalisation
and analysis phases. The modelling phase involves developing a threat model, goal model
and asset model of the security concerns and goals of the system. The formalisation
phase combines the models using mathematical representations of metric functions that
quantify the satisfaction of the security goals and concerns. Finally, the analysis phase
involves encoding the formalised model into a Boolean satisfiability problem, by adding
a set of constraints to the model and then solving the problem using SMT Solver (Z3).
This approach is semi-automated as the analysis phase requires manual encoding of
the satisafiability problem in the solver, thereby requiring that decision makers have
an understanding of how the solver operates. In addition, the authors compute goal
satisfaction using point based estimate using range normalisation i.e. normalise the

final output between -1 and 1.
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Wei et al. [270] developed an approach, driven by quality requirements, for making
implementation decisions according to the quality goals of a system, in the context of
internet aware. The approach consist of four steps, namely: the model generation; sat-
isficing status assignment; model reasoning and decision making. The model generation
step involves transforming the goal models to a tree model and then to a symbolic for-
mular, according to the syntax of the proposed symbolic modelling language > . The
satisficing status assignment assigns quantitative (e.g. numbers in the range of 0 and
1) and qualitative (e.g. “+4” and “— =7 ) values to the generated symbolic formu-
lar. The next step is to reason about the model in order to determine all candidate
implementation decisions. Model reasoning can be quantitative, qualitative or hybrid
of both; it is quantitative when the model’s contributions and satisficing statuses are
fully quantified; it is qualitative when they are not quantified and hybrid when partially
quantified. Finally, the implementation decision is made by incorporating users’ pref-
erences and priority on goals. This approach, however, does not handle uncertainty in
model parameter, and while it has tool support, there is still the issue of the scalability
and complexity of goal models. The effect of this is that symbolic formula generated in

step one becomes complex to read when dealing with large goal models.

Qin et al.[171] proposed a goal-based decision making framework that clearly demon-
strates the link between goal-oriented requirements engineering and multi-criteria de-
cision making technique. Using a case study that involves selecting an IT solution for
registering customer profiles, in the insurance domain; they evaluated their approach
by importing quantitative goal models developed in the jJUCMNav tool [213] into Excel,
where strategies for alternative selection and/or elimination is implemented. The strate-
gies used are disjunctive rules and Rank Order Centroid (ROC) formular. Disjuctive rule
simply states that an alternative that exceeds certain threshold are jettisoned, whereas
the ROC formular is used to convert the importance ranking assigned to different alter-
native’s attributes (e.g., cost, scalability and interoperability) to quantitative weights.
While this approach tackles decision making in a multi-objective optimisation context,
it lacks an integrated tool support for analysing decision models and suffers from the

scalability and readability problems in cases where the decision models are large.

While the techniques described above enable the elaboration of domain-specific decision

models in requirements and architecture decisions, the numbers (-1 or 1) assigned to
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the contribution links in the goal models have no physical interpretations in the appli-
cation domains [126]. In contrast, Letier et al. [165] proposed a quantitative extension
of the KAOS framework [65, 266] where levels of goals satisfaction are defined using
domain-specific metrics with physical interpretation. They developed a technique that
specifies partial degrees of goal satisfaction, and quantifies the impact of alternatives on
the extent of goal satisfaction in terms of refinement equations, which are defined over
random variables involved in the system‘s functional goals. They computed their ob-
jective functions for higher-level goals using estimated probability distribution functions
from the leaf or low level quality variables. This approach does not cater for automated
analysis of goal models, as the analysis is done through an ad-hoc process that involves

the use of analytical and numerical methods.

Heaven et al. [126] leverages the quantitative goal refinement model based on the KAOS
framework presented in [165] to simulate and optimise the impact of alternative system
designs on high level goals using multi-objective genetic algorithm (NSGA2). They
found the Pareto optimal design options among the alternatives options that optimises
the achievement of 8 and 14 minutes response time of the London Ambulance System,
at a low cost. This approach, however, lacks tool support and requires manual encoding

of the simulation models in a general programming language, such as R and MATLAB.

Sabetzadeh et al. [222] proposed a goal based approach, using the KAOS framework, for
assessing the satisfaction of new technology goals, such as safety and reliability goals.
The approach uses sensitivity analysis to figure out system components that needs fur-
ther improvements in satisfying the system goals. This approach involves the following
steps: (1) developing a goal model of the system; (2) plan and collate evidences in order
to quantify the probabilities that low level goals are satisfied, probabilities of obstacle
blocking low level goals and probabilities of risk occurring due to incomplete decom-
position of goals; (3) Elicit the probabilities from experts according to the evidences
presented; (4) propagate the elicited probabilities from the leaf goals to compute the
probability distributions for the satisfaction of the high level goals; (5) given that un-
certainty about the satisfaction of the overall goal exist, perform sensitivity analysis to
determine which model parameter inputs lead to great variations in the model output
parameters. Although this approach has tool support that is presented in [223], it is
only targeted at safety and reliability technological quantification and the complexity of

goal models limits the scalability of this approach.
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In summary, Section 2.2 describes existing qualitative and quantitative Goal-oriented
requirement engineering (GORE) approaches used in making design decisions in Re-
quirements engineering. Qualitative goal oriented approaches such as the NFR frame-
work [180], */TROPOS [47, 276], URN/GRL [14] and KAOS [264] allow one to model,
reason and analyse the impact of decisions on stakeholders’ goals. However, they only
provide information about how the decisions positively or negatively impact stakehold-
ers’ goals. They provide no quantitative information about the impact of alternatives on
goals. Quantitative goal oriented approaches, however, are more accurate in modelling,
reasoning and analysing domain-specific decision problems [3, 199] [126, 165]. But they
require higher modelling effort and generally have limited automated tool support for

decision analysis.

2.3 Software Release Planning Decisions

Requirements modelling and analysis are critical activities carried out during require-
ments engineering of a proposed software system [264]. A prominent research area that
tackles requirements decisions during modelling and analysis of a proposed system is
Software Release Planning [208]. Since this thesis proposed to develop a novel mod-
elling language and automated decision analysis technique for requirements engineering
decisions, this section reviews the state-of-the-art software release planning decisions

approaches.

Software release planning addresses decisions related to the selection and prioritisation
of requirements when developing a sequence of consecutive product releases that satisfy
important and often conflicting constraints, such as benefits to business and stakeholders,
cost of implementation, development effort and risk, delivery time and dependencies

among requirements [208].

Software release planning decisions can be viewed from two perspectives [7]: first, as
strategic release planning [215], where decision-makers make relevant decisions about
the prioritisation and assignment of requirements (features) to different releases in a way
that both resource and technical constraints are met and at the same time satisfying the

stakeholders’ goals. Second, as operational release planning [5, 25|, in which resources,
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such as developers and testers, are allocated to the tasks required to implement the set

of requirements agreed for a particular release.

Release planning decisions are generally complicated by the uncertainty about the impact
of decision choices on the business and technical constraints. Poor decisions, such as
abrupt exclusion and inclusion of requirements, may lead to stakeholders’ dissatisfaction;
a software release plan that does not meet the technical, resource, budget and risk

constraints [218].

The literature has several decision support methods for modelling and analysing release
planning decision problems. Examples of these methods are cost-value approach [143],
next release problem [30], EVOLVE release planning method [216], incremental funding
method. Many of these methods have been applied with techniques from search based
software engineering, which offer adaptive automated and semi-automated solutions.
The major limitation of these methods is that they rely on pre-defined generic equa-
tions (generally weighted sums) to assign scores to the objective metric(s), e.g. ’cost’,
revenue’ and ’value’, for each alternative design. The metric scores in these methods
usually represent abstract (non verifiable) quantities rather than obtaining metric scores
from domain specific measurable values. For example, using financial metric that is ex-
pressed in monetary units (e.g. in Dollars or Euros). Also, the generic equations do not
adequately define the stakeholders’ goals and correctly predict the impacts of decisions
on these goals. The remaining part of this section describes some of the quantitative

requirements decision support methods applied to software release planning.

2.3.1 Cost-Value Approach

Traditional cost-value approach [143] uses the relative costs and value assigned to each
requirement to compute a ranked set of requirements, and a cost—value plot of the
requirements is used by stakeholders as a basis of decision-making. Examples include;
AHP process [221] , Karl Wiegers Requirements Prioritisation Model [273], Rational

Focal Point and Volere requirements prioritisation technique [209].

Karlsson et al. [144] proposed an efficient cost-value approach, based on AHP [221], for
managing and quantifying the differences in requirements importance. Using pre-defined

criteria, such as requirement importance and cost, the author demonstrated how their
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approach could be used by decision-makers to decide on what set of requirements to be

selected according to individual requirement contributions.

2.3.2 Next Release Problem Model

A common strategy to software requirements selection and prioritisation, which are vital
activities of release planning decisions, is the Next Release Problem (NRP). The NRP
tackles the selection of a deliverable set of requirements within a company’s budget and
at the same time satisfying the stakeholders. This sections reviews the NRP optimisation
approaches to release planning decisions. We categorise these approaches based on the
novelties introduced to the NRP model, notably: single-objective optimisation approach,

multi-objective optimisation approach and uncertainty handling in the NRP model.

2.3.2.1 Single Objective Optimisation Approach to NRP

Bagnal et al. [30] was first to formulate the NRP as a single objective optimisation prob-
lem. The author aimed to maximise the cumulative measure of stakeholders’ importance
given the cost constraints, and found the subset of customers whose requirements are to

be satisfied in the next release of an existing software product.

Ruhe et al. [217] extended the NRP model by proposing an evolutionary and iterative
approach, called EVOLVE, which is aimed at maximising the advantages of optimally
allocating requirements incrementally to software releases, subject to resource and bud-
get constraints. The EVOLVE approach evaluates and optimises the degree to which
requirements ordering conflict with stakeholder priorities and balances the required and

available resources.

Albourae et al. [9] proposed a release re-planning process model. Their approach uses
Analytical Hierarchy Process (AHP) to compare old requirements to the newly added
ones, and then applied a greedy algorithm to obtain the most promising requirements
that accommodate the varying demands driven by the market. Baker et al. [31] also
formulated the ranking and selection of candidate software components as a series of fea-
ture subset selection problem. Their approach was evaluated using large scale data sets
from a telecommunication company. They employed the greedy and simulated anneal-

ing algorithms to the formulated problem and compared the optimum solution obtained
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with human experts’ judgement. Their empirical results show that both algorithms

convincingly outperformed the human experts.

The models and problems described above do not handle dependencies between require-
ments. However, in reality dependencies, such as precedence, and , or, cost and value
based, exist among requirements and they tend to complicate the requirements selection

and prioritisation decision making process [282, 285].

Many research studies have been conducted to handle requirements inter-dependencies.
Carlshamre et al. [46] conducted a survey studying requirement dependency, such as
and, requires, temporal (precedence) or, cost and value dependencies. In this study, there
were 5 distinct sets of requirements, each including 20 high-priority requirements of 5
distinct products from 5 different companies. Three out of the five products have been
implemented and their improvements are market-driven. The remaining two products
were bespoke software. The author found that bespoke software often have functionality
based dependencies (e.g, and/requires) while market-driven software products tend to

have value based dependencies.

Van den Akker [255] studied a variation of the NRP model through the combination
of requirement selection and scheduling. This work applied a mathematical formalism
and optimisation technique based on Integer Linear Programming (ILP) to find exact
optimal solutions to the maximisation of projected revenue in the presence of budgetary
constraints within a given time period. The author, in addition, modelled team trans-
fers, extensions in release deadline and resources, and considered five different types of
requirements dependencies, such as implication, combination, exclusion, revenue—based

and cost—based.

2.3.2.2 Multi Objective Optimisation Approach to NRP

The release planning models and approaches discussed thus far are single objective
optimisation problems. However, most real world requirements decision problems have
multiple objectives. The challenge with single objective requirements decision problems
is that the optimisation of one objective may be at the expense of another, thereby

leading to a bias in the search process towards one of the objectives.
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Recently, many requirements selection and prioritisation approaches have been viewed
as a multi-objective decision problems. Zhang et al. [283] was the first to extend the
Next Release Problem by generalising it to a Multi-Objective Next Release Problem
(MONRP). Unlike the formulation by Bagnal et al. [30], Zhang treated the cost con-
straints as an objective. The author used search based techniques, such as GA and
NSGAII, to find the subset of customers’ requirements to be fulfilled that will give

maximum value to the stakeholders at a minimum cost.

Finkelstein et al. [91, 92] introduced the concept of fairness in requirement analysis
and optimisation in order to balance the satisfaction among stakeholders with different
preferences. They introduced three fairness models, which are fairness on the absolute
number of fulfilled requirements; fairness on the absolute value of fulfilled requirements

and fairness on the percentage of value and cost of fulfilled requirement.

Zhang et al. [284] extended their previous work on the MONRP [283] to find an optimal
set of customers’ requirements that balances the initial set of requirements to be selected,
i.e. “needs of today”, against the requirements to be selected later i.e. “needs of the
future”. They formulated three objectives which are: minimise the cost of requirement
implementation and maximise stakeholders’ value for today and walue for the future.
Zhang et al. [282, 285] further extended their previous work on the MONRP[283] by
conducting an empirical study to tackle requirements interactions and dependencies,

such as and, or, precedence, cost— and value-based constraints.

Rubhe et al. extended the EVOLVE [217] method to propose EVOLVE*, a hybrid method
that combines experts’ judgement with mathematical models and evolutionary compu-
tation, to find the optimal solutions that maximises time, benefit and quality while
planning two releases ahead. They also considered requirement changes and two re-
quirements interaction relationship, such as coupling and precedence. Saliu et al. [226]
extended the EVOLVE* approach to include proactive analysis of risk involved when
combining existing system requirements to new ones and the benefit of estimating the

effort required to add the requirements.

Saliu et al. [225] presented a decision support approach that formulates the release
planning problem as a bi-objective optimization problem. In their work, they proposed

a tool called Bi-Objective Release Planning for Evolving Systems (BORPES), which is
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aimed at optimizing the overall value of release plans from both the business perspectives

and the implementation perspectives.

Durillo et el. [76] conducted an empirical study to check the performance of three state
of the art multi-objective evolutionary algorithms (e.g. NSGAII, MoCell and PAES) on
the MONRP [283], using a benchmark that consisted of six academic problems and a
real world data set from Motorola. Srinivas et al. [243] also introduced a Quantum-
inspired elitist multi-objective algorithm (QEMEA) to solve the MONRP, using six test
problems from the literature. The authors use QEMEA to improve and balance the

exploration and exploitation of solutions within the search space.

Veerappa et al. [267] studied the cost-value requirements selection problem in the con-
text of MONRP and proposed a hierarchical clustering technique to identify a group of
strongly related Pareto optimal solutions for requirements selection problems. The au-
thor used a series of visualization tools to support decision makers in (i) understanding
how group of solutions are spread on Pareto front (ii) identifying areas where strongly
divergent solutions achieve similar objectives. iii) make incremental decisions by first

selecting among group of solutions before selecting one of the variants within the chosen

group.

2.3.2.3 Uncertainty Handling in NRP

The release planning models and methods described so far do not handle uncertainty
explicitly in the decision model. They used point-based estimation of model parameter
inputs rather than using range of model parameter values. The point estimates fail to
take into consideration the inherent uncertainty in model parameter values, and such
underestimation of uncertainty may result in project failure and bring risks into the

project [166].

Uncertainty can be analysed either as a post-optimisation process or during the optimi-
sation process. The post-optimisation process includes uncertainty analysis and sensi-
tivity analysis. Uncertainty analysis measures the total uncertainty about conclusions of
the model and how the uncertainty propagates, i.e., it provides quantitative information
about the probable occurrence of different outcomes [241]. Sensitivity analysis, however,

concerns the study of the effect of uncertainty about model inputs on the cumulative
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uncertainty of model outputs [227, 241]. That is, sensitivity analysis provides useful
information about the input model parameters that causes the highest variations in the

output parameters.

With respect to handling uncertainty as a post analysis, Harman et al. [123] introduced
an exact requirements sensitivity analysis approach to help users explore sensitivity
of requirements attributes, such as cost estimates, for the NRP using both synthetic
and real-world data. The optimisation algorithm used an exact algorithm instead of
approximate algorithms in order to be sure that the variations in results obtained from
the original and perturbed NRP problems are actually due to inherent sensitivity and
not due to the stochastic nature of the approximate algorithms. The exact algorithm

used is a variant of dynamic programming, called Nemhauser-Ullmann algorithm [186].

Al-Emran et al. [6] applied a post analysis integrated method that combines Monte
Carlo Simulation and process simulation, in order to study the impact of uncertainty in

release planning. The focus was on operational and product release planning.

In dealing with uncertainty as part of the optimisation process, Li et al. [169] studied the
trade-off between the robustness and performance of optimal solutions. They optimized
the fitness value (measures design solution performance) and a robustness index (quan-
titative measures for solutions that are sensitive to parameter variations), and presented
a metric for uncertainty to guide multi-objective optimization problem. In their work,
the uncertainty of a parameter’s actual value and solutions were represented as interval

and tolerance region (uncertainty size) respectively.

Paixao et al. [196] introduced a scenario based robust formulation of the NRP to obtain
robust optimal solutions. They maximised the overall requirements importance for all
possible scenarios (i.e. values that symbolise the occurrence of certain events in different
context) subject to cost constraints. This approach produces a conservative robust

solution that does not cater for the impact of uncertainty in the worst case scenario.

Li et al. [167] extended the MONRP formulation by integrating Monte Carlo Simu-
lation in evaluating alternative designs and then finding robust optimal solutions that
maximise the expected revenue, expected cost and minimise the size of uncertainty.
The author introduced two notions of uncertainty measurement, which are the proba-

bility that actual cost exceeds a set value (failure possibility) and the size of uncertainty



Chapter 2. Background and State of the Art 36

region. In a later work, Li et al. [168] proposed an approach to handle algorithmic
uncertainty resulting from the use of stochastic optimisation algorithms. They achieved
this by augmenting a variant of dynamic programming (Nemhauser-Ullmann algorithm)
with Conflict Graph that transforms the NRP model to a search tree whose leaves are

independent sub-problems.

2.3.3 Incremental Funding Method

The Incremental Funding Method (IFM) [70, 71] was developed to address the inherent
risk in implementing a monolithic software system in a single development period. The
approach advocates incremental delivery of software features in bits in order to deliver
early business values to the stakeholders. The advantage IFM has over the other release
planning methods, such as the Next Release Problem methods, is that it supports finan-
cially informed decision making on projects that are yet to be funded and the flexibility

of the approach to dynamic project environments.

According to Denne et al., the IFM is “a financially informed approach to software
development, designed to maximize returns through delivering functionality in chunks
of customer valued features, carefully sequenced so as to optimize Net Present Value
(NPV)” [71]. The IFM typically breaks down a monolithic software system into smaller
components, known as Minimum Marketable Features (MMF') that can provide market
value to customers. The MMF's are assumed to be implementable over a specific period
and their development and delivery are sequenced in order to minimise the investment
cost to the business, maximise the generation of revenue quickly and hopefully move the

projects to a self-funding status.

Figure 2.2 illustrates a typical pattern that a successful project that benefited from the
application of the IFM should follow. In the IFM parlance, a self funding status describes
the situation where an initially funded project starts to generate revenue, which can then
be used to develop additional MMFs. Consequently, as more MMFs are developed and
rolled out to the market, stakeholders gradually recuperate the initial investment costs.
This is called the repayment period. A break even point is reached when the Net Present

Value is zero. Beyond this point, stakeholders accrue profit from the software project.
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FIGURE 2.2: Ideal financial pattern of a project that uses the IFM. [71].

The IFM has been tackled traditionally using the IFM heuristic [71] and greedy method
[10]. The IFM heuristic selects the most promising MMF by analysing the whole MMF's
according to the generated revenue in the current and future periods, while the greedy
approach to IFM optimises the NPV by selecting the next MMF according to the MMF

with the highest NPV in the current development period.

The original IFM model has a few limitations: (i) the IFM optimisation was not solved
using any of the state of the art multi-objective optimisation algorithms, such as NS-
GAII [69], SPEAII [289] and IBEA [288]; (ii) it does not handle uncertainty in the
estimation of future cash values in cost and revenue; (iii) the model ignores the fact
that competition exist in business environments; (iv) the authors treated the IFM as a
single objective optimisation problem, thereby ignoring the fact that real world software
engineering problems tend to have multiple and conflicting objectives; (v) the decision
model equations use weighted sums of cash flows to compute the NPV of alternative
delivery sequences; (vi) there is lack of tool support for automated decision analysis.

Modellers have to encode the decision models in general programming language.

Although there have been some extensions to the original IFM, these extensions only ad-
dressed the first four limitations. Alencar et al. [10] extended the IFM with a statistical
approximation approach to obtain approximate delivery sequences that are close to the
exact delivery sequence with some level of confidence. In particular, their approach was

applied on a large set of interconnected MMFs and architectural elements. Murray et
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al. [45] extended the IFM to incorporate uncertainty in the cash flow, and to determine
adaptable investment policies, depicted using decision trees. They modelled uncertainty
using triangular probability distribution and Monte Carlo Simulation. Eduardo et al.
[63] also extended the IFM to introduce the application of Game Theory in maximising
the financial returns of a software projects in the context of a duopolistic market. Their
main contribution was to model the IFM as a strategic game to represent the competition
that exist in real world business settings. Oni et al. [194, 195] extended the IFM from a
single objective optimisation problem to a multi-objective optimisation problem. They
considered three objectives, namely: NPV, investment cost and the investment risk, and
also represented uncertainty in model parameters using the triangular distribution and

Monte Carlo simulation.

So far, there is no improvement of the IFM model with respect to the last two limitations
highlighted. However, the modelling language and automated decision analysis tool

proposed in this thesis addresses these concerns.

In summary, Section 2.3 described some related work to this thesis on Requirements
prioritisation and release planning which are vital activities in requirements engineering
decisions. We reviewed existing quantitative software release planning approaches such
as the Cost-Value approach, Next Release Problem model (single objective optimisation
approach, multiple objective optimisation approach and uncertainty handling in NRP)
and Incremental Funding Method (IFM). These approaches ease their applicability by
relying on pre-defined generic equations (generally weighted sums) to assign scores to the
objective metric(s), e.g. ’cost’, 'revenue’ and ’value’, for each alternative design. How-
ever, such generic equations may not express the actual stakeholders’ goals and may
not correctly predict the impacts of alternatives on these goals. In addition, existing
software release planning approaches generally lack automated technique for analysing
uncertainty and informing decision makers about the financial value of reducing uncer-

tainty in a decision model.
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2.4 Software Architecture Decisions

Early decisions about the architecture of a software system have significant impact on
the business and quality goals of a system. Deciding which architecture among alter-
native software architectures would satisfy these goals is not trivial. This is due to the
multiple stakeholders and their conflicting goals; the presence of many alternative archi-
tecture solutions; and uncertainty about the impact of an architectural solution on the
stakeholders’ goals. Thus, there is a need to support decision-makers in evaluating the
impact of alternative architectural solutions on stakeholders’ conflicting goals and then

selecting the one that gives the best trade-off between these goals.

Many approaches exist to help software architects model and analyse software architec-
ture decision problems, such as selecting and evaluating software architectures that meet
certain functional and non-functional requirements; the selection of software and hard-
ware components, their replication, the mapping of software components to available
hardware nodes, and the overall system topology. Many of these methods use generic
decision models and objectives, and assess alternative architectural solutions quantita-
tively and choose the ones that satisfy the desired stakeholders’ goals. Examples of these
methods include: the Architecture Tradeoff Analysis Method (ATAM) [147], the Cost
Benefit Analysis Method (CBAM) [150], GuideArch [84] and Multi-objective Decision
Analyser (MODA) [166].

2.4.1 Architecture Trade-off Analysis Method— ATAM

The Architecture Trade-off Analysis Method (ATAM) [147, 148] evaluates the effects of
architecture decisions on the quality requirements of a proposed software system. It pro-
vides insights into the relationships that exist among the quality requirements. ATAM
focuses on the use of scenarios to identify critical stakeholders’ goals; alternative archi-
tectural styles and approaches needed to satisfy the goals; potential risks and possible

means of mitigating them; and sensitivity points within the architecture and trade-off

points. The ATAM steps are as follows [147]:

1. Elicit scenarios from representative stakeholders. Scenarios can be a description

of: (1) the system usage; (2) how the system will accommodate increased load,;
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(3) extreme changes in system functionalities and running platforms/environments
[148]. Scenario elicitation helps in assigning responsibilities of achieving functional
and non-functional requirements to agents; and to facilitate communication and

common understanding of the system goals among stakeholders.

2. Elicit requirements/constraints/environment. This step also entails identifying

and characterising attribute-based requirements.

3. Using architecture views (e.g. process view, module view, class view or data flow
view [32]), describe and model the multiple and competing candidate system archi-
tectures derived from analysing the requirements and scenarios. The architecture
models (qualitative or quantitative) help to reason about the system architectures,
which are described in terms of the architectural components and properties that

determine important quality requirements.

4. Analysis of the individual quality attributes with respect to the identified can-
didate architectures identified in step 3. Such analysis is important as it enable
separation of concerns by allowing stakeholders with expertise on each system’s
quality attributes to perform independent quality attribute analysis. The result
of this analysis is a statement about the system behaviour with respect to specific

quality attributes, for example, “the average response time of the system is 30ms”.

5. Identify Sensitivity points. These are points that significantly bring about varia-
tions in one or more quality attributes in the architecture. When such variations
occur, the architecture model is updated to cater for the changes in design, and

the updated model is evaluated.

6. Identify Trade-offs points. Trade-off points refer to architectural elements that are

sensitive to or dependent on multiple quality attributes.

While the ATAM method evaluates the impact of alternative architecture on multiple
and conflicting quality goals, it has some limitations: it does not handle uncertainty
in model parameters; it does not emphasise detailed analysis of a system’s measurable
quality attributes, such as latency and response time, to be successful [148]; and the

analysis technique of ATAM lacks tool support.
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2.4.2 Cost Benefit Analysis Method— CBAM

The Cost Benefit Analysis Method (CBAM) [149, 179] was proposed in the early 2000s,
at the Carnegie Mellon Software Engineering Institute. It is an economic modelling
approach that extends ATAM to aid software architecture decision making in a multi-
stakeholder context. CBAM models the cost and benefits of using alternative architec-
tural strategies in achieving the system’s quality goals (e.g. performance, availability
and security) identified by the stakeholders during the ATAM process. Similar to ATAM,
the CBAM makes use of different kinds of scenarios (e.g. usage scenarios, growth sce-
narios and exploratory scenarios [148]), and each scenario is associated with a quality
attribute response goals. The response goals depict various ways by which an architec-
ture responds to quality attribute stimuli. Response goals can be classified as current,
desired, best-case or the worst-case. The level of utility (i.e. a measure of the bene-
fit of a response for each scenario) associated to each response goal is described using

utilty-response curve. Below is a summary of the CBAM steps:

1. Representative stakeholders collate the newly elicited scenarios and the ones ob-

tained during the ATAM process .

2. Representative stakeholders define the quality attributes associated with each sce-

nario.

3. The collated scenarios and quality attributes are prioritised using a voting system,
where individual stakeholders distribute an allocated 100 points among the sce-
narios based on the desired response goal of each scenario. Typically, a weight of
1.0 is assigned to the scenario with the highest priority and other scenarios assume
weights relative to the highest one. At the end of this step, some scenarios are

shortlisted based on their weights.

4. For each shortlisted scenario, stakeholders assign utility score to each quality at-

tribute response goals (e.g. current, desired, best-case and worst-case).

5. Next, stakeholders define a set of architectural strategies and their corresponding
expected quality attribute response levels for each scenario. Each strategy has an

associated cost.
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6. For each scenario in each strategy, estimate the expected utility of the quality

attributes response levels using interpolation.

7. For each strategy, evaluate the total benefit as the weighted sum of the difference
between the expected and current utility score, for all scenarios. The weight values

come from step 3.

8. For each strategy, compute the Return on Investment (ROI) as the ratio of the

benefit to the cost and then rank the strategies according to their ROI.

9. Select a new architectural strategy with the best ROI and satisfies costs and sched-

ule constraints.

10. Confirm the results with expert stakeholders and when necessary, repeat any of

the steps that needs refinement and analysis.

The CBAM steps, described above, provide a transparent and structured software ar-
chitecture decision-making process. Thus, the final architecture would most likely be
agreed by the stakeholders and any resulting disagreement would be handled quickly.
However, the CBAM decision objectives focus on the cost—benefit trade-offs of changing
an architecture and may not be adequate to model stakeholders’ objectives defined in
terms of software quality attributes, such as response time and latency. In addition,
the CBAM approach elicits uncertainty from the variations in the single point estimates
supplied by the stakeholders. Such approach mixes up the stakeholders’ disagreement
about a parameter’s probable value with uncertainty about a parameter’s range of val-
ues. Finally, CBAM uses predefined equations and weighted sums of utility scores to
compute the overall benefit of an architecture for each scenario. This ignores the pos-
sibility of having relationships among scenarios. More so, the assigned “scores” usually
represent abstract (non verifiable) quantities that cannot be easily distinguished to mean

either “importance” or “likelihood”.

2.4.3 GuideArch

The GuideArch approach is a fuzzy logic-based framework that was proposed by Esfa-
hani et al.[84] to explore architectural solution space to aid informed decisions in the

presence of uncertainty. Using this approach, the authors simultaneously optimised the
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design of a Situation Awareness System (described in section 7.2.2) by considering seven
system properties, such as development time, battery usage, response time, cost, ramp
uptime and reliability. The GuideArch approach compares candidate architectures under

uncertainty through the following four steps:

1. Identify a subset of candidate architectures that are valid according to some critical

constraints.

2. Formulating the problem as a linear programming problem subject to architec-
tural constraints, such as dependency constraint between architectures, conflict
constraint between architectures and property constraints, such as the cost of an
architecture cannot exceed a certain threshold. Then, find the optimal architecture

by using fuzzy operators in comparing two architectures.

3. Rank the optimal architecture from the best to worst. This help domain experts
incorporate domain knowledge, which may not be possible to model in the tool to

select the final architecture for implementation.

4. Identify critical decisions that have big impact on the properties of ranked archi-
tectures and high level of uncertainty on the ranked architectures. Such decisions

are given extra attention during the next iteration of decision making.

The drawbacks of the GuideArch approach are: the use of pre-defined fixed equations
in assigning scores to candidate architecture; the use of fuzzy logic values that are not
falsifiable or cannot be validated empirically, and the lack of techniques to analyse model

uncertainties.

2.4.4 PRISM/Evochecker

PRISM [131, 156], a tool for modelling and analysing the dynamic behaviour of systems
in diverse application domains, such as communication, energy and financial systems.
PRISM also performs model checking of probabilistic models and enables the quantita-
tive extensions of such models using the cost and rewards functions. The probabilistic
models that PRISM supports are discrete-time Markov chains (DTMCs), continuous-
time Markov chains (CTMCs), probabilistic automata (PAs), probabilistic timed au-
tomata (PTAs) and Markov decision processes (MDPs).
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The PRISM models are expressed in a PRISM language, which is a state-based modelling
language and based on the Reactive Module Formalism [13]. In the PRISM language,
probabilistic models are represented as a set of modules, with each module state defined
by some local variables that have a finite range of values, and the dynamic behaviour of

a module can be described using probabilistic guarded commands as shown below:

n
[action|guard— > Zexpn : update; (2.1)

i
where expr;(1,2,...,n) is an arithmetic expression defined over all model variables,
guard is a Boolean expression, which when evaluates to true, gives the probability (or
rate) at which an update; change happens on a model variable, for a discrete-time model

(or a continuous time model).

An extension of the PRISM modelling language is the Evochecker [101], which is a
search based synthesiser of probabilistic models that satisfy design time quality of service
requirements of software systems. Evochecker language extends the PRISM language

with three constructs as follows:

1. evolvable parameters used to declare range of values for model parameter of type
“int” and “double” in any command field except the action command. For exam-

ple, the equation const int x = 10 is written as evolve const int z = [9...20].

2. evolvable probability distributions used to declare more than one element discrete
probability distribution and the different probability ranges of the elements. For
example, the equations const double x1 = 0.3; const double x2 = 0.7; const
double y1 = 0.45; const double y2 = 0.55; will be written as evolve distribu-
tionz[0.2...0.4][0.8...1.0]; evolve distribution y[0.4...0.7][0.5...0.8];

3. ewvolvable modules used to define at least two alternative modules. For example,

module FraudDetector will be written as evolve module FraudDetector.

Evochecker [101] takes as input: (1) a probabilistic model template, which encodes al-
ternative system architectural designs and their parameter ranges and (2) Quality of

service requirements that specify both the optimisation objectives and constraints. For
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example, a constraint statement for the plastic card fraud detection system could be
that “ the investigation cost of all daily alerts must not exceed £5,000”. The quality of
service requirements are modelled using the reward probabilistic temporal logic formu-
lar [16, 61]. It then automatically analyses the quantitative probabilistic model using
multi-objective genetics algorithms (such as NSGAII) to find the set of Pareto optimal

probabilistic models that satisfy the quality of service requirements.

The PRISM and Evochecker models are best suited for modelling system’s dynamic be-
haviours. They are not adequate for modelling stakeholders objectives and /or-refinement
structure that the thesis proposed modelling language is well suited for. In addition,

PRISM and Evochecker do not analyse model uncertainty.

2.4.5 SysML

SysML, which stands for Systems Modelling Language [96, 247] is an all-purpose systems
engineering modelling language for analysing, specifying, designing and verifying a vari-
ety of complex engineering systems, namely: software, hardware, embedded, control and
electro-mechanical systems. It also models other system entities, such as agents, pro-
cedures, data and facilities. SysML reuses existing Unified Modelling Language (UML)
[254] diagrams, such as the behavioural diagrams (e.g. use cases, activity and sequence
diagrams) and package diagrams. However, it provides additional modelling ability
through the introduction of requirements diagrams— to model system requirements
and the traceability to the design, and parametric diagrams— to model and analyse
constraints on system properties, such as performance and availability, using constraint

blocks.

In a SysML parametric model, a constraint is synonymous to a mathematical equation,
e.g. the Newtonian equation F' = m x a; a constraint block defines such equations in
a manner that they are amenable to different modelling and quantitative analysis. A
constraint property is a specific usage type of a constraint block in analysing a particular
design. In a constraint, a parameter represents an equation variable, such as F', m and a
in the Newtonian equation. A value property is a measurable quantity of a system or its
components to be used for analysis, for example, the “mass” of an accelerating car or the

“response time” of a London Ambulance System. Value properties of a constraint block



Chapter 2. Background and State of the Art 46

are bound to value properties of other constraint blocks or other constraint parameters

through connectors, represented by solid lines.

Quantitative modelling with parametric diagrams is based on the concepts of blocks
and ports, which are used to model conceptual entities of systems, system hardware and
software components, information or data that flow from one component to another.
A SysML block is an extension of the UML structured class that represents a system
at different hierarchy, from the top-level system to subsystems and physical or logical
components or system environment. A SysML port allows access to the inner structure
of a block. They can be categorised as standard and flow ports. Standard ports specify
client-server communications using the required and provided interfaces for describing
the required services by a block and the set of services a block provides, respectively.
Flow ports are entry or exit points of a block. They describe the data or information
allowed between a block and its immediate environments. Figure 2.3, extracted from [96],
illustrates the concept of block and ports in details. The rounded rectangle represents
constraint blocks and the small tiny boxes depict the ports and the solid line that links

the blocks are the connectors.

SysML parametric models are executed using external engineering tools (e.g. mathemat-
ica, Abaqus and Ansys) to perform diverse model analysis, such as sensitivity analysis,
trade-off analysis and design optimisation [96]. Sensitivity analysis in this context in-
volves varying the wvalue properties of the model to determine the ones that impact
certain requirements greatly. Trade-off analysis involves the comparison of alternative
designs using some set of metrics or system properties known as Measure of Effectiveness
(MOE) [96] as shown in figure 2.3. In a trade-off analysis, the objective functions are de-
scribed using SysML constraint block and their parameters are associated to the MOEs
of interest with the aid of a parametric diagram . The analysis solutions are portrayed
as specialised blocks, which are defined in a general block and have different instance
values of the MOEs. Using the parametric diagram, the design optimisation defines
an opitmisation function that models the net operational effectiveness of a system in
terms of different MOEs. Such model visualises how the leaf-level parameter diagrams

contribute to the MOEs at the top-level parameter diagrams as shown in figure 2.3.

SysML parametric modelling language and the modelling language proposed in the the-

sis are similar in many ways: They both use declarative equations for modelling system
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FIGURE 2.3: A parametric model for two design alternatives with the MOEs related
to the parameters of an objective function [96].

quality attributes (e.g. performance and availability); allow trade-off analysis and design
optimisation. However, since SysML parametric models are based on block diagrams,
it suffers similar scalability and complexity issues like the quantitative goal modelling
approaches described in section 2.2.3. SysML parametric modelling language would
not be adequate to model the objectives and/or-refinement structure that the proposed
thesis language is well suited for. Unlike the proposed modelling language which has
an integrated tool support for performing decision analysis, SysML parametric mod-
elling language requires external engineering analysis tool. Using such tools, however,
involves transforming SysML parametric models to other models that are executable
by the external tools. Such model transformation could lead to model synchronisation
complexity and a risk of model inconsistencies. Finally, our modelling language and
automated analysis tool analyses uncertainty using the concept of expected value of
information, unlike SysML parametric models where uncertainty is not explicitly repre-
sented but can be modelled using constraint blocks and the engineering analysis tools
(e.g. mathematica, Abaqus and Ansys) used by SysML parametric modelling language

do not perform information value analysis.
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analysis
Scaled := Freq/5;
Power := (3*Scaled)”2;
constraints
Fail when {Freq < 100 MHz};
Fail when {Freq = 500 MHz};
Fail when {Power > 20 W7};
optimizations

Minimize == Power;

FIGURE 2.4: An example model in ACOL language [158].

2.4.6 ACOL

ACOL [158] is an annotation based modelling language for specifying architecture mod-
els using three types of expressions, namely: analysis, constraints and optimisation
expressions. As shown in figure 2.4, the analysis expression allows a modeller to analyse
custom and derived non-functional properties of interest. The constraint expression,
which follows the analysis expression allows the specification of bound(s) for the non-
functional properties’ values. The optimisation expression maximises or minimises one

or more non-functional properties.

The drawbacks of ACOL is that the tool requires external analysis tools to perform its
optimisation analysis; it does not analyse the uncertainty in model parameters, and is
not adequate for modelling the stakeholders’ objective and/or-refinement structure that

the proposed thesis modelling language is well suited for.

2.4.7 POISED

POISED, POsslbilistic SElfaDaptation, is an approach introduced by Esfahani et al. [83]
to deal with uncertainty in architecture decisions at run-time in self-adaptive systems
(SAS) —systems that adapt to changes to requirements or environement conditions in
order to meet certain goals. POISED supports SAS in making optimal adaptation
decisions when there is uncertainty in the impact of such decisions on a system non-

functional goals, such as response time, power consumption etc.

Esfahani et al. [83] formally defined Self-Adaption decision problem as:
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1. A system consists of a set of components with different configuration decisions

that have alternative options that are mutually exclusive.
2. A set of constraints that define a valid architecture configuration.

3. A set of quantifiable system quality attributes of interests. The quality attributes
are observed through different configuration combinations during system execu-

tion.
4. A set of available resources accessible to the system during execution.

5. A set of user preferences to capture stakeholders’ satisfaction about the changes

in the quality attributes.

The optimisation problem involves maximising the weighted sum of the overall stake-
holder satisfaction of the quality attributes subject to configuration and resource con-
straints. POISED approached this problem using Linear Programming optimisation
techniques augmented with fuzzy set theory to represent and estimate the positive and
negative consequences of uncertainty on alternative adaptation decision choices of a

system.

The thesis proposed approach is similar to POISED in some ways: both approaches em-
phasise and capture uncertainty explicitly and they capture constraints between options
of decisions. However, both approaches differ in uncertainty representation: POISED
uses Possibility theory based on fuzzy set defined over fuzzy variables, this thesis uses
Bayesian probability defined over random variables and further analyses uncertainty
through information value analysis. Also, the optimisation model developed in POISED
uses weighted sum of utility functions while our approach supports elaboration of do-
main specific decision models. Finally, unlike our approach, POISED does not have an
integrated tool support for automated decision analysis as it uses an online NEOS sever

for solving numerical optimisation problems [62].

2.4.8 Multi-Objective Decision Analyser— MODA

The Multi-Objective Decision Analyser (MODA) [166] is Bayesian decision analysis ap-
proach in software engineering, which was proposed to aid software architects in deal-

ing with uncertainty about the impact of alternatives on stakeholders’ goals. MODA
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employs statistical decision analysis technique and Pareto-based multi-objective optimi-
sation to early requirements and architecture design decisions. The MODA approach
formalises a requirements and architecture decision problem in terms of domain-specific
measurable goals; elicits and presents uncertainty as probability distributions; uses
Monte-Carlo (MC) simulations to simulate the impact of alternatives on goals; and
shortlists the Pareto set. In quantifying and reducing uncertainty, MODA uses a pow-
erful decision analysis concept known as expected value of information, which is the
expected benefit accrued due to having additional information about a model parame-

ter.

With respect to previous requirements and software architecture decision methods such
as NRP, EVOLVE, IFM, ATAM, CBAM, POISED and GuideArch, the MODA method
addresses some of their limitations which include: the use of unprincipled methods to
elicit uncertainty; the evaluation of alternatives using criteria that are not falsifiable, or
cannot be validated empirically; the lack of provision for information about the risks that
could result from uncertainty; the lack of support for determining the degree to which

the risks can be reduced by obtaining additional information about model parameters.

The authors of MODA noted the complexity of developing and validating sound re-
quirements and software architecture decision models that capture the real stakeholders’
goals. The complexity of developing such models comes from the fact that real world
models typically have: (i) large number of model parameters and are composed of sub-
models of the software systems, which measure the impact of alternative design decisions
on software quality attributes, such as security and availability; (ii) sub-models of the
application domain, which measure the impact of the software and alternative design
decisions on the stakeholder goals, such as reducing financial loss due to fraud in a fraud
detection system. The MODA approach deals with the complexity described through
the following steps [166]:

1. Software architect define the architecture decision model.
2. Software architect define the cost-benefit decision model.

3. Software architect define the decision risks.

4. Software architect elicit domain and system parameters’ values from stakeholders
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5. Next is the shortlist of candidate architectures among alternative architectures.

6. Software architect identify closed and open design decisions. Closed decisions are
said to be made when all the shortlisted architectural solutions agree on the options

to be selected for those decisions; otherwise, we say the decision is open.

7. Next is the computation of the expected value of having additional information of

a model parameter.

This thesis builds on the statistical decision analysis technique used in MODA. However,
the thesis approach extends MODA by presenting a modelling language that helps soft-
ware architects write requirements and architecture decision models that are sound and
falsifiable. The automated decision analysis technique presented in this thesis hides man-
ual implementation details about evaluating the impact of alternatives on stakeholder
goals and estimating the financial value of reducing uncertainty in model parameters.
This enables software architects focus on the conceptual decision modelling of the prob-
lem. In addition, unlike MODA, the thesis approach (i) generates AND/OR refinement
graphs and decision graphs from the model’s equations (see chapter 4.2 and 4.4). Such
graphs can enhance model communication with stakeholders [264]; (ii) minimises the op-
timisation problem’s search space by inferring the set of minimal and complete solutions

associated to a decision model (see chapter 4.3).

2.4.9 Other Search-Based Architecture Decision Methods

The literature is abound with many search based approaches to model and analyse
software architecture decisions from the perspective of run time and design time of a
system. A comprehensive survey on software architecture decisions exist in [117, 121,
122, 232]. But this section focuses only on the approaches applied in the context of
multi-objective decision problems in the early phase of architecture design of software
systems. These approaches, however, either lack tool support for automated analysis
of decision models, or those that provide tool support do not support elaboration of
domain specific decision models, but rather rely on pre-defined models and objective
equations, which often do not capture the actual stakeholders objectives and are not

valid models of the impacts of decisions on objectives.
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In the area of Quality of Service, Web services and component selection and allocation;
Fredriksson et al. [95] presented an approach for optimally allocating components to real
time tasks while considering trade-offs like CPU-overhead and resource usage. In their
work, they developed a model for tasks and components allocations, deriving memory
consumption and CPU overhead for task deployment. Their objective was to minimise
resource usage (e.g CPU time and memory) using scheduling and optimisation techniques

and incorporate real time analysis to achieve feasible allocation.

Liu Zhuang et al. [286] proposed a Muti-Criteria Decision Making (MCDM ) approach
to enable users (or experts) to search Pareto Optimal Design Alternatives (PODA).
Amongst the PODA, they found the best one by incorporating corresponding weighted
fuzzy preferences in the global plan of web services selection based on QoS criteria such

as price, response time, availability, reliability and reputation.

Wang et al. [268] proposed multi-objective genetic algorithm (MOGA) to find a set of
Pareto optimal solutions that optimise three objectives such as minimise cost, maximise

reliability and minimise reponse time, while still satisfying the functional requirements.

With respect to research done in the area of software quality; Khoshgoftaar et al. [152]
proposed a Module Order Model using Genetic programming to predict the relative
quality of each software module, particularly the most faulty ones. They simultaneously
optimise four performance objectives and evaluated their approach using two real-world

software systems.

Grunske et al. [109] applied an evolutionary approach in architecture refactorings, to
select good design alternatives within reasonable time for a satellite control system that
is based on Bi-spectral InfraRed Detector [39]. They optimised the system architecture
such that the reliability of the satellite is maximised and cost is minimised, subject to a

particular weight constraint to limit the number of redundant components.

Harman et al. [120] extended and improved previous work on search based re-factoring
approaches that produce single sequence of re-factorings through combined complex
metrics; their approach, however, finds multiple Pareto optimal sequence of refactorings
that takes into account the availability of resources and giving users the opportunity to

specify the level at which to re-factor.
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Simons et al. [239] introduced an interactive search based approach to support a human
designer at the start and during conceptual design of a software system before the actual
implementation of the design is transformed to source code. They optimised the design
of a Cinema booking system by maximising cohesion and minimising coupling between

class objects using UML class diagram as representations.

Raiha et al. [206] proposed a multi-objective genetic algorithm to find the optimal
trade-off solutions to the design of an electronic home system (that controls devices and
provides interfaces to enable users manage their home ) given two quality attributes

such as modifiability and efficiency.

Al-Naeem et al. [8] presented a quality driven approach called ArchDesigner that obtains
the optimal trade-off between conflicting stakeholders® goals, project constraints (cost
and time) and competing architectural concerns. In their work, they maximised the
accumulative value score subject to constraints that specified cost and time are not

exceeded and only one alternative is selected.

Meedeniya et al. [174] presented a simulation-based method that handles parameter
range estimates using probability distributions. The authors used Monte Carlo simula-
tion in the estimation of a software architecture reliability through the combination of

the reliability of its component elements.

Noppen et al. [188] presented a design tree approach that scans a design space for design
decisions, their sequences and all the alternatives considered in the presence of imperfect

information about estimates and requirements.

Cortellessa et al. [60] proposed an optimisation framework called CODER for a com-
ponent based selection and optimisation procedure based on cost minimization of the
proposed system while ensuring a certain level of satisfaction of the system reliability

and delivery time.

To summarise, Section 2.4 reviewed some related work to this thesis on software archi-
tecture decisions which impact stakeholders’ business and non-functional (quality) goals
of a system. We described the state-of-the art software architecture decision methods
such as Architecture Trade-off Analysis Method (ATAM) [148], Cost Benefit Analy-
sis Method (CBAM) [149, 179] , GuideArch [84], PRISM [131, 156], Evochecker [101],
Systems Modelling Language (SysML) [96, 247], POISED [83], MODA [166] and other
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search-based software architecture decision methods [109, 117, 121, 122, 152, 174, 232].
These approaches require higher modelling effort and generally have limited automated
tool support for decision analysis. Using these approaches involves manual encoding of
decision models in widely used statistical programming languages, such as R and MAT-
LAB. This results in modellers spending time on implementation details rather than

concentrating on the conceptual decision problem.

2.5 Product Configuration Decisions in Software Product

Line Engineering

The proposed thesis modelling language is aimed at enabling software architects in mod-
elling requirements and architectural decision problems characterised by (i) single option
selection similar to mutually exclusive option selection (XOR-nodes) of feature diagrams
used in Software Product Line Engineering (SPLE); (ii) multiple options selection sim-
ilar to non-mutually exclusive options selections (OR-nodes) of feature diagrams; and
(iii) constraints dependency relationships, e.g., excludes and requires constraints used
in SPLE. Since RADAR’s modelling language extends SPLE feature models, this section
reviews some of the related work to this thesis on product configuration decisions in

SPLE.

Software Product Line Engineering (SPLE) is the engineering of a portfolio of similar
products with variations in some features and functions [203]. In SPLE, products can
be software, or a system that have software running within it, and can be similar with
respect to requirements, design specification, test cases, project schedules and project
budget. Products are described by features. The similarities and variations in products

are depicted using feature models.

A feature model defines constraints between features and specifies which combination
of features defines valid products. For example, Fig. 2.5 is an example of an attributed
feature model of GPS software. The nodes in the model represent features and arrows
depict relationships between features. These relationships can be a (i) mandatory parent
child relationship, in which a child must be included in all the products where the parent
feature appears, e.g., all products configuration possible in the GPS example must have

Routing feature; (ii) optional parent child relationship where a child may be included in
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FIGURE 2.5: An example attributed feature model for GPS software [130].

products that have its parent feature. The Keyboard feature in the GPS feature model
example is an optional feature of the user Interface of GPS products; (iii) alternative
relationship where only one feature among a list of features should be selected when
its parent feature is selected in a product. In Fig. 2.5, a GPS product can have either
a Touch screen feature or an LCD screen feature but not both; or-relationship states
that at least one child feature can be selected in the products where the parent feature
appears. e.g., a GPS product can have the 3D map viewing feature, Auto-rerouting

feature, or both of them.

There are also constraint relationships between features: (i) a feature fi requires a
feature fy, if when f; is in a product, then fo must be included in this product; (ii) a
feature f1 excludes a feature fo, means that features f; and fo cannot be in the same

product.

Many tools have been proposed for reasoning [153, 175, 253] and configuring [17, 52, 145,
190] systems based on feature models. These tools allow modelling different relationships
(XOR and OR) and constraints (exclude and requires) between features. However, they

have no means to explicitly capture and analyse model uncertainty.

Another line of research in Software Product Lines is optimal product selection based on
feature models and stakeholders’ preferences such as minimising cost, minimising feature
defect counts. Initial approaches to tackling optimal product selection used search-based
single-objective optimisation [110, 271, 272]. But these techniques could lead to a bias

in the search process, as the optimisation of one objective may be at the expense of the
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other. To address this problem, several state of the art Evolutionary Multi Objective
Algorithms (EMOAs) have been explored [235], with further enhancements to increase
the number of valid solutions obtained from the EMOAs. These include seeding the
search with valid products [233], augmenting the search with SAT solvers and smart
mutation and crossover implementation [128], and introducing a novel solution encoding
which removes features that appear in all valid products and does not add features whose

children are not included in a product [130].

The main limitation with existing SPLE approaches for product configuration deci-
sions is that they generally use weighted sums of feature attribute (cost, defect count,
frequency of use, peformance) values. These approaches do not handle Boolean expres-
sions and do not allow the elaboration of domain specific decision models that RADAR
supports through AND/OR refinements. In addition, existing approaches generally lack
automated technique for analysing uncertainty and informing decision makers about the

financial value of reducing uncertainty in a decision model.

2.6 Summary

This chapter presented a background and state of the art requirements and architecture
decisions. The chapter first gave a general background on multi-objective optimisation
since requirements engineering and software architecture decisions are generally multi-
objective optimisation problems. This is followed by a presentation of the state-of-
the-art approaches for modelling and analysing requirements engineering and software
architecture decisions. Table 2.1 summarises the these approaches. The main drawbacks
of these approaches is that they are limited by the difficulty in elaborating problem
specific decision models and/or lack integrated tool support for automated decision

analysis under uncertainty.

The objective of this thesis is to mitigate the limitations of existing requirements and ar-
chitecture decision approaches. The thesis achieves this by introducing a new modelling
language and automated decision analysis technique implemented in a tool called RADAR
—Requirements and Architecture Decision AnalyseR. We evaluate the tool on a number

of real-world systems (see Table 7.1) by answering the following research questions:
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RQ1 (Applicability): Is the RADAR tool applicable to real-world requirements

and architectural decision problems (chapter 7.3.1)7

RQ2 (Usefulness): Does RADAR’s decision analysis technique provide useful im-

provements to real-world requirements and architecture decisions (chapter 7.3.2)?

RQ3 (Scalability): What is the scalability of RADAR’s exhaustive simulation and

optimisation approach (chapter 8)?

RQ4 (Performance Analysis): What is the performance of RADAR’s alternative

search-based evolutionary algorithms (chapter 8)?
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Chapter 3

RADAR: A Guided Tour

3.1 Introduction

Many software requirements and architecture decisions have to deal with multiple con-
flicting objectives. For example, deciding which set of requirements to implement in the
next release of a product [30] or deciding among alternative system designs in a goal
model [126], such that we minimise cost, maximise value and minimise risks. In both
of these decisions, decision-makers are often confronted with high levels of uncertainty

and a huge space of alternatives to choose from [166].

Making the right requirements and software architectural decisions is critical to the
successful delivery of software intensive systems [265]. Poor decisions, however, may
lead to delay in project delivery, huge financial loss, and stakeholders’ dissatisfaction.
This justifies the need for automated techniques that aid decision-makers in evaluating
the impact of decision choices on stakeholders’ objectives and in selecting the one that
produces the best trade-off between their objectives. Such techniques are only possible
and valid in the presence of detailed decision models that are amenable to decision
analysis and capture both the proposed software system and the application domain of

interest.

Quantitative decision models allow requirements engineers and software architects to
analyse requirements and architecture decisions using quantitative techniques, such as

stochastic simulation and multi-objective optimisation, but the difficulty of elaborating

59
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the decision models is an obstacle to the wider adoption of such techniques. Many re-
quirements and architecture decision support methods, such as EVOLVE [217], CBAM
[149, 179] , GuideArch [84], avoid this problem by relying on pre-defined model equa-
tions, which fail to model the real stakeholders’ objectives. Other techniques that use
quantitative goal-oriented decision models [3, 4, 103, 126, 165, 222] require decision-
makers to manually encode the decision models in general programming language, such
as R and MATLAB. This impairs model readability and forces modellers to consider

implementation concerns instead of focusing solely on the conceptual decision problem.

To address these limitations, this thesis introduces RADAR, a novel modelling language
and analysis tool, intended to facilitate requirements and architecture decision analysis.
The language has relations to quantitative AND/OR goal models described in Section
2.2, and to feature models used in software product lines described in Section 2.5. How-
ever, RADAR simplifies such models to a minimum set of language constructs essential
for decision analysis. This chapter presents a guided tour on how to make requirements
and architecture decisions with RADAR. The purposes are to give a high-level overview
of the modelling language and to provide background on the decision analysis method
used [166]. Formal descriptions of the modelling language and analysis technique will

be given in Chapter 4 and 5, respectively.

3.2 Running Example

We illustrate RADAR’s modelling language and decision analysis technique using a public
bike sharing system used in many urban cities, such as Beijing, London and New York.
This example is a case study of an European project (QUANTICOL) used in the design
and quantitative analysis of Collective Adaptive Systems (CAS) [177, 250].

The main goal of a bike sharing system is to increase commuters’ transit options, min-
imise energy consumption, enhance the quality of life by reducing air and noise pollution,
and lessen traffic congestion within the city. The operation of the bike sharing system
at a high-level is thus: a city has bike docking stations usually within walking distances
from the train and tram stations. A registered user rents a bike from a docking station

and returns the bike, after using it, to any docking station.
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The bike sharing system consists of different components that pose high level decision

choices. These decisions are described below:

e The bikes security strategy that can use an optional localisation feature or an

optional anti-theft feature that requires a GPS device.

o If the localisation security strategy is selected, the bikes can be equipped with a

tracking mechanism that uses a GPS or RFID or both.

e The bikes’ manufacturer brand that can be any one of “Cortina Cyclese”, “Derby
Cycle”, “Catrike”, “Bianchi-Bike” or “A-Bike”, with A-Bike not able to support

the localisation feature.

e The bikes docking station whose capacity is either permanently fixed, temporarily

fixed, or flexible.

e The system registration management in which users can register through a website,

at the dock stations, or in a kiosk located around the dock stations.

o If the kiosk registration option is selected, the kiosk registration method can be
equipped with optional features, such as a touch screen option to improve user
experience, a keycard reader option to check out usage statistics, a credit card
option for payment, and a keycard dispenser to disburse cards for short-term

passes.

e The system access management that can have an option to use a smart card
technology, or a smart phone technology, or a keycard technology which requires

a key card reader and must be implemented together with the keycard dispenser.

e The non-mandatory system components that include a bike maintenance program
option for small-scale repairs such as flat tyres; a bike redistribution mechanism
option for timely distribution of bikes to dock stations; a real time system status

option for providing updates about the availability of bikes.

e If the bike redistribution mechanism is implemented, a reward program for users
to encourage returning of bikes to inconvenient locations, such as locations with

higher or lower elevations.
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o If the system is equipped with real time information update, the system status
method in which real time system update is provided through a website, or a mobile

application that uses the mapping and localisation features of smart phones.

Suppose, a decision-maker wants to decide on the best combination of the different com-
ponent options (features) to deploy to maximise the overall system’s benefit at minimal
cost. The decision making process is beyond human capabilities: it is compounded by
the stakeholders’ conflicting concerns; uncertainty about domain quantities (e.g. num-
ber of bicycles to deploy); uncertainty about the impact of different decision choices on
the stakeholders’ concerns; the different complexity of decisions which include: single
option selection (e.g. in the bike manufacturer brand and dock station capacity); mul-
tiple option selections (e.g. between the bike anti-theft feature and the GPS option of
the bike localisation strategy); and constraints relationship between options of decisions

(e.g. A-Bike does not support the localisation feature).

3.3 Making Decisions with RADAR

The following are the steps involved when making decision with RADAR:

Step 1. Model the requirements and architecture decision problem. This involves
identifying the decisions to be made; defining stakeholders objectives of interest; and
modelling the impact of the decisions on the objectives. The result of this step is a

decision model.

Step 2. Analyse the decision model. This involves i) analysing model uncertainty and
evaluating the impact of decisions on the objectives using Monte-Carlo Simulation; ii)
shortlisting the optimal decisions using multi-objective optimisation techniques; iii) eval-
uating and quantifying the financial value of additional information or model refinement
to reduce uncertainty about model parameters before making a decision. Depending on

the outcome of the analysis, stakeholders can either make a decision or perform step 3.

Step 3. Get additional information or perform additional analysis through requirements
elicitation, prototyping and modelling. Then update the decision model and this will
trigger a new modelling and analysis cycle. This cycle stops once the financial value of

additional information is not sufficient to justify the effort required.
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3.4 Developing Decision Models

Before we formally define RADAR in detail in Chapter 4, we first illustrate the application
of RADAR on two examples: first is a simple, complete but illustrative example about
refactoring the architecture of a system. The second example is the design of a public

bike sharing system previously described in Section 3.2.

3.4.1 Example 1: Software Architecture Refactoring

Imagine having to perform a cost-benefit analysis for deciding whether to re-factor the
architecture of an existing application. With the current architecture, the application
generates relatively predictable benefits. Refactoring creates the possibility of generating

much higher benefits, but the refactoring costs and benefits are highly uncertain.

A RADAR model for this decision problem might look like this:

- )

Model Refactoring;

Objective Max ENB = EV (NB);

Objective Min LP = Pr(NB < 0);

NB = Benefit — Cost;

Cost = decision(“Architecture choice”){
“As-is” : deterministic(0);

“Refactoring” : normalCI(1, 5);

0 N O Ot ks W N

}

9  Benefit = decision(“Architecture choice”){

10 “As-is” : normalCI(0.9, 1.1);
11 “Refactoring” : normalCI(1, 9);
12 )

The language keywords are in bold. The first line declares the name of the model prob-
lem. The next two lines define the optimisation objectives: maximising expected net
benefit (ENB) and minimising loss probability (LP). The function EV denotes the ex-
pected value (or mean) of a random variable and Pr denotes the probability of a Boolean
expression. The model’s fourth line then defines net benefit (NB) as the difference be-

tween benefit and cost.
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The next four lines state that cost depends on the architectural choice. The decision
keyword expresses alternative options at decision points in which only a single option
can be selected. If the choice is to keep the as-is architecture, we assume the cost to be
zero. The deterministic keyword means we believe this cost to be certain. If the choice
is to refactor, we believe the cost has a 90% chance of being between £1m and £5m.
The expression normalCI(1, 5) means the cost follows a normal distribution whose 90%
confidence interval is between 1 and 5. Similarly, the last four lines state that benefit
depends on the architecture choice and records our beliefs about the benefit’s likelihood

for the as-is and refactored architecture.

Probabilities in our approach are Bayesian; probability distributions denote the decision
makers’ beliefs about the likelihood of uncertain quantities and events. These beliefs
can be informed by subjective judgements, objective data, or a combination of both.
Bayesian methods typically start with probability distributions informed by subjective
judgements alone, then update the distributions (using Bayes rule) as new data and

information becomes available [275].

Reliable methods exist for eliciting a person’s beliefs about uncertain quantities or events,
and model these beliefs as probability distributions [191]. A recommended simple ap-
proach consists in eliciting 90% confidence interval as used above [136]. For these elici-
tation methods to be reliable, people providing estimations have to be ’calibrated’ on a

set of estimation exercises intended to mitigate their under- or over-confidence biases.

3.4.2 Example 2: Design of a Bike Sharing System

Below is a partial decision model developed for the bike sharing system example using
RADAR’s modelling language. This model consists of decisions with single and multiple
option selections. It also includes constraints relationships between options of decisions.

The remaining model is presented in Chapter 7.2.5.
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1 Model BSS;
2  Objective Max ExpectedNetBenefit = EV(NB);
3  Objective Min LossProbability = Pr(NB < 0);
4  NB = Benefit — Cost;
// Lines omitted represent equations for system’s Benefit

60 Cost = CostOfBikes

61 + CostOfSecuringBicycles

62 + CostOfDockStations

63 + CostOfSystemAccessMgt
64 + CostSystemRegistrationMgt
65 + CostOfOtherComponents;

66  CostOfBikes = (NbrBikesToDeploy - NbrBikesDeployed) * UnitCost;
67  NbrBicyclesToDeploy = triangular(500, 550, 600);
68  NbrOfBicyclesCurrentlyDeployed = deterministic(500);

69  UnitCost = decision (“Bike Manufacturer Brand”){

70 “A-Bike”: normalCI(80 ,100);
71 “Bianchi” : normalCI(200 ,300);
72 “Cortina Cyclese”: normalCI(100 ,150);
73 “Derby Cycle”: normalCI(140, 200);
74 “Catrike” : normalCI(250 ,350);
}
75  CostOfSecuringBikes=decision-subset(+)(“Bikes Security”){
76 “Anti-theft feature” : normalCI(1,5);
7 “Localisation feature” : CostOfLocalisation;
78}

79  CostOfLocalisation=decision-subset(+)(“Tracking Mechanism”){
80 “GPS feature” : normalCI(5,10);
81 “RFID feature” : normalCI(2, 7);

82 )
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104
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106

107

108

109

110

111

112

113

CostOfDockStations = decision (“Dock Station”){
“Permanently Fixed” : triangular (25,30, 35);
“Temporarily Fixed ” : triangular(30,35,40);

“Flexible ” : triangular(30,40,50);

}

CostOfSysAccessMgt = decision-subset(+)(” Access Management” ){
“Smart card” : triangular (30,35, 40);

“Smart Phone” : triangular(25, 30,35);
“Key Card” : triangular(35, 40,45);

}

CostSysRegMgt = decision-subset(+)(“Registration Management”){
“Kisok Reg” : CostOfKioskReg;

“Dock Station Reg” : triangular(28, 30,32);
“Web Reg” : triangular(30, 40,50);

}

CostOfKioskReg = decision-subset(+)(” Kisok Registration”){
“Touch Screen” : triangular(10, 15, 20);

“Key card reader” : triangular(15, 20,25);
“Credit Card” : triangular(20, 22,25);
“Card Dispenser” : triangular(20, 25, 30);
}
CostOfOtherComponents =
decision-subset(+)(“Non Mandatory Component”){
“System Status Info” : CostOfStatusInfo;
“Bike Maintenance” : triangular(8,10, 12);
“Bike Redistribution” : CostOfRedistribution;
}
CostOfStatusInfo = decision-subset(+)(”System Status”){
“Real Time Web Info” : triangular(35,40, 55);

“Real Time Mobile App Info” : triangular(50, 80, 100);
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114 CostOfRedistribution =
115 RedistributionCost WithoutReward + CostForRewardingUsers;
116  RedistributionCostWithoutReward = normalCI(8, 10);

117 CostForRewardingUsers = decision(”Reward Users”){

118 “Without reward” : deterministic(0);
119 “With Reward” : deterministic(10);
120 1}

121 Constraint “Bike Manufacturer Brand” : “A-Bike” excludes
122 “Tracking Mechanism ”: “GPS feature”;

123  Constraint “Kiosk Registration” : “Card Dispenser” couples

124 “System Access Management”: “Key Card”;
125  Constraint “System Access Management” : “Key Card” requires
126 “Kiosk Registration” : “Key card reader”;

In the bike sharing model described above, lines 2 and 3 declare the model objectives:
the first objective is a maximisation of the expected net benefit of the system (Ex-
pectedNetBenefit) and the second objective is a minimisation of the loss probability

(LossProbability).

Line 4 states that the net benefit is benefit minus cost. Lines 60 to 65 state that the
total cost is the sum of the cost of different system components. Lines 66 states that
the cost of bikes is the product of the unit cost of a bike and the difference between the

number of bikes to deploy and the number of bikes already deployed.

In line 67, the expression triangular(500, 550, 600) means that the decision-maker
believes the number of additional bikes to deploy (NbrBikesToDeploy) is between 500
and 600, with a likely value of 550. Line 68 states that the decision-maker knows with
certainty that the number of bikes currently deployed (NbrOfBikesCurrentlyDeployed)
is 500.

In lines 69 to 74, the keyword decision expresses a decision with single option selec-
tion. The expression states that the unit cost of a bike (UnitCost) depends on the bike
manufacturer brand. If the choice is to purchase the A-Bike brand, the cost is believed

to be between £80 and £100, and if the choice is to purchase the Bianchi brand, the
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cost is believed to be between £200 and £300. Similar interpretations can be made if

the option is to purchase Cortina Cyclese brand, Derby Cycle brand, or Catrike brand.

Also, in lines 78 to 82 the keyword decision-subset expresses a decision with multiple
option selections. The expression states that the cost of bike localisation depends on
the tracking mechanism. Zero cost is incurred if none of the tracking mechanism is
selected. However, if the choice is to select only the GPS option, the cost is believed to
be between £5m and £10m; if the choice is to select only the RFID option, the cost is
believed to be between £2m and £7m. Finally, if the choice is to select both GPS and
RFID options, the cost is the sum of the individual cost incurred by implementing each

feature separately. We added the costs because of the ‘+’ operator in the expression.

Lines 121 to 126 declare the constraint relationships in the problem using the keyword
Constraint . The constraint expressions state that a bike of brand “A-Bike” does not
support the GPS feature; the card dispenser option of the Kiosk registration and the
key card option of the systems access management must be implemented together; and

the key card option of the kiosk registration requires a key card reader.

3.5 Visualising AND/OR Refinements and Decision De-

pendencies

To help visualise the model structure, RADAR automatically generates the AND/OR

refinement graph and decision dependency graphs from the model equations.

In RADAR’s AND/OR refinement graphs, rectangles denote objectives; rounded rectan-
gles denote random variables (i.e. variables characterised by a probability distribution
rather than a single value), a black dot denotes an AND-refinement, an octagon de-
notes an XOR decisions, double octagon denotes OR decisions, arrows from a variable
to an objective denotes that the objective refers to that variable. The leaf nodes in the
refinement graphs are the model parameters. Their values are defined by probability

distributions.

In the refactoring example, Fig. 3.1 shows that the objectives ENB and LP both re-
fer to NB, that NB depends on Benefit and Cost (an AND-refinement), while Benefit

depends on Benefit[As-is| or Benefit[Refactoring] based on which option is chosen (an
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ENB LP

Beneﬁt]
Architecture choice

[Cost]

)

(Cost[As-is]j (Cost[Refactoring]) [Beneﬁt[Refactoring]] [Beneﬁt[As—is]J

FIGURE 3.1: AND/OR refinement graph for the cost-benefit analysis example

l CostOfBikes

A

(NerikesToDeplm) [I\'brDl‘BikesCurrenllyDeplnyed) [UnitCm;tj

Bike Manufacturer Brand

(UnilCosl[Bianchi]j [UnitCnsl[AfBike]]

FIGURE 3.2: Partial AND/OR sub-graph for cost of bikes (CostOfBikes) in the bike

sharing model. The rounded rectangles represent random variables, a black dot repre-

sents an AND-refinement, an octagon represents an OR-refinement. The leaf nodes in
the graph represent the model parameter estimations.

OR-refinement). Similarly, in the bike sharing example, Fig. 3.2 represents a partial
AND/OR graph of the bike sharing example that shows that CostOfBikes depends on
NbrBikesToDeploy, NbrBikesCurrentlyDeployed and UnitCost which depends on Unit-
Cost[Bianchi] or UnitCost[A-Bike].

RADAR decision graphs play a similar role to feature models in software product lines
[236]; they help visualise the model decisions, their options and possible decision de-

pendencies. In our refactoring model example, the decision graph presented in Fig.
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Architecture choice

Refactoring

F1GURE 3.3: Decisions dependency graph for the cost-benefit analysis example

3.3 is extremely simple because the model includes a single decision and no decision
dependency. Fig. 3.4 shows a more interesting decision graph for our bike sharing ex-
ample. Octagons denote decisions with single option selection, double octagons represent
decisions with multiple option selection, the ovals represent options, the arrows from de-
cisions to options represent possible options for that decision; the arrows from option
to a decisions state that such decisions have to be made only in situations where that
option has been selected, the dotted arrows represent constraint relationships between

options.

3.6 Analysing Decision Models

RADAR supports a decision analysis method that consists in first shortlisting a set of
Pareto-optimal solutions through simulation and multi-objective optimisation, then com-
puting the expected value of information to evaluate whether to seek additional infor-
mation before making a decision between the shortlisted candidates [166]. This section

provides a brief overview of this method and how RADAR supports it.

Fig. 3.5 shows the result of the analysis performed by RADAR on our small refactoring
model. The first part shows the results of RADAR’s optimisation analysis. It lists the
optimisation objectives and the objective values for the two architecture choices: refac-
toring has an expected net benefit of £2m, but a loss probability of 23%, whereas keeping
the current architecture has an expected net benefit of £1m but the loss probability is

Zero.
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Optimisation Analysis

Objective: Max ENB
Objective: Min LP

Architecture choice ENB LP
Refactoring 2 023
As-is 1 0

Information Value Analysis

Objective: Max ENB

EVTPI: 0.64

Parameter EVPPI
Benefit[Refactoring] 0.54
Cost[Refactoring] 0.14
Benefit[As-is] 0
Cost[As-is] 0

FIGURE 3.5: Analysis results for the cost-benefit analysis model

In this small refactoring example, we have only two solutions to choose from. Larger
problems such as the fraud detection problem of Section 1.2 and the public bike shar-
ing problem of Section 3.2 have a larger number of solutions. Before displaying the
optimisation analysis results, RADAR shortlists the set of Pareto-optimal solutions and
presents only those to the decision makers. A solution is Pareto-optimal if there is no
other solution that is better on all objectives simultaneously [166]. In our small refac-
toring decision problem, a solution is thus Pareto-optimal if no other solution has both
higher expected net benefit and lower loss probability. Here, both solutions are Pareto-
optimal because none of them is better than the other on both objectives. For larger
problems, shortlisting Pareto-optimal solutions can reduce a large set of solutions to a
smaller set of candidates worthy of further investigation. For example, Fig. 3.6 shows
the Pareto optimal solutions shortlisted through optimisation analysis of the public bike
sharing model presented in Section 3.4.2. RADAR shortlists 35 candidate solutions out of
a total of 15 x 220 possible alternatives. The shortlisted solutions represent the trade-off

between maximising expected net benefit and minimising risk.

The second part of Fig. 3.5 shows the result of information value analysis [133, 166].

In many decision situations, we might be able to perform additional data collection and
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analysis to reduce our uncertainty before making a decision. Additional data collection
and analysis, however, are worthwhile only if their cost is lower than the value of the

new information they will bring.

Evaluating the expected value of perfect information provides an upper bound on the
value of additional data collection and analysis to our decision problem. The expected
value of total perfect information (EVTPI) is a theoretical measure of the expected gain
in some objective value (usually, maximising net benefit) that would result from having
access to perfect information about all model parameters, that is from having access to
an oracle who could tell us the exact values of all model parameters. The EVTPI gives
an upper bound to the information that would result from additional data collection

and analysis.

The expected value of partial perfect information (EVPPI) is the expected gain in some
objective value resulting from having access to perfect information about a single model
parameter ©. It gives an upper bound to how much we should spend to reduce uncer-
tainty about that model parameter. A more detailed explanation of these concepts can

be found in previous publications [133, 134, 166, 224] and Chapter 5.

Analysing the expected value of information is important because it helps mitigate a
measurement bias, known as measurement inversion, where decision makers would spend
sometimes considerable efforts measuring quantities with low or even zero information
values but disregard measuring quantities with high information value [136]. This bias
has notably been observed in a study of 20 IT project business cases [135]. This study
cites the effort spent by an organisation conducting detailed measurement of software
development productivity as an example of measurement with very low information
value, whereas quantities with high information value that are not measured at all are

typically those related to benefits that are wrongly perceived to be intangible.

In the refactoring example, we evaluate information value with respect to maximising
expected net benefit. The EVTPI is £0.64 million. Spending a small fraction of that
amount on reducing uncertainty could have high value. The EVPPI analysis shows
that reducing uncertainty about the benefits of refactoring has by far the highest value
(£0.54m). By contrast, reducing uncertainty about the refactoring cost has little value

and reducing uncertainty about benefits of the current architecture has no value.
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One way to reduce uncertainty about the benefits of refactoring would be to elaborate
a finer-grained decision model by refining the Benefit variable into lower-level variables
(e.g. customers retention and acquisition rates, savings in software maintenance costs)
and potentially identifying finer-grained architecture decisions corresponding to alter-
native ways to refactor the existing architecture. This would trigger a new decision
analysis. The cycle of model refinement and analysis would eventually stop when the re-
maining expected value of perfect information is too low to justify further data collection

and analysis.
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Chapter 4

The RADAR Modelling Language

4.1 The Modelling Language

A RADAR model is defined as a tuple (Obj, Var, Contr), where Obj is set of objective

definitions, Var is a set of variable definitions and C'ontr is a set of constraint definitions.

4.1.1 Objective Definition

An objective definition has the form:

Objective (Min | Max) Name = Statistic(X)

where Name is the objective name, Min or Max declares whether the objective function
should be minimised or maximised, and Statistic(X) is a statistical measure on a single

random variable X. Statistical measures include:
e EV(X) denoting the expected value of X.
e Pr(X ~ x) denoting the probability that X ~ x where ~ is <, <, =, >, or >.

e r=percentile(X, i) denoting the i*" percentile of X, i.e. the value z such that

Pr(X <z)=i.

76
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We saw examples of the use of first two types of statistics in the refactoring model and
the bike sharing model in Chapter 3. Percentiles are useful statistics for measuring risk.

For example, in the refactoring example, the Value at Risk (VaR) can be defined as:

Objective Min VaR = percentile(NB, 5);

4.1.2 Variable Definition

A wariable definition is either an AND-refinement, an OR-refinement, or a parameter

estimation.

An And-refinement has the form:

X = F(Xy, ..., X)

where X is a variable and F(X7, ..., X,) is an arithmetic or Boolean expression involving

variables X1, ..., X,.

The equation defining NB in bike sharing model in Section 3.2 is an example of And-

Refinement where NB is defined as Benefit — Cost.

A parameter estimation has the form:

X = ProbabilityDistribution

where ProbabilityDisribution defines a probability distribution for the variable X. Prob-

ability distributions include:

e uniform(min, max) denoting the uniform distribution between values min and

max.

e exponential(x) denoting an exponential distribution that describes the time be-

tween events which occur at a constant average rate x.

e triangular(min, mode, max) denoting the triangular distribution with lower limit

min, upper limit max and the most likely value mode.
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e normalCI(lower, upper) denoting a normal distribution characterised by the lower
and upper bounds of its 90% confidence interval (i.e. lower is the 5 percentile

and upper the 95“‘) percentile.

e geometric(x, n) denotes the geometric distribution that describes the probability

of occurrence of the first success (x) in n independent trials.

e deterministic(x) denoting that the variable has the certain value x.

Examples of parameter estimations in our motivating example are:

68  NbrBikesToDeploy = triangular(500, 550, 600);

69  NbrOfBikesCurrentlyDeployed = deterministic(500);

An OR-refinement is used to express alternative option choices at a decision point. OR-
refinements can be characterised by exclusive-or (single option selection) or inclusive-or

(multiple option selections).

An OR-refinement with exclusive-or (XOR) selection has the form:

X = decision(label){

Option, : FExpression;

Option,: FExpressiony;

where label is the decision name, Option; are option names, and FExpression; is an
AND-refinement or parameter estimation defining the value of X if Option; is selected.
When Expression; is a parameter estimation, the value of a variable X is a parameter
X[Option;]. For example, in the cost-benefit refactoring model, the OR-refinement for

Cost introduces the parameters Cost[As-is] and Cost[Refactoring].

The definitions of Cost and Benefit in the refactoring model are examples of OR-

refinement with single option selection.
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NbrFraudPerAccountBeforeBlocked = decision(“blocking policy”){
“block first” : NbrFraudBeforeDetection;
“investigate first” : NbrFraudBeforeDetection + NbrFraudDuringlnvestigation;
}
NbrFraudBeforeDetection = decision(“processing type”){
“continuous” : 1 / ContinuousTrueAlertRate;
“batch” : NbrFraudsPerCompromisedAccountPerDay / BatchTrueAlertRate ;
}
ContinuousTrueAlertRate = decision(“fraud detection method”){
“classifier” : ContinuousAlertThreshold;
“rule-based” : deterministic(0,75)
}
BatchTrueAlertRate = decision(“fraud detection method”){
“classifier” : BatchAlertThreshold;
“rule-based” : deterministic(0,80);
}
ContinuousAlert Threshold = decision(“alert threshold”){
“high” : deterministic(0.9);
“medium” : deterministic(0,8);
“low” : deterministic(0,7);
}
BatchAlertThreshold = decision(“alert threshold”){
“high” : deterministic(0.95);
“medium” : deterministic(0,85);
“low” : deterministic(0,75);

FIGURE 4.1: Fragment of RADAR model showing all OR-refinements in the financial
fraud detection system

Consider also Fig. 4.1 that shows all OR-refinements with single option selection of the
fraud detection example introduced in Section 1.2. The first OR-refinement states that
NbrFraudPerAccountBeforeBlocked depends on the blocking policy; the second that
NbrFraudBeforeDetection depends on the processing type; etc. Justification for these

equations can be found in the detailed model in Chapter 7.2.1

Multiple OR-refinements can refer to the same decision. For example, in Fig 4.1, the
variables ContinuousTrueAlertRate and BatchTrueAlertRate depend both on the fraud

detection method.

An OR-refinement with multiple option selection (inclusive-or) has the form:
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X = decision-subset(op)(label){

Option, : Fxpression;

Option,: Expressiony,;

where label is the decision name, Option; denotes options’ names, Expression; denotes
AND-refinement or parameter estimation corresponding to the selection of Option;, op
is an arithmetic operator (‘+’ or “*’) for combining multiple Expression; if multiple

Option; are selected. The value of X, Value(X), is defined as:

OP,co(qyselected(o) x Expression(o) (4.1)

where QP is either a ) or [[, O(d) is the set of options in decision d, selected(o) =
1 if option o is selected and 0 otherwise, Expression(o) denotes AND-refinement or
parameter estimation corresponding to the selection of option o. An OR-refinement
with inclusive OR selection has a total of 29! possible option combinations, where |O|

is the number of options of a particular decision.

An example of OR-refinements with multiple option selection from the bike sharing

example is:

79 CostOfBikeLocalisation = decision-subset(+)(“Tracking Mechanism”){

80 “GPS feature” : normalCI(5,10);
81 “RFID feature” : normalCI(2, 7);
82 }

The above example states that the cost of bike localisation depends on the tracking
mechanism. Zero cost is incurred if none of the tracking mechanism is selected. However,
if the choice is to select only the GPS option, the cost is believed to be between £5m and

£10m; if the choice is to select only the RFID option, the cost is believed to be between
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£2m and £7m. Finally, if the choice is to select both GPS and RFID options, the cost
is the sum of the individual cost incurred by implementing each feature separately. The

costs are added because of the ‘+’ operator in the expression.

An inclusive-or refinement with a multiplication operator is useful for modelling reli-
ability of system components. For example, in the bike sharing system example, the

reliability of the system’s localisation component is defined as:

Reliability OfSystemLocalisationComponent = 1 - FailureOfSystemLocalisationComponent
FailureOfSystemLocalisationComponent = decision-subset(*)(“Tracking Mechanism”){
“GPS feature” : FailureProbabilityOfGPSComponent;
“RFID feature” : FailureProbability OfRFIDComponent;
}
FailureProbabilityOfGPSComponent = normalCI(0.01, 0.05);

FailureProbability OfRFIDComponent = normalCI(0.10, 0.20);

The above example states that the reliability of the system localisation components
depends on the tracking mechanism. If none of the tracking mechanism is selected, the
reliability is zero. However, if the choice is to select only the GPS option, the reliability
is the failure probability of the GPS component deducted from one. Similarly, if the
choice is to select only the RFID option, the reliability is the failure probability of the
RFID component deducted from one. Finally, if the choice is to select both GPS and

RFID options, the reliability is the product of the reliabilities of each component.

It is important to note that one can model inclusive-or option selections in the bike
sharing example using the XOR, construct of an OR-refinement. For example, we model
the tracking mechanism decision that involves inclusive OR option selection between

GPS and RFID as below:
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79 CostOfLocalisation=decision(“Tracking Mechanism” ){

80 “No feature” : deterministic(0);

81 “GPS” :CostOfGPS;

82 “RFID” : CostOfRFID;

83 “GPS and RFID” : CostOfGPS + CostOfRFID;
84 }

85  CostOfGPS = normalCI(5,10);

86  CostOfRFID = normalCI(2, 7);

The limitation of using the XOR construct to model an OR option selection is that the
modelling effort increases as the number of options for an OR decision increases. As a
result, one would have to write expressions explicitly for all possible option combina-
tions. This implies introducing AND-refinements (e.g. CostOfGPS and CostOfRFID)
for each possible option combination. RADAR addresses this problem using the inclusive-

or constructs.

4.1.3 Constraint Definition

RADAR provides constructs to model constraint relationships between options of deci-

sions. Such Constraints have the syntax

Constraint label; : option; < label; : option;

where option; and option; are options’ names, label; and label; are decisions names,and

< is a constraint relationship in the set {requires, excludes, couples}.

Definition (requires). option; : label; requires option; : label; means that the selec-
tion of option; implies the selection of option;. However, option; can be selected without

option; being selected.

Definition (excludes). option; : label; excludes option; : label; means that both

option; and option; cannot be selected together.
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Definition (couples). option; : label; and option; : label; are said to be coupled if

none of optiony or options can be selected separately.

Examples of constraints relationships in the bike sharing model example of Section 3.4

are:

121  Constraint “Bike Manufacturer Brand” : “A-Bike” excludes
122 “Tracking Mechanism ”: “GPS feature”;

123  Constraint “Kiosk Registration” : “Card Dispenser” couples

124 “System Access Management”: “Key Card”;
125 Constraint “System Access Management” : “Key Card” requires
126 “Kiosk Registration” : “Key card reader”;

The expressions above declare that a bike of brand “A-Bike” does not support the GPS
feature; the card dispenser option of the Kiosk registration and the key card option of
the systems access management must be implemented together; and the key card option

of the kiosk registration requires a key card reader.

4.2 AND/OR Refinement Graph

The equations in a RADAR model create an acyclic AND/OR refinement graph between
variables. An AND-refinement relates a variable to the set of variables involved in
its definition. An OR-refinement relates a variable to the set of AND-refinement or
parameter estimations involved in the OR-refinement definition. As an example, Fig.
4.2 shows the AND/OR refinement graphs for the fraud detection model fragments in
Fig. 4.1.

The AND/OR refinement graph of a model must be acyclic. The tool generates an error

if it detects a circular dependency between variables in the model.

By showing the variable dependencies, the AND/OR refinement graph helps the mod-
ellers to review and validate the model structure with other stakeholders. Such AND/OR

graphs are commonly used in goal-oriented requirements engineering to communicate
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NbrFraudPerAccountBeforeBlocked

blocking policy

(Nbrl"mudum' gl gati ] [m.. g facmcuonj
processing type

[Balc]lTrueAlenRa!ej [NbrFraudPerCompromisedAccoumPerDayj (CominuousTrueA]enRu(ej

fraud detection method fraud detection method

[BalchA]enThresholdj [BmchTrueAm """]j [C ti TrueAIerlRa(e[rule—bused]j (ConlinuousAIenThrebho]dj

threshold level threshold level

[BalchAlenThreshold[high]j (BmchA]enThreshold[medium]j (Ba!chAlenThresho]d[low]j [Conlinuo\lsA]ertThreshold[medium]j [Comin\lousAleﬂThl‘esho]d[low]j (Con(inuousAlerlThreshold[high]j

FIGURE 4.2: AND/OR Refinement Graph for the Financial Fraud Detection System

and validate traceability links between technical software characteristics (e.g. the clas-
sifier’s true alert rate) and high-level stakeholders’ concerns (e.g the financial loss due

to fraud) [264].

4.3 The Design Space

A model’s OR-refinement equations introduce a set of decisions and options. Select-
ing an option for a particular decision replaces all OR-refinements that refer to this
decision by AND-refinements or parameters estimation corresponding to the selected
option. Consider the fraud detection example, selecting the ”block first” option for the
”decision policy” option in Fig. 4.1 replaces the OR-refinement for NbrFraudPerAc-
countBeforeBlocked by the AND-refinement corresponding to the ”block first” option,
i.e. NbrFraudPerAccountBeforeBlocked = NbrFraudBeforeDetection. Consider also the
bike sharing system example, in the OR-refinement defined on the variable CostOfLo-
calisation between lines 79 to 84 of page 63, the selection of the “GPS” option of the
“Tracking Mechanism” decision replaces the OR-refinement of CostOfLocalisation by the
AND-refinement CostOfLocalisation = CostOfGPS. Similarly the selection of “GPS and
RFID” option would replace the OR-refinement by CostOfLocalisation = CostOfGPS
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+ CostOfRFID. This idea provides the basis for how we define the set of valid solutions

for a RADAR decision model.

Definition (Solution). A RADAR solution, s, is defined as a mapping between decisions
and the power set of options i.e. s: D — P(O) such that s(d) C O(d), where D is the set
of all decisions in a model, O(d) is the set of options in decision d, and O = Uge pO(d)

is the set of all options in a model.

For example, in the fraud detection model shown in Fig. 4.1, the solution s =
{(blocking policy, block first), (processing type, {continuous}), (fraud detection

method, {classifier}), (alert threshold, {high})} is an example of a RADAR solution

with only XOR decisions. The solution sy = {(bike brand, {A-bike}), (Security
Strategy, {Localisation Feature}) (Tracking Mechanism, {GPS}), (Dock station,
{flexible}), (System Access, {Smart Card}), (System Registration, {Kiosk}), (Kiosk

System Registration, {Touch Screen}), (Non Mandatory Component, {(System

Status, Bike Maintenance, Bike Redistribution}), (System Status, {Web Info}), (Redistribution
Reward, {No Reward})} is a RADAR solution that contains both XOR and OR deci-

sions.

Definition (Solution Space). Given any RADAR model, the size of the solution space
is computed using [[;c xor_p |0(@)| % [Lscor_p 2/°@], where the first factor gives
the total solutions for XOR. decisions and the second gives the total solutions for OR
decisions. In the bike sharing example, which has 3 XOR decisions and 7 OR decisions,

the solutions space is given as XOR(5x3x2)x OR(22x22x23x23x24x23x22) = 15x2?%.

Definition (Design Space). Given any RADAR model, the design space is the set
of minimal and complete solutions. A solution s is complete if applying s to a model
replaces all OR-refinements with AND-refinements or parameter estimations that corre-
spond to the selected option for each decision in s. A solution s is minimal if any subset

of s is complete.

For example, in the bike sharing system, the solution s3 = {(Bike Brand, {A-bike}),
(Tracking Mechanism, {GPS}), (Dock station, {flexible}), (Redistribution Re-
ward, {Reward Users})} is minimal and complete. It is minimal because its subset s4

= {(Bike Brand, {A-bike}), (Dock station {flexible}), (Redistribution Reward,
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{Reward Users})} is complete. It is complete because applying the solution to the model

results in no OR-refinements.

The design space of a RADAR model defines the set of all valid solutions to be considered
during optimisation. RADAR generates the design space of a model by recursion over
the acyclic AND/OR refinement graph by merging the set of solutions associated to
a variable subgraph. For any model, the size of the design space is always smaller or
equal to the size of the solution space. For the fraud detection model, the design space

contains 16 solutions.

It is important to note that the decision-based solution encoding used in RADAR is
different from the alternative option-based encoding commonly used in search-based
software engineering, notably for the problem of selecting optimal designs in software
product lines [111, 127, 234]. In the option-based encoding, solutions are encoded as a
mapping s : O — Boolean such that for each option o € O, s(0) denotes whether o is
selected or not. For problems with only XOR, decisions, additional constraints must then
be added to remove invalid solutions such as those that select two mutually exclusive
options. With an option-based encoding, the solution space would include 2191 solutions
against [],.p |O(d)| for our decision-based encoding. In the fraud detection model, an
option-based encoding would have resulted in 2° = 512 total solutions instead of 24.
For a slightly larger model including 10 decisions with 3 options each, an option-based
encoding would include 23*10 ~ 10? total solutions, whereas the decision-based encoding
would have only 3'° ~ 59000 solutions, i.e. 0.005% of the number of solutions in the
option-based encoding. The benefits of a decision-based encoding over an option-based
encoding are thus enormous: the solution space is much smaller and it does not need

additional constraints to remove invalid solutions.

4.4 The Decision Graph

The equations in a RADAR model may create dependencies between decisions. For ex-
ample, in the fraud detection model, the “alert threshold” decision is dependent on the

selection of the “classifier” option in the “fraud detection method” decision.

Definition (Decision Dependency). A decision d; is dependent on the selection of

option x in decision dy if, and only if, for all solutions s in the design space, if d; is
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defined then the selected option for decision dy is z; formally: Vs € DesignSpace | dy €
dom(s) = s(dyg) = x, where dom(s) denotes the domain of the function s, i.e. the set of

decisions that have a mapping in s.

RADAR infers decision dependencies by first generating the design space, then checking
for dependency between every pair of decisions. To visualise such dependencies, the
tool generates a decision diagram showing all decisions, their options, and dependencies
between decisions and options. The decision diagram for the fraud detection model is
shown in Fig. 4.3. These diagrams play a similar role to that of feature diagrams in
software product lines [236]: they help us visualise a potentially large design space in

terms of a smaller set of decisions and options.



88

Chapter 4. The RADAR Modelling Language

paseq-9[ni

w9)SAG U0110939(] PRl [edURUI] o) 10} ydeln) UoISIO( ¢ HUNDI]

[9AQ] poysaiy}

181 93e3NSoAUl

ad£y Surssaooad Korjod 3uryoorq

POYJaW UOI}O)Ap pnely




Chapter 5

RADAR Decision Analysis

In Chapter 4, we have formally presented RADAR’s modelling language. RADAR’s mod-
elling language extends and simplifies quantitative AND/OR goal models used in re-
quirements engineering, and has relations to feature diagrams used in software product
lines. This chapter describes RADAR’s decision analysis technique which is based on the

statistical decision analysis steps presented in Chapter 2.4.8.

Once a decision-maker, such as software architects or requirements engineers, develops
a RADAR model that defines the problem objectives, refinement equations, decisions and
parameter uncertainty, then RADAR performs two main types of analysis: the optimisa-

tion analysis and information value analysis.

5.1 Optimisation Analysis

Given a model’s abstract syntax tree (AST), the optimisation analysis consists of three
activities: generating the design space, simulating a design solution and shortlisting
the Pareto-optimal solutions using exhaustive search or evolutionary multi-objective

algorithms.

5.1.1 Generating Design Space

The design space is generated through a single traversal on RADAR’s semantic model

(an acyclic AND/OR refinement graph that consist of different model elements, such

89
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as objectives, variables, decisions, expressions and operators) created from a model’s
abstract syntax tree. The design space consist of all valid solutions to be used for the

simulation and optimisation process.

Algorithm 1 presents a pseudo-code for generating the design space of a RADAR model.
The algorithm takes as input the RADAR model and for each objective (line 2), it gets
the variable (ObjVar) associated to the objective definition (line 3) and then generates
the solution set of the objective variable (line 4), by invoking the getAllSolutions method
(described in Algorithm 2) starting from the variable’s definition and then recursively
traversing the model until reaching the leaf-variables, i.e., Parameter Estimations. The

solution set obtained for each objective are then merged using Algorithm 3 (line 5).

In Algorithm 2, the solution set (5) returned depends on whether the calling variable’s
definition is a parameter estimation, an AND-Refinement, or an OR-refinement. If the
variable’s definition is a parameter estimation (line 3), S is always an empty set (line
4), since a parameter estimation has no decision. If the variable’s definition is an AND-
Refinement (line 7), S is obtained by merging the solution set obtained (using Algorithm
3) for each Boolean or arithmetic expression that define the AND-Refinement. If the
variable’s definition is an OR-Refinement (line 13); first, we retrieve the solution set for
each option declared in the OR-Refinement by invoking the getSolutionSetPerOption
method (line 14). Next, the decision (d) associated with OR-Refinement is obtained
(line 15): if the decision type is mutually exclusive (XOR), we combine all solution set
obtained for each AND-Refinement corresponding to each option in the OR-Refinement
(lines 18-21). If the decision type is inclusive-or (OR), we obtain all possible option
combinations (optionCombinations) for the OR-decision (line 24), and for each option
combination (oc), the algorithm gets the combined solution set (lines 27-29) and update

each solution s in the solution set ss with decision d and a list of option (lines 30-33).

In Algorithm 3, the merging of two solution sets S; and Sy requires a pair-wise com-
parison of all solutions s; € S; and sy € Sy, and if they do not conflict (line 10), i.e. if
they do not disagree on the selected option for the same decisions, then s; and ss are

combined (line 11).

The time and space complexity of generating the design space is O(m), where m is the

model length measured as number of nodes in the model’s abstract syntax tree .
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Input : Model m = {Obj, Var, Constr}

Output: SolutionSet S

S0

foreach Objective obj in m.Obj do
Variable objV ariable < obj.getObjectiveVariable()
SolutionSet objSolutionSet < objV ariable.get AllSolutions(m)
S.mergeSolutionSet(objSolutionSet)

end

return S

Y

Algorithm 1: GenerateDesignSpace

5.1.2 Simulating A Design

This is the most computationally expensive step. It returns simulation values of all ob-
jectives for a candidate design s, by evaluating the impact of s on the model’s objectives
through Monte-Carlo simulation (MCS) [113] —a mathematical technique for exploring
the range of possible outcomes when analysing a model and the chance that the out-
come will occur. Given a RADAR semantic model generated from a model’s abstract
syntax tree (AST), RADAR’s simulation algorithm traverses the semantic model (acyclic
AND/OR refinement graph) by recursion while sampling and evaluating large number
of possible scenarios. Scenarios are generated through probability distributions of the

model’s parameter estimations.

Algorithm 6 describes the simulation of a single design: it takes a RADAR model and a
candidate design s as inputs, then simulates s (lines 2-9). The algorithm loops through
each model objective (line 2), then gets the variable associated to the objective defini-
tion (line 4), and simulates solution s through recursion over the variable’s sub-graph
(line 5) by invoking the Simulate method in Algorithm 7. Simulate returns an array of
simulated objective values. If the variable’s definition is a parameter estimation (line 3),
the algorithm returns N samples of the probability distribution (e.g. normal, trian-
gular and normalCI) associated to the variable’s definition. If the variable’s definition
is an ANDRefinement (line 7), the algorithm determines whether the ANDRefinement’s
definition is a BinaryFxzpression or a UnaryExzpression: if the definition is a BinaryFa-
pression (line 8), the algorithm simulates the left and right expressions and returns the
combined expressions using a binary operator, which may be an arithmetic operator (4,
-, /, x) or Boolean operator(!, &&); if the definition is a UnaryEzpression (line 13),

the algorithm simulates the expression and returns the simulated values with the unary
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Input : Model, m = {Obj, Var, Constr}

Output: SolutionSet S

S+ 0

Expression expr < this.getDefinition

if expr == ParameterEstimation then

Solution newSol + ()

S.add(newSol)

end

if expr == ANDRefinement then

foreach Ezpression childVar in expr.Children do
SolutionSet andSolSet < childV ar.getAllSolutions(m)
S.mergeSolutionSet(andSol Set)

end

end
if expr == OR_Refinement then
Map<String, SolutionSet> spo < getSolutionSetPerOption(m,expr)
Decision d < expr.getDecisions
if d.decisionType = FExclusiveOR_Refinement then
140
foreach Map<String, SolutionSet> entry : spo.EntrySet() do
S.addAll(entry.Valueli])
v+ +
end
end
if d.decisionType == InclusiveOR_Refinement then
List<List<String>> optionCombinations <
getAllOptionCombinations(d)
foreach List<String> oc in optionCombinations do
SolutionSet ss <+ ()
foreach String option in oc do
| ss.addAll(spo[option])
end
foreach Solution s in ss do
s.addDecision(d, oc)

S.add(s)
end
end
end
end
return S

Algorithm 2: GetAllSolutions: algorithm to recursively retrieve all solutions
staring from a specified variable to the leaf variables in the goal graph.
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Input : SolutionSet S;
Output: SolutionSet S

1S+ 0

2 if Si.empty() then

3 ‘ return this

4 end

5 if this.empty() then

6 ‘ return S

7 end

8 foreach solution s1 in S7 do

9 foreach solution sy in this do
10 if lconflicting(s1, s2) then
11 Solution newSolution = sj.union(sy)
12 S.add(newSolution)
13 end
14 end
15 end

16 return S

Algorithm 3: MergeSolutionSets: algorithm to merge two solutions if they do
not conflict in selected options.

Input : Model, m = {Obj, Var, Constr}, Expression expr
Output: Map<String, SolutionSet> S
S0
Decision d < expr.getDecisions
foreach option in d.getOptions do
AND _Refinement andRef < expr.get (option)
SolutionSet andRefSolutions < andRef.get AllSolutions(m)
foreach solution soln in andRefSolutions do
‘ soln.addDecision(d, option)
end
S.put(option, andRe f Solutions)
end
return S

© W N O Ok W N

-
- o

Algorithm 4: GetSolutionSetPerOption

Input : Solution, s1, s9
Output: Boolean true/ false
foreach decision d in s1.getDecisions do

if sy.selection(d) # null and sz.selection(d) # s1.selection(d)

then

3 ‘ return true
4 end
5
6

N =

end
return false

Algorithm 5: ConflictingSolutions: algorithm to check if two solutions
conflict in their selections.
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operator (e.g. -, !) applied on them. If the variable’s definition is an OR_Refinement
with single option selection (exclusive-or), the algorithm simulates the AND_Refinement
of the selected option o in decision d; if the variable’s definition is an OR_Refinement
with multiple option selection (inclusive-or), the algorithm combines (adds or multiplies)
the simulated values of each AND_Refinement corresponding to a selected option o in

decision d.

Input : Model, m = {Obj, Var, D, O}, Design (s)

Output: SimulatedObjectiveValues SOV

Double [ ]SOV «

foreach Objective obj in m.Objectives do
Statistic st <— obj.getDefinition()
Variable objV ariable < obj.getObjectiveVariable()
Double [ Jobjective ValueArray <+ st.Simulate(s, objVariable)
Doubleobjective Value <— Mean(objective ValueArray)
SOV.add(objective Value)

end

return SOV

Algorithm 6: Simulating A Design

© W NSk W N

Simulating a design involves a single recursive traversal of the semantic model. Thus
the time and space complexity is O(m), where m is the number of nodes in the model’s
AST. Generating N simulations for all objectives and a set of solutions thus has a time
and space complexity of O(|Obj| x [SS| x N x m), where Obj is the model objectives,

5SS is the set of solutions considered during simulation, N is the number of simulations.

5.1.3 Shortlisting Pareto Optimal Solution using Exhaustive Search

RADAR shortlists Pareto optimal solutions together with their objective values through
multi-objective optimisation technique presented in Chapter 2.1. By default, RADAR
finds optimal solutions through exhaustive search of the design space. As shown in Al-
gorithm 8, its exhaustive strategy implementation involves comparing pairs of solutions
and selecting the one with higher objective value(s). This algorithm has a complexity

of O(|S|?), where S is the number of simulated solutions the algorithm takes as input.
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Input : Solution (s), Variable (Var)
Output: Array of Simulated Objective Values (SOV)

1 Double [ ]| SOV «+ ()

2 Expression ezpr < Var.getDefinition()

3 if expr == ParameterEstimation then

4 Distribution distr = expr.getDefinition()

5 return distr.getProbabilityDistribution()

6 end

7 if expr == ANDRefinement then

8 if expr.Definition == BinaryFExpression then
9 leftSim <+ Simulate(s, expr.leftExpr)

10 rightSim < Simulate(s,expr.right Expr)

11 return leftSim & rightSim

12 end

13 if expr.Definition == UnaryEzxpression then
14 return @ Simulate(s,expr)

15 end

16 end

17 if expr == OR_Refinement then

18 Decision d < expr.getDecisions()

19 List<Option> options < s[d]

20 foreach Option o in options do

21 ANDRefinement andRef < expr|o]

22 Double [ | simValue « Simulate(s, andRef)
23 if d.decisionType = ExclusiveOR_Refinement then
24 SOV «+ simValue

25 break

26 end

27 if d.decisionType == InclusiveOR_Refinement then
28 Integer ¢ < 0

29 foreach Double sv in simValue do

30 if d.op == Addition then

31 | SOVI[i] + SOV[i] + sv

32 end

33 if d.op == Multiplication then

34 | SOVIi] <~ SOV[i] x sv

35 end

36 1++

37 end

38 end

39 end

40 end

41 return SOV

Algorithm 7: RADAR’s Simulate method: @ is a binary operator (+,
-, /, X) or a Boolean operator (!, &&)
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Input : SimulatedSolutions (SimsS), Model, m = {Obj, Var, D,0O}
Output: Pareto Set §
S0
SolutionSet SS = Sim.S.getEvaluatedSolutions()
solutionSize < S5 .size()
Objective Values = SimS.getObjectiveValues()
Boolean| | isPareto = new Boolean[solutionSize]
ArrayFill(isPareto, true)
inti =0
while i < ObjectiveValues.size()-1 do
int 5 =19 41
while isParetofi] AND j < ObjectiveV alues.size() do
if ObjectiveValuesfi].dominates(ObjectiveV alues[j]) then
| isParetolj] <+ false
else
‘ isPareto[i] < false
end
o+
end
i++
end
int k =0
foreach Boolean b in isPareto do

if b == true then
‘ S.add(S[k], ObjectiveValues|k])
end
k++
end
return S

Algorithm 8: RADAR exhaustive strategy to find Pareto optimal so-
lutions.

5.1.4 Shortlisting Pareto Optimal Solution using Evolutionary Algo-

rithms

In a situation where a RADAR model contains OR decisions with multiple options se-

lections, the size of the solution space increases, and therefore may make the use of

exhaustive search infeasible because it requires enormous memory resources to store

matrix results Result of dimension |DS| x |Obj|, where DS is the model’s design space

and Obj the model’s objectives [43]. To overcome this problem, RADAR implements

alternative search-based approaches, such as evolutionary multi-objective optimisation

algorithms [287] to explore solution space in shortlisting Pareto optimal solutions.

Evolutionary Multi-objective Optimisation Algorithms (EMOAs), such as NSGAII [69],
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use the principles of natural selection and evolution to iteratively evolve a set of solu-
tions (chromosomes), called a population, towards Pareto-optimality [287]. Applying
EMOASs requires (i) selecting the population size, the number of generations, and the
mutation and crossover probabilities that will determine how the best solutions (par-
ents) from one generation will be combined to form new solutions (offsprings) for the
next generation; (ii) determining a termination criterion, which could be either a fixed
number of fitness function evaluations, or a fixed amount of time the algorithm is al-
lowed to run [122]. Guidelines on how to use EMOAs have been proposed in the field
of search-based software engineering [118]—a field that reformulates software engineer-
ing problems as optimisation problems, and then search for optimal or near optimal

solutions in a solution space guided by the fitness functions.

RADAR uses elitist EMOAs, such as NSGAII [69], SPEAII [289], MoCell [184] and IBEA
[288], implemented in JMetal5 [185]— a JAVA-based optimisation framework. These
algorithms are elitist because they maintain their best solutions throughout the gener-
ations. Apart from IBEA, the other algorithms are similar in dominance criteria: they
use the Boolean Pareto dominance (see definition 2.2) and give priority to solutions that
are more spread out in the Pareto front. IBEA, however, incorporates decision-maker’s
preference information when estimating its dominance values between two solutions, i.e.,
it assign weight values to each solution based on quality indicator, typically hypervolume

[288].

Next, we detail RADAR’s approaches for handling the key ingredients of search-based
optimisation approaches, i.e., the solution encoding, the fitness function evaluation, a
set of variation operators (i.e. crossover and mutation), and the optimisation approach

used in handling constraints.

Solution Encoding. Search-based approaches generally encode solutions using bit
strings i.e. a vector of bits [122, 281]. For RADAR’s EMOAs to explore the solution
space of a model, we encoded the solutions using an “array of bit strings”, where the
size of the array is the number of decisions in the model, |D|, and each element of the
array, i.e. the bit strings, represents the set of options, O(d), corresponding to decision
d € D, and are used to encode mutually exclusive option (XOR) and inclusive option
(OR) selections. A bit value of 1 (respectively 0) denotes an option represented by the

bit is selected (respectively not selected).
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For example, in the bike sharing model example, the solution s = {( Bike Man-
ufacturer Brand, {A-bike}), (Bike Security, {localisation feature}), (Tracking
Mechanism, {GPS}), (Dock station, {flexible}), (System Access, {smart card}),
(System Registration, {kiosk}), (Kiosk System Registration, {touch screen}),
(Non Mandatory Component, {(system status, bike maintenance, bike redistribu-
tion)}), (System Status, {web info}), (Redistribution Reward, {no reward})} has
the equivalent binary representation of {[10000],[10],[10],[001],[100],[100],[1000],[111],[10],[10] }.
In this representation, each bit string encodes option selection of decisions in the bike
sharing model. The bit strings in this representation have an order that corresponds to
the order in which the options of each decision are presented in the RADAR model. For
example, the bit string “10000” in which only the A-bike option is selected encodes all

options in the XOR decision ‘Bike Manufacturer Brand’ of solution s below:

69  UnitCost = decision (“Bike Manufacturer Brand”){
70 “A-Bike”: normalCI(80 ,100);
71 “Bianchi” : normalCI(200 ,300);
72 “Cortina Cyclese”: normalCI(100 ,150);
73 “Derby Cycle”: normalCI(140, 200);
74 “Catrike” : normalCI(250 ,350);
}

Also, the bit string “111” in which the system status, bike maintenance and bike reward
options are selected encodes options in the OR decision ‘Non Mandatory Component’

of solution s below:

104  CostOfOtherComponents = decision-subset(+)(“Non Mandatory Component”){

106 “System Status Info” : CostOfStatuslnfo;
107 “Bike Maintenance” : triangular(8,10, 12);
108 “Bike Redistribution” : CostOfRedistribution;
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Fitness Evaluation. RADAR performs a decoding process in order to evaluate the
fitness function of candidate solutions. The decoding process involves a conversion of
EMOA solutions (encoded as array of bit strings) to a RADAR solution (represented
as a mapping from decisions to power set of options). Such decoding is necessary for
evaluating the impact of alternative solutions on the objectives through a simulation of

model parameters.

Crossover and Mutation. RADAR performs the crossover and mutation operations
ensuring that the offspring produced by combining two parent solutions have valid set
of decision choices in the model. Currently, RADAR implements single point crossover,
but can be extended to use other crossover methods available in JMetal5 [185], such as
uniform crossover and two-point crossover. Given a RADAR solution encoded using an
array of bit strings of size n, the crossover point, c¢p(0 < ¢p < n), is randomly chosen at
the boundaries of adjacent bit strings in the array. The offspring are generated through
a copy of array contents from the start of the crossover point from the first parent and

the remaining contents from the second parent.

For the mutation operation, RADAR implements bit flip mutation such that the deci-
sions characteristics are preserved, i.e., a decision with a single option selection is not

transformed to decisions with multiple option selection, and vice versa.

Constraint Handling. When a RADAR model has constraint(s), there is the possibility
of generating and evolving invalid solutions, and consequently shortlisting these solutions
in the Pareto front approximation. For instance, in our bike sharing example, the
solution s = {(Bike brand, A-bike), (Bikes Security, Anti-theft feature), (Tracking,
RFID), (Dock station, flexible), (Redistribution Reward, Reward Users)} is invalid.
This is because it violates the constraint that the Anti-theft feature of Bike security
requires the selection of GPS option of Tracking mechanism. In order to guide the
search towards valid solutions in the Pareto front, an approach is to consider an extra

objective, which is the number of violated constraints which is minimised [130, 235].

RADAR adopts two established optimisation approaches to handle constraint relation-
ships in a decision model [130]. These are the (A+1) approach and 14\ approach,

where A is the number of optimisation objectives declared in the RADAR model.
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The (A+1) approach is a classical approach used in optimal product selection based on
feature models [235]. In this approach, all optimisation objectives, including the “num-
ber of violated constraints”, are treated equally during the optimisation process. The
parenthesis around “A+1” gives the notion that the model objectives and the objective

“number of constraints violated” are considered simultaneously.

The 1+ approach, introduced by Hierons et al. [130], treats the objective “number of
violated constraints” as the primary and first objective during optimisation and other
objectives declared in the model are treated equally as the secondary objectives. This
approach gives priority to a solution with fewer constraint violations when estimating
dominance value between two solutions, and if the number of violated constraints of the

compared solutions are the same, then, the solution with better fitness is preferred.

Although the EMOASs implemented in RADAR have better scalability than the exhaustive
strategy. These algorithms do not guarantee finding the Pareto optimal solutions. This
is because they are designed to explore a subset of the problem solution space, i.e.,
some design decisions may not be considered during the solution encoding step of an
EMOA. As a consequence, when these algorithms are used to analyse a decision model,
RADAR may generate a partial decision dependency graph that would not contain all
model decisions, options and relationships between decisions and options. Such partial
decision dependency graph, for example in Figure 3.4 of Section 3.4, can be used to
provide information about how much of the solution space was explored by running an

EMOA on a problem.

5.2 Information Value Analysis

Uncertainty complicates requirements engineering and software architecture decisions.
Uncertainty is the lack of total knowledge about the actual consequences of alternative
decision choices on stakeholders’ goals [166]. Despite the inherent uncertainty in require-
ments and architecture decisions, requirements engineers and software architects have to
make decisions. Thus, to aid requirements and architecture decisions under uncertainty,
RADAR automatically computes the expected value of information [133, 166, 224] which
is defined as the “expected gain in net benefit between the selected alternatives with and

without additional information” [166]. The expected value of information helps decision
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makers answer the question of whether reducing uncertainty about model parameters
may lead to the selection of an alternative with a higher net benefit (see section 3.6 for

illustrative example).

RADAR estimates the financial value of reducing uncertainty in model parameters with
respect to a given set of optimal solutions and a single model objective (e.g. Max Ex-
pectedNetBenefit). Based on the estimated financial value, decision-makers can make
a decision or seek additional information or even perform further analysis through re-
quirements elicitation, prototyping and modelling. Then the decision model is updated
to trigger a new modelling and analysis iteration. Such iteration will stop once the

financial value of additional information is insufficient to justify the effort required.

The expected value of information about an objective can be computed given perfect
and imperfect information. RADAR, however, computes the expected value of infor-
mation given only perfect information about model parameter(s), as expected value of
information with imperfect information may not produce significant benefit over simple
information value analysis [166]. Specifically, RADAR computes the expected value of
total perfect information (EVTPI) and expected value of partial perfect information

(EVPPI) [133, 166].

The EVTPI about all non-deterministic model parameter estimations, €2, is a theoretical
measure of the upper bound to the value of reducing uncertainty through additional data
collection or analysis. The EVTPI for an objective variable X can be computed using
the formular below [166]:

N
1
EVTPI:N maXX[ZJ—maX—ZXZJ

1M 1:1.M N
where X[i, j] represents the objective value of X in a simulation i = {1...N} for a
solution j = {1...M}. The first term in the expression above refers to the expectation
of the highest value of objective X over all possible value of the model parameters. The
second term in the expression is the highest expected X in the presence of the current
uncertainty about model parameters. The EVTPI is always positive or zero, and the
time complexity of the formular is O(N x |S|), where N is the number of simulations

and S is the shortlisted solutions.
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The EVPPI of a single model parameter with respect to an objective gives us information
about whether reducing uncertainty about a single model parameter is worthwhile. In
other words, EVPPI gives the expected gain in the objective X given perfect information
about a single model parameter @. RADAR estimates EVPPI using a recent efficient
algorithm that computes EVPPI for a model parameter © from X and the vector 6

containing the simulations of parameter © [224]. The EVPPI is always positive or zero.

In the bike sharing model example presented in Section 3.2, RADAR estimates the EVTPI
as £0.81m. It also estimates the EVPPI about the unit cost of A-Bike brand to be
£0.03m, and the EVPPI of the number of bikes to deploy to be £0.70m. This means
that reducing uncertainty about the number of bikes to deploy has a higher value than

reducing uncertainty about the cost of the A-Bike brand.
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The RADAR Tool

This chapter describes the design of the RADAR tool. We first present an overview of
the RADAR tool by describing how to make decisions with the tool. This is followed by
a presentation of the detailed tool design which entails an overview of RADAR’s system
architecture; RADAR’s implementation details; the description of RADAR’s context free

grammar, the tool’s semantic model used during decision analysis.

6.1 Running RADAR

The RADAR tool is a self-contained jar file. Figure 6.1 shows RADAR’s graphical user
interface (GUI) that appears once the tool is launched. The GUI consists of three
main tabs. These include: (i) An editor tab that modellers can use to write decision
models and load existing models. The decision model in the editor tab of Figure 6.1
is for the refactoring decision problem introduced in Section 3.4. Omnce the model is
completely written, modellers can analyse the model by clicking the “solve” button
under the “action” menu. (i) Analysis result tab which displays the results of the
optimisation and information value analysis. Figure 6.2 shows the analysis results of
refactoring decision problem. These results are also saved in a directory where the jar
file is located. (iii) Console tab, shown in Fig. 6.3, for logging RADAR’s analysis status,

such as the time taken for each decision analysis steps.

Additional tabs are displayed on completion of RADAR decision analysis. These include:

the AND/OR goal graph of a decision model (Figure 6.5); the decision dependency graph

103
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[ ] RADAR- Requirements engineering And Architecture Decisions Analyser
| RADAR File Edit View Action Window Optimiser Algorithm Settings
H Bla |H|E§\H\;{,|@|E« ~ [+ =]|[@]B] DeFAULT-Exhaustive Search Y[ E[@[@] |

m Analysis Result &3 Console |

Model CBA;

Objective Max ENB = EV(NB);

Objective Min LP=Pr(NB <0);

NB = Benefit - Cost;

Benefit = decision("Architecture choice")
“As-is" : normalCI(0.9, 1.1);
"Refactoring” : normalCI(1, 9);

}
Cost = decision("Architecture choice"){
"As-is" : normalCI(0, 0);

“Refactoring” : normalCI(1, 5);

}

o

FIGURE 6.1: RADAR refactoring model example.

(Figure 6.6); and the Pareto-front, which shows the Pareto optimal solutions (Figure

6.7).

Another tab that is important during the analysis of a RADAR model is analysis settings
tab. This tab, shown in Figure 6.8, is used to specify parameters for model analysis. Ex-
amples of these parameters include: (i) the number of Monte-Carlo simulation run which
is default to 10%; (ii) the objective variable, for example NB of the refactoring example,
to be used for computing the expected value of total and partial perfect information
(EVTPI and EVPPI); and the model variable (e.g., NB) for which the generation of the
AND/OR goal graph starts from.

In Figure 6.9, RADAR provides modellers with an option to specify evolutionary algorithm
parameters such as the population size, maximum number of fitness function evaluations,
crossover, mutation probabilities and optimisation approach. RADAR validates these
input parameters to ensure users enter valid values and displays an error message when

the values are invalid.

RADAR Command-line Tools. The RADAR tool also provides command-line in-

terface. The command java -jar radar_console_app.jar - -help will display a list
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[ ] RADAR- Requirements engineering And Architecture Decisions Analyser
RADAR File Edit View Action Window Optimiser Algorithm Settings
|H Bla IHI@”\JQIDIE"’ ~ [+ [=]|[@]] DEFAULT-Exhaustive Search [ o]®]

| Editor Analysis Result X eI AND/OR-Graph DD-Graph Pareto-Front |

Optimisation Analysis

Objective MinLP

SolutionSpace 2

Design Space 2

Shortlisted 2

ID Architecture choice ENB LP Optimal
1 As-is 1.00 0.00 Yes

2 Refactoring 2.00 0.23 Yes

Information Value Analysis

EVTPI 0.6702830267332414
Parameter EVPPI
Benefit[As-is] 0.00
Benefit[Refactoring] 0.57

ost[As-is] 0.00

ost[Refactoring] 0.15

FIGURE 6.2: RADAR refactoring model analysis result.

of RADAR commands for decision analysis. These commands and their functions are

enumerated below:

1. - -EVPI: computes EVTPI and EVPPI. Input to this command option is an
objective name. An example usage of this command is - -EVPI ’ENB’ (used by
default).

2. - -model: Specifies the path where the decision model is stored. Input to the

command option is the file that contains the decision model <file path>.

3. - -nbr_sim: Number of Monte-carlo simulation run. Input to the command option

is <sample size> (default: 10000).

4. - -opt: Optimisation approach for handling RADAR’s constraints defined in a

model. Example usage is - -opt 'n+1’ (default: n+1).

5. - -output: Output folder where the results are saved. Input to the command

option is <file path>.

6. - -param: Specify the approximate algorithm parameters. Inputs to this com-

mand option <population size> (datatype: integer), <crossover rate> (datatype:
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| @ ® RADAR- Requirements engineering And Architecture Decisions Analyser

RADAR File Edit View Action Window Optimiser Algorithm Settings

H B[ W8] |[X[D[8] 4|~ [+]=]|[@[E] berauLT-Exhaustive earch I

| Editor m Analysis Result Sbse Settings | Analysis Setting§3 Goal Graph

Decision Graph |

Checking cyclic dependencies in the model...... runtime[0 ms].
Shortlisting Pareto optimal solutions...... runtime[685 ms].
Computing expected value of information...... runtime[0 ms].
Generating Pareto fronts, Goal Graph and Decsion Graph...

Result Summary.

Optimisation Analysis
Objective: MaxENB
Objective: MinLP

Optimisation Approach: n+1
Algorithm Name: NSGAII

Population Size: 100
Crossover Probability: 0.8
Mutation Probability: 0.05

Max Nbr. Evaluations: 25000

Line: 1 Column: 1

FIGURE 6.3: RADAR refactoring model output log in a console tab.

double), <mutation rate> (datatype: double), <maximum evaluation> (datatype:

integer) and <runs> (datatype: integer) in this order.

7. - -param-default: Tells the approximate algorithm to use default parameters for

<population size> (100), <crossover rate> (0.8), <mutation rate> (1/options),

<maximum evaluation> (1000) and <runs> (10).

8. - -solve-using: Solves the decision model. Input to this command option is

<algorithm name> e.g. ExhaustiveSearch (default), NSGAII, SPEA2, MOCell,
IBEA, RandomSearch. Specify 'ShseAlgs’ to use all the EMOAs.

9. - -subGraphObj: Generates AND/OR sub-graph for the specified objective

only. Input is an objective name. An example usage of this command is: - -

subGraphObjective ’InvestigationCost’.

An example of a full command to analyse a decision model in RADAR is thus: java -jar

radar_console_app.jar - -model ../models/SAS.rdr - -param 100 0.8 0.1 50000
30 - -solve-using NSGAII - -EVPI ’ENB?’ - -opt 'n+1’ . In the above command:

e The argument after - -model specifies the path where the decision model is stored.
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RADAR Model

Decision-makers

J Optimiser

Model Parser Solutionl TSimUIated

| Simulator

AST 4Ds

Generator
vDS

Visualiser

Shortlisted T .| Information

—_—

Pareto ‘ Expected Value AND/OR
Optimal of Information _Goal Graph,
Decision Graph
A

alternatives "| Value Analyser

values

X[L 1 3 X[LAL
X 3 2N
X 3 30
XN [ XV 3 [ XN |- | XN

Design Space

Simulation Matrix

FIGURE 6.4: High-level system architecture of RADAR.

e The arguments after - -param specifies the SBSE parameters: 100 is the popula-

tion size, 0.8 is the crossover rate, 0.1 is the mutation rate, 50000 is the maximum

number of fitness evaluation, 30 is the number of independent runs.

e The argument after - -solve-using specifies the algorithm to be used in analysing

the model. In this case NSGAII was specified. We can specify other algorithms
like Exhaustive search, SPEA2, MOCell, IBEA, Random search.

e The argument - -EVPI specifies the objective for which to compute the expected

value of information, i.e, Expected Net Benefit (ENB).

e The argument - -opt specifies the optimisation approach to be used in handling

constraints. In this case, we used n+1 (i.e. lambda plus one approach).

6.2 RADAR Tool Design

RADAR’s design follows an object-oriented architecture which encourages the addition

of new system components and the re-use of existing components. The tool has a set of

JAVA classes that a user can extend to implement new model constructs and decision

analysis approaches. The tool also uses the state-of-the-art object-oriented java-based
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[ ) RADAR- Requirements engineering And Architecture Decisions Analyser
RADAR File Edit View Action Window Optimiser Algorithm Settings
H‘BH - |H|@”‘}{,|D|E S[A[x]= HH@IEH DEFAULT-Exhaustive Search I
| Editor Analysis Result Console @ised DD-Graph Pareto-Front |

(Cost[As-is]) (Cosl[Rel‘acloring]) [Benel‘n[Refacloring]) (Beneﬁt[As-isJ)

FIGURE 6.5: RADAR refactoring model AND/OR graph.

multi-objective optimisation framework with different implementations of meta-heuristic

algorithms, such as the evolutionary algorithms discussed in Chapter 5.1.4.

To describe RADAR’s tool design, we start by presenting the architecture of the tool,
followed by the implementation details; grammar of RADAR’s modelling language and

its semantic model.

6.2.1 RADAR System Architecture

Figure 6.4 presents the high-level system architecture of the RADAR tool. The RADAR
system is made up of six components namely: model parser, design space generator,

simulator, optimiser, visualiser and information value analyser.

Model Parser. This takes a RADAR model as input and checks for syntax correctness.
If the model is valid, the parser generates the model’s abstract syntax tree, AST, and

then populates the semantic model described in Section 6.2.4.

Design Space Generator. This component performs a single traversal on RADAR
semantic model to generate all valid solutions to be used for the simulation and optimi-

sation process.
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[ ) RADAR- Requirements engineering And Architecture Decisions Analyser
| RADAR  File Edit View Action Window Optimiser Algorithm Settings

'H Bla |H|ﬂ§\H\¥\=|D|E“ ~ [+ ]=]|[@[] DEFAULT-Exhaustive Search J I E[e]®

| Editor Analysis Result Console AND/OR-Graph %M Pareto-Front |

FIGURE 6.6: RADAR refactoring model Decision graph.

Simulator. This component analyses model uncertainty through Monte-Carlo simula-
tion (MCS) [113]. The simulator performs two main task: (i) given a candidate solution
s, it returns simulation values of all objectives for s; (ii) given a set S of candidate
solutions and a variable X, e.g., the ExpectedNetBenefit variable of the fraud detec-
tion example, it returns a simulation vector X that contains simulations of X and a
simulation matrix P that contains the simulations for all model parameters used to
compute X. The first function is used when shortlisting Pareto optimal solutions. The
second function is used for Information Value Analysis. Internally, both functions use
the same Monte-Carlo simulation where simulations of variables are generated by recur-
sion through the AND/OR refinement equations by selecting the appropriate decision
options through OR-refinements. The number N of simulations is set by the user and
has a default value of 10%. To ensure correctness in a given simulation run, all solutions

are evaluated using the same parameter simulation data.

Optimiser. This component shortlists the Pareto-optimal solutions. It implements an
exhaustive search strategy and alternative search-based approaches, such as evolutionary

multi-objective optimisation algorithms [287].

Information Value Analyser. This component returns the expected value of total
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[ J RADAR- Requirements engineering And Architecture Decisions Analyser
| RADAR  File Edit View Action Window Optimiser Algorithm Settings
H Bla |H|m‘H‘}"{,|D|E A [x]= ‘H‘@lEH DEFAULT-Exhaustive Search [ O]@]
| Editor Analysis Result Console AND/OR-Graph €3/ DD-Graph M
Pareto front for the CBA
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FIGURE 6.7: Pareto front for the RADAR refactoring model example.

and partial perfect information, i.e. EVTPI and EVPPI, for all non-deterministic model

parameters with respect to a given objective, X , and set of candidate solutions.

Visualiser. This component generates a visualisation of a RADAR model and the anal-
ysis results. Given RADAR’s semantic model, the visualiser creates: (i) a variable de-
pendency graph similar to the AND/OR goal refinement graph; and (ii) the decision
dependency graph similar to feature diagrams in software product lines. This graph
contains all decisions, their corresponding options and possible dependencies that exist

between decisions.

For the model analysis results, the visualiser generates a tabular representation of the
optimisation analysis and information value analysis results. Information about the op-
timisation analysis presented include: the optimisation objectives, size of the solutions
space, size of design space, number of shortlisted solutions, number of model variables,
number of model parameters, number of model decisions, the analysis run-time, and a
tabular presentation of the shortlisted decisions and their corresponding options. For
problems that have constraints, only the solutions without constraint violations are
displayed with other solutions that violate constraints written to a file for further con-

siderations. Information about the information value analysis presented are the EVTPI



Chapter 6. The RADAR Tool 111

Context free grammar for the RADAR modelling language

1 model : Model VAR ¢;’ NL* model-element™*

2 model-element : objective-def+ | variable-def+ | constraint-def+

3 objective-def : Objective (Max | Min) VAR (= statistic)? ;> NL*

4 statistic : EV ¢(’ VAR ¢)’ | Pr ¢(’ VAR ¢)’ | Pr ‘(’ comparison ¢)’ | percentile ‘(’ (+|-)? VAR ¢,>” NUMBER ¢)’
5 variable-def : VAR ‘=’ variable-def NL*

6 variable-def : or-refinement | and-refinement | param-def

7 or-refinement : decision ‘(’ decision-name )’ ‘{’ option-name ‘:> option-def ¢;’ ‘}’

8 | decision-subset ‘(’ “*’ | ‘4’ ¢) (° decision-name ‘)’ ‘{’ option-name ‘:> option-def ¢;’ ¢}’
9 option-def : and-refinement | param-def

10 and-refinement : expr

11 constraint-def : Constraint constraint-arg (‘requires’|‘excludes’|‘couples’) constraint-arg ¢;> NL*

12 constraint-arg : decision-name ‘" option-name

13 expr : ‘(’expr‘)’

14 ‘ expr ( ‘; ‘ S/’ | (X3 ‘ ‘+’ ‘ 0 5H’ ‘ ‘&&’ ) eXpI

15 | ‘47| expr

16 | expr ‘%’

17 | ‘P expr

18 | comparison

19 | NUMBER

20 | VAR

21 param-def : distribution ¢(* (expr ( ¢,” expr)* ¢)’

22 comparison : VAR (>’ | >="|‘< | ‘<="|‘=="‘=") expr

23 distribution : (‘normal’|‘normalCI’|‘geometric’|‘exponential’|‘random’ |‘triangular’|‘deterministic’)

24 decision-name : STRING
25 option-name : STRING

26 STRING : &7 (77| <7 | )%

27 VAR : (LETTER | ‘) (LETTER | DICIT | <)%
28 LETTER : [a-zA-Z] NL*

29 NUMBER : DIGIT+ % DIGIT* | DIGIT+ | ‘. DIGIT+
30 DIGIT : [0-9]

TABLE 6.1: RADAR grammar: Implemented using ANTLR 4 [198]: rule start (:),
subrule ((...)), termination (;), alternative (|), optional (?), repetition-one or more
(4), repetition-zero or more (*) concatenation (,)

and EVPPI for all non-deterministic model parameters. The visualiser also generates a

plot of the dominated and non-dominated (i.e. Pareto-optimal) solutions.

6.2.2 Implementation Details

RADAR is implemented entirely in JAVA. This is because JAVA has proven to be re-
liable, expressive, has rich libraries and above all platform independent. RADAR uses
the ANTLR4 [197] tool to generate the model parser and traverse the abstract syn-
tax tree to populate the semantic model. RADAR generates the AND/OR refinement
graphs and decision dependency graphs in DOT format [97] that can be visualised
and converted to other formats (e.g., GIF, PNG, SVG, PDF, or PostScript) using
Graphviz [82]. The multi-objective evolutionary algorithms, such as NSGAII [69],
SPEAII [289], MoCell [184] and IBEA [288], implemented in the tool’s optimiser com-
ponent uses JMetal5 [185]— a JAVA-based optimisation framework. The tool’s GUI
is implemented using Java Swing Windows builder. The open source RADAR tool and
models discussed in the thesis can be downloaded from the tool’s webpage (https:

//ucl-badass.github.io/radar/).


https://ucl-badass.github.io/radar/
https://ucl-badass.github.io/radar/
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[ ) RADAR- Requirements engineering And Architecture Decisions Analyser
| RADAR File Edit View Action Window Optimiser Algorithm Settings
1| B[ Twl (@] [XTE[®] | [+ = ]| [@[MB] [ DEFAULT-Exhaustive Search 0@
%
| Editor Analysis Result Console AND/OR-Graph DD—GraphS@ Pareto-Front W

Analysis Settings

Nbr. Simulation 10000
]
Information Value Objective ENB ]
Variable Subgraph ENB
Output Directory /Users /INTEGRALSABIOLA/Documents /RADARUI/ | Browse
o
n
Decimal Precision 2 I

GraphViz Settings

System Type (®) Mackintosh Windows Linux Other

GraphViz Executable Path /usr/local/bin/dot

FIGURE 6.8: RADAR analysis settings page.

6.2.3 Language Grammar

RADAR is a domain specific language (DSL) [94]. One of the first and key steps in
designing such language is to define grammar rules used by the language parser to
convert the DSL to abstract syntax tree or parse tree. Table 6.1 presents the context
free grammar of RADAR’s modelling language. The grammar defines the exact syntax
of RADAR’s language and can be extended to cater for new language constructs. The

grammar contains terminals, non-terminals, production rules' and a starting symbol.

Terminals are alphabet characters in form of strings. They are in bold or in single quote
and cannot be changed by a production rule. Examples of terminals in Table 6.1 are
the operators (¢/?, “*?, ¢4?, ¢>? and ‘==")), digits (0-9), alphabets (a-zA-Z) and the
bold keywords (Model, Objective, Max, Min and decision).

Non-terminals are placeholder for sequence of terminal symbols. Such terminal symbols
are created by recursively decomposing non-terminals using production rules until they

are replaced by terminals only. Non-terminals are defined in terms of terminals and

'Production rules are set of rules for replacing non-terminal symbols (on the left side of the rule
definition) with other terminal and non-terminal symbols (on the right side of the rule definition)
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o [ J RADAR- Requirements engineering And Architecture Decisions Analyser
RADAR File Edit View Action Window Optimiser Algorithm Settings

H B[ (e8] |[X D[]« ~[+]=]|[@]E] DErAuLT-Exhaustive Search L I

Editor Console Analysis Result

Algorithm
(e) NSGA2 SPEA2 IBEA MOCell
PAES MOEA GA RandomSearch

Parameter Settings

Population Size Max Nbr. Evaluations
Selection
(e) Random () Tournament ) Best Solution ) Binary Tournament
) Nary Random ) Nary Tournament _) Differential Evolution ) Ranking and Crowding Distance
Crossover Mutation
\ZT Apply crossover @ Apply crossover

Crossover probability 0.8 Mutation probability

Optimisation Approach for Constraint Problems

(® (1+N) approach The Nbr. of violated constraints is the main objective and the other model objectives are secondary.

) (N+1) approach All objectives, including the number of violated constraints are optimised simultaneously

Line: 1 Column: 1

FIGURE 6.9: RADAR SBSE parameter settings page.

other non terminals declared at some other place in the grammar. In table 6.1, ob-
serve how the grammar builds the non-terminal “model element” (row 2) by combining
the objective definition (row 3: objective-def), variable definition (row 5: variable-def)
and constraint definition (row 11: constraint-def). A model’s objective(s) is declared
as either a maximisation or a minimisation, whose statistic could be an expectation,
probability, Boolean probability or percentile defined over a random variable (row 4).
The variable definition can either be a OR-refinement (row 7), AND-refinement (row
10) and parameter estimation (row 21: param-def). The OR-refinement defines a vari-
able in terms of AND-refinement or parameter estimations. The AND-refinement is
an arithmetic or Boolean expression relating model variables (row 13). The parame-
ter estimation is used to define a probability distribution (row 21: distribution) of a
model variable. These distributions capture uncertainty in domain quantities and they
include: the normal, normalCI, triangular, exponential and geometric distributions. A
special type of non-terminal is the start symbol at the beginning of the grammar defini-
tion. For example, the non-terminal “model”, which is defined in terms of Model and

“model-element”.
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6.2.4 Semantic Model

RADAR’s semantic model is a fundamental component and input in RADAR’s automated
decision analysis. It is an acyclic graph-based data structure that consists of different
model elements, such as a set of objectives; a set model variables; model parameters;

model decisions and their corresponding options and a set of model constraints.

Figure 6.10 depicts a UML diagram showing the semantic model (Model) class which is
composed of a set of class objects, i.e. Decision, QualityVariable, Parameter, Objective
and Constraint, that are populated by a ModelConstructor class when the language
parser traverses the generated RADAR’s abstract syntax tree (AST) and visits nodes

(terminals and non-terminals) of the AST using the visitor design pattern.

The Model class also has a set of methods to (i) evaluate model objectives given a can-
didate RADAR solution (see Chapter 4.3 for the definition of a RADAR solution) through
Monte-Carlo simulation; (ii) get candidate RADAR solutions for all model objectives;
(iii) check non-existence of cyclic dependency between model variables; (iv) check de-
pendency between model decisions given a set of candidate RADAR solutions; (v) generate
AND/OR graph and decision dependency graph; (vi) get all non-deterministic model
parameters for information value analysis; (vii) perform information value analysis (i.e.
estimate EVTPI and EVPPI). Following the principle of data encapsulation, the Model

class has “setter” and “getter” methods for adding and accessing class fields.

6.2.4.1 Decision

The Decision class has a label, i.e. the name of the decision; a field that captures the
list of option tied to Decision; and a field to store the type of decision (i.e. exclusive-OR
or inclusive-OR). Though not shown in Figure 6.10, the Decision class has a “setter”

and “getter” methods for including and accessing each of the fields.

6.2.4.2 QualityVariable

The Quality Variable class has a label, i.e. the name of the variable, and has an Fxpres-

sion object that stores the definition of the Quality Variable object. Figure 6.11 is a UML
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diagram showing the Fxpression class. It is an abstract class extended by four class ob-
jects , i.e. ArithmeticExpression, Distribution, AND_Refinement, and OR_Refinement.
The Ezpression class has four abstract methods implemented by its derived classes and
each method traverses the calling Ezpression object instance recursively until reaching
the leaf Ezpression in the Model. The abstract methods are (i) the “simulate” method
which takes a RADAR solution (see Chapter 4.3) and returns an array of simulation
values, where the array size is N, the number of possible scenarios default to 10%; (ii)
the “getAllSolutions” method that takes Model as input and returns a set of solutions;
(iii) the “checkCyclicDependency” method that takes Model as input and checks for
cyclic dependencies between variables within an expression and throws an exception if
one is found; and (iv) an “accept” method that takes a ModelVisitor and Model as
inputs and visits different model construct classes (e.g., Distribution, And-Refinement,

OR-Refinement and Objective) to generate AND/OR goal models.

The ArithmeticExpression class is an abstract class which is extended by four classes,
such as UnaryEzpression, BinaryExpression, Quality Variable and Number. The Unary-
Ezxpression defines an expression with a UnaryOperator (e.g., percentage and negation).
BinaryEzpression defines an expression with a BinaryOperator (e.g., addition, subtrac-
tion, multiplication, division, logical AND, logical OR) and has a left and right operands
that are ArithmeticEzpression object instances. Quality Variable has an Expression ob-
ject that stores its definition. Such definition points to an Fxpression object and can be

a Distribution, AND_Refinement or OR_Refinement.

The Distribution class is an abstract class extended by different probability distribution
classes. It has a RandomGenerator object that generates random numbers with the
option of using a seed. It also has methods that generate an array of simulation values
for each probability distribution class, such as the TriangularDistribution, NormalDis-

tribution, NormalCIDistribution, GeometricDistribution and ExrponentialDistribution.

The AND_Refinement class is a concrete implementation of the Expression class. It has
an FEzxpression object that stores the definition of the AND_Refinement object. Such

definitions points to an ArithmeticEzpression.

The OR_Refinement class is a concrete implementation of the Ezpression class. It has
a Decision object that represents the model decision the OR_Refinement refers to; it

has a Boolean field that is set to determine if the OR_Refinement is an exclusive-OR



Chapter 6. The RADAR Tool 116

selection or inclusive-OR selection; and a field to store an arithmetic operator (addition
or multiplication) if the OR_Refinement is an inclusive-OR. The OR_Refinement stores
its definition in a data structure with a key-value pair, where the key is the name of
the option of Decision object and the value is an AND_Refinement corresponding to a

decision option.

6.2.4.3 Objective

The Objective class, shown in Figure 6.10, has a label, i.e. the name of the objective;
a Quality Variable it refers to, an optimisation direction which can be either a maximi-
sation (Maz) or minimisation (Min); and a Statistic definition. Statistic is an abstract
class that is extended by the different RADAR’s statistical measures, such as Fzxpectation
(used by default), Probability, BooleanProbability and Percentile. The Statistic class has
an abstract “evaluate” method, which takes a RADAR solution and a Variable that a

particular Objective refers to as input and returns simulation objective value.

The Objective class has an overloaded “evaluate” method: one that takes a RADAR
solution as input and the other takes a set of RADAR solutions as input. Internally, these
two “evaluate” methods invoke the “evaluate” method of the Statistic class to return
simulation objective value(s). The solution and corresponding simulation objective value
are stored in a field Value —a map with “Solution” as the key and “objective value” as
the value. Objective also has a method called “get All Solutions” that returns a set of
solutions by traversing Model recursively starting from the Variable associated to the

definition of Objective (see Chapter 5.1.1 for the algorithm description).

6.2.4.4 Constraint

The Constraint class in Figure 6.10 is an abstract class that has a left and right Con-
straintArgument object (stores a decision name and option name) that defines a con-
straint. The Constraint class is extended by its derived classes, such as RequireCon-
straint, ExcludeConstraint and CoupleConstraint. These derived classes implement an
IConstraint interface that has a method “isSolutionValid” which takes a candidate So-
lution and a Model as inputs and then checks that the solution does not violate the

constraint definition.
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Chapter 7

Evaluating RADAR’s
Applicablity and Usefulness

7.1 Research Questions

This chapter demonstrates RADAR in action and evaluates its applicability and usefulness
on a range of requirements and architecture decision problems. We thus aim to answer

the following research questions:

RQ1 (Applicability): Is the RADAR tool applicable to real-world requirements
and architectural decision problems? We use this research question to provide in-
sight about the applicability of RADAR’s modelling language and automated decision
analysis technique on different requirements and architecture decision problems in dif-

ferent application domains.

RQ2 (Usefulness): Does RADAR’s decision analysis technique provide useful
improvements to real-world requirements and architecture decisions? This
research question gives insight into the usefulness of the tool to guide decision-makers in
making better decisions in the presence of uncertainty. The performance and scalability

of RADAR will be evaluated in Chapter 8.
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7.2 Experiments

To answer these questions, we have applied RADAR on 12 requirements and architecture
decisions problems based on real design decisions problems described in the literature.
These problems cover five important categories of requirements and architecture deci-

sions problems:

1. Decisions in Goal Models. To evaluate RADAR’s ability to analyse decisions in
goal-oriented requirements engineering models, we have applied it to two problems
that had previously been used to illustrate quantitative goal modelling techniques.
The first is a financial fraud detection system [67, 74, 75]; the second is an ambu-

lance dispatching system [90, 126].

2. Decisions in Architecture Models. We have also applied RADAR to two typical
architecture decision problems. The first is the design of an emergency response
system to coordinate the deployment of emergency response teams [85, 166]; the
second is the NASA satellite processing system designed to collect and process

satellite images [151, 179].

3. Security Policy Decisions. We have also applied RADAR to guide decisions
about an organisation security policy regarding building access and sharing of

electronic documents [50, 51].

4. Next Release Problem (NRP). We show how RADAR can be used to support
decisions about what features to implement for the next release of a commercial

release planning system and a word processor system [142].

5. Feature selection in product line engineering. We have also applied RADAR
to a series of problems dealing with selecting an optimal set of features in a product
family. These includes: the public Bike Sharing System [177, 250]; Drupal system
—a PHP-based framework for web content management [228]; an e-commerce
System [176]; Amazon Web Service (AWS) elastic compute cloud [98]; Berkeley

Relational Database Management System [238].

Table 7.1 summarises these problems. They are characterised by different number of ob-

jectives; different number of decisions; different number of options per decision; different
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expressions (e.g., arithmetic, Boolean, AND-Refinements, OR-Refinements with single
option selection and OR-refinement with multiple option selections); different number
of constraints (e.g., excludes, requires and couples) between options of decisions; and

250

different design space sizes between 6 and alternative designs. For each model, we

assigned values to domain quantities and parameters as prescribed in previous works.

To show that RADAR’s modelling language and automated decision analysis technique
are applicable to real-world requirements and architecture decision problems, we have
applied RADAR to five real-world examples, one from each problem category described
in Section 7.2. The RADAR analysis of the other 7 problems can be found in appendix.
We also compare RADAR’s analysis results presented in this section with previous work
where such problems have been analysed. The problems considered in this section are

enumerated below:

1. The design of a financial fraud detection system [73, 75, 115].

2. The design of a system to coordinate the deployment of emergency response teams

85, 166, 173).

3. The decisions about system security policies on the leak of confidential information

50, 51].

4. Requirements subset selection for the future release of a commercial decision sup-

port system [142].

5. Optimal feature selection in a public Bike Sharing System [177, 250].

7.2.1 Plastic Card Fraud Detection System

7.2.1.1 Problem Statement

According to the financial fraud figures published in the first half of 2015 by the Financial
Fraud Action UK (FFA-UK), financial fraud losses on cards in the UK totalled £250m,
which represent 1% increase from 2014 [89]. The FFA-UK figures reveal increasing at-

tempts of criminals employing sophisticated techniques to target cardholders despite the
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fraud detection methods deployed by banks and other financial institutions. Undoubt-
edly, the heterogeneous nature of card transactions on most accounts contributes greatly

to the low accuracy and performance of most fraud detection methods [37].

Plastic card fraud detection systems (PCFDS) are deployed in banks to detect fraud-
ulent transactions on plastic cards [115]. PCFDS process authorised card transactions
and generate an alert when a transaction is suspected to be fraudulent so that further
investigation can be carried out on the card . Card transactions are either processed in
batches or real-time, and a card is blocked if the corresponding transaction performed

on it is confirmed fraudulent.

In Chapter 1, we already introduced the plastic card fraud detection system, its op-
timisation objective and the design decisions. The optimisation of plastic card fraud
detection systems typically include two conflicting objectives [115]: minimise the finan-
cial loss due to fraud and to minimise the fraud investigation costs. The design decisions
include: the transaction processing type with the option of using continuous (real-time)
or batch processing; the fraud detection method which can be two-class supervised clas-
sification method or a non-statistical rule-based method; If the classifier fraud detection
method is chosen, the alert threshold needs to be decided on; and the blocking policy
with the option of blocking an account once a fraud detection method flags a transac-
tion as suspected fraud, or only blocking the account after the suspected fraud has been

confirmed by human investigators.

7.2.1.2 RADAR Model

Modelling the Optimisation Objectives

The design of the plastic card fraud detection system has two key concerns, namely:
manimise the financial loss due to fraud and to minimise the manual fraud investigation

load.
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Objective Max FraudDetectionBenefit= EV (Benefit)
Objective Min InvestigationLoad = percentile(NbrAlerts, 95)
Benefit = BaseLineFinancialLoss - FinancialLoss
FinancialLoss = NbrCompromisedAccounts x AverageFraudValue x NbrFraudPerAccountBe-
foreBlocked
BaseLineFinancialLoss = deterministic(500000)
AverageFraudValue = normalCI(100, 1000)
NbrFraudPerAccountBeforeBlocked = decision(“blocking policy”){
“block first” : NbrFraudBeforeDetection

“investigate first” : NbrFraudBeforeDetection + NbrFraudDuringlnvestigation

The first objective of minimising financial loss is equivalent to maximising the benefits of
using a fraud detection system, where the benefits are defined as the reduction in finan-
cial loss with respect to the current system’s baseline. The formulation of the objective
FraudDetectionBenefit as a maximisation of expected benefits instead of minimisation

of expected loss is more convenient for RADAR’s information value analysis.

We model the second objective as minimising the alert investigation load defined here

as the 95" percentile of the number of alerts generated by the fraud detection system:

Objective Min InvestigationLoad = percentile(NbrAlerts, 95);

The percentile means that in 95 days out of 100, the number of alerts will be below the

investigation load.

Modelling Financial Loss

This plastic card fraud detection system analyses transactions after they have been
authorised by the bank. Therefore, if the fraud detection system detects a transaction
as fraudulent, the bank will still lose the fraudulent transaction amount (unless the
bank can prove the fraud is due to negligence from the cardholder or vendor, a concern

we will not consider in our model). The purpose of the fraud detection system is to
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block compromised card accounts as quickly as possible so as to prevent further fraud.
Plastic card fraud detection systems are thus evaluated by their ability to minimise

future financial losses.

We model the future financial loss as the product of the number of compromised ac-
counts, the average number of fraudulent transactions that will be authorised on an

account before it is blocked, and the average value of a fraudulent transaction:

FinancialLoss = NbrCompromisedAccounts x AverageFraudValue x NbrFraudPerAccountBe-

foreBlocked

The FinancialLoss is measured in £ per day, NbrCompromisedAccounts in number

accounts per day, and AverageFraudValue in £.

The number of compromised accounts is the total number of accounts multiplied by the

percentage of compromised accounts:

NbrCompromisedAccounts = NbrAccounts x CompromisedAccountRatio;

Both NbrAccounts and CompromisedAccountRatio are domain parameters that can be

estimated from past data. For our example, we asume the following:

NbrAccounts = normalCI(0.9x10°, 1.1x10°);

CompromisedAccountRatio = triangular(0, 0.0001, 0.0003);

The average fraudulent transaction value can also be estimated from past data. For

example:

AverageFraudValue = normalCI(100, 1000);

The average number of frauds on an account before it is blocked, NbrFraudPerAccount-
BeforeBlocked, depends on the blocking policy. If accounts are blocked as soon as the

fraud detection system suspects a fraud, the number of fraud before the account is
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blocked is the number of fraud before detection. If accounts are blocked only after sus-
pected frauds are confirmed by a fraud investigation, further frauds might occur during

investigation:

NbrFraudPerAccountBeforeBlocked = decision(“blocking policy” ){
”block first” : NbrFraudBeforeDetection;

”investigate first” : NbrFraudBeforeDetection + NbrFraudDuringlInvestigation;

The average number of frauds before detection, NbrFraudBeforeDetection, depends on
the processing type. For continuous processing, the mean number of fraud before detec-

tion is the infinite series:

1 * probability(fraud is detected after 1 fraudulent transactions)
+ 2 * probability (fraud is detected after 2 fraudulent transactions)
+ 3 * probability (fraud is detected after 3 fraudulent transactions)

T oo

The probability that a fraudulent transaction is detected is the true alert rate (the ratio
of the number of detected fraud over the number of fraud). Factoring the above series

yield that for continuous processing;:

NbrFraudBeforeDetection = 1/TrueAlertRate;

In batch processing, transactions are analysed at the end of every day. Batch processing
thus introduces a delay between a fraudulent transaction and its detections, a delay
during which additional fraud might occur, but because transactions are analysed in
groups rather than individually, the batch processing may have a better true alert rate
than the continuous processing. Assuming that batch processing adds on average a delay

of a day to fraud detection, our models assumes that:

NbrFraudBeforeDetection = NbrFraudsPerCompromised AccountPerDay x 1/BatchTrueAlertRate;
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Thus, the final equation for estimating NbrFraudBeforeDetection is:

NbrFraudBeforeDetection = decision(“processing type”) {
”continuous” : 1/ContinuousTrueAlertRate;

”batch” : NbrFraudPerCompromisedAccountPerDay/BatchTrueAlertRate;

The average number of frauds per day per compromised account is a domain parameter

that could be estimated from past data. For example:

NbrFraudsPerCompromisedAccountPerDay = normalCI(1, 20);

The average number of fraud per account committed during the investigation period is

also proportional to the number of frauds per compromised account per day.

NbrFraudDuringInvestigation = NbrFraudPerCompromised AccountPerDay x InvestigationDelay;

InvestigationDelay = triangular(1/24, 1/3, 1);

The true alerts rates depend on the fraud detection methods and their parameters. True
alerts rates are typically estimated by analysing the performance of the fraud detection

method on past data.

To keep the model simple, we assume the classifier has three settings high, medium, and
low that generates high, medium, or low number of alerts; and the rule-based approach

has a single fixed true alert rate.

For the continuous true alert rate:
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ContinuousTrueAlertRate = decision(“fraud detection method”){
“classifier” : ContinuousAlertThreshold;
“rule-based” : deterministic(0.75);
}
ContinuousAlertThreshold = decision(“alert threshold”){
“low” : triangular(0.75, 0.85, 0.95);
“medium” : triangular(0.65, 0.75, 0.85);

“high” : triangular(0.55, 0.65, 0.75);

For the batch true alert rate:

BatchTrueAlertRate = decision(“fraud detection method”){
“classifier” : BatchAlertThreshold;
“rule-based” : deterministic(0.80);
}
BatchAlertThreshold = decision(“alert threshold”){
“low” : triangular(0.75, 0.85, 0.95);
“medium” : triangular(0.65, 0.75, 0.85);

“high” : triangular(0.55, 0.65, 0.75);

Modelling Fraud Investigation Load

The number of generated alerts is the sum of the number of true alerts and false alerts:

NbrAlerts = NbrTrueAlerts + NbrFalseAlerts;

The number of true and false alerts are functions of the number of accounts, the per-

centage of compromised accounts, and the true and false alert rates:
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NbrTrueAlerts = NbrFraud * TrueAlertRate;

NbrFalseAlerts = NbrLegitTransactions * (1 — TrueNegativeRate);

The true alert rate (the ratio of the number true alert over the number of fraud, a.k.a.
sensitivity) and true negative rate (the ratio of the number of un-flagged legitimate
transactions over the total number of legitimate transactions, a.k.a. specificity) vary

with the processing type:

~

TrueAlertRate = decision(“processing type”){
“continuous” : ContinuousTrueAlertRate;
“batch” : BatchTrueAlertRate;

}

TrueNegativeRate = decision(“processing type”){
“continuous” : ContinuousTrueNegativeRate;

“batch” : BatchTrueNegativeRate;

Models of the continuous and batch true alert rates have already been defined. The

models for the continuous and batch true negative rate follow the same structure:
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ContinuousTrueNegativeRate = decision(“fraud detection method”){
“classifier” : ContinuousClassierTrueNegativeRate;
“rule-based” : deterministic(0,99);

}

ContinuousClassierTrueNegativeRate = decision(“continuous classifier threshold level”){
“low” : triangular(0.95, 0.99, 0.995);
“medium” : triangular(0.99, 0.995, 0.999);
“high” : triangular(0.995, 0.999, 0.9999);

}

BatchTrueNegativeRate = decision(“fraud detection method”){
“classifier” : BatchClassifierTrueNegativeRate;
“rule-based” : deterministic(0,995);

}

BatchClassifierTrueNegativeRate = decision(“batch classifier threshold level”){
“low” : triangular(0.9, 0.99, 0.995);
“medium” : triangular(0.99, 0.995, 0.999);

“high” : triangular(0.995, 0.999, 0.9999);

Finally, the number of fraudulent and legitimate transactions depends on the number

of accounts and average number of transactions per account:

NbrFraud = NbrAccounts * CompromisedAccountRatio * NbrFraudPerCompromised Account-
PerDay;

NbrLegitTransactions = NbrAccounts * NbrLegit TransactionsPer AccountPerDay;

The average number of accounts and compromised account ratio are model parameters
that we have already estimated above. The average number of legitimate and fraudulent
transactions per compromised account per day are also model parameters that could be

estimated from past data. For example:
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FIGURE 7.1: AND/OR refinement graph for the model variable Benefit.

NbrFraudPerCompromised AccountPerDay = triangular(0, 3, 10);

NbrLegitTransactionsPer AccountPerDay = triangular(0, 3, 10);

To help visualise the model structure, RADAR automatically generates the AND/OR
refinement graph and decision dependency graphs from the fraud detection model equa-
tions. Fig. 7.1 shows the partial AND/OR refinement graphs for the fraud detection
model starting from the model variable Benefit. Fig. 4.3 in Chapter 3 shows the de-
cisions; their corresponding options; and the dependency between a decision (threshold

level) and an option of another decision (classifier).

7.2.1.3 Analysis Results

The RADAR analysis of the plastic card fraud detection model is presented in Table 7.2,

which shows the results of the optimisation and information value analysis on the model.
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The first part of Table 7.2 is the optimisation analysis results, which shows that all
shortlisted solutions include the “block first” policy and “continuous processing” type.
This means that, in our model, these two options outperform the “investigate first”
policy and “batch processing” on both objectives. However, once these two options are
selected, the shortlist includes all possible combinations of fraud detection methods and
alert thresholds; each combination representing different tradeoffs between maximising
fraud detection benefit and minimising investigation load. To visualise such tradeoffs,
RADAR generates the graph in Fig. 7.2, plotting the objective values for the shortlised
solutions (shown squares at the top of the graph) and all other non shortlisted ones

(shown as circles).

The second part of Table 7.2 is the information value analysis results, which show that
the EVTPI for this problem is 220 and EVPPI for AverageFraudValue is 122. All other
parameters have EVTPI below 2. This means that in this model, the only parameter
worth investigating further before deciding between the shortlisted solutions is average

fraud value.

7.2.1.4 Comparison To Previous Analysis Approaches

Previous analyses on (plastic card) fraud detection systems have mainly focused on
developing various fraud detection methods and tools. Some of the widely used meth-
ods include: (i) Expert Systems that represent domain-specific knowledge in order to
solve detection problem by encoding fraud attacks as IF-THEN rules [15]; (ii) Artificial
Neural Networks which uses previously observed fraud patterns to detect future unseen
abnormal transactions [102]; (iii) Model-Based Reasoning technique in which frauds are
detected through observable attack activities using a database of attacks scenarios [99];
(iv) Data mining techniques where learning algorithms are used to construct detection
models from a large audit of transaction data [244]; (v) State Transition Analysis tech-
niques where attacks are modelled as series of state transactions of the software systems.
Fraud scenarios are represented by state transition diagram and actions that precedes
or initiates a fraud represent transitions between states [138]; (vi) Genetic Algorithms
technique which separates legitimate and fraudulent transactions using mathematical

models whose candidate solutions represent possible fraud scenarios [54].
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Optimisation Analysis

Objective: Max FraudDetectionBenefit

Objective: Min InvestigationLoad

SolutionSpace: 24

Minimal SolutionSet: 16

Shortlisted: 4

Nbr. Variables: 31

Nbr. Parameters: 19

Nbr. Decisions: 4

Runtime(s) : 0

ID blocking policy processing type fraud detection method alert threshold FraudDetectionBenefit InvestigationLoad
1 block first continuous rule-based 402799 82709
2 block first continuous classifier medium 402516 52139
3 block first continuous classifier high 387394 22467
4 block first continuous classifier low 414087 232479

Information Value Analysis

Objective: Max ENB
EVTPL: 220

Parameter EVPPI
AverageFraudValue 122
ContinuousAlertThreshold[medium)]
ContinuousAlertThreshold[low]
ContinuousClassierTrueNegativeRate[low]
ContinuousAlert Threshold[high]
BatchClassifierTrueNegativeRate[low]
BatchClassifierTrueNegativeRate[medium]
NbrAccounts

BatchAlertThreshold[medium]
NbrFraudPerCompromised AccountPerDay
BatchAlertThreshold[low]
CompromisedAccountRatio
BatchAlertThreshold[high]
ContinuousClassierTrueNegativeRate[high]|
NbrLegit TransactionsPer AccountPerDay
BatchClassifierTrueNegativeRate[high]
ContinuousClassierTrueNegativeRate[medium]|
InvestigationDelay

—
[
D

B eoleoNeoleoNeolNeoNReNeoNeoleoNeN el S =)

TABLE 7.2: Optimisation analysis and information value analysis results
for the plastic card fraud detection model.

Recently, Hand et al. [116] proposed a mathematical model for defining optimisation ob-
jectives and introduced performance evaluation criteria for plastic card fraud detection
systems. Duboc et al. [67, 74, 75] proposed a goal-oriented requirements engineering
technique to analyse the scalability of a commercial financial fraud detection system,

i.e., Searchspace’s Intelligent Enterprise Framework (IEF). The authors used KAOS
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Pareto front for the FDM
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FIGURE 7.2: Pareto front of the the plastic card fraud detection model analysis.

approach to elaborate the plastic card fraud detection model and to capture conflicts
between system goals. They defined the degrees of satisfaction of each goal using objec-
tive functions defined in terms of quality variables, which are random variables, defined
over probability space. Each goal was specified using a natural language definition and

a formal specification in linear temporal logic. Finally, alternative designs are selected
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using utility functions defined based on stakeholders’ preferences.

In this section, we have defined our plastic card fraud detection model following the
quantitative goal models presented by Duboc et al. [67, 75]. While Duboc’s approach
focused on analysing scalability of the fraud detection system, our approach seeks to
aid stakeholders in selecting the best alternative fraud detection system designs that
gives the best trade-off such that the optimisation objectives (i.e., maximising the fraud
detection benefit and minimsing the investigation load resulting from investigating a
fraud) are satisfied. In addition, the RADAR approach allows modellers to define differ-
ent model objectives and elaborate the objective definition using simple mathematical
equations. Unlike Duboc’s approach, RADAR provides automated tool support for de-
cision analysis and allows capturing uncertainties in domain quantities, a feature not

included in Duboc’s approach and analysis.

7.2.2 Emergency Response System

7.2.2.1 Problem Statement

The Emergency Response System, which is also known as the Situation Awareness Sys-
tem (SAS), was originally introduced by Naeem et al. [85], in their research presented
at the International Conference on Software Engineering (ICSE) in 2013, on the early
architecture selection problem under uncertainty. The SAS is a mobile software applica-
tion originally developed to deploy emergency staff in cases of emergencies, and allows

deployed individuals to share information about the status of an emergency situation.

Due to the proliferation of mobile technologies, standards, and platforms, the SAS stake-
holders decided to improve the system using some of the latest technologies. An example
of such improvements includes allowing deployed personnel to send and receive real-
time information about the status of an emergency situation (e.g., interactive overlay
on maps) and coordinate with one another (e.g., send reports, chat, and share video

streams).

The SAS project team, which consisted of academics and engineers from a government
agency, identified and described the design decisions and their corresponding alternative

options as presented in Table 7.3. These decisions impacts the system’s response time,
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Decisions

Alternative Options

Location Finding

GPS

Radio Triangulation

File Sharing Package Openlntents
In house

Report Synchronisation Explicit
Implicit

Chat Protocol

XMPP (Open Fire)
In house

Optimisation Objectives

Map Access

On demand (Google)
Cached on Server
Preloaded (ESRI)

Hardware Platform

Nexus 1 (HTC)
Droid (Motorola)

Connectivity

Wi-Fi

3G on Nexus 1
3G on Droid
Bluetooth

Database

MySQL
sqlLite

Architectural Pattern

Facade
Peer-to-peer
Push-based

Data Exchange format

XML
Compressed XML
Unformatted data

Battery Usage
Response Time
Reliability

Ramp up Time
Cost

Development Time
Deployment Time

TABLE 7.3: Overview of SAS Design decisions and optimisation goals [84]

reliability, ramp up time, cost, development time and deployment time, which ultimately

impacts the utility derived when the application delivers the intended goals and total

cost incurred in improving the SAS application. The team is faced with the decision of

selecting design options to be implemented in the new system that gives maximum net

benefit to the stakeholders at a reduced risk.

7.2.2.2 RADAR Model

Modelling the Optimisation Objectives

The primary decision objectives of the SAS model include two objectives: maximise the

expected net benefit and minimise the risk associated to each alternative architecture:
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Objective Max ENB = EV(NB);

Objective Min Risk = EV (ProjectRisk);

Modelling the Net Benefit

The Net Benefit, NB, derived from each alternative architecture is defined as:

NB = BatteryUsageWeight x BatteryUsagePreference +
ResponseTimeWeight x ResponseTimePreference +
ReliabilityWeight x ReliabilityPreference +
RampUpTimeWeight x RampUpTimePreference +
CostWeight x CostPreference +
DevelopmentTimeWeight x DevelopmentTimePreference +

DeploymentTimeWeight x DeploymentTimePreference ;
BatteryUsageWeight = deterministic(9);
ResponseTimeWeight = deterministic(7);

ReliabilityWeight = deterministic(3);
RampUpTimeWeight = deterministic(2);
CostWeight = deterministic(1);
DevelopmentTimeWeight = deterministic(2);

DeploymentTimeWeight = deterministic(2);

Modelling the Project Risk

ProjectRisk = 1 — ( (1 — BatteryUsageRisk) x
(I — ResponseTimeRisk) x

(1 — ReliabilityRisk) x

(1 — RampUpTimeRisk) x

(1 — CostRisk) x

(1 — DevelopmentTimeRisk) x

(1 — DeploymentTimeRisk)

)¢
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Modelling the Battery Usage

BatteryUsagePreference = (BatteryUsage - BatteryUsageWorst)/
(BatteryUsageBest - BatteryUsageWorst);
BatteryUsageRisk = Pr(BatteryUsage < BatteryUsageMust);
BatteryUsageBest = deterministic(24) ;
BatteryUsageWorst = deterministic(111) ;
BatteryUsageMust = deterministic(52);
BatteryUsage = BatteryUsageLocationFinding +
BatteryUsageFileSharing +
BatteryUsageReportSyncing +
BatteryUsageChatProtocol +
BatteryUsageMapAccess +
BatteryUsageHardwarePlatform +
BatteryUsageConnectivity +
BatteryUsageDataBase +
BatteryUsageArchitecturalPattern +
BatteryUsageDataExchangeFormat;
BatteryUsageLocationFinding = decision(” Location Finding”){
?GPS” : triangular(10, 10, 14);
“radio triangulation” : triangular(4, 5, 6);

}

BatteryUsageFileSharing = decision(”File Sharing”){
?Openlntent” : triangular(5, 5, 6);

”In house” : triangular(0, 0, 0);
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BatteryUsageReportSyncing = decision(”Report Syncing”){
?Explicit” : triangular(1, 3, 4);

?Implicit” : triangular(7, 8, 10);

}

BatteryUsageChatProtocol = decision(” Chat Protocol”){
”XMPP (Open Fire)” : triangular(4, 5, 6);

”In house” : triangular(2, 3, 12);

}

BatteryUsageMapAccess = decision(”Map Access” ){
”On Demand (Google)” : triangular(4, 4, 12);
”Cache on server” : triangular(4, 5, 12);

”Preloaded (ESRI)” : triangular(5, 7, 7);

}

BatteryUsageHardwarePlatform = decision(”Hardware Platform”){
”Nexus I (HTC)” : triangular(3, 5, 5);

”Droid (Motorola)” : triangular(4, 5, 14);

}

BatteryUsageConnectivity = decision(” Connectivity”){
"Wifi” : triangular(3, 4, 5);
73G on Nexus I” : triangular(1, 2, 3);

”3G on Droid” : triangular(2, 4, 5);
”Bluetooth” : triangular(2, 3, 15);

}

BatteryUsageDataBase = decision(”Database” ){
?MySQL” : triangular(3, 6, 7);
7sqLite” : triangular(5, 5, 10);

}

BatteryUsageArchitecturalPattern = decision(” Architectural Pattern”){ ”Peer-to-peer” :

triangular(7, 8, 10);

”Client-Server” : triangular(5, 6, 7);
?Push-based” : triangular(2, 4, 4);

}

BatteryUsageDataExchangeFormat = decision(”Data Exchange Format”){ ?XML” : tri-
angular(3, 4, 6);
”Compressed XML” : triangular(5, 5, 7);

”Unformatted data” : triangular(1, 1, 3);
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Modelling the Performance

ResponseTimePreference = (ResponseTime - ResponseTimeWorst)

/(ResponseTimeBest - ResponseTimeWorst);

ResponseTimeRisk = Pr(ResponseTime < ResponseTimeMust);
ResponseTimeBest = deterministic(203);
ResponseTimeWorst = deterministic(2850);

ResponseTimeMust = deterministic(882);

ResponseTime = ResponseTimeLocationFinding +
ResponseTimeFileSharing +
ResponseTimeReportSyncing +
ResponseTimeChatProtocol +
ResponseTimeMapAccess +
ResponseTimeHardwarePlatform +
ResponseTimeConnectivity +
ResponseTimeDataBase +
ResponseTimeArchitecturalPattern +
ResponseTimeDataExchangeFormat;

ResponseTimeLocationFinding = decision(” Location Finding”){

?GPS” : triangular(480, 500, 990);
’radio triangulation” : triangular(50, 100, 600);
}
ResponseTimeFileSharing = decision(”File Sharing”){
”Openlntent” : triangular(50, 65, 70);
”In house” : triangular(40, 60, 100);

}

ResponseTimeReportSyncing = decision(”Report Syncing”){
?Explicit” : triangular(20, 30, 50);

?Implicit” : triangular(1, 4, 10);
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ResponseTimeChatProtocol = decision(” Chat Protocol”){
?XMPP (Open Fire)” : triangular(40, 60, 70);

”In house” : triangular(30, 40, 200);

}

ResponseTimeMapAccess = decision(”Map Access” ){
”On Demand (Google)” : triangular(700, 800, 900);
”Cache on server” : triangular(1, 4, 500);

”Preloaded (ESRI)” : triangular(1, 2, 3);

}

ResponseTimeHardwarePlatform = decision(”Hardware Platform”){
”Nexus I (HTC)” : triangular(40, 60, 65);

”Droid (Motorola)” : triangular(50, 55, 200);

}

ResponseTimeConnectivity = decision(” Connectivity”){
"Wifi” : triangular(30, 35, 40);

”3G on Nexus I” : triangular(20, 25, 40);
”3G on Droid” : triangular(20, 25, 40);
”Bluetooth” : triangular(25, 30, 200);

}

ResponseTimeDataBase =decision(”Database”){
"MySQL” : triangular(20, 25, 30);
7sqLite” : triangular(8, 10, 50);

}

ResponseTimeArchitecturalPattern = decision(” Architectural Pattern”){
” Peer-to-peer” : triangular(10, 20, 30);
”Client-Server” : triangular(25, 30, 80);

”Push-based” : triangular(15, 25, 40);

}

ResponseTimeDataExchangeFormat = decision(”Data Exchange Format”){
?XML” : triangular(20, 35, 80);
”Compressed XML” : triangular(12, 20, 35);

”Unformatted data” : triangular(3, 10, 15);
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Modelling the Ramp Up Time

RampUpTimePreference = (RampUpTime - RampUpTimeWorst)
/(RampUpTimeBest - RampUpTimeWorst);

RampUpTimeRisk = Pr(RampUpTime < RampUpTimeMust);

RampUpTimeBest = deterministic(31);
RampUpTimeWorst = deterministic(83);
RampUpTimeMust = deterministic(58);

RampUpTime = RampUpTimeLocationFinding +
RampUpTimeFileSharing +
RampUpTimeReportSyncing +
RampUpTimeChatProtocol +
RampUpTimeMapAccess +
RampUpTimeHardwarePlatform +
RampUpTimeConnectivity +
RampUpTimeDataBase +
RampUpTimeArchitecturalPattern +

RampUpTimeDataExchangeFormat

RampUpTimeLocationFinding = decision(”Location Finding”){
?GPS” : triangular(5, 6, 7);
’radio triangulation” : triangular(7, 8, 9);

}

RampUpTimeFileSharing = decision(”File Sharing”){
”Openlntent” : triangular(8, 9, 10);
”In house” : triangular(5, 8, 12);

}

RampUpTimeReportSyncing = decision(” Report Syncing”){
?Explicit” : triangular(2, 2, 3);

?Implicit” : triangular(1, 2, 2);




Chapter 7. Evaluating RADAR’s Applicablity and Usefulness 143

RampUpTimeChatProtocol = decision(” Chat Protocol”){
?XMPP (Open Fire)” : triangular(5, 6, 7);

”In house” : triangular(3, 4, 14);

}

RampUpTimeMapAccess = decision(”Map Access”){
”On Demand (Google)” : triangular(7, 9, 10);

”Cache on server” : triangular(7, 9, 10);
?Preloaded (ESRI)” : triangular(10, 13, 14);

}

RampUpTimeHardwarePlatform = decision(”Hardware Platform”){
”Nexus I (HTC)” : deterministic(0);

”Droid (Motorola)” : deterministic(0);

}

RampUpTimeConnectivity = decision(” Connectivity”){
?Wifi” : triangular(1, 3, 4);

”3G on Nexus I” : triangular(1, 2, 3);
”3G on Droid” : triangular(1, 2, 3);
”Bluetooth” : triangular(1, 2, 8);

}

RampUpTimeDataBase = decision(”Database”){
"MySQL” : triangular(1, 2, 3);

”sqLite” : triangular(3, 4, 5);

}

RampUpTimeArchitecturalPattern = decision(” Architectural Pattern”){
”Peer-to-peer” : triangular(10, 11, 13);
”Client-Server” : triangular(7, 8, 10);

?Push-based” : triangular(9, 10, 12);

}

RampUpTimeDataExchangeFormat = decision(”Data Exchange Format”){
?XML” : triangular(2, 3, 4);
”Compressed XML” : triangular(4, 5, 6);

”Unformatted data” : triangular(1, 2, 3);
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Modelling the Cost

CostPreference = (Cost - CostWorst)/(CostBest - CostWorst);
CostRisk = Pr(Cost < CostMust);

CostBest = deterministic(550);
CostWorst = deterministic(2250);
CostMust = deterministic(1290);

Cost = CostLocationFinding +
CostFileSharing +
CostReportSyncing +
CostChatProtocol +
CostMapAccess +
CostHardwarePlatform +
CostConnectivity +
CostDataBase +
CostArchitecturalPattern +
CostDataExchangeFormat;

CostLocationFinding = decision(” Location Finding”){

”GPS” : triangular(50, 80 100);
’radio triangulation” : deterministic(0);

}

CostFileSharing = decision(”File Sharing” ){

”Openlntent” : deterministic(0);
”In house” : deterministic(0);
}
CostReportSyncing = decision(”Report Syncing” ){
”Explicit” : deterministic(0);
”Implicit” : deterministic(0);

}

CostChatProtocol = decision(” Chat Protocol”){
”?XMPP (Open Fire)” : deterministic(0);

”In house” : deterministic(0);
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CostMapAccess = decision(”Map Access”){

”?On Demand (Google)” : deterministic(0);
”Cache on server” : triangular(700, 900, 950);
”Preloaded (ESRI)” : triangular(100, 170, 200);

}

CostHardwarePlatform = decision(”Hardware Platform”){
”Nexus I (HTC)” : triangular(500, 525, 530);
”Droid (Motorola)” : triangular(520, 520, 600);

}

CostConnectivity = decision(” Connectivity”){
"Wifi” : triangular(70, 80, 85);
73G on Nexus I” : triangular(360, 400, 600);
”3G on Droid” : triangular(360, 400, 600);
”Bluetooth” : triangular(50, 70, 200);

}

CostDataBase = decision(”Database” ){

"MySQL” : deterministic(0);
”sqLite” : deterministic(0);

}

CostArchitecturalPattern = decision(” Architectural Pattern”){
”Peer-to-peer” : deterministic(0);

7 Client-Server” : deterministic(0);

?Push-based” : deterministic(0);
}

CostDataExchangeFormat = decision(”Data Exchange Format”){
?XML” : deterministic(0);
”Compressed XML” : deterministic(0);

”Unformatted data” : deterministic(0);
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Modelling the Development Time

DevelopmentTimePreference = (DevelopmentTime - Development TimeWorst)

/(DevelopmentTimeBest - Development TimeWorst);

DevelopmentTimeRisk = Pr(DevelopmentTime < DevelopmentTimeMust);
DevelopmentTimeBest = deterministic(61);
Development TimeWorst = deterministic(149);

DevelopmentTimeMust = deterministic(111);

DevelopmentTime = DevelopmentTimeLocationFinding +
Development TimeFileSharing +
DevelopmentTimeReportSyncing +
DevelopmentTimeChatProtocol +
DevelopmentTimeMapAccess +
Development TimeDataBase +
DevelopmentTimeArchitectural Pattern +
DevelopmentTimeDataExchangeFormat;

DevelopmentTimeLocationFinding = decision(” Location Finding”){

?GPS” : triangular(3, 4, 5);
’radio triangulation” : triangular(10, 14, 15);
}
DevelopmentTimeFileSharing = decision(”File Sharing”){
?Openlntent” : triangular(3, 4, 6);
”In house” : triangular(5, 6, 15);

}

DevelopmentTimeReportSyncing = decision(” Report Syncing” ){
?Explicit” : triangular(5, 6, 7);

?Implicit” : triangular(3, 4, 4);
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Development TimeChatProtocol = decision(” Chat Protocol”){
?XMPP (Open Fire)” : triangular(5, 6, 8);
”In house” : triangular(7, 8, 20);

}

DevelopmentTimeMapAccess = decision(”Map Access”){
?On Demand (Google)” : triangular(14, 18, 21);
”Cache on server” : triangular(14, 18, 21);
?Preloaded (ESRI)” : triangular(20, 27, 30);

}

DevelopmentTimeDataBase = decision(”Database” ){
"MySQL” : triangular(15, 17, 18);
7sqLite” :triangular(15, 16, 22);

}

DevelopmentTimeArchitecturalPattern = decision(” Architectural Pattern”){
”Peer-to-peer” : triangular(20, 26, 30);
”Client-Server” : triangular(15, 16, 20);
”Push-based” : triangular(20, 24, 25);

}

Development TimeDataExchangeFormat = decision(”Data Exchange Format”){
?XML” : triangular(6, 7, 8);
?Compressed XML” : triangular(7, 9, 10);

”Unformatted data” : triangular(3, 4, 5);
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Modelling the Deployment Time

DeploymentTimePreference = (DeploymentTime - DeploymentTimeWorst)
/(DeploymentTimeBest - DeploymentTimeWorst);

DeploymentTimeRisk = Pr(DeploymentTime < DeploymentTimeMust);

DeploymentTimeBest = deterministic(21) ;

DeploymentTimeWorst = deterministic(72) ;

DeploymentTimeMust = deterministic(38);

DeploymentTime = DeploymentTimeLocationFinding +
DeploymentTimeFileSharing +
DeploymentTimeReportSyncing +
DeploymentTimeChatProtocol +
DeploymentTimeMapAccess +
DeploymentTimeConnectivity +
DeploymentTimeDataBase +
DeploymentTimeArchitecturalPattern;
DeploymentTimeLocationFinding = decision(” Location Finding”){
"GPS” : triangular(2, 3, 3);
’radio triangulation” : triangular(1, 1, 2);

}

DeploymentTimeFileSharing = decision(”File Sharing”){
”Openlntent” : triangular(1, 1, 2);
”In house” : deterministic(0);

}

DeploymentTimeReportSyncing = decision(”Report Syncing”){
”Explicit” : triangular(1, 2, 2);
?Implicit” : deterministic(1);

}

DeploymentTimeChatProtocol = decision(” Chat Protocol”){
?XMPP (Open Fire)” : triangular(1, 1, 2);

”In house” : deterministic(0);
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DeploymentTimeMapAccess = decision(”Map Access”){
?On Demand (Google)” : deterministic(0);
”Cache on server” : triangular(3, 4, 5);
”Preloaded (ESRI)” : triangular(3, 4, 5);

}

DeploymentTimeConnectivity = decision(” Connectivity”){
?Wifi” : triangular(5, 6, 7);
73G on Nexus I” : triangular(2, 3, 4);
”3G on Droid” : triangular(2, 3, 4);
”Bluetooth” : triangular(4, 5, 15);

}

DeploymentTimeDataBase = decision(”Database” ){
"MySQL” : triangular(10, 15, 16);
7sqLite” : triangular(13, 14, 22);

}

DeploymentTimeArchitecturalPattern = decision(” Architectural Pattern”){
”Peer-to-peer” : triangular(14, 18, 21);
7 Client-Server” : triangular(7, 9, 10);

?Push-based” : triangular(8, 9, 12);

RADAR generates the AND/OR refinement graph and decision dependency graphs from
the SAS model equations to aid visualisation of model structure. Fig.7.3a shows the
partial AND/OR refinement graphs for the SAS model starting from the model variable
CostHardwarePlatform. Fig.7.3b shows the partial decision graph for the model which

consists of the decisions Map Access, Hardware Platform, Connectivity and Database.

7.2.2.3 Analysis Results

The RADAR analysis of the Situation Awareness System Decision Model (SAS) is pre-
sented in Table 7.4 and Table 7.5, which show the results of the optimisation and infor-

mation value analysis on the model, respectively.

Table 7.4 shows that all shortlisted solutions include options “radio triangulation” ,
“Open Intent” , “XMPP (Open Fire)” , “Preloaded (ESRI)” and “MySQL” . This
means that, in our model, the objective values of these five options, respectively, out-

perform the “GPS” option for decision Location Finding, the “In house” option for



Chapter 7. Evaluating RADAR’s Applicablity and Usefulness 150

(Cost_HardwarePlatform)

Hardware Platform

[Cost_HardwarePlatform[Droid (Motorola)]j [Cost_HardwarePlatform[Nexus 1 (HTC)D

(A) Partial AND/OR refinement graph for the model variable CostHardwarePlatform of the

SAS decision model.
o)
> G (D

(B) Partial decision dependency graph for the SAS decision model.

Hardware Platform
Droid (Motorola) @

On Demand (Google) Preloaded (ESRI)

FIGURE 7.3: Partial AND/OR refinement graph and decision dependency graph for
the SAS model.

decision File Sharing, “In house” option for decision Chat protocol, “Cache on Server”
and “On Demand (Google)” options for decision Map Access and “Sqlite” option for
decision Database on both objectives. However, once these five options are selected, the
shortlist includes all possible combinations of the decisions “Report Syncing”, “Hard-
ware Platform”, “Connectivity”, “Architectural pattern” and “Data Exchange Format”.
Each combination represents different tradeoffs between maximising Expected Net Ben-
efit (ENB) and minimising Risk. To visualise such tradeoffs, RADAR generates the graph
in Fig.7.4, plotting the objective values for the shortlised solutions (shown squares at

the top of the graph) and all other non shortlisted ones (shown as circles).

The information value analysis results is presented in Table 7.5, which shows that the
EVTPI for this problem is 0.04 and EVPPI for all the model parameters is approximately
0. This means that in this model, there is no parameter worth investigating further
before deciding between the shortlisted solutions to be selected for implementation.

Reducing uncertainty about any of the parameters would bring no value to the decision.



Optimisation Analysis

Objective:
Objective:

SolutionSpace
Minimal SolutionSet

Shortlisted

Nbr. Variables
Nbr. Parameters
Nbr. Decisions

Runtime(s)

—
|}

Location Finding

File Sharing

Report Syncing Chat Protocol

Map Access

Hardware Platform

Architectural Pattern Data Exchange Format

ENB

Risk

© 00 DU WY~

radio triangulation
radio triangulation
radio triangulation
radio triangulation
radio triangulation
radio triangulation
radio triangulation
radio triangulation
radio triangulation
radio triangulation
radio triangulation
radio triangulation
radio triangulation
radio triangulation
radio triangulation

Openlntent
Openlntent
OpenlIntent
Openlntent
Openlntent
OpenlIntent
Openlntent
Openlntent
OpenlIntent
Openlntent
Openlntent
Openlntent
OpenlIntent
Openlntent
Openlntent

Implicit
Implicit
Explicit
Implicit
Implicit
Implicit
Implicit
Implicit
Implicit
Explicit
Explicit
Implicit
Implicit
Implicit
Explicit

XMPP (Open Fire)
XMPP (Open Fire)
XMPP (Open Fire)
XMPP (Open Fire)
XMPP (Open Fire)
XMPP (Open Fire)
XMPP (Open Fire)
XMPP (Open Fire)
XMPP (Open Fire)
XMPP (Open Fire)
XMPP (Open Fire)
XMPP (Open Fire)
XMPP (Open Fire)
XMPP (Open Fire)
XMPP (Open Fire)

Preloaded (ESRI)
Preloaded (ESRI)
Preloaded (ESRI)
Preloaded (ESRI)
Preloaded (ESRI)
Preloaded (ESRI)
Preloaded (ESRI)
Preloaded (ESRI)
Preloaded (ESRI)
Preloaded (ESRI)
Preloaded (ESRI)
Preloaded (ESRI)
Preloaded (ESRI)
Preloaded (ESRI)
Preloaded (ESRI)

Droid (Motorola)
Nexus I (HTC)
Nexus I (HTC)
Droid (Motorola)
Droid (Motorola)
Droid (Motorola)
Nexus I (HTC)
Nexus I (HTC)
Droid (Motorola)
Nexus (HTC)
Nexus I (HTC)
Droid (Motorola)
Droid (Motorola)
Nexus I (HTC)
Droid (Motorola)

Max ENB

Min Risk

6912

6912

15

117

137

10

111
Connectivity —Database
Wifi MySQL
3G on Droid MySQL
3G on Droid MySQL
3G on Droid MySQL
3G on Droid MySQL
Wifi MySQL
3G on Nexus MySQL
3G on Droid MySQL
3G on Nexus MySQL
3G on Droid MySQL
3G on Droid MySQL
Wifi MySQL
3G on Droid MySQL
Wifi MySQL
3G on Droid MySQL

Client-Server
Client-Server
Client-Server
Client-Server
Client-Server
Client-Server
Client-Server
Push-based

Client-Server
Client-Server
Client-Server
Client-Server
Client-Server
Client-Server
Client-Server

Compressed XML
Unformatted data
Unformatted data
XML

Compressed XML
XML

Unformatted data
Unformatted data
Unformatted data
XML

Compressed XML
Unformatted data
Unformatted data
Unformatted data
Unformatted data

16.37529833
15.96290754

15.1679976
16.24388763
16.32688836

16.2922976
15.79036997
15.50738273
15.99582951
15.24351815
15.32651889
16.21677705
16.16836707
16.01131751
15.37345714

0.9997
0.5634
0.039
0.9863
0.9983
0.9961
0.4258
0.417
0.7475
0.06
0.1079
0.9429
0.8782
0.7632
0.1928

TABLE 7.4: Optimisation analysis results for the Situation Awareness System analysis model
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Information Value Analysis

Objective: Max ENB
EVTPI: 0.04

Parameter EVPPI | Parameter EVPPI | Parameter EVPPI
BatteryUsageLocationFinding[GPS] 0 | Reliability ArchitecturalPattern[Push-based| 0 | ReliabilityLocationFinding[GPS] 0
BatteryUsageLocationFinding[radio triangulation] 0 | RampUpTimeLocationFinding[GPS] 0 | DevelopmentTimeDataExchangeFormat[Compressed XML] 0
BatteryUsageFileSharing[OpenIntent] 0 | RampUpTimeLocationFinding[radio triangulation] 0 | ReliabilityLocationFinding[radio triangulation] 0
BatteryUsageFileSharing[In house] 0 | RampUpTimeFileSharing[OpenIntent| 0 | Development TimeDataExchangeFormat[Unformatted data] 0
BatteryUsageReportSyncing[Explicit] 0 | RampUpTimeFileSharing[In house] 0 | ReliabilityFileSharing{OpenIntent] 0
BatteryUsageReportSyncing[Implicit] 0 | RampUpTimeReportSyncing[Explicit] 0 | DeploymentTimeLocationFinding[GPS] 0
BatteryUsageChatProtocol[ XMPP (Open Fire)] 0 | RampUpTimeReportSyncing[Implicit] 0 | ReliabilityFileSharing[In house] 0
BatteryUsageChatProtocol|[In house] 0 | RampUpTimeChatProtocol XMPP (Open Fire)] 0 | DeploymentTimeFileSharing[OpenIntent) 0
DeploymentTimeFileSharing[OpenIntent] 0 | DeploymentTimeLocationFinding[radio triangulation] 0 | DeploymentTimeReportSyncing[Explicit] 0
BatteryUsageMapAccess|On Demand (Google)] 0 | RampUpTimeChatProtocol[In house] 0 | ReliabilityReportSyncing[Explicit] 0
BatteryUsageMapAccess[Cache on server] 0 | RampUpTimeMapAccess|On Demand (Google)] 0 | ReliabilityReportSyncing[Implicit] 0
BatteryUsageMapAccess[Preloaded (ESRI)] 0 | RampUpTimeMapAccess[Cache on server] 0 | DeploymentTimeChatProtocol XMPP (Open Fire)] 0
BatteryUsageHardwarePlatform[Nexus I (HTC)] 0 | RampUpTimeMapAccess[Preloaded (ESRI)] 0 | ReliabilityChatProtocol[In house] 0
BatteryUsageHardwarePlatform[Droid (Motorola)] 0 | RampUpTimeConnectivity[Wifi] 0 | DeploymentTimeMapAccess[Cache on server] 0
BatteryUsageConnectivity[Wifi] 0 | RampUpTimeConnectivity[3G on Nexus I] 0 | ReliabilityMapAccess[On Demand (Google)] 0
Battery UsageConnectivity[3G on Nexus I] 0 | RampUpTimeConnectivity[3G on Droid] 0 | DeploymentTimeMapAccess[Preloaded (ESRI)] 0
BatteryUsageConnectivity[3G on Droid] 0 | RampUpTimeConnectivity[Bluetooth] 0 | DeploymentTimeConnectivity[Wifi] 0
BatteryUsageConnectivity[Bluetooth] 0 | RampUpTimeDataBase[MySQL] 0
BatteryUsageDataBase[MySQL] 0 | RampUpTimeDataBase[sqLite] 0
BatteryUsageDataBase[sqLite] 0 | RampUpTimeArchitecturalPattern[Peer-to-peer] 0 | ReliabilityMapAccess[Cache on server] 0
BatteryUsageArchitecturalPattern[Peer-to-peer] 0 | RampUpTimeArchitecturalPattern[Client-Server] 0 | ReliabilityMapAccess[Preloaded (ESRI)] 0
BatteryUsageArchitecturalPattern[Client-Server] 0 | RampUpTimeArchitecturalPattern[Push-based] 0 | DeploymentTimeConnectivity[3G on Nexus I 0
BatteryUsageArchitecturalPattern[Push-based] 0 | RampUpTimeDataExchangeFormat[XML] 0 | ReliabilityConnectivity[Wifi] 0
BatteryUsageDataExchangeFormat[XML)] 0 | RampUpTimeDataExchangeFormat[Compressed XML)] 0 | DeploymentTimeConnectivity[3G on Droid] 0
BatteryUsageDataExchangeFormat[Compressed XML] 0 | RampUpTimeDataExchangeFormat[Unformatted data) 0 | ReliabilityConnectivity[3G on Nexus I] 0
BatteryUsageDataExchangeFormat[Unformatted datal 0 | CostLocationFinding[GPS)] 0 | DeploymentTimeConnectivity[Bluetooth] 0
ResponseTimeLocationFinding[GPS] 0 | CostMapAccess|Cache on server] 0 | ReliabilityConnectivity[3G on Droid] 0
ResponseTimeLocationFinding[radio triangulation] 0 | CostMapAccess[Preloaded (ESRI)] 0 | DeploymentTimeDataBase[MySQL] 0
ResponseTimeFileSharing[Openlntent] 0 | CostHardwarePlatform[Nexus I (HTC)] 0 | ReliabilityConnectivity[Bluetooth] 0
ResponseTimeFileSharing[In house] 0 | CostHardwarePlatform[Droid (Motorola)] 0 | DeploymentTimeDataBase[sqLite] 0
ResponseTimeReportSyncing[Explicit] 0 | CostConnectivity[Wifi] 0 | ReliabilityDataBase[MySQL] 0
ResponseTimeReportSyncing[Implicit] 0 | CostConnectivity[3G on Nexus I] 0 | DeploymentTimeArchitecturalPattern|Peer-to-peer] 0
ResponseTimeChatProtocol XMPP (Open Fire)] 0 | CostConnectivity[3G on Droid] 0 | DeploymentTimeArchitecturalPattern|[Client-Server] 0
ResponseTimeChatProtocol[In house] 0 | CostConnectivity[Bluetooth] 0 | ReliabilityDataBase[sqLite] 0
ResponseTimeMapAccess[On Demand (Google)] 0 | DevelopmentTimeLocationFinding[GPS)] 0 | Reliability ArchitecturalPattern[Peer-to-peer| 0
ResponseTimeMapAccess[Cache on server] 0 | DevelopmentTimeLocationFinding[radio triangulation] 0 | DeploymentTimeArchitecturalPattern[Push-based] 0
ResponseTimeMapAccess[Preloaded (ESRI)] 0 | DevelopmentTimeFileSharing[OpenIntent] 0 | Reliability ArchitecturalPattern|[Client-Server] 0
ResponseTimeHardwarePlatform[Nexus I (HTC)] 0 | DevelopmentTimeFileSharing[In house] 0
ResponseTimeHardwarePlatform[Droid (Motorola)] 0 | DevelopmentTimeReportSyncing[Explicit] 0
ResponseTimeConnectivity[Wifi] 0 | DevelopmentTimeReportSyncing[Implicit] 0
ResponseTimeConnectivity[3G on Nexus I 0 | DevelopmentTimeChatProtocol XMPP (Open Fire)] 0
ResponseTimeConnectivity[3G on Droid] 0 | DevelopmentTimeChatProtocol[In house] 0
ResponseTimeConnectivity [Bluetooth] 0 | DevelopmentTimeMapAccess[On Demand (Google)] 0
ResponseTimeDataBase[MySQL| 0 | DevelopmentTimeMapAccess[Cache on server] 0
ResponseTimeDataBase[sqLite] 0 | DevelopmentTimeMapAccess[Preloaded (ESRI)] 0
ResponseTimeArchitecturalPattern[Peer-to-peer] 0 | DevelopmentTimeDataBase[MySQL] 0
ResponseTimeArchitecturalPattern[Client-Server] 0 | DevelopmentTimeDataBase[sqLite] 0
ResponseTimeArchitecturalPattern[Push-based] 0 | DevelopmentTimeArchitecturalPattern|Peer-to-peer] 0
ResponseTimeDataExchangeFormat[XML] 0 | DevelopmentTimeArchitecturalPattern|[Client-Server] 0
ResponseTimeDataExchangeFormat[Compressed XML] 0 | DevelopmentTimeArchitecturalPattern[Push-based] 0
ResponseTimeDataExchangeFormat|Unformatted data] 0 | DevelopmentTimeDataExchangeFormat[XML] 0

TABLE 7.5: Information Value Analysis for the Situation Awareness System Model.
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7.2.2.4 Comparison To Previous Analysis Approaches

Esfahani et al.[84] was the first to use the Emergency Response System to evaluate the
GuideArch approach. GuideArch, a fuzzy logic-based framework, explores architectural
solution space in order to aid informed decisions in the presence of uncertainty. Esfahani
et al. optimised the design of an Emergency Response System by considering seven
system properties, such as development time, battery usage, response time, cost, ramp

uptime and reliability.

Letier et al.[166] also used the Emergency Response System in evaluating the Multi-
Objective Decision Analyser (MODA) —a statistical decision analysis technique and
Pareto-based multi-objective optimisation to early requirements and architecture de-
sign decisions. Letier et al. optimised the design of an Emergency Response System by
considering the same system properties as Esfahani et al.[84]. They defined the opti-
misation objectives as maximising the project utility and minimising the project failure

risk.

The RADAR model presented for the SAS model in previous pages is similar to the

equations and parameter values in the GuideArch and MODA models.

With respect to the decision analysis approach, RADAR’s analysis approach differs from
GuideArch, but similar to that of MODA. GuideArch shortlists its optimal solutions
by comparing candidate architectures using fuzzy logic values that are not falsifiable or
cannot be validated empirically. Like RADAR, MODA uses exhaustive search to short-
list the Pareto optimal solutions and computes expected value of perfect and imperfect
information. Both MODA and RADAR shortlisted solutions (using exhaustive search)
that have the same alternative options per decision. Their shortlisted solutions agree on
the selected options for four decisions, such as “Location finding”, “Report Syncing”,
Map Access” and “Database”. The remaining decisions agree on at least one alterna-
tive option. In terms of the analysis runtimes, RADAR significantly outperforms MODA:
RADAR took less than 2 minutes to analyse the SAS model while MODA took 5 minutes
and required manual coding and significant optimisation of the simulation function in
R (without optimisation, the simulation of the whole search-space would have taken 7

hours). We also observed similar values for the EVIPI: RADAR and MODA estimate
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FIGURE 7.4: Pareto front of the the emergency response system model analysis.

the EVTPI as 0.04 and 0.05, respectively. These results help to validate the correct-
ness of our automated decision analysis technique and show the superiority of RADAR’s

automated approach over the manual approach used in MODA.
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7.2.3 Building Security Policy Decision System

7.2.3.1 Problem Statement

Building security policies allows organisations to restrict access to confidential informa-
tion only to authorised personnel, i.e. employees of the organisation. Our modelling
and analysis of this problem is motivated by and based on previous studies of improving
security policy decisions with models [51] and modelling and simulating systems security

policy [50].

The organisation is concerned about its employees habit of sharing documents through
a globally shared drive. Storing files on the shared drive facilitates the employees work
but increases the risk and extent of insiders leaks. The organisation is considering rec-
ommending its employees to share documents through emails or portable media devices

instead of using the shared drive.

The organisation is also concerned by theft of documents stored on portable media
devices (e.g. USB, CD). The model considers only theft of such devices inside the
organisation premises. To prevent thieves from entering the building, its entrance is
equipped with automated gates where employees have to swipe their access card to
enter the building. Because of tailgating risks, the organisation is considering adding a

security guard to reinforce security at the building entrance.

The building security policy model decisions are thus:

e the document sharing policy decision in which the organisation recommends that
employees use “email” or “external media” or the use of “shared drive”. In our

model, we refer to “shared drive” as Neutral.

e the building entry security decision that can be “not-guarded”, in which case the
organisation does not deploy a security person at the entrance of the company and

“guarded” in which a security person is deployed at the entrance.

These decisions impacts the cost incurred by the organisation when confidential informa-
tion are leaked. The organisation wants to minimise the costs of disclosure and minimise

the chances of disclosure with very high costs (above £1m)
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7.2.3.2 RADAR Model

Modelling the Optimisation Objectives

The primary decision objectives are related to the uncertain costs associated to the

disclosure of confidential documents:

Objective Min ExpectedCostOfDisclosures = EV (CostOfDisclosures);

Objective Min RiskOfCatastrophicDisclosures = Pr(CostOfDisclosure > 10°);

Modelling Costs of Disclosures

Our model assumes that there are three categories of confidential documents, i.e. high,
medium, and low confidentiality, with different costs to the organisation, if they are
leaked. Our model assumes that the cost of document disclosure is a function of number

of leaked confidential documents and the cost of the leaked documents:

CostOfDisclosures =
NbrHighConfidentialityLeaks x CostHighConfidentialityLeak
+ NbrMediumConfidentialityLeaks x CostMediumConfidentiality Leak

+ NbrLowConfidentialityLeaks x CostLowConfidentialityLeak;

The number of leaked confidential documents, for each category of confidential docu-
ments, is the product of the number of leaked documents multiplied by the ratio of

confidential documents leaked:

NbrHighConfidentialityLeaks = NbrLeakedDoc x RatioHighConfientialityDocs;
NbrMediumConfidentiality Leaks =
NbrLeakedDoc x RatioMediumConfientialityDocs;

NbrLowConfidentialityLeaks = NbrLeakedDoc x RatioLowConfientialityDocs;

Each document confidentiality category has some uncertainty about the ratio of confi-

dential documents leaked and uncertainty in cost of disclosure:
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RatioHighConfidentialityDocs = uniform(0.5%, 2%);
RatioMediumConfidentialityDocs =uniform(4%, 10%);
RatioLowConfidentialityDocs = uniform(30%, 60%);
CostHighConfidentialityLeak = normalCI(0.5 % 10°, 5 % 10°);
CostMediumConfidentialityLeak = normalCI(10*,5 * 10%);

CostLowConfidentialityLeak = normalCI(10%,10%);

Modelling Documents Leaks

Documents can be leaked by insiders or stolen by outsiders who managed to gain access

to the building.

NbrLeakedDoc = NbrDocsLeakedBylInsiders x NbrDocsStolenByOutsiders;

Modelling Insiders’ Leaks

The number of documents leaked by an insider is a function of the probability of an
insider leak, ProbabilityInsidersLeak , the number of documents on shared drive, Nbr-
DocsOnSharedDrive and the SharedDriveLeakRange, which is the portion of documents

on the shared drive that are leaked by insider when a leaks occurs:

s ~

NbrDocsLeakedBylInsiders = ProbabilityInsidersLeak x NbrDocsOnSharedDrive
X SharedDriveLeakRange;

ProbabilityInsidersLeak = deterministic(1073);

SharedDriveLeakRange = triangular(10%, 50%, 100%);

Modelling Attackers’ Intrusions

The attackers’ intrusion model attempts to predict the number of documents stolen by
outsiders over a year based on whether or not the building security gates are guarded
or not. The number of documents stolen over a year depends on the number of intru-

sions during the year and the number of documents stolen during each intrusion, which
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depends on the number of external media in use and the number of documents stored

in each media.

7~

NbrDocsStolenByOutsiders =
NbrOfficeIntrustions x NbrDocsStolenPerIntrusion;
NbrOfficeIntrusions = decision(”Building entry security”) {
“not guarded” : triangular(0, 3, 6);
?guarded” : triangular(0, 1, 2);
}
NbrDocsStolenPerIntrusion =
NbrExternalMediaStolenPerIntrusion x NbrDocsPerExternalMedia
NbrExternalMediaStolenPerIntrusion =

NbrExternalMedialnUse x PercentageMediaStolenPerInstrusion

PercentageMediaStolenPerInstrusion = triangular(0, 1%, 10%);

Modelling Documents Sharing

The number of documents on the shared drive and on external media depends on the
organisations document sharing policy. Data about the number of documents on shared

drive and on external media come from Table 1 in [50].

NbrDocsOnSharedDrive = decision(” Document Sharing Policy”){
”Neutral”: deterministic(143);
”Recommend Email”: deterministic(44);
”Recommend External Media”: deterministic(91);

}

NbrDocsOnExternalMedia = decision(” Document Sharing Policy” ){
”Neutral”: deterministic(0);
”Recommend Email”: deterministic(0);

”Recommend External Media”: deterministic(52);

NbrExternalMedialnUse = NbrDocsOnExternalMedia / NbrDocsPerMedia,

NbrDocsPerMedia = triangular(0, 5, 10) ;

To help visualise the model structure, RADAR generates the AND/OR refinement graph

and decision dependency graphs from the building security model equations. Fig. 7.5
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shows the partial AND/OR refinement graphs for the building security model starting

from the model variable CostOfDisclosure. Fig. 7.6 shows the decisions decision graph.
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FIGURE 7.6: Decision dependency graph for the building security decision model.

7.2.3.3 Analysis Results

The RADAR analysis of the Building Security Policy Decision Model (BSPDM) is pre-
sented in Table 7.6, which shows the results of the optimisation and information value

analysis on the model.

The first part of Table 7.6 is the optimisation analysis results, which show that the two
shortlisted solutions (those that are Pareto optimal) include “recommend email” for the
document sharing policy decision. This means that, in our model, the objective value
of the option share documents by email outperforms both the “neutral” and “external
media” in both objectives. But when the “recommend email” option is selected, the
shortlist includes both the “guard” and “not guarded” options of the building entry se-
curity decision; each combination representing a different tradeoffs between minimising
the expected cost of disclose, EzpectedCostOfDisclosures and minising the risk of catas-
trophic disclosure, RiskOfCatastrophicDisclosures. To visualise such tradeoffs, RADAR
generates the graph in Fig. 7.7, plotting the objective values for the shortlised solutions

(shown in red) and all other non shortlisted ones (shown in green).

The second part of Table 7.6 is the information value analysis results, which shows
that the EVTPI for this problem is 0 and EVPPI for all the model parameters are 0.
This means that in this model, there is no parameter worth investigating further before
deciding between the shortlisted solutions to be selected for implementation. Reducing

uncertainty about any of the parameters would bring no value to the decision.

7.2.3.4 Comparison To Previous Analysis Approaches

Caulfield et al. used the Building Security Policy System in their work on improving

security policy decisions with models [49] and modelling and simulating security policy
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FIGURE 7.7: Pareto front of the the building security policy model analysis.

system design choices [48].

Caulfield et al. [48] developed a modelling methodology and framework for predicting

the impact and effectiveness of alternative security policy choices on an organisation’s
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Optimisation Analysis

Objective: Max ExpectedCostOfDisclosures

Objective: Min RiskOfCatastrophicDisclosures

SolutionSpace 6

Minimal SolutionSet 6

Shortlisted 2

Nbr. Variables 23

Nbr. Parameters 11

Nbr. Decisions 2

Runtime(s) 0

ID Building entry security Document Sharing Policy ExpectedCostOfDisclosures  RiskOfCatastrophicDisclosures  Optimal

1 not guarded Recommend Email 904 0 Yes

2 guarded Recommend Email 904 0 Yes

3 guarded Recommend External Media 1052645 0.2985 No

4 not guarded Recommend External Media 3181382 0.6464 No

5 not guarded Neutral 2937 0 No

6 guarded Neutral 2937 0 No

Information Value Analysis

Objective: Max ENB
EVTPL: 0

Parameter

EVPPI

RatioHighConfidentialityDocs
RatioMediumConfidentialityDocs
RatioLowConfidentialityDocs
CostHighConfidentialityLeak
CostMediumConfidentialityLeak
CostLowConfidentialityLeak
SharedDriveLeakRange
NbrOfficeIntrusions[not guarded]
NbrOfficeIntrusions|guarded]
PercentageMediaStolenPerInstrusion
NbrDocsPerMedia

OO OO OO oo oo oo

operations.

ing security policy analysis model

TABLE 7.6: Optimisation analysis and information value analysis results for the build-

They used approaches from mathematical modelling and simulation, in-

formation security and economics to model and analyse security decision models. The

models developed in [48] considers three different areas of an organisation’s security:

tailgating behaviour of staffs and intruders at the entrance to the building; confidential

documents sharing between employees within the office, when the usual, secure sharing

method is unavailable; and loss of employees devices, possibly containing confidential

information. In their approach, the decision about which alternative system design to

select is evaluated through simulation (10* executions) using a utility function defined

below as:
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Utility = Z Wq * fo x (Vg — Uy) (7.1)

acA
where A is a set of attributes stakeholders care about, e.g, the number of documents
added to the global share and the number of documents found by intruders inside the
office; w, represents weights assigned to attributes denoting importance to the user; v,
and U, are the actual and target values of attribute a; and f, captures how stakeholders’

care about the difference in between the actual and target values for attribute a.

The RADAR model presented for the building security policy system model differs from
that presented by Caulfield et al. [48], but uses similar model parameter values. Their
model uses pre-defined, fixed model equations to assign abstract values to stakeholder
attributes in the decision model. Our models focus on elaborating domain specific deci-
sion problems within the organisation security context. However, the solutions suggested
by RADAR’s are similar to that obtained in Caulfield et al. [48]: both approaches suggest
the organisation recommend to their employees to use the “email” policy irrespective of

whether the organisation deploys a guard or not.

7.2.4 Multi-Objective Next Release Problem
7.2.4.1 Problem Statement

The requirement subset selection problem addresses the question of “what features to
build in the next release of a software system”. This type of problem is commonly
referred to as the Next Release Problem (NRP). Generally, the NRP consists in selecting
among N requirements, a subset of requirements to be implemented in the next release
of a product [30, 283, 285]. The problem has a solution space of 2N solutions, where N

is the total number of candidate requirements.

Bagnal et al. formulated a mathematical model for the NRP [30]. Zhang et al. [283] re-
formulated this problem to a Multi-Objective optimisation problem with two objectives
—maximising value and minimising cost. In Zhang’s NRP model, a set of requirements,
R={ry,ro,..... ,Tn }, with respective costs, C = { costy, costa, ...... ,cost, } are requested

to be added to an (existing) software product in order to satisfy a set of stakeholders
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(customers), S = {si, s2, ...., Sm}. These stakeholders have individual degree of impor-
tance to the company denoted by a Weight, W = {wy, we, ..., w,, }, where w; € [0, 1] and
>, w;= 1. In this model, the author assumed that requirements are independent and
that a customer places different level of importance to each requirement. Each stake-
holder s € S assigns a value denoted by value(r;, s;) to a requirement r;(1 < j < n),
where value(rj, s;) > 0 if stakeholder ¢ desires implementation of the requirement j and
0 otherwise. The value derived by a company for a given set of requirements can be

represented using the matrix below:

Vi1 V12t U1 ot Ulp
’[)271 v2’2 P U2,i .« .. 02’71
Value = (7.2)
Vi1 V52 o Y5t U
Um,1 Um2 Um3 ... Umn

The overall value or importance for a given requirement 7;(1 < j < n) is regarded as

the Score and is defined below [283]:

Scorej = Z w;.value(r;, s;) (7.3)
i=1

The cost vector for the set of requirements r;(1 < j < n) is given as

Cost = {costy, costa, ...... , costy} (7.4)

In Zhang’s model, the optimistaion objectives are:

n

Mazimise Z score;.x; (7.5)
j=1
n

Minimise Z cost;.x; (7.6)

j=1
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where z; is the decision vector & = {x1,x2,...,x,} € {0,1} that determines if a require-

ment is selected or not.

A key factor that also impacts requirements subset selection activity is the inter-dependency
relationship between requirements. Such relationships might be that some requirements
are coupled, i.e., they have to be implemented simultaneously. In other cases, a re-
quirement requires another requirement to be fulfilled before it can be implemented. To
address this concern, NRP variants extend the problem by including dependency con-
straints between requirements [285]. These constraint relationships, for example, include

AND, OR and precedence constraint relationships.

We illustrate the application of RADAR on the NRP of a commercial Release Planning
Tool with 25 requirements [142] as shown Table 7.1. The appendix section presents
another application of release planning, i.e., we apply release planning method to plan

future releases of a Word Processor that has 50 requirements.

7.2.4.2 RADAR Model

In the commercial Release Planning Tool [142], the stakeholders are interested in max-
imising the value derived from implementing the requirements and minimising imple-
mentation costs which includes the design cost, development cost, the cost accrued from
external tool development, and the cost due to software testing. The requirements have
dependency (requires and coupling) relationships between them. The datasets used in
developing our model is provided in [142] and contains information about the require-
ments cost estimates, requirements dependencies, available budget and expected revenue

and value.

Modelling Optimisation Objectives

The optimisation objectives for the release planner are given below:
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Objective Max ExpectedNetBenefit = EV(NB);

Objective Min ProjectRisk = Pr(ProjectFailure);

Objective Max ExpectedFrequencyOfUse = EV (FrequencyOfUse);
Objective Min ExpectedDissatisfaction = EV (Dissatisfaction);

Objective Min ExpectedRequirementVolatility = EV (Volatility);

In the above expression, the first objective is a maximisation of the expected net benefit
(ExpectedNetBenefit) from selecting a subset of requirements, and the second objective
is a minimisation of the project risk (ProjectRisk). The third objective maximises the
Frequency of Use i.e. we are interested in requirements that have been implemented
before or used frequently. The fourth objective is a minimisation of stakeholders dissat-
isfaction. The fifth objective states that the we want to minimise requirements changes

after the basic set have been agreed.

The net benefit of implementing any subset of requirements is defined below:

NB = Value - Cost;

The Value derived from the subset of requirements implemented is estimated considering

uncertainty in the perceived values of each requirements by the stakeholders.

We model the Value as below:
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Value = decision-subset(+) (?Next Release” ){
”Hierarchical dependencies” : normalCI(200,400);
” Grouping of features” : normalCI(100,200);
”Pre-assignments” : normalCI(300,600);
”Feature dependencies” : normalCI(600,700);
” Feasibility analysis” : normalCI(200,500);
”Flexible number of releases” : normalCI(200,400);
”Flexible number and type of criteria” : normalCI(200,600);
”Fexible number and type of resources” : normalCI(100,900);
”Type 1 Stakekholder consensus driven planning” : normalCI(100,200);
”Type 2 Financially driven planning” : normalCI(800,900);
”Ranking of features based on different criteria” : normalCI(200,400);
”Similarity analysis” : normalCI(200,900);
”Dual charts using ranking and disagreement analysis”: normalCI(200,400);
” Comparison of priorities between stakeholders”: normalCI(100,300);
?Import manual plan” : normalCI(400,500);
”Import of project data” : triangular(400,500,900);
?Re-import of updated project data” : triangular(200, 400, 800);
”Export of plans and project data” : normalCI(200,900);
”Export of generated analysis charts” : triangular(200, 400, 600);
” Trade-off analysis” : normalCI(300,900);
”Estimated stakeholder satisfaction analysis” : normalCI(200,900);
”Consensus analysis between alternative plans” : normalCI(100,500);
”Structure of alternative plans” : normalCI(200,300);
”Quality evaluation of alternative plans” : normalCI(100,400);

”Resource evaluation of alternative plans” : normalCI(100,900);

We define the Project Failure below:
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ProjectFailure = 1 — ( (1 — RiskExceedingBackEndDevCost) x
(1 — RiskExceedingFrontEndDevCost) x
(1 — RiskExceedingTestingCost) x
(1 — RiskExceedingProjectManagementCost) X

(1 — RiskExceedingRequirementAnalysisCost);

We model the risk of exceeding back-end development budget as:

RiskExceedingBackEndDevCost = BackEndDevCost > BackedDevBudget;

BackedDevBudget = deterministic(2000);

The risk of exceeding front-end development budget is modelled as:

RiskExceedingFrontEndDevCost = FrontEndDevCost > FrontEndDevBudget;

FrontEndDevBudget = deterministic(1104);

We model the risk of exceeding testing budget as:

RiskExceedingTestingCost = TestingCost > TestingBudget;

TestingBudget = deterministic(2160);

The risk of exceeding project management budget is modelled as:

RiskExceedingProjectManagementCost = ProjectManagementCost > ProjectManagementBud-
get;

ProjectManagementBudget = deterministic(1060);

We model the risk of exceeding the Quality Assurance budget as:
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RiskExceedingQACost = QACost > QABudget;

QABudget = deterministic(1680);

The risk of exceeding requirements elicitation budget is modelled as:

RiskExceedingRequirement AnalysisCost = RequirementAnalysisCost > RequirementAnalysis-
Budget;

RequirementAnalysisBudget = deterministic(600);

The frequency of use for each requirement is modelled below:
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FrequencyOfUse = decision-subset(+) (”Next Release”){
”Hierarchical dependencies” : normalCI(1,9);
” Grouping of features” : normalCI(1,7);
”Pre-assignments” : normalCI(1,9);
”Feature dependencies” : normalCI(1,6);
” Feasibility analysis” : normalCI(4,7);
”Flexible number of releases” : normalCI(1,9);
”Flexible number and type of criteria” : normalCI(1,9);

”Fexible number and type of resources” : normalCI(1,9);

?Type 2 Financially driven planning” : normalCI(1,9);
”Ranking of features based on different criteria” : normalCI(1,9);

”Similarity analysis” : normalCI(1,3);

”Import manual plan” : normalCI(1,9);

”Import of project data” : normalCI(1,7);

?Re-import of updated project data” : normalCI(1,6);

”Export of plans and project data” : triangular(1,1,4);

”Export of generated analysis charts” : normalCI(1,7);
”Trade-off analysis” : normalCI(2,8);

”Estimated stakeholder satisfaction analysis” : normalCI(1,6);
”Consensus analysis between alternative plans” : normalCI(1,9);
”Structure of alternative plans” : normalCI(1,9);

”Quality evaluation of alternative plans” : normalCI(3,9);

”Resource evaluation of alternative plans” : normalCI(1,6);

”Type 1 Stakekholder consensus driven planning” : normalCI(1,9);

”Dual charts using ranking and disagreement analysis” : normalCI(1,6);

” Comparison of priorities between stakeholders” : triangular(1,1,9);

We model stakeholders’ dissatisfaction as below:
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Dissatisfaction = decision-subset(+) ("Next Release”){
”Hierarchical dependencies” : normalCI(1,9);
” Grouping of features” : normalCI(1,8);
”Pre-assignments” : normalCI(1,9);
”Feature dependencies” : normalCI(1,5);
” Feasibility analysis” : normalCI(1, 4);
”Flexible number of releases” : normalCI(1,9);
”Flexible number and type of criteria” : normalCI(1,9);

”Fexible number and type of resources” : normalCI(1,9);

?Type 2 Financially driven planning” : normalCI(1,9);
”Ranking of features based on different criteria” : normalCI(1,5);

”Similarity analysis” : normalCI(1,7);

”Comparison of priorities between stakeholders” : normalCI(1,6);
”Import manual plan” : normalCI(1,7);

”Import of project data” : normalCI(1,9);

?Re-import of updated project data” : normalCI(1,9);

”Export of plans and project data” : triangular(1,1,6);

”Export of generated analysis charts” :normalCI(1,9);
”Trade-off analysis” : normalCI(1,9);

”Estimated stakeholder satisfaction analysis” : normalCI(1,4);
”Consensus analysis between alternative plans” : normalCI(1,6);
”Structure of alternative plans” : normalCI(1,7);

”Quality evaluation of alternative plans” : normalCI(1,9);

”Resource evaluation of alternative plans” : triangular(1,7,9);

”Type 1 Stakekholder consensus driven planning” : normalCI(1,2);

”Dual charts using ranking and disagreement analysis” : normalCI(1,5);

The requirements volatility is modelled below:
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Volatility = decision-subset(+) (?Next Release”){
”Hierarchical dependencies” : normalCI(1,4);
” Grouping of features” : normalCI(3,8);
”Pre-assignments” : normalCI(7,9);
”Feature dependencies” : normalCI(5,7);
” Feasibility analysis” : normalCI(5,6);
”Flexible number of releases” : normalCI(6,8);
”Flexible number and type of criteria” : normalCI(3,7);

”Fexible number and type of resources” : normalCI(7,8);

?Type 2 Financially driven planning” : normalCI(6,8);
”Ranking of features based on different criteria” : normalCI(7,9);

”Similarity analysis” : normalCI(4,6);

”Comparison of priorities between stakeholders” : normalCI(4,7);
”Import manual plan” : normalCI(3,8);

”Import of project data” : triangular(2,6,7);

?Re-import of updated project data” : normalCI(1,9);

”Export of plans and project data” : triangular(1,1,6);

”Export of generated analysis charts” : normalCI(6,7);
”Trade-off analysis” : normalCI(7, 8);

”Estimated stakeholder satisfaction analysis” : normalCI(4,5);
”Consensus analysis between alternative plans” : normalCI(7,8);
”Structure of alternative plans” : normalCI(6,8);

”Quality evaluation of alternative plans” : normalCI(8,9);

”Resource evaluation of alternative plans” : normalCI(7,8);

”Type 1 Stakekholder consensus driven planning” : normalCI(8,9);

”Dual charts using ranking and disagreement analysis” : normalCI(4,7);

The cost of requirements is given as:
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Cost = BackEndDevCost
+ FrontEndDevCost
+ TestingCost
+ ProjectManagementCost
+ QACost

+ RequirementAnalysisCost;

We model the Back-end development cost as :
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BackEndDevCost = decision-subset(+) (”Next Release”){
”Hierarchical dependencies” : triangular(100, 150, 200);
”Grouping of features” : triangular(350, 400, 450);
”Pre-assignments” : triangular (50, 75, 100);
”Feature dependencies” : triangular(400, 450, 500);
” Feasibility analysis” : triangular(350, 400, 450);
”Flexible number of releases” : triangular(350, 400, 450);
”Flexible number and type of criteria” : triangular(550, 575, 600);
”Fexible number and type of resources” : triangular(400, 450, 500);
”Type 1 Stakekholder consensus driven planning” : triangular(80, 100, 120);
?Type 2 Financially driven planning” : triangular(150, 200, 250);
”Ranking of features based on different criteria” : triangular(350, 400, 450);
”Similarity analysis” : triangular(100, 150, 200);
”Dual charts using ranking and disagreement analysis” : triangular(50, 75, 100);
” Comparison of priorities between stakeholders” : triangular(40, 50, 60);
”Import manual plan” : triangular(50, 60, 80);
”Import of project data” : triangular(50, 75, 100);
?Re-import of updated project data” : deterministic(0);
?Export of plans and project data” :triangular(200, 250, 300);
”Export of generated analysis charts” : triangular(150, 200, 250);
”Trade-off analysis” : triangular(40, 50, 60);
”Estimated stakeholder satisfaction analysis” : triangular(80, 100, 120);
”Consensus analysis between alternative plans” : triangular(80, 100, 120);
”Structure of alternative plans” : deterministic(0);
?Quality evaluation of alternative plans” : triangular(150, 200, 250);

”Resource evaluation of alternative plans” : triangular(80, 100, 120);

The front end development cost is given as:
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FrontEndDevCost = (+) ("Next Release”){
”Hierarchical dependencies” : triangular(150, 200, 250);
”Grouping of features” : triangular(250, 300, 350);
”Pre-assignments” : triangular(100, 120, 140);
”Feature dependencies” : triangular(300, 350, 400);
” Feasibility analysis” : triangular(160, 180, 200);
”Flexible number of releases” : triangular(100, 120, 140);
”Flexible number and type of criteria” : triangular(400, 420, 450);
”Fexible number and type of resources” : triangular(10, 30, 50);
”Type 1 Stakekholder consensus driven planning” : triangular(10, 30, 50);
”Type 2 Financially driven planning” : triangular(30, 40, 50);
”Ranking of features based on different criteria” : triangular(40, 50, 60);
”Similarity analysis” : triangular(30, 40, 50);
”Dual charts using ranking and disagreement analysis” : triangular(160, 180, 200);
” Comparison of priorities between stakeholders” : triangular(10, 30, 50);
”Import manual plan” : triangular(5, 10, 15);
”Import of project data” : triangular(50, 75, 100);
?Re-import of updated project data” : deterministic(0);
”Export of plans and project data” :triangular(80, 100, 120);
?Export of generated analysis charts” : triangular(80, 100, 120) ;
” Trade-off analysis” : triangular(40, 60, 80);
”Estimated stakeholder satisfaction analysis” : triangular(80, 100, 120);
”Consensus analysis between alternative plans” : triangular(30, 40, 50);
”Structure of alternative plans” : triangular(50, 60, 70);
?Quality evaluation of alternative plans” : triangular(50, 70, 90);

”Resource evaluation of alternative plans” : triangular(80, 90, 100);

We model the testing cost as:
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TestingCost = decision-subset(+) (”Next Release”){
”Hierarchical dependencies” : triangular(100, 120, 150);
”Grouping of features” : triangular(120, 150, 200);
”Pre-assignments” : triangular(8, 10, 12);
”Feature dependencies” : triangular(350, 375, 400);
” Feasibility analysis” : triangular(250, 300, 350);
”Flexible number of releases” : triangular(80, 100, 120);
”Flexible number and type of criteria” : triangular(380, 400, 450);
”Fexible number and type of resources” : triangular(80, 100, 120);
”Type 1 Stakekholder consensus driven planning” : triangular(380, 400, 450);
?Type 2 Financially driven planning” : triangular(380, 400, 450);
?Ranking of features based on different criteria” : triangular(80, 100, 120);
”Similarity analysis” : triangular(380, 400, 450);
”Dual charts using ranking and disagreement analysis” : triangular(200, 225, 250);
” Comparison of priorities between stakeholders” : triangular(200, 250, 300);
”Import manual plan” : triangular(100, 120, 140);
”Import of project data” : triangular(250, 300, 350);
?Re-import of updated project data” : triangular(80, 100, 250);
?Export of plans and project data” :triangular(350, 400, 450);
”Export of generated analysis charts” : triangular(200, 250, 300) ;
” Trade-off analysis” : triangular(250, 300, 350);
”Estimated stakeholder satisfaction analysis” : triangular(100, 150, 200);
”Consensus analysis between alternative plans” : triangular(200, 250, 300);
”Structure of alternative plans” : triangular(80, 100, 120);
?Quality evaluation of alternative plans” : triangular(100, 150, 200);

”Resource evaluation of alternative plans” : triangular(250, 300, 350);

The project management cost is given as:
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ProjectManagementCost = decision-subset(+) (?Next Release”){
”Hierarchical dependencies” : deterministic(0);
” Grouping of features” : triangular(120, 150, 200);
”Pre-assignments” : deterministic(0);
”Feature dependencies” : triangular(100, 125, 150);
” Feasibility analysis” : triangular(40, 50, 60);
”Flexible number of releases” : deterministic(0);
”Flexible number and type of criteria” : triangular(150, 200, 250);
”Fexible number and type of resources” : triangular(40, 50, 70);
”Type 1 Stakekholder consensus driven planning” : triangular(80, 100, 150);
”Type 2 Financially driven planning” : triangular(100, 150, 200);
?Ranking of features based on different criteria” : triangular(80, 100, 120);
”Similarity analysis” : triangular(100, 125, 150);
”Dual charts using ranking and disagreement analysis” : triangular(200, 225, 250);
” Comparison of priorities between stakeholders” : triangular(100, 140, 150);
”Import manual plan” : triangular(100, 120, 140);
”Import of project data” : triangular(110, 120, 150);
?Re-import of updated project data” : triangular(120, 150, 200);
?Export of plans and project data” :triangular(300, 400, 500);
”Export of generated analysis charts” : triangular(200, 250, 300) ;
” Trade-off analysis” : triangular(200, 250, 300);
”Estimated stakeholder satisfaction analysis” : triangular(80, 100, 120);
”Consensus analysis between alternative plans” : triangular( 90, 100, 110);
”Structure of alternative plans” : triangular(200, 250, 300);
?Quality evaluation of alternative plans” : deterministic(0);

”Resource evaluation of alternative plans” : triangular(150, 200, 250);

We model the Quality Assurance Cost as:
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QACost = decision-subset(+) ("Next Release”){
”Hierarchical dependencies” : triangular(150, 200, 250);
” Grouping of features” : triangular(150, 200, 250);
”Pre-assignments” : triangular(50, 75, 100);
”Feature dependencies” : triangular(450, 500, 550);
”Feasibility analysis” : triangular(350, 400, 450);
”Flexible number of releases” : triangular(150, 200, 250);
”Flexible number and type of criteria” : triangular(200, 250, 300);
”Fexible number and type of resources” : triangular(350, 400, 450);
”Type 1 Stakekholder consensus driven planning” : triangular(30, 40, 50);
”Type 2 Financially driven planning” : triangular(30, 50, 70);
”Ranking of features based on different criteria” : triangular(30, 40, 50);
”Similarity analysis” : triangular(300, 400, 450);
”Dual charts using ranking and disagreement analysis” : triangular(250, 300, 350);
” Comparison of priorities between stakeholders” : triangular(100, 200, 250);
”Import manual plan” : triangular(100, 190, 200);
”Import of project data” : triangular(400, 450, 500);
?Re-import of updated project data” : triangular(80, 100,120);
?Export of plans and project data” :triangular(300, 400, 500);
”Export of generated analysis charts” : triangular(200, 250, 300) ;
” Trade-off analysis” : triangular(200, 250, 300);
”Estimated stakeholder satisfaction analysis” : triangular(200, 300, 320);
”Consensus analysis between alternative plans” : triangular( 190, 200, 210);
”Structure of alternative plans” : triangular(100, 150, 200);
”Quality evaluation of alternative plans” : triangular(80, 100, 150);

”Resource evaluation of alternative plans” : triangular(150, 200, 250);

The requirements analysis cost is given as:
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RequirementAnalysisCost = decision-subset(+) ("Next Release”){
”Hierarchical dependencies” : triangular(40, 60, 80);
”Grouping of features” : triangular(120, 150, 200);
”Pre-assignments” : triangular(10, 20, 50);
”Feature dependencies” : triangular(150, 200, 250);
”Feasibility analysis” : triangular(100, 150, 200);
”Flexible number of releases” : triangular(5, 10, 15);
”Flexible number and type of criteria” : triangular(150, 200, 250);
”Fexible number and type of resources” : triangular(1,5, 10);
”Type 1 Stakekholder consensus driven planning” : triangular(50, 100, 150);
”Type 2 Financially driven planning” : triangular(30, 50, 70);
”Ranking of features based on different criteria” : triangular(10, 20, 30);
”Similarity analysis” : triangular(100, 150, 200);
”Dual charts combining using and disagreement analysis” : triangular(50, 60, 70);
” Comparison of priorities between stakeholders” : triangular(50, 60, 70);
”Import manual plan” : triangular(30, 40, 50);
”Import of project data” : triangular(30, 50, 70);
”Re-import of updated project data” : triangular(40, 50, 60);
?Export of plans and project data” :triangular(20, 50, 60);
?Export of generated analysis charts” : triangular(80, 100, 120) ;
” Trade-off analysis” : triangular(50, 100, 150);
”Estimated stakeholder satisfaction analysis” : triangular(10, 25, 30);
”Consensus analysis between alternative plans” : deterministic(0);
”Structure of alternative plans” : triangular(40, 50, 60);
”Quality evaluation of alternative plans” : triangular(40, 50, 60);

”Resource evaluation of alternative plans” : triangular(40, 50, 60);

We model the constraints relationships between requirements below:



project data;

Constraint ”Next Release” :

?Import of project data;

Constraint ”Next Release’

”Import of project data;

Constraint ”Next Release” :

”Import of project data;

Constraint ”Next Release” :

?Trade-off analysis;

Constraint ”Next Release” :

: ?Export of plans and project data”

”Re-import of updated project data”

charts”

?Export of generated analysis

charts”

”Export of generated analysis

”Export of generated analysis charts”

”Estimated stakeholder satisfaction analysis;

Constraint ”Next Release” :

?Export of generated analysis charts”

”Consensus analysis between alternative plans;

Constraint ”Next Release” :

”Export of generated analysis charts”

”Structure of alternative plans;

Constraint ”Next Release” :

?Export of generated analysis charts”

”Quality evaluation of alternative plans;

Constraint ”Next Release” :

”Export of generated analysis charts”

”Resource evaluation of alternative plans;

requires” Next Release” :

requires” Next Release” :

requires” Next Release” :

requires” Next Release” :

requires” Next Release” :

requires” Next Release” :

requires” Next Release” :

requires” Next Release” :

requires” Next Release” :
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Constraint ”Next Release” : ”Pre-assignments” couples” Next Release” : ”Feature dependen-
cies”;

Constraint "Next Release” : ”Pre-assignments” couples” Next Release” : ”Feasibility analysis;
Constraint ”Next Release” : ”Feature dependencies” couples” Next Release” : ”Feasibility
analysis;

Constraint ”"Next Release” : ”Flexible number and type of criteria” couples” Next Release”:
?Trade-off analysis;

Constraint ”"Next Release” : ”Dual charts combining ranking and disagreement analysis”
requires”Next Release” : ”Ranking of features based on different criteria;

Constraint ”Next Release” : ”"Import manual plan” requires” Next Release” : ”Import of
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7.2.4.3 Analysis Result

Optimisation Analysis

The RADAR analysis of the RADAR models developed for the Commercial Release Plan-
ning tools is presented Table 7.7. The problem was analysed using a multi-objective
evolutionary algorithm, i.e., NSGAII, since exhaustive strategy was infeasible. NSGAII
was run using the 14\ optimisation approach [130] and algorithmic parameters simi-
lar to the settings used in [285]: population size of 100, crossover probability of 0.9,

mutation probability of 0.1 and maximum number of fitness evaluation of 50000.

The results in Table 7.7 show that four solutions were shortlisted out of a total of
225 solutions. None of the shortlisted solutions suggests including all features in the
next release, but they suggest 5 common features, such as: Hierarchical dependencies,
Ranking of features based on different criteria, Dual charts combining ranking and dis-
agreement analysis, Import of project data, Quality evaluation of alternative plans.
Once these 5 solutions are selected, the shortlist includes all possible combinations of
other features; each combination representing a trade-off between maximising Expected-
NetBenefit, minimising ProjectRisk, maximising ExpectedFrequencyOfUse, minimising

ExpectedDissatisfaction and minimising ExpectedRequirementVolatility.

Information Value Analysis

The EVTPI is £6.14m and EVPPI for all model parameters is approximately equal to
zero. This means that none of the model parameters is worth further data collection or

analysis.



Optimisation Analysis

Objective:

Objective:

Objective:

Objective:

Objective:

Solution Space:
Optimisation Approach:

Max ExpectedNetBenefit

Min ProjectRisk

Max ExpectedFrequencyOfUse
Min ExpectedDissatisfaction

Min ExpectedRequirement Volatility
225

1+

Algorithm Name:
Population Size:

NSGAIIL
100

Crossover Probability: 0.9
Mutation Probability: 0.1

Nbr. Fitness Evaluations:

Shortlisted:
Nbr. Decisions:
Nbr. Variables:
Runtime(s) :

50000
4

1

25

38

Solution 1

Solution 2

Solution 3

Solution 4

Features in the Next Release

Hierarchical dependencies

Flexible number of releases

Type 1 Stakekholder consensus driven planning

Type 2 Financially driven planning

Ranking of features based on different criteria

Dual charts combining ranking and disagreement analysis
Comparison of priorities between groups of stakeholders
Import manual plan

Import of project data

Structure of alternative plans

Export of plans and project data

Estimated stakeholder satisfaction analysis

Re-import of updated project data

Quality evaluation of alternative plans

Resource evaluation of alternative plans

Hierarchical dependencies

Flexible number of releases

Type 1 Stakekholder consensus driven planning

Type 2 Financially driven planning

Ranking of features based on different criteria

Dual charts combining ranking and disagreement analysis
Comparison of priorities between groups of stakeholders
Import manual plan

Import of project data

Structure of alternative plans

Pre-assignments

Feature dependencies

Grouping of features

Quality evaluation of alternative plans

Feasibility analysis

Hierarchical dependencies

Fexible number and type of resources

Type 1 Stakekholder consensus driven planning

Type 2 Financially driven planning

Dual charts combining ranking and disagreement analysis
Export of plans and project data

Ranking of features based on different criteria

Import of project data

Structure of alternative plans
Pre-assignments

Feature dependencies

Grouping of features

Quality evaluation of alternative plans
Feasibility analysis

Hierarchical dependencies

Flexible number and type of criteria
Trade-off anal
Similarity analysis
Dual charts combining ranking and disagreement analysis
Consensus analysis between alternative plans

Ranking of features based on different criteria

Import manual plan

Import of project data

Quality evaluation of alternative plans

ExpectedNetBenefit
ProjectRisk
ExpectedFrequencyOfUse
ExpectedDissatisfaction
ExpectedRequirement Volatility

5652
1

45
42
60

8607
1

87

8123
1

70
59
95

6231
1

64
60
90

TABLE 7.7: Optimisation Analysis and Information Value analysis

results of requirements subset selection problem for the Release Planning tool.
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7.2.4.4 Comparison To Previous Analysis Approaches

Several analysis of the NRP have been proposed in the literature [30, 283, 285]. Many

of these analyses have been described in Chapter 2.3.2.

The Release planning system has been previously used in the literature to study the
next release problem. Kareem et al [142] used the system as a case study in evaluat-
ing a proposed theme-based release planning method that supports delivering software
releases that contain features that are related in the value they deliver to stakeholders.
Pitangueira et al. [202] also used the same system to evaluate their risk-aware multi-
objective next release problem (MONRP) approach that reformulates the MONRP with

an extra objective that caters for stakeholders dissatisfaction risk.

Like many other NRP models, the models developed by Kareem et al [142] and Pi-
tangueira et al. [202] for the release planning system used generic decision objectives
and pre-established model equations (e.g. typically weighted sums) to specify “cost”
and “value” scores to alternative solutions. The model developed by Kareem et al.
ignored uncertainty in model parameters and does not analyse uncertainty. However,
Pitangueira et al. modelled uncertainty as the variance in the stakeholders estimates of

requirements attributes (costs and values).

With respect to the optimisation analysis, like RADAR, Kareem et al. used the multi-
objective optimisation algorithm (NSGAII) to shortlist Pareto optimal solutions. Pi-
tangueira et al. used both approximate and exact multi-objective optimisation algo-
rithm: the authors used NSGAII to generate the initial set of Pareto optimal solutions
and then used SMT solver (Z3 [68] and Yice [77]) to shortlist exact Pareto optimal by
transforming the problem to an SMT problem and encoding candidate requirements as
Boolean variables and solving the model using an SMT solver. Using NSGAII with
crossover probability of 0.9, mutation probability of 0.1 and number of generation as
500, RADAR optimisation analysis and the optimisation approach used in Kareem et al.
shortlisted 4 solutions out of 22°. The reason for the same number of solutions could be
that they both used NSGAII implementation in JMetal. While the analysis approach
used in Pitangueira et al. also used NSGGII, the authors did not report the number
of solutions shortlisted by NSGAII, but Yices and Z3 shortlisted 146 and 143 exact

solutions, respectively.
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In terms of information value analysis, RADAR includes such analysis to estimate the
financial value of reducing uncertainty in the model. Such analysis is not available in

the approaches proposed by Kareem et al. and Pitangueira et al.

7.2.5 Public Bike Sharing System

7.2.5.1 Problem Statement

The public bike sharing system is deployed in many metropolitan cities, such as London,
to increase travellers’ transit options, reduce energy utilisation, improve the quality of

life by reducing air and noise pollution, and minimise traffic congestion within the city.

Chapter 3.2 described in details the different components of the bike sharing system.
Some of these decisions are the bikes security strategy to use in securing the bikes; bike
manufacturer brand to deploy; the type of bike docking station to use; decision about
alternative ways by which users can register to use the system; decision about user access
to the system; decision about rewarding users to return bikes to inconvenient locations;

decision about the method to get status updates from the system.

7.2.5.2 RADAR Model

Modelling the Optimisation Objectives

Two key concerns of the bike sharing system are to maximise the net benefit of intro-

ducing the system to the city and to minimise the project risk.

Objective Max ExpectedNetBenefit = EV (NB);

Objective Min Risk = Pr(NB < 0);

The net benefit (NB) is defined as the difference between Benefit and Cost.

NB = Benefit — Cost;
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Cost = CostOfBikes
+ CostOfSecuringBicycles
+ CostOfDockStations
+ CostOfSystemAccessMgt
+ CostSystemRegistrationMgt

+ CostOfOtherComponents;

The Cost is composed of the costs of implementing the system, which include the cost
of securing the bike, cost of bikes, cost of a dock station, and the cost of other sub-
systems such as the registration component and the system access management. In
Section 3.4.2, we have presented a partial decision model developed for the bike sharing
system with focus on elaborating the different costs components of the system and the
constraint relationships between the options of decisions. This section elaborates on the

first objective optimisation objectives: System NetBenefit.

We model the system Benefit as:

Benefit = BenefitOfSecuringBicycles
+ BenefitOfDockStations
+ BenefitOfSystemAccessMgt
+ BenefitOfSystemRegistrationMgt

+ BenefitOfNonMandatorySystemComponents;
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BenefitOfSecuringBicycles = decision-subset(+)(”Securing Bicycles” ){
”Localisation feature” : BenefitOfBikeLocalisation;
” Anti-theft feature” : triangular(2,5,10);
}
BenefitOfBikeLocalisation = decision-subset(+)(” Tracking Mechanism”){
?GPS feature” : triangular(5,10, 15);
”RFID feature” : triangular(20, 22, 25);
}
BenefitOfDockStations = decision(”Dock Station”){
” Permanently Fixed” : triangular(15,17, 19);
” Temporarily Fixed ” : triangular(20,22,25);
?Flexible ” : triangular(24,27,30);
}
BenefitOfSystemAccessMgt = decision-subset(+)(” System Access Mgt”){
”Smart card” : triangular (20,25, 30);
?Smart Phone” : triangular(15, 17,20);
?Key Card” : triangular(29, 30,35);
}
BenefitOfSystemRegistrationMgt = decision-subset(+)(” System Registration Mgt”){
”Kisok Reg” : BenefitOfKioskReg;
”Dock Station Reg” : triangular(18, 20,22);
”Web Reg” : triangular(27, 30,33);
}
BenefitOfKioskReg = decision-subset(+)(”Kisok Registration”){
?Touch Screen” : triangular(2, 5, 7);
?Key card reader” : triangular(8, 10,12);
?Credit Card” : triangular(10, 12,15);
?Card Dispenser” : triangular(12, 15, 18);
}
BenefitOfNonMandatorySystemComp = decision-subset(+)(”NonMandatorySystemComp” ){
”System Status Info” : BenefitOfHavingSysStatuslnfo;
”Bike Maintenance” : triangular(12,15, 20);
”Bike Redistribution” : BenefitOfBikeRedistribution;
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FIGURE 7.8: Partial AND/OR refinement graph for the model variable BenefitOfNon-
ManadatorySystemComponents of the bike sharing model.

BenefitOfHavingSysStatusInfo = decision-subset(+)(” System Status”){
”Real Time Web Info” : triangular(5, 10, 10);
?Real Time Mobile App Info” : triangular(15, 20, 30);
}
BenefitOfBikeRedistribution = RedistributionWithoutReward + BenefitForRewardingUsers;
RedistributionWithoutReward = triangular(10,15, 20);
BenefitForRewardingUsers = decision(”Reward Users”){
”Without reward” : deterministic(0);

?With Reward” : triangular(25, 28, 30);

To help visualise the model structure, RADAR generates the AND/OR refinement graph
and decision dependency graphs from the bike sharing model equations. Fig.7.8 shows
the partial AND/OR refinement graphs for the bike sharing model starting from the
model variable BenefitOfNonManadatorySystemComponents. Fig.3.4 in Chapter 3 shows

a partial model decision dependency graph for the bike sharing model.
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FIGURE 7.9: Pareto front for the bike sharing system problem.

7.2.5.3 Analysis Results

The RADAR analysis of the bike sharing model is presented in Fig. 7.8, which shows the

results of the optimisation and information value analysis on the model.

The first part of Fig.7.8 is the optimisation analysis result. RADAR shortlisted 35 solu-
tions out of 15 x 229 possible alternatives using a multi-objective evolutionary algorithm,

i.e., NSGAII, since exhaustive strategy was infeasible. NSGAII was run using the 1+A
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optimisation approach [130] described in Chapter 5.1.4 and used algorithmic parameters
similar to the settings used in [285] : population size of 100, crossover probability of 0.9,
mutation probability of 0.1 and maximum number of fitness evaluation of 50000. All
shortlisted solutions include the “A-Bike” option. With this option selected, the short-
listed solutions include different possible combinations of the bike security decision,
tracking mechanism decision, system registration decision and other non mandatory
system component (e.g., Bike maintenance, system status information and bike redis-
tribution). Each combination represents a trade-off between maximising the expected
net benefit and minimising risk. RADAR generates the graph in Fig.7.9, plotting the
objective values for the shortlisted solutions (shown squares at the top of the graph)

and all other non shortlisted ones (shown as circles).

The second part of Fig.7.9 is the information value analysis results, which show that
the EVTPI for this problem is £0.81m. and EVPPI for the unit cost (UnitCost) of
A-Bike brand to be £0.03m, and the EVPPI of the number of bikes to deploy (NbrBicy-
clesToDeploy) to be £0.70m. This means that reducing uncertainty about the number
of bikes to deploy has a higher value than reducing uncertainty about the cost of the

A-Bike brand



Optimisation Analysis

Objective:

Objective:

Solution Space:
Optimisation Approach:
Algorithm Name:
Population Size:
Crossover Probability:
Mutation Probability:
Nbr. Fitness Evaluations:
Shortlisted:

Nbr. Decisions:

Nbr. Variables:
Runtime(s) :

Max ExpectedNetBenefit

Min Risk
20 x10%°
14+
NSGAII
100

0.9

0.1
50000
36

10

36

11

TABLE 7.8: Optimisation Analysis results for the public bike sharing model

ID  Sccuring Bicycles Tracking Mechanism Dock Station System Registration Mgt Kisok Reg NonMandatorySystemComp _ System Status Reward Users  Manufacturer Brand ExpectedNetBenefit  Risk
1 Localisation feature;Anti-theft feature ~GPS feature;RFID feature Flexible Kisok Reg Touch Screen;Card Dispenser System Status Info Without reward ~ A-Bike 9.97  0.01
2 Localisation feature;Anti-theft feature ~GPS feature;RFID feature Temporarily Fixed Kisok Reg Touch Screen:Card Dispenser System Status Info Without reward ~A-Bike 10.3  0.03
3 Localisation featw nti-theft feature RFID feature Flexible Kisok Reg Touch Card Dispe System Status Info Without reward ~ A-Bike 7.47 0
4 Localisation featw nti-theft feature RFID feature Temporarily Fixed Kisok Reg Touch Screen;Card Dispenser System Status Info — Without reward ~A-Bike 7.79 0
5 Localisation featu nti-theft feature RFID feature Flexible Kisok Reg Credit Card System Status Info Without reward A-Bike 7.47 0
6 Localisation featus nti-theft feature RFID feature Temporarily Fixed Kisok Reg Key card reader;Card Dispenser — Real Time Web Info;Real Time Mobile App Info  Without reward ~A-Bike 7.79 0
7 Localisation featw nti-theft feature GPS feature;RFID feature Flexible Kisok Reg Touch Screen;Credit Card System Status Info — Without reward ~ A-Bike 9.97  0.01
8 Localisation featw nti-theft feature GPS feature;RFID feature Temporarily Fixed Kisok Reg Credit Card System Status Info — Without reward ~A-Bike 10.3  0.03
9 Localisation feature;Anti-theft feature RFID feature Flexible Kisok Reg Key card reader;Credit Card Without reward ~A-Bike 7.47 0
10 Localisation feature;Anti-theft feature RFID feature Flexible Kisok Reg Key card reader;Card Dispenser ~System Status Info — Without reward ~A-Bike 747 0

11 Localisation feature RFID feature emporarily Fixed Kisok Reg Credit Card System Status Info — Without reward ~A-Bike 5.13 0

12 Localisation featu nti-theft feature RFID feature Temporarily Fixed Kisok Reg Key card reader;Card Dispenser — Real Time Web Info;Real Time Mobile App Info  With Reward A-Bike 7.79 0

13 Localisation feature;Anti-theft feature GPS feature;RFID feature Flexible Kisok Reg Credit Card System Status Info Without reward A-Bike 9.97 0.01
14 Localisation feature RFID feature Temporarily Fixed Kisok Reg Credit Card Real Time Web Info;Real Time Mobile App Info  Without reward ~A-Bike 5.13 0

15 Localisation featu nti-theft feature GPS feature;RFID feature Flexible Kisok Reg Credit Card Without reward ~ A-Bike 9.97  0.01

16 Localisation feature;Anti-theft feature GPS feature;RFID feature Flexible Kisok Reg 'y ;Card Dispenser Real Time Web Info;Real Time Mobile App Info  With Reward A-Bike 9.97 0.01

17  Localisation featw nti-theft feature RFID feature Temporarily Fixed Kisok Reg Credit Card System Status Info Without reward A-Bike 7.79 0
18 fe RFID feature Flexible Kisok Reg Key card reader;Card Dispenser Real Time Web Info;Real Time Mobile App Info  Without reward ~A-Bike 747 0

19 RFID feature Temporarily Fixed Kisok Reg em Status Info — Without reward ~A-Bike 7.79 0

20 GPS feature;RFID feature Flexible Kisok Reg ) ‘ard Dispenser — Without reward ~A-Bike 9.97  0.01

21 Localisation feature;Anti-theft feature RFID feature Flexible Kisok Reg Key card reader;Credit Card Real Time Web Info;Real Time Mobile App Info With Reward A-Bike 7.47 0

22 Localisation feature;Anti-theft feature RFID feature Kisok Reg Key card reader;Credit Card Without reward ~ A-Bike 7.79 0

23 Localisation feature;Anti-theft feature RFID feature Temporarily Fixed Kisok Reg Key card reader:Card Dispenser — — Without reward ~A-Bike 7.79 0

24 Localisation featw nti-theft feature RFID feature Temporarily Fixed Kisok Reg Touch Screen;Card Dispenser — Real Time Web Info;Real Time Mobile App Info  With Reward A-Bike 7.79 0

25 Localisation feature RFID feature Temporarily Fixed Kisok Reg Credit Card Without reward A-Bike 5.13 0

26 Localisation feature;Anti-theft feature RFID feature Flexible Kisok Reg Touch Screen;Card Dispenser System Status Info With Reward A-Bike TAT 0

27  Localisation featu nti-theft feature RFID feature Flexible Kisok Reg Key card reader System Status Info Without reward ~A-Bike 7.47 0

28 Localisation feature;Anti-theft feature GPS feature;RFID feature Temporarily Fixed Kisok Reg Touch S n;Card Dispenser System Status Info With Reward A-Bike 10.3  0.03

29 Localisation feature;Anti-theft feature GPS feature;RFID feature Temporarily Fixed Kisok Reg Credit Card System Status Info With Reward A-Bike 10.3  0.03

30 Localisation feature RFID feature Temporarily Fixed Kisok Reg Touch Screen;Card Dispenser System Status Info Without reward ~ A-Bike 5.13 0

31 isation fe nti-theft feature GPS feature;RFID feature Flexible Kisok Reg Credit Card — Real Time Web Info;Real Time Mobile App Info Without reward 9.97  0.01

32 nti-theft feature GPS feature;RFID feature Flexible Kisok Reg Key card reader;Card Dispenser — Real Time Web Info;Real Time Mobile App Info  Without reward 9.97  0.01

33 Localisation featu nti-theft feature RFID feature Temporarily Fixed Kisok Reg Key card reader;Card Dispenser — — With Reward 7.79 0

34 Localisation featu nti-theft feature GPS feature;RFID feature Temporarily Fixed Kisok Reg Key card reader;Card Dispenser Real Time Web Info;Real Time Mobile App Info  Without reward 10.3  0.03

35 Localisation feature;Anti-theft feature RFID feature Flexible Kisok Reg Touch Screen;Card Dispenser — Real Time Web Info;Real Time Mobile App Info  With Reward A-Bike 747 0
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7.2.5.4 Comparison To Previous Analysis Approaches

Previous modelling and analyses of the public bike sharing system (BSS) have focused
generally on developing feature models that capture variability and commonality of the

different configurations of the system.

Ter et al. [249] identified the main components, features, commonalities and variability
of the system by text mining a series of documents from the literature [177], that detail
the public bike sharing system. Based on the features identified, the authors developed
the bike sharing feature models using different tools: SPLOT [175] (which allows editing,
debugging, analysing, configuring, sharing, and downloading feature models in simple
XML feature model formats); FeatureIDE [145] —a similar tool, but allows generation of
feature models in the graphical Feature Oriented Domain Analysis (FODA) syntax as
well as Java or C++ codes; and Clafer [18] —a modelling language that supports feature
and domain modelling, configuration and verification. ClaferMOO [192] extends Clafer

with a feature to enable exact multi-objective optimisation.

The bike sharing model developed in SPLOT, FeatureIDE and Clafer/ClaferMOO de-
scribe the variability and commonality of features of the bike sharing system. The
Clafer/ClaferMOO model allows specification of optimisation objectives (maximising
the customer satisfaction, minimise cost, maximise security and maximise capacity) in
the model and generates Alloy model that contains attributed feature model and solved
using Alloy solvers [139, 178]. Since Clafer/ClaferMOO requires model transformations.

This may lead to model synchronisation complexity and a risk of model inconsistencies.

The bike sharing models developed in previous work used weighted sums of feature
attribute values (cost, defect count, performance etc). They do not allow the elaboration
of domain-specific decision models that RADAR supports through AND/OR refinements
of model variables. Also, existing feature modelling tools and frameworks do not allow
one to explicitly capture uncertainty in domain quantities and cannot handle Boolean
expressions, such as logical OR and logical AND, that RADAR handles. Finally, they
generally lack techniques for analysing uncertainty and informing decision makers about

the financial value of reducing uncertainty in a decision model.

As a comparison to the RADAR optimisation results, ClaferMOO shortlisted 249 solu-

tions using exact multi-objective optimisation whereas RADAR shortlisted 36 solutions
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through evolutionary multi-objective optimisation algorithm (NSGAII). Unlike Clafer-
MOO, RADAR estimates EVTPI and EVPPI about model parameters to determine which

aspects of the model requires further analysis.

7.3 Conclusions From Our Experiments

7.3.1 Applicability

By successfully applying our modelling language and decision analysis technique to a

wide range of requirements and architecture decisions, we have shown that:

e Claim 1: The RADAR modelling language is expressive enough to model real-world

requirements and architecture decision problems;

e Claim 2: The RADAR optimisation technique can be applied to real-world require-

ments and architecture decision problems.

With respect to Claim 1, RADAR gives requirements engineers and software architects the
ability to elaborate domain specific requirements and architecture decision problems. For
example, in the bike sharing model presented in Section 7.2.5, we elaborated the total
cost of bikes to depend on other domain quantities such as the number of additional
bikes to deploy; the number of bikes currently deployed, and the unit cost of a bike.
Such fine-grained elaboration of model equations are necessary to capture stakeholders’
real objectives and ultimately ensuring decision-makers make the right decisions. One
limitation, however, is that the current implementation of RADAR does not cater for
mathematical functions such as AVERAGE, MAX, MIN and SQRT. As a consequence,
RADAR is not currently applicable to the requirements and architecture decision problems
that require these mathematical functions. For example in the LAS model presented in
Appendix A, RADAR was not able to model the Euclidean distance between an ambulance
and the incident location using an Euclidean function between two points. This is a

limitation to addresses in future work to increase RADAR’sS expressiveness.
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7.3.2 Usefulness

We have illustrated RADAR’s modelling capability and its automated decision analysis
technique on problems described in Table 7.1. This section highlights RADAR’s usefulness
in supporting requirements and architecture decisions under uncertainty. Our discussion

of usefulness is, at this stage, speculative.

RADAR provides decision-makers with useful information about the trade-offs between
alternatives. It gives information about what objective values can be attained with
different design alternatives. For example, in the fraud detection example of Section
7.2.1, Fig. 7.2 helps decision-makers to understand the trade-off between maximising
the fraud detection benefit and minimising the investigation load. The figure shows
four shortlisted alternatives (shown squares at the top of the graph) and all other non
shortlisted ones (shown as circles). Similarly, in the emergency response system exam-
ple described in Section 7.2.2, RADAR generates Fig 7.4 to show the trade-off between
maximising expected net benefit and minimising the project risk. In the bike sharing
example presented in Section 7.2.5, Fig 7.9 helps to understand the trade-off between

maximising the expected net benefit and minimising risk.

RADAR also identifies the different decision-options combinations that represent the
trade-off between stakeholders’ objectives. For example, in the fraud detection opti-
misation result presented in Table 7.2, RADAR shortlists four solutions each with differ-

ent decision-option combinations: s; = {(blocking policy, block first), (processing
type, {continuous}), (fraud detection method, {rule-based}); so = {(blocking
policy, block first), (processing type, {continuous}), (fraud detection method,
{classifier}), (alert threshold, {medium}); s3 = {(blocking policy, block first),
(processing type, {continuous}), (fraud detection method, {classifier}), (alert
threshold, {high}); s4 = {(blocking policy, block first), (processing type, {continuous}),
(fraud detection method, {classifier}), (alert threshold, {low}).

RADAR helps to identify the decisions that are better than the others in a given de-
cision model. For example, the results presented in Table 7.2 for the fraud detection
system shows that all shortlisted solutions include the “block first” policy and “con-
tinuous” processing type. This suggests to decision-makers that a decision with “block
first” policy and “continuous” processing type options is better than one without these

options. Similarly, for the emergency response system presented in Table 7.4, RADAR
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suggests to decision-makers that a decision with “radio triangulation”, “Openlntent”,
“Implicit”, “XMPP (Open Fire)”, “Preloaded (ESRI)” is better than a decision without

these options.

RADAR provides useful information about what parameter uncertainty may deserve ad-
ditional data collection and analysis before making their decision and what parameter
uncertainty does not matter to their decision. For example, RADAR’s information value
analysis results of the fraud detection example in Table 7.2 shows that the EVTPI for
the fraud detection problem is 220 and EVPPI for AverageFraudValue is 122. All other
parameters have EVPPI below 2. This means that in this model, the average fraud
value is the only parameter worth further investigation before making the final decision.
Reducing uncertainty about other parameters would bring no value to the decision.
Consider also Table 7.6 which shows the EVTPI and EVPPI for all model parameters
of the building security policy model to be zero. In this case, RADAR suggests to the
stakeholders that their parameter estimates are accurate and that there is no need for

additional data collection or analysis before making their decision.

Finally, RADAR provides useful graphical representations to visualise the decision models
through AND/OR refinements graphs commonly used in goal-oriented requirements en-
gineering. It also presents the decision dependency graphs which shows model decisions,
their corresponding options and the relationships between decisions and options. These
graphs help to communicate and validate traceability links between strategic stakeholder
goals and technical software characteristics [264]. They can also be used to review the
model structure with other non technical stakeholders. For example, in the fraud detec-
tion model, RADAR generates the AND/OR graph shown in Fig 7.1. The graph starts
from a model variable Benefit and AND-refined into BaseLineFinanciall.oss and Finan-
cialLosss until reaching leaf variables that are parameter estimations. Figure 7.5 shows a
similar refinement graph for the building security policy model presented in Section 7.2.3.
The CostOfDisclosure is AND-refined into NbrHighConfidentialLeaks, CostOfHighCon-
fidentialLeaks, NbrMediumConfidentialLeaks, CostOfMediumConfidentialLeaks, Nbr-
LowConfidentialLeaks and CostOfLowConfidentialLeaks. Each sub-variable are refined

until reaching the leaf variables.
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7.3.3 Threats To Validity

7.3.3.1 The model validity threats

In our approach, the correctness of the analysis results is relative to the validity of the
decision model. If the model’s equations are not valid, the predicted objective values for
the different solutions might be wrong. In the twelve examples, although some equations
and parameters estimation are based on observed data, we have mostly validated our
models by checking that our equations ‘make sense’ rather than testing them empirically.

We cannot therefore guarantee their validity.

One should observe that when making decisions about systems that have yet to be built,
it will in general not be possible to validate all equations empirically because some of the
equations will refer to phenomena that cannot be observed yet. It will only be possible
to validate these equations empirically once the system is in use. This is an inherent

difficulty of requirements and architecture decision problems.

With respect to the problem of model validation, our approach needs to be compared
with the state-of-the-art in requirements and architecture decision making that, by re-
lying on fixed, predefined, and unfalsifiable equations, ignore the issue of model validity.
By contrast, RADAR models can be criticised, reviewed, and modified to improve their

validity.

7.3.3.2 The cost of modelling threats

Another possible problem of our method is that the cost of elaborating the decision
models might outweigh its benefits. Our objective in designing RADAR was to reduce
the difficulty and cost of modelling compared to existing approaches that require the
model to be developed in a general purpose programming language. We have, however,

not yet tested how easily people will be able to use our language and tool.

With respect to cost-effectiveness, a potential benefit of our approach is that it enables
an iterative modelling and analysis approach where information value analysis might be
used to decide what parts of an initially simple model (such as the refactoring model
in Chapter 3.4) should be refined to improve decisions. This will reduce modelling cost

by helping modellers develop fine-grained models only where needed and leave other
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parts of the problem modelled at a coarse level of granularity. We intend to develop and

evaluate such iterative approach in future work.

7.4 Summary

We have applied RADAR’s modelling language and decision analysis technique on twelve
real-world requirements and architecture decision problems from different application
domains. We have also compared the RADAR’s analysis results with other requirements
and architecture decision analysis technique to emphasise the benefits of using RADAR
over the state-of-the-art decision analysis techniques. These benefits include: (i) the
ability to use simple mathematical equations to elaborate domain specific decision mod-
els that capture stakeholders’ concerns. (ii) The automated decision analysis technique
that RADAR provides with the ability to determine which model parameters need further
investigation before making the final decision. (iii) The graphical representation of deci-
sion models (AND/OR graphs and decision dependency graphs) to give decision-makers
insights into the relationships between high-level objectives and low-level technical de-
tails of a model. The following chapter studies the performance of RADAR’s optimisation

algorithms.
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Information Value Analysis

Objective: Max ExpectedNetBenefit

EVTPI: 0.81

Parameter EVPPI
BenefitOfSecuringBicycles[Anti-theft feature] 0.7
BenefitOfBikeLocalisation[GPS feature] 0.7
BenefitOfBikeLocalisation[RFID feature] 0.7
BenefitOfDockStations[Permanently Fixed] 0.7
BenefitOfDockStations[Temporarily Fixed] 0.7
BenefitOfDockStations[Flexible] 0.7
BenefitOfSystemAccessMgt[Smart card] 0.7
BenefitOfSystemAccessMgt[Smart Phone] 0.7
BenefitOfSystemAccessMgt[Key Card] 0.7
BenefitOfSystemRegistrationMgt[Dock Station Reg] 0.7
BenefitOfSystemRegistrationMgt[Web Reg] 0.7
BenefitOfKioskReg[Touch Screen] 0.7
BenefitOfKioskReg[Key card reader] 0.7
BenefitOfKioskReg[Credit Card] 0.7
BenefitOfKioskReg[Card Dispenser] 0.7
BenefitOfNonMandatorySystemComp|[Bike Maintenance] 0
BenefitOfHavingSysStatusInfo[Real Time Web Info] 0
BenefitOfHavingSysStatusInfo[Real Time Mobile App Info] 0
RedistributionWithoutReward 0
BenefitForRewardingUsers[With Reward] 0
NbrBikesToDeploy 0.7
UnitCost[A-Bike] 0.03
UnitCost[Cortina Cycles] 0.03
UnitCost[Derby Cycle] 0.03
UnitCost[Bianchi] 0.03
UnitCost[Catrike] 0.03
CostOfSecuringBicycles[Anti-theft feature] 0.03
CostOfBikeLocalisation[GPS feature] 0.03
CostOfBikeLocalisation[RFID feature] 0.03
CostOfDockStations[Permanently Fixed] 0.7
CostOfDockStations[Temporarily Fixed] 0.7
CostOfDockStations|Flexible] 0.7
CostOfSystemAccessMgt[Smart card] 0.7
CostOfSystemAccessMgt[Smart Phone] 0.7
CostOfSystemAccessMgt[Key Card] 0.7
CostSystemRegistrationMgt[Dock Station Reg] 0.7
CostSystemRegistrationMgt[Web Reg] 0.7
CostOfKioskReg|[Touch Screen] 0.7
CostOfKioskReg[Key card reader] 0.7
CostOfKioskReg[Credit Card] 0.7
CostOfKioskReg[Card Dispenser] 0.7
CostOfNonMandatorySystemComponents[Bike Maintenance] 0.7
CostOfHavingSysStatusInfo[Real Time Web Info] 0.7
CostOfHavingSysStatusInfo[Real Time Mobile App Info] 0.7
RedistributionCost WithoutReward 0.03

TABLE 7.9: Information Value Analysis results for the Bike Sharing model
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RADAR Performance Evaluation

This chapter presents an empirical evaluation that aims to examine the scalability of
RADAR’s exhaustive strategy and the performance of RADAR’s evolutionary search-based

algorithms.

8.1 Research Questions

Following standard experimental methodology [80] described in section 8.3, we evaluate

RADAR’s optimisation algorithms by answering the following research questions:

RQ1 (Scalability): What is the scalability of RADAR’s exhaustive strategy?
Adding inclusive OR decisions to a decision model significantly increases the size of the
solution space, and therefore may make the use of exhaustive strategy infeasible. This
research question provides insight on the scalability of RADAR’s exhaustive strategy
during simulation and optimisation of a problem design space. We measure RADAR’s
running time and memory consumption on large RADAR synthetic models. We perform

experiments to answer the following sub-research questions:

e RQ1.1: What is the scalability of RADAR’s exhaustive search strategy with respect
to the number of simulations?
e RQ1.2: What is the scalability of RADAR’s exhaustive search strategy with respect

to the size of the design space?

199
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e RQ1.3: What is the scalability of RADAR’s exhaustive search strategy with respect

to the number of objectives?

e RQ1.4: What is the time spent and memory consumed by each analysis step?

RQ2 (Performance Analysis): What is the performance of RADAR’s alter-
native search-based evolutionary algorithms? Since many elitist evolutionary
multi-objective algorithms (EMOAs), such as NSGAII, SPEAII, IBEA, differ in how
they evolve solutions between generations and in how they estimate dominance value
between two solutions, we perform experiments to answer the following research ques-

tions:

1. RQ2.1: What is the execution time of RADAR’s optimisation analysis using dif-

ferent evolutionary multi-objective algorithms?

2. RQ2.2: What is the quality of solutions shortlisted by RADAR using different

evolutionary multi-objective algorithms?

8.2 RADAR Models Analysed

We have analysed the RADAR tool on both real world requirements and architecture
decision models and synthetic RADAR models. Using synthetic models helps to examine

the scalability of RADAR’s exhaustive strategy.

8.2.1 Real Models

Our experiments used real-world requirements and architecture decision problems pre-
sented in Chapter 7 and summarised in Table 7.1: decisions about features to implement
for the next release of a commercial release planning system and a word processor system
[142]; design decisions of a system to coordinate the deployment of emergency response
teams [85, 166]; architecture decisions for the NASA satellite processing system designed
to collect and process satellite images [151, 179]; decisions about selecting an optimal
set of features in a product family the public Bike Sharing System [177, 250]; a PHP-

based framework for web content management [228]; an e-commerce System 67 [176];
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Core Model Constructs Value Ranges Step Size

Objectives [2-5] 1
Decisions [10-20] 1
Options Per Decision [3-10] 1
Min of Variables [100-1000] 100

TABLE 8.1: Ranges of values used to generate RADAR synthetic models.

Amazon Web Service (AWS) elastic compute cloud [98]; Berkeley Relational Database

Management System [238]. These problems have design space size between 103 and 240,

8.2.2 Synthetic Models

We have implemented a synthetic model generator that generates random syntactically
valid RADAR models with any given number of objectives, decisions, number of options
per decisions and minimum number of model variables. The model generator can pro-
duce RADAR models with or without decision dependencies. It constructs a synthetic
RADAR model following RADAR’s syntax: a model’s objective is declared as either a
maximisation or a minimisation problem, whose definition could be an expectation or
a probability defined over a random variable. For each objective, the random variable
that defines it is refined into three child variables which are related by randomly cho-
sen arithmetic operators (e.g. “+7, “~”, “/” and “*”). The three child variables are
typically of the form ANDRefinement, ParameterEstimation and OrRefinement, respec-
tively. Following the same format, each child variable is further refined and related
to three variables until both the specified number of decisions and minimum number of
model variables have been attained. For synthetic models without decision dependencies,
each expression corresponding to the individual option of an OrRefinement is always a
parameter estimation. However, for models with decision dependencies, each expression
corresponding to the individual option of an OrRefinement could be an ANDRefinement,
ParameterEstimation or OrRefinement. The number of decision dependencies specified
determines the number of times an OrRefinement variable is linked to the option of

another.

The model generator and all models generated for the experiments below are available

from the tool’s website (https://ucl-badass.github.io/radar/).
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8.3 Experimental Methodology

We answer RQ1 by applying RADAR on randomly generated RADAR models using dif-
ferent combinations of RADAR’s core model constructs, i.e., the number of objectives,
number of decisions, options per decision, AND/OR variables and parameter estima-
tions. We measure RADAR’s running time and memory consumption. Table 8.1 shows
the range of values for each model constructs used to generate the synthetic models.
The number of objectives is between 2 and 5; the number of decisions ranges from 10 to
20, inclusive; the number of options per decision is between 3 and 10; and the minimum
number of model variables is between 100 and 1000. All model construct values are
increased by a unit step size, except the minimum number of model variables which is

increased in steps of 100.

For RQ2, we experiment on the real-world requirements and architecture problems
presented in Table 8.3 using four Evolutionary Multi-objective Optimisation Algorithms
(EMOAS), such as NSGAII [69], SPEAII [289], MoCell [184] and IBEA [288], the two
optimisation approaches RADAR employs in handling constraints, i.e., (A4+1) and 1+,
and compare results against random search. We chose the four EMOAs because they
have already been implemented in JMetal5 [185] and have been used extensively in many
multi-objective software engineering research problems [88, 126, 130, 157, 229, 230, 235,
285].

For each studied stochastic multi-objective optimisation algorithm, we follow recom-
mended practices [27, 269] and assess the quality of solutions shortlisted by measuring
widely used metrics, such as hypervolume and coverage [100, 130, 204, 235], to provide
information about the convergence and diversity of solutions in the Pareto front ap-
proximation. To investigate the number of valid solutions (i.e., solutions that satisfy the
constraints declared in a RADAR model) shortlisted in the Pareto front approximation, we
measured another metric called validity ratio [130]. However, since the optimal Pareto
front cannot always be known, we follow the standard practice of using a reference front

that combines the best solutions produced by all EMOAs studied.

e Hypervolume (HV). The hypervolume of a set of solutions can intuitively be
understood as a measure of how far the boundary created by a set of solutions is

from some reference point corresponding to the objective function values for the



Chapter 8. RADAR Performance Evaluation 203

worst possible solution (for example, in a maximisation problem, a solution with
zero values for all objective functions). Higher values of HV indicate better Pareto

front approximations.

e Coverage (Cov). This is the ratio between the size of Pareto front approximation
in the exact Pareto optimal solutions to the total number of exact Pareto optimal
solutions. It measures how close the approximate Pareto front is to the exact
Pareto front in the solution space. Higher values of coverage depict better Pareto

front approximations.

e Validity Ratio (VR). This is the ratio of the number of solutions in the Pareto
front approximation, that satisfy the model constraint relationship, on average for
the independent runs that have at least one valid solution. We compute this metric
only for problems that have constraints. Higher values of VR implies efficacy of

an EMOA in finding valid solutions in the Pareto front approximations.

To compare these metrics across the five algorithms, we conduct a post-hoc analysis with
two-way comparison that includes statistical differences and effect sizes. For statistical
differences, we use the non-parametric Man-Whitney U-test, at 5% significance level,
to report the p-values i.e. the probabaility that two EMOAs give different values. For
effect sizes, we apply the Vargha-Delaney A-measure [251] to give the probability that

a particular EMOA outperforms another.

8.4 Experimental Settings

All our experiments were run on a computer with a four-core 2.6 GHz processor and
7GB RAM. For the multi-objective optimisation algorithm parameter settings such as
population size, crossover and mutation probabilities, we used single point crossover
and bit flip mutation. For the default parameter settings, we used similar parameter
levels in [285], which is a crossover probability of 0.8, mutation probability to be the
inverse of the total number of options in a decision model, and a population size of 100.
All algorithms terminate after 50,000 fitness function evaluations. We compute fitness
values through 10* simulations of a particular RADAR solution to obtain simulation values

for the objective functions. Because stochastic multi-objective evolutionary algorithms



Chapter 8. RADAR Performance Evaluation 204

include randomness, following guidelines in [27, 269], we have run each experiment 30

independent times on each RADAR model.

8.5 Results and Analysis

8.5.1 Scalability of RADAR Exhaustive Strategy

RQ1.1: What is RADAR’s Scalability with respect to the number of simula-
tions? To evaluate how RADAR run-time and memory usage increases as the number
of simulation, IV, increases, we have generated a synthetic model whose characteristics
are similar to that of the emergency response system, i.e. it contains 2 objectives, 10
decisions, 3 options per decisions, and no decision dependencies. We have then measured
the running times and memory consumption of analysing this model when doubling NV
10 times from 10% to 512 x 10%. The results are shown in Figure 8.1 and indicate that

the running time and memory usage increase linearly with N.

RQ1.2: What is RADAR’s scalability with respect to design space size? To
evaluate how RADAR run-time and memory usage increases when the design space size
increases, we have generated synthetic models with decision dependencies by incremen-
tally and separately increasing the number of decisions and options per decisions until
the resulting models could no longer be analysed in less than an hour. The synthetic
models generated have 2 objectives and at least 100 model variables. Figure 8.2 shows
the result of this experiment. RADAR was able to evaluate in less than one hour models
with a design space of up to 153,751 solutions. The model with the largest design space
included 11 decisions with 7 options and was analysed in 35 hours. The figure also shows
that on our synthetic models the run-time and memory usage increase roughly linearly

with the size of the design space.

RQ1.3: What is RADAR’s scalability with respect to the number of objectives?
To evaluate how RADAR run-time and memory usage increases when the number of
objectives increases, we have generated synthetic models with 10 decisions, 3 options
per decisions, and incrementally increased the number of objectives from 2 to 5 until the
resulting models could no longer be analysed in less than an hour. The synthetic models

generated do not have decision dependencies. Figure 8.3 shows that on our synthetic



Chapter 8. RADAR Performance Evaluation 205

. /
30

—_— /
5
[=] 23 /
=
@ I0
E /
-
c 15
3
o /
10

5 /
0 /
0.E+00 1.E+06 2 E+06 3.E+06 4 E+06 5 E+D6 6.E+D6
Mumber of Simulations

10

: —
/"

Memory Usage [GB)
(%3]

0.E+O0 1.E+0E 2 E+0E 3. E+0E 4 E+H0E 5 E+DE 6.E+0E
Number of Simulations

FIGURE 8.1: Total run-time (left) and memory usage (right) measured for doubling
the number of simulations, N, from 10* to 512 x 10%.
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FIGURE 8.3: Total run-time (left) and memory usage (right) measured for 2,3,4 and 5
objectives.

models the run-time and memory usage increase roughly linearly with the number of

objectives.

RQ1.4: What is the time spent and memory consumed by each analysis step?
For each synthetic model generated in the experiment to answer RQ1.4, we measured

the fraction of time spent and memory used in each of the four analysis step: generating
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Algorithm Step

Average % Total Time

Average % Memory Usage

Generating the design space
Simulating all solutions in the design space
Shortlisting the Pareto-optimal solutions

Computing expected information value over the shortlisted solutions

0
100
0
0

0
96
1
3

TABLE 8.2: Average fraction of time for each analysis step over all synthetic models

Model System Description Objectives #Decisions #Options #Variables #Constraints Solution space
(#XOR/#O0R) Ranges
Requirements subset selection for
MSM the future release of a Microsoft ii: RN;;I{ Benefit 0/1 50 251 39 250
Word Processor [142]
Requirements subset selection for Max PI_OJCCt BC““f“ .
the future release of a commercial Max Frequency OF Use 25
RPN ol : Min Risk 0/1 25 267 15 2%
(fn;"rlelea:e I:]lilr;iy;(;)[lr'12] Min Stakeholder Dissatisfaction
ase P ° Min Requirements Volatilty
Software architecture evaluation
SAS of an emergency response system fox th Benefit 10/0 o4 254 0 6912
to coordinate teams in emergency Min Risk
situations [85, 166]
Software architecture evaluation of
ECS a satel.hte Image Pro(:,essor for M.ax Project Utility 10/0 2 6 0 210
collecting and managing Min Cost
satellite data [151, 179]
Optimal feature selection ] .
BDM  of the Berkeley Relational Database Masx Net Benefit 1/2 26 27 0 29
h Min Resource Utilisation
Management System [238]
Optimal feature selection of Max Net Benefit 5
SS 2.5 4 4 5 » 920
BSS a public Bike Sharing System [177, 250]  Min Loss Probability 2/8 g S 4 152
Max Feature Richness
Max Instance ECU
Amazon Web Service Max EC2 Cores
AWM  Elastic Compute Cloud Max Instance RAM 12/2 2-5 68 0 405 x 210
optimal configuration [98] Max SSD Backed
Min CostHour
Min CostMonth
Max Feature Richness
- Optimal feature selection Max Feature Reuse N . . w926
WPM of a Web Portal System [176] Min Defect Count, 6/7 5 135 2 3x2
Min Cost
Optimal feature selection
DPM in Drupal— a PHP-based framework for Max Net Benefit 4/6 2-24 27 0 210

web content management [228]

Min Risk

TABLE 8.3: RQ2: Real-world requirements and architecture decision problems

the design space, simulating the design space, shortlisting the Pareto-optimal solutions,

and computing expected information value. Table 8.2 shows the average fraction of time

for each analysis step over all synthetic models. The table shows that the simulation of

all solutions takes the largest portion of time (100%) and memory consumption (96%).

In summary, our results show that: the run time and memory consumption of the

RADAR analysis steps are linearly proportional to the number of simulations (N), the

design space size and the number of objectives; the simulation of the design space takes

the highest average proportion of the run time (100%) and memory usage (96%); the

design space of models without decision dependencies increases exponentially with the

number of decisions and options. As a rule-of-thumb, RADAR’s exhaustive search strategy

would struggle solving problems with more than 10 independent decisions with around

3 options per decisions.
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FIGURE 8.4: (A + 1) optimisation approach.

8.5.2 Performance Analysis of RADAR Search-Based Approaches

Figures 8.4 and 8.5 show the runtimes between the (A+1) and 1+ X approaches and for all
model-algorithm pairs. Table 8.4 shows the mean value of hypervolume (HV), coverage
(COV) and validity ratio (VR) quality indicators for each problem-algorithm pair. In
Table 8.4, the best and second best values of the quality indicators for each model-
algorithm pair are shaded dark grey and light grey, respectively. We report validity

ratio for problems with constraints only.

RQ2.1. Time taken by RADAR’s optimisation analysis using different EMOAs?
The mean run-time results in Figure 8.4 and Figure 8.5 show that all algorithms finished
under 2 minutes. Between the (A+1) and 1+ A approaches and for all model-algorithm
pairs, IBEA is the slowest. This is because IBEA carries out extra computation when
computing dominance value between two candidate solutions. IBEA considers optimi-
sation objectives (which captures user’s preferences) in assigning weights to candidate
solutions based on the quality indicator (hypervolume). When comparing the other al-
gorithms, the run-time varies, with the exception that random search was the fastest.
Therefore, we conclude that RADAR with EMOAs scales well in analysing models that

are infeasible to solve using the exhaustive strategy of RADAR.

RQ2.2. Quality of solutions shortlisted by RADAR using different EMOAs?
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FIGURE 8.5: 1+ )\ optimisation approach.

The results presented in Table 8.4 show that between the (A+1) and 14\ approaches and
for all model-algorithm pairs, SPEA2 and MOCell outperformed NSGAII and IBEA in
mean HV and Cov except in model WPM where IBEA produced superior results than
the other EMOAs. Between SPEA2 and MOCell, there is no clear winner. Between
NSGAII and IBEA, the former mostly outperformed the latter in mean Cov and mean
HV. For BDM model, all EMOAs produced HV of 0. Further investigation revealed that
the number of solutions with unique objective values in the Pareto front approximations
is very small (at most three) for each EMOA. The low HV means that the Pareto front

approximation are not able to cover a significant part of the objective space.

The post-hoc analysis of two way comparison between alternative RADAR algorithms is
presented in Table 8.5. This analysis shows statistical evidence to support these find-
ings. Specifically, we carried out a total of 360 unique tests (9 problems, 5 algorithms, 2
metrics, 2 optimisation approaches) in which 324 tests (90%) showed statistical signifi-
cance (p-value < 0.05) in the difference between alternative RADAR EMOAs, with 72%

of the tests having large effect size (A-measure > 0.8).

From the results in Table 8.4 and Table 8.5, we conclude that between the (A 4 1) and
1+ X approaches and for all model-algorithm pairs, SPEA2 and MOCell produced the
best Pareto front approximation in terms of proximity to the reference (true) Pareto

front and the spread of solutions in the Pareto front.
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SPEA2 MOCell NSGAII Random

Model A+1 14X A+ 1 14+ X A+ 1 1+ X A+ 1 14X A+1 14X
RPM 0.0078 0.0250 0.0124 0.0181 0.0076 0.0008 0.0076 0.0056 0.0738 0.0047

SAS 1.0000 1.0000 1.0000 1.0000 0.8610 0.8520 0.0111 0.0143 0.2750 0.2830

g ECS 1.0000 1.0000 1.0000 1.0000 0.8210 0.7900 0.0864 0.0778 0.7440 0.7200
0 AWM 1.0000 1.0000 1.0000 1.0000 0.7440 0.7560 0.0646 0.0729 0.4420 0.5060
BDM 0.9330 1.0000 1.0000 0.9670 0.7670 0.7000 0.1330 0.1670 0.7670 0.8830

BSS 1.0000 1.0000 0.9670 0.9440 0.7670 0.9670 0.5000 0.5560 0.0000 0.0000

DPM 0.0105 0.0210 0.0114 0.0534 0.0064 0.0017 0.0113 0.0132 0.0041 0.0000
WPM 0.0098 0.0138 0.0255 0.0270 0.0303 0.0072 0.0586 0.0661 0.0073 0.0008
0.4820 0.0120 0.4920 0.0305 0.3620 0.0249 0.3490 0.0186 0.2860 0.0010

RPM 0.1400 0.1740 0.1590 0.1670 0.1430 0.0331 0.1380 0.0803 0.1710 0.0968

SAS 0.4400 0.5900 0.4400 0.5900 0.4260 0.5840 0.0972 0.1520 0.3070 0.4640

> ECS 0.7200 0.7200 0.7200 0.7200 0.7160 0.7140 0.6380 0.6430 0.7080 0.7120
T AWM 0.0163 0.0163 0.0163 0.0163 0.0154 0.0153 0.0089 0.0010 0.0154 0.0147
BDM 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

BSS 0.3870 0.2450 0.3740 0.2370 0.3100 0.2450 0.2870 0.2110 0.0000 0.0000

DPM 0.3700 0.3610 0.3490 0.3430 0.3240 0.2030 0.3800 0.3050 0.3050 0.1530
WPM 0.2120 0.2220 0.2010 0.2130 0.2090 0.1550 0.2370 0.2310 0.1860 0.1720

~ MSM 0.17 2 0 0.20 0 0.17 0 0 0
X RPM 6.33 100 5.94 100 5.87 100 63.60 100 6.72 100
~ BSS 100 100 98.30 100 98.30 100 100 100 98.30 100
i DPM 19.10 100 16.80 100 15.50 100 82.20 100 6.65 100
> WPM 41.30 100 33.10 100 40.70 100 100 100 26.20 100

TABLE 8.4: Mean coverage, mean hypervolume and validation ratio between (A 4 1)
and 1+ A for all model-algorithm pairs (30 runs). The best and second best values of
the metrics for each model-algorithm pair are shaded dark grey and light grey, respec-
tively. MSM (Microsoft Word Processor model), RPM (Release Planning tool model),
SAS (Situation Awareness System model), ECS (NASA Satellite processing system
model), AWM (Amazon Web Service model), BDM (Building Security model), BSS
(Bike sharing model), DPM (Drupal PHP System model), WPM (E-commerce Web
portal system). We report validity ratio for problems with constraints only.

With respect to the number of valid solutions shortlisted in the Pareto front approxi-
mation, the mean VR presented in Table 8.4 shows that all algorithms returned at least
one valid solutions in each model for both (A 4 1) and 1 + A optimisation approaches.
The only exception is observed in MSM model where the mean VR for each EMOAs is
0 for the 1+ A approach. This means using the 1+ X\ approach, none of the EMOAs was
able to generate optimal solution that satisfy model constraints with 50000 evaluations
of the problem solution space (2°°). We also observed in general that between (A + 1)
and 1+ X\ optimisation approaches, all the EMOAs produced very high mean VR (=~
100%) with the 1+ X approach than (A + 1) approach. Of these EMOAs, IBEA has the
best mean VR with the (A 4+ 1). This is because IBEA incorporates decision-maker’s

objectives in the Pareto dominance criteria.

Therefore, we conclude that independent of the EMOA used during RADAR analysis, the
1+ X approach is more effective than the (A + 1) approach in shortlisting valid solutions
in the Pareto front approximation. This is because the 1 + A optimisation approach
prioritises solutions with fewer constraint violations when estimating dominance value
between two candidate solutions. And when more valid solutions are generated, they
are likely maintained across different generations thereby serving as a seed to generate
further valid solutions. This finding is consistent with those obtained in [130] for 1 + A

approach.
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TABLE 8.5: Post-hoc analysis results of pairwise comparison of model-algorithm pair. Each cell in the table are models for which algorithms in the
rows are significantly ( p < 0.05) better than those in the columns.
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8.6 Threats to Validity

8.6.1 Internal validity threats

This concerns the biases in the reported empirical results due to the random nature
of Evolutionary Multi-objective Optimisation Algorithms (EMOAs). We handled this
threat by following guidelines in [27]. We run all studied EMOAs (i.e. NSGAII, SPEAII,
MoCell and IBEA) on our subject models 30 times. We also checked for differences in
statistical significance and effect sizes in the achieved results using Man-Whitney U-test
and Vargha-Delaney A-measure [251], respectively. In our experiments, we have not
set random seeds that would have ensured that running each EMOAs multiple times
on a model generate exactly the same Pareto-optimal solutions. Instead, running each
EMOAs 30 times on each model enable us to study the variability of Pareto-optimal
solutions due to the algorithms’ randomness. For practical use of the tool, modellers

can set a specific random seed to eliminate such variability if they wish.

Another possible threat to internal validity is in the choice of algorithmic parameter
settings, which could have affected the results obtained. Our evaluation uses well known
default algorithmic parameters for EMOAs previously used in many multi-objective
optimisation problems in software engineering [193, 235, 285]. One could also criticise
the validity of the metrics we have used to compare our EMOAs. In particular, we have
focused on hypervolume, coverage, and validity ratio used in previous similar studies
[128, 130, 193], but have ignored other measures of solutions diversity, such as Spread

and generational distance [290].

8.6.2 External validity threat

This concerns the limitations of generalising from our results about the applicability and
usefulness of RADAR in modelling all requirements and architecture decision problems.
We reduced this threat by performing our evaluations on 9 subject models which are
based on real world systems used in the literature [85, 98, 142, 151, 166, 176, 177, 179,
228, 238, 250]. These problems are characterised with different complexities, such as
different number of objectives, different number of decisions, different number of op-

tions per decision, different number of constraints between options of decisions, different
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number of model variables, and different sizes of the solution space. Nonetheless, our
results may not generalise to all requirements and architectural decision problems as

more validations still need to be carried out in the future.

8.7 Summary

This chapter presented an evaluation of RADAR’s performance analysis. We have con-
ducted an empirical study to assess the performance of RADAR’s exhaustive strategy and

its alternative search-based multi-objective evolutionary algorithms.

We conducted an empirical scalability analysis of the RADAR’s exhaustive strategy on
synthetic RADAR models, and measured RADAR’s execution time and memory consumed
with respect to increasing number of simulations; number of objectives and the design
space. The results of the study (see section 8.5.1) show the design space size limits
RADARs exhaustive simulation, thereby limiting the class of problems RADAR’s exhaus-

tive strategy can analyse.

We also conducted an empirical study to assess the execution time and quality of so-
lutions generated by RADAR’s evolutionary multi-objective algorithms, such as NSGAII
[69], SPEAII [289], MoCell [184] and IBEA [288] (see section 8.5.2). Our results show
that: (i) these algorithms scale well with real-world requirements and architecture de-
cision problems of different complexities (see figures 8.4 and 8.5); (ii) independent of
the evolutionary multi-obejective algorithm used with RADAR, the 1 + A approach is
better than the (A + 1) approach; and (iii) between the (A + 1) and 1 + A\ constraint
handling approaches and between the algorithms, SPEA2 and MOCell produced the
best Pareto front approximation in terms of convergence and diversity across different

decision models (see tables 8.4 and 8.5).
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Conclusion and Future Work

In software engineering, requirements engineering and software architecture are key
phases of engineering software intensive systems. They involve making critical deci-
sions that have an impact on the software project cost, schedule and the ability of the

system to deliver business values and satisfy stakeholders goals.

Determining the optimal requirements and architectural decisions becomes complex
when decision-makers have to deal with multiple conflicting objectives including, for
example, minimising cost, maximising value, and minimising risks; uncertainty about
the impact of decision choices on objectives and a huge space of alternative solutions

which are difficult to explore manually.

Several requirements and architectural decision support methods have been proposed.
Examples include: qualitative goal-oriented decision models (e.g. the NFR [180], i* [277]
frameworks); methods that use abstract non-verifiable scores and pre-established, fixed,
non-falsifiable model equations (e.g. the EVOLVE release planning method [216], the
Cost-Benefit Architecture Method (CBAM) [149, 179] and other search-based methods
for requirements selection and optimisation [201]); and the approaches that use quan-
titative problem specific decision models (e.g. the quantitative extensions to NFR/i*
[3, 199], KAOS [126, 165] and the Bayesian decision analysis in software engineering
[166]). The main limitations of these approaches has been the difficulty to elaborate
domain-specific decision models and/or the lack of integrated tool support for auto-

mated decision analysis under uncertainty.
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In this thesis, we have presented a new modelling language and automated decision anal-
ysis method, implemented in a tool called RADAR, to mitigate the limitations of existing
approaches. The modelling language facilitates the elaboration and analysis of domain-
specific requirements engineering and software architecture decision problems under un-
certainty. It enables decision-makers to model design time decisions at different level of
complexities: (i) decisions characterised by single option selection similar to mutually
exclusive option selection (XOR-nodes) of feature diagrams used in software product
lines. (ii) decisions characterised by three different constraints (excludes, requires and
coupling) relationships between options of decisions and multiple options selection sim-
ilar to non-mutually exclusive options selections (OR-nodes) of feature diagrams. The
proposed automated decision analysis technique involves analysing uncertainty (epis-
temic) through Monte-Carlo simulations, shortlisting Pareto-optimal solutions through
multi-objective optimisation, and computing expected value of information that can be
used to decide whether to seek more information or perform a more detailed analysis

before making a decision.

The thesis also presented an evaluation of the applicability, usefulness and performance
of RADAR. Our evaluation results show that RADAR’s modelling language and analysis
technique is applicable on a range of real-world requirements and architecture decision
problems (see Table 7.1 for the requirements and architecture decision problems with
design space size between 6 and 2°°), and that in few seconds, RADAR can analyse deci-
sion problems characterised by large design space using highly performant optimisation
method through the use of evolutionary search-based algorithms instead of exhaustive
search. RADAR is useful in providing feedback to decision-makers about which deci-
sions give the best trade-offs between conflicting stakeholder goals and which aspects
of a decision model need further analysis or additional information before making a
decision. RADAR also improves decision analysis in Software Product Line as it allows

domain-specific equations which existing SPL tools lack.

9.1 Future Work

We highlight potential future research directions following the research presented in this

thesis as follows:
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9.1.1 Language and Analysis Extensions

The empirical evaluations presented in chapters 7 and 8 show that RADAR’s modelling
language is expressive enough to model real-world requirements and architecture de-
cisions under uncertainty, and the automated decision analysis technique scales well
in analysing these problems. An area of possible improvement is to augment the tool
with mathematical functions such as MAX, MIN, AVERAGE and SQRT to further in-
crease the tool’s applicability. Extending the language with the capability of modelling
state-based operations of software systems is a feasible future work. To achieve this,
we propose using techniques from goal-oriented requirements engineering that use linear
temporal logic operators to define the possible states of a system both in the past and

future bounded by time [65, 162].

With respect to RADAR’s decision analysis, an area of improvement is to augment
RADAR’s current constraint handling approach. Future work would be to explore other
approaches, such as defining evolution functions (i.e., repair operators) to avoid gener-
ating invalid solutions [285], and combining constraint solving approaches with search-

based optimisation techniques [128].

9.1.2 Iterative Decision Analysis Approach using Information Value

Analysis

The thesis has shown how RADAR’s analysis technique evaluates the expected value
of perfect information (EVTPI) in order to determine the financial value of reducing
uncertainty in a decision model. Computing EVTPI helps to identify parts of a decision
model that needs additional data collection or further analysis through requirements
elicitation, prototyping and modelling. If the estimated financial value of seeking more
information significantly exceeds the effort required, then a new modelling and analysis
cycle is triggered. In this thesis, we have not demonstrated such iterative method on a
real-world problem. Future work is required to develop and evaluate an iterative decision
analysis method that uses information value analysis to support informed requirements

and architecture decisions.
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9.1.3 Runtime Adaptation of Executing System

RADAR has been developed to support requirements and architecture decision at design-
time. Such decisions, however, often have to be revised at run-time as more options
become available or as uncertainty about some of the decision model parameters is re-
duced through observation of the running system. RADAR may provide the basis for such
run-time adaptation, for example by embedding RADAR models in the running system
through requirements reflection [35, 231]. Techniques for reassessing stakeholders’ pref-
erences at run-time may also be used to update RADAR models parameters that encode

such preferences [34, 124].

9.1.4 Handing Other Forms of Uncertainty

Of the different forms of uncertainty (epistemic, alaetory and linguistic), this thesis
have mainly considered epistemic uncertainty, i.e., lack of total knowledge about how a
proposed system will operate or incomplete knowledge about the actual consequences
of alternative decision choices on stakeholders’ goals [166]. We have solved this form of
uncertainty only at design time by computing the expected gain in some objective values
(e.g. mnet benefit) of interest given total or partial information about some estimated
model parameters. In the future, we propose to extend our solutions beyond design time
to include system runtime where uncertainty may either reduce significantly or otherwise.
In addition, we intend to tackle other forms of uncertainty, i.e., alaotory uncertainty
which arise from random physical phenomenon within the context of a system or its

executing environment.

9.1.5 Automated Model Validation and Calibration

In Chapter 7, we have exemplified RADAR on a set of real world examples. While some
of the model equations developed for these examples are based on observed data, the
correctness of RADAR’s automated analysis presented relies on having a valid decision
models. Throughout the thesis, we have only checked that these decision models de-
veloped for each example system are plausible and are sufficient to represent real-world

system properties that stakeholders would be interested in based on experience. RADAR’S
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approach, however, exposes a gap in requirements and architecture decision making re-
search: there is currently lack of automated techniques for validating requirements and
architecture decision models against observed data, and for automatically calibrating
and inferring decision models from observed data. Therefore, to answer the question of
validity of RADAR models, future work is required to implement techniques for validating
and calibrating RADAR models against run time data of software systems. Techniques

from data mining [114] and Bayesian inference could be used and adapted [274, 275].

9.1.6 Tool Evaluation in Organisation Context

An important future work would be to further evaluate the tool’s language and decision
analysis approach on large industrial case studies within an organisational setting. This
will help in answering the questions about the simplicity, conciseness and clarity of
the language constructs; whether the language constructs are sufficient to express the
problems it addresses; whether the elaboration of a domain-specific requirements and
architecture decision models are not excessively human resource-expensive; whether it
is reasonably easy for modellers to learn the language; and finally validate the benefits

of the RADAR’s approach against the state of the art.




Appendix A

Modelling and Analysing The

London Ambulance System

Problem Statement

The London Ambulance System (LAS) deploys ambulances to an incident location as
quickly as possible [90, 126]. It is also used to provide pre-arranged services such as
transporting and finding hospital beds for patients. In 1992, the UK Government im-
posed performance standards for accident and emergency calls, which states that “an
ambulance must arrive at the scene within 14 minutes of the reported incidents”. This

standard necessitated the need for the first automated version of the LAS [126, 162].

Suppose, for example, a designer wants to perform a cost-benefit analysis of deciding
whether to automate all or parts of the LAS. With the current system, the goal of 14
minutes response time is seldom achieved [90]. However, automating all or parts of the
system will reduce the time it takes the crew to intervene at an incident. But, the cost

and benefit of this automation are highly uncertain.

The design decisions of the London Ambulance System include [41, 126]:

e The incident form encoding method with the option to use a paper-based method to
encode details about the calls reporting an incident or use a computer-based encod-
ing, or automated encoding using call location mechanism, or a mix of computer-
based encoding with automated call location.
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e The ambulance location method with the option to use a radio and paper-based

method to locate an idle ambulance, or an automated vehicle location method.

e The ambulance allocation method for dispatching the nearest ambulances to an
incident location. Alternative options includes the use of a paper-based allocation

method, an interactive allocation method, or a fully automated allocation method.

e The mobilization communication method that enables the ambulance crew to com-
municate directly with the ambulance station where incidents are reported. Al-
ternative options includes the use of a radio, or mobile data terminals (MDT)

system.

e The number of deployed ambulances within the city. Assume there are currently

100 ambulances, but this could be increased up to 200 or more ambulances.

RADAR Model

Modelling the Optimisation Objectives

Two key concerns of London Ambulance System are to minimise the response time for
an ambulance to intervene an incident and to minimise costs, which include the cost
of encoding an incident, cost of mobilising ambulances to incident locations, cost of

locating and allocating ambulances.

Objective Max ExpectedNetBenefit = EV (Benefit);

Objective Min Risk = Pr(ResponseTime > 14 % 60);

The first stakeholders’ concern of minimising ambulance response time is equivalent to

maximising the net benefits of automating the ambulance management system.

We model the second stakeholders’ concern as minimising the risk defined here as the
probability that the ambulance response time exceeds 14 minutes (14x60 in seconds) of

the reported incident. The 14 minutes is a United Kingdom Government standard [126].
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Modelling Benefit

Benefit = Revenue - Cost;

Revenue = normalCI(100000, 200000);

The Benefit is defined as the difference between the Revenue and Cost. The Revenue fol-

lows a normal distribution with 90% confidence interval between £100000 and £200000.

Modelling Response Time

The ambulance RepsonseTime is the sum of the time taken to mobilise the ambulance,
the travel time of the ambulance and possibly the delay an ambulance faced during

travel.

ResponseTime = AmbulanceMobilisationTime
+ Mobilised AmbulanceTravel Time

+ Mobilised AmbulanceDelay;

The AmbulanceMobilisationTime is the sum of the incident call taking time, ambulance

allocation time and the mobilisation communication time:

AmbulanceMobilisationTime = IncidentCallTakingTime
+ AmbulanceAllocationTime

+ MobilisationCommunicationTime;

IncidentCallTakingTime = decision(“Incident Form Encoding Method”){
“Current Paper-Based”:exponential(60);
“Computer Based”:exponential(40);
“Automated Call Location” :exponential(45);

“Computer-Based and Automated Call Location” :exponential(30);
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The IncidentCallTakingTime depends on the “incident form encoding method” used. If
the current paper-based method is used, then the call taking time follows an exponential
distribution with a mean of 60 seconds; If the computer-based method is used, then the
call taking time has an exponential distribution with mean time of 40 seconds; if the
automated call location method is selected, then the call taking time has exponential
distribution with a mean value of 45 seconds; and if the computer-based and automated
call location method is used, then the call taking time follows an exponential distribution

with a mean time of 30 seconds.

AmbulanceAllocationTime = decision(“Ambulance Allocation Method”){
“Current Paper-Based”:exponential(60);
“Interactive Allocation”:exponential(20);

“Fully Automated Allocation”:exponential(5);

The AmbulanceAllocationTime depends on the “ambulance allocation method”. If the
current paper-based method is used, then the ambulance allocation time follows an
exponential distribution with a mean of 60 seconds; If the interactive allocation method
is used, then the allocation time has an exponential distribution with mean time of 20
seconds; if the allocation is fully automated, then the allocation time has exponential

distribution with a mean value of 5 seconds.

MobilisationCommunicationTime = decision(“Mobilisation Communication Method”){
“Current Radio-Based” :triangular(45, 60, 90);
“MDT-System A”:triangular(20, 30, 40);

“MDT-System B”:triangular(10, 15, 20);

The MobilisationCommunicationTime depends on the “mobilisation communication method”.
If the current radio-based method is used, then the mobilisation communication time
follows a triangular distribution with a lower and upper bounds of 45 and 90 seconds
respectively, and a most likely time of 60 seconds; If a mobile data terminal system of
a specific model type A is used, then the allocation time has a triangular distribution

with a lower and upper bounds of 20 and 40 seconds respectively, and a most likely
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time of 30 seconds; if a different mobile data terminal system of another model type B
is used, then the mobilisation communication time has a triangular distribution with a
lower and upper bounds of 10 and 20 seconds respectively, and a most likely time of 15

seconds.

Mobilised AmbulanceTravel Time = Mobilised AmbulanceDistance / Mobilised AmbulanceAver-

ageSpeed;

The MobilisationAmbulanceTravelTime is the ratio of the distance the mobilised ambu-

lance has to travel to the average mobilised ambulance speed.

Mobilised AmbulanceDistance = Mobilised AmbulanceDistanceFromLocation

+ Mobilised AmbulanceLocationErrorMargin;

The mobilised ambulance distance is the sum of the mobilised ambulance distance from

the incident location and an error margin when locating the ambulance.

Since ambulances can be at different location, we assume the mobilised ambulance to
be within some distance from the incident location. Hence we assume the mobilised
ambulance distance from location follows a normal distribution with confidence interval

between 10000km and 100000km.

Mobilised AmbulanceDistanceFromLocation = normalCI(10000,100000);

Mobilised AmbulanceLocationErrorMargin = decision(“Ambulance Localisation Method” ){
“Current Radio and Paper-Based” :normal(60, 120);
“Automated Vehicle Localisation A”:normal(45, 60);
“Automated Vehicle Localisation B”:normal(20, 60);

}

Mobilised AmbulanceAverageSpreed = triangular(30, 50, 70);

Mobilised AmbulanceDelay = normalCI(0, 120);

The mobilisation ambulance location error margin depends on the ambulance localisa-

tion method; if the current radio and paper-based method is used, then the error margin
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follows a normal distribution with a mean of 60km and standard deviation of 120km;
if the automated vehicle localisation method of model type A is used, then error mar-
gin has a normal distribution with a mean and standard deviation of 45km and 60km
respectively; if a different automated vehicle localisation of model type B is used, then
the error margin has a normal distribution with a mean and standard deviation of 20km

and 60km respectively.

Modelling Costs

The cost is the sum of the ambulance mobilisation cost and the cost of ambulances:

Cost = AmbulanceMobilisationCost + CostOfAmbulance;
CostOfAmbulance =

(NbrAmbulances - CurrentNbrOfAmbulance) * UnitCost + AnnualMaintenanceCost;
CurrentNbrOfAmbulance = deterministic(100);

UnitCost = triangular (5000, 7000, 10000);

The number of ambulances depends on the whether additional ambulance are deployed.

The number of ambulances currently deployed is 100.
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NbrAmbulances = decision(“Additional Ambulance”){
“Current_100_Amb” : deterministic(100);
“120_Amb” : deterministic(120);

“140_Amb” : deterministic(140);
“160_Amb” : deterministic(160);
“180-Amb” : deterministic(180);
“200-Amb” : deterministic(200);

}

AnnualMaintenanceCost = decision(“Additional Ambulance”){
“Current-100_Amb” :triangular (5000, 7000, 10000);
“120_Amb” : triangular(1000, 1500, 2000);
“140_Amb” : triangular(1500, 2000, 2500);
“160-Amb” : triangular(2000, 2500, 3000);
“180_Amb” : triangular(2500, 3000, 3500);

“200_Amb” : triangular(3000, 3500, 4000);

The ambulance mobilisation cost is the sum of the cost of incident form encoding and

the cost of locating an idle ambulance:

AmbulanceMobilisationCost = CostOfIncidentFormEncoding + CostOfLocatingAmbulance;
CostOfIncidentFormEncoding = decision (“Incident Form Encoding Method”){
“Current Paper-Based”:triangular(150,200,250);
“Computer Based”:triangular(100, 150, 200);
“Automated Call Location” :triangular(50,100,120);
“Computer-Based and Automated Call Location” :triangular(10, 50, 100);
}
CostOfLocatingAmbulance = decision(“Ambulance Localisation Method” ){
“Current Radio and Paper-Based”: triangular (400, 500, 600);
“Automated Vehicle Location A”:triangular (300, 400, 500 );

“Automated Vehicle Location B”: triangular(200, 300, 400);
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RADAR generates the AND/OR refinement graph and decision dependency graphs from
the London ambulance model equations to aid visualisation of model structure. Fig.
A.la shows the partial AND/OR refinement graphs for the London ambulance model
starting from the model variable AmbulanceMobilisationTime. Fig. A.1b shows the

decision graph for the model.

Analysis Results

The RADAR analysis of the LAS model is presented in Fig. A.5 which shows the results of
the optimisation analysis on the model. The results show that all shortlisted solutions in-
clude the paper-based option, radio-based option and the option to maintain the number
of ambulances at 100. This implies that, in our model, the paper-based option outper-
forms the interactive and fully automated options of the ambulance allocation method.
Similarly, the radio-based option outperforms the MDT-system of the ambulance mo-
bilisation method. But once these two options are selected, the shortlist includes all
possible combinations of incident encoding methods and ambulance allocation methods;
each combination representing a tradeoff between maximising ExpectedNetBenefit and

minimising Risk.

To visualise such tradeoffs, RADAR generates the graph in Fig. A.2 plotting the objective
values for the shortlisted solutions (shown squares at the top of the graph) and all other

non shortlisted ones (shown as circles).

For information value analysis, RADAR estimates the expected value of perfect informa-
tion. The estimated value of EVPI (for all model parameters) is approximately equal to
zero. This means that none of the model parameters is worth further data collection or

analysis.

Comparison To Previous Analysis

Previous modelling and analysis of the London Ambulance System (LAS) involves using
the quantitative extension of the KAOS framework [65, 266] to elaborate stakeholder
goals of achieving fast ambulance intervention within 14 minutes of every urgent call

reporting an incident.
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Pareto front for the AMS
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FIGURE A.2: Pareto front of the London ambulance model analysis.

Letier et al. [165] developed a quantitative technique that specifies partial degrees of goal
satisfaction, and quantifies the impact of alternatives on the extent of goal satisfaction
in terms of refinement equations, which are defined over random variables involved in
the system‘s functional goals. They computed their objective functions for higher-level
goals using estimated probability distribution functions from the leaf or low level quality

variables.

Heaven et al. [126] extended the quantitative goal refinement model presented by Letier
et al. [165] and developed a simulation and optimisation framework that evaluates the
impact of alternative system designs on high level goals and uses multi-objective genetic
algorithm (NSGA2) to shortlist the best alternative designs. They found the Pareto
optimal design options among the alternatives options, that optimises the achievement of
8 and 14 minutes response time of the London Ambulance System at a low cost. Heaven
et al. [126] developed a partial goal model for the LAS system with the decision points
of alternative design as shown in Figure A.3. Their top level goal Achieve[Ambulance

Intervention] is defined as shown below:
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Goal Achieve[Ambulance Intervention]

Definition

For every urgent call reporting an incident, there should be an ambulance at the incident scene
within 14 minutes after receiving the first call.

Formal Definition (V i:Incident, c¢: UrgentCall)

Reporting(c,i) = O<i4minutes(Ja: Ambulance) Intervention(a,i).

Objective Functions

14MinResponseRate = MAX [P(ResponseTime < 14 mins)]

Cost = MIN [AmbulanceCost]

Quality Variable

ResponseTime: Incident -> Time

def: the duration in seconds between the start of the first call reporting the incident and the

arrival of the first ambulance at the incident scene.

In the above definition, the objective function of the top goal Achieve[Ambulance In-
tervention] is defined with respect to its quality variable (incident response time) which
is recursively related to the quality variables of the sub-goals through refinement equa-
tions [126, 165]. For example, in Figure A.4, the quality variable ResponseTime of goal
Achieve[Ambulance Intervention] is related to the quality variables MobilisationTime,
MobilisationDistance, and AmbulanceDelay of goals Achieve[Ambulance Mobilisation]

and Achieve[Mobilised Ambulance Intervention] by the equation:

ResponseTime = M obilisationTime + M obilisationDistance + Ambulance Delay

(A1)

As a comparison to our approach, the LAS goal-oriented decision model (LASGM)
presented by Heaven et al. is similar to the RADAR model developed for LAS. However,
RADAR was not able to model the Euclidean distance between an ambulance and the
incident location using an Euclidean function between two points. In our model, we

have modelled such distances using probability distributions.

Unlike the RADAR analysis technique that has tool support, the simulation and optimi-

sation framework proposed by Heaven et al. lacks tool support for decision analysis and
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FIGURE A.3: Partial goal model for the LAS system showing decision points for alter-
native system designs.
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FIGURE A.4: Quality variables for the LAS goal model.

requires manual encoding of the simulation models in a general programming language,
such as R and MATLAB. In their optimisation analysis of the LAS model, they used
multi-objective evolutionary algorithms (e.g. NSGAII) to shortlist Pareto optimal solu-
tions while our analysis technique used the exact multi-objective optimisation technique
to guarantee finding the true optimal solutions. In addition, our approach analysed

uncertainty in decision models using information value analysis which is not present in

their approach.
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Appendix B

Modelling and Analysing the
NASA ECS Satellite Processing
System

Problem Statement

The NASA’s Earth Observing System Data Information (EOSDIS) Core System (ECS)
is a large scale distributed data information system used in managing and distributing
huge volumes of climate related data in different forms around the world, 24 hours each
day. This system collects and manages more than 1000 gigabytes of data from several

satellites using various sensors [150, 179].

As reported by Kazman et al. [151], the ECS went through a maintenance phase and
a planning process of boosting its capabilities. However, the ECS project manager had
limited annual budget to maintain and enhance the functionality of the system. In a
bid to achieve this goal, prior analysis, using the ATAM methodology, was performed to
identify a set of architectural strategies, which represents the decisions in the model (as
shown in Table B.1), to be made in enhancing the system. The manager is faced with
selecting among the set of decisions that give maximum utility in the project and also

minimise the project cost.

233
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Architectural Strategies Alternative Options

Order Reassignment Current: not possible to reassign order
Allow Order Reassignment
Forced Order Completion Current: not possible to force order completion

Allow Forced Order Completion
Order Persistence Strategy  Current: store when processed
Store as soon as received

Order Segmentation Current: orders are segmented
Orders are segmented
Hung Order Recovery Current: no order retry
Allow Order Retry
Failed Order Notification Current: no notification
User notified of failed order
Order Tracking Current: order level

Granule-level order tracking
Available User Information Current: no link to user info

Link to user information

Order Chunking Current: no order chunking
Order Chunking
Order Bundling No Order Bundling

Order Bundling

TABLE B.1: Overview of NASA ECS Architectural Strategies (decisions) and the cor-
responding options.

RADAR Model

Modelling the Optimisation Objectives

The primary decision objectives of the ECS model include two conflicting objectives:
maximise the expected utility and minimise the cost associated to each alternative ar-

chitectural strategies:

Objective Max ExpectedUtility = EV (Utility);

Objective Min Cost;
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Modelling the Utility

Utility = HungRequestsRatioWeight x HungRequestsRatioUtility +
LostRequestsRatioWeight x LostRequestsRatioUtility +
FailedOrderRatioWeight x FailedOrderRatioUtility +
HungOrdersRatioWeight x HungOrdersRatioUtility +
LostOrdersRatioWeight x LostOrdersRatioUtility +
HelpNeededByUsersWeight x HelpNeededByUsersUtility +
FailureInfoGivenToUsersWeight x FailureInfoGivenToUsersUtility +
LimitOnOrdersWeight x LimitOnOrdersUtility +
NotificationsFrequencyWeight x NotificationsFrequencyUtility +
PerformanceWeight x PerformanceUtility

HungRequestsRatioWeight = deterministic(10);

LostRequestsRatioWeight = deterministic(15);

FailedOrderRatioWeight = deterministic(15);

HungOrdersRatioWeight = deterministic(10);

LostOrdersRatioWeight = deterministic(15);

HelpNeededByUsersWeight = deterministic(10);

FailureInfoGivenToUsersWeight = deterministic(5);

LimitOnOrdersWeight = deterministic(5);

NotificationsFrequency Weight = deterministic(10);

PerformanceWeight = deterministic(5);

Hung Request Ratio Utility

HungRequestRatioUtility = (HungRequestRatio - HungRequestRatioWorst)
/(HungRequestRatioBest - HungRequestRatioWorst);
HungRequestRatioBest = deterministic(0);

HungRequestRatioWorst = deterministic(10%);
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Lost Requests Ratio Utility

LostRequestsRatioUtility = (LostRequestsRatio - LostRequestsRatioWorst)
/(LostRequestsRatioBest - LostRequestsRatioWorst);
LostRequestsRatioBest = deterministic(0);

LostRequestsRatioWorst = deterministic(5%);

Failed Order Ratio Utility

FailedOrderRatioUtility = (FailedOrderRatio - FailedOrderRatioWorst)
/(FailedOrderRatioBest - FailedOrderRatioWorst)
FailedOrderRatioBest = deterministic(0);

FailedOrderRatioWorst = deterministic(10%);

Hung Orders Ratio Utility

HungOrdersRatioUtility = (HungOrdersRatio - HungOrdersRatioWorst)
/(HungOrdersRatioBest - HungOrdersRatioWorst);
HungOrdersRatioBest = deterministic(0);

HungOrdersRatioWorst = deterministic(10%);

Lost Orders Ratio Utility

LostOrdersRatioUtility = (LostOrdersRatio - LostOrdersRatioWorst)
/(LostOrdersRatioBest - LostOrdersRatioWorst);
LostOrdersRatioBest = deterministic(0);

LostOrdersRatioWorst = deterministic(10%);
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Help Needed By Users Utility

HelpNeededByUsersUtility = (HelpNeededByUsers - HelpNeededByUsersWorst)
/(HelpNeededByUsersBest - HelpNeeded By UsersWorst);
HelpNeededByUsersBest = deterministic(0);

HelpNeededByUsersWorst = deterministic(50%);

Failure Info Given To Users Utility

FailureInfoGivenToUsersUtility = (FailureInfoGivenToUsers - FailureInfoGivenToUser-
sWorst) /(FailureInfoGivenToUsersBest - FailureInfoGivenToUsersWorst);
FailureInfoGivenToUsersBest = deterministic(100%);

FailureInfoGivenToUsersWorst = deterministic(10%);

Limit On Orders Utility

LimitOnOrdersUtility = (LimitOnOrders - LimitOnOrdersWorst)
/(LimitOnOrdersBest - LimitOnOrdersWorst);
LimitOnOrdersBest = deterministic(0%);

LimitOnOrdersWorst = deterministic(50%);

Notifications Frequency Utility

NotificationsFrequencyUtility = (NotificationsFrequency - NotificationsFrequencyWorst)
/ (NotificationsFrequencyBest - NotificationsFrequency Worst);
NotificationsFrequencyBest = deterministic(1);

NotificationsFrequencyWorst = deterministic(1/1000);
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Performance Utility

PerformanceUtility = (Performance - PerformanceWorst)
/(PerformanceBest - PerformanceWorst);
PerformanceBest = deterministic(90%);

PerformanceWorst = deterministic(50%);

Modelling Quality Attributes

Hung Request Ratio

HungRequestRatio = HungRequestRatioCurrent

x (1 - ReassignedHungRequestRatio)

x (1 - ForcedHungRequestRatio)
HungRequestRatioCurrent = deterministic(5%);
ReassignedHungRequestRatio = decision(” Order Reassignment”){

”Current: not possible to reassign order” : deterministic(0);

” Allow Order Reassignment”: deterministic(60%);
}

ForcedHungRequestRatio = decision(”Forced Order Completion”){
”Current: not possible to force order completion” : deterministic(0);

” Allow Forced Order Completion”:deterministic(40%);

Lost Request Ratio

[ LostRequestRatio = triangular(0, 0.5, 1);
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Failed Order Ratio

FailedOrderRatio = decision(”Order Persistence Strategy” ){
”Current: store when processed” : deterministic(5%);

”Store as soon as received” : deterministic(2%);

Hung Orders Ratio

HungOrdersRatio = HungOrdersRatioCurrent x
(1 - SkippedHungOrderRatio) x
(1 - RetriedHungOrderRatio)

HungOrdersRatioCurrent = deterministic(10%);
SkippedHungOrderRatio = decision(” Order Segmentation”){
”Current: no order segmentation” : deterministic(0);

?Orders are segmented” : deterministic(60%);

}

RetriedHungOrderRatio = decision(” Hung Order Recovery”){
?Current: no order retry” : deterministic(0);

” Allow Order Retry” : deterministic(40%);

Lost Orders Ratio

LostOrdersRatio = decision(” Order Persistence Strategy”){
”Current: store when processed” : deterministic(1%);

”Store as soon as received” : deterministic(0%);
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Help Needed by Users

HelpNeededByUsers = LostOrdersRatio x HelpNeededPerLostOrder x HelpNeededForTrack-
ingGranularity
HelpNeededPerLostOrder = decision(”Failed Order Notification”){

”Current: no notification” :deterministic(25%);

”User notified of failed order”:deterministic(20%);

}

HelpNeededForTrackingGranularity = decision(Order Tracking){
”Current: order level” : deterministic(1);

” Granule-level order tracking” : deterministic(40%);

Failure Information

FailureInfoGivenToUsers = 1- RatioUsersNotGettingInfo
RatioUsersNotGettingInfo = RatioUsersNotGettingInfoCurrent x
(1 - NotificationOrderEffect) x
(1 - OrderTrackingGranularityEffect) x
(1 - UserInformationEffect)

RatioUsersNotGettingInfoCurrent = deterministic(50%);
NotificationOrderEffect = decision(”Failed Order Notification”){
”Current: no notification”: deterministic(0);

?User notified of failed order”: deterministic(80%);

}

OrderTrackingGranularityEffect = decision(Order Tracking){
”Current: order level” : deterministic(0);

” Granule-level order tracking” : deterministic(90%);
}

UserInformationEffect = decision(” Available User Information”){
”Current: no link to user info” : deterministic(0);

”Link to user information” : deterministic(20%);
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Limit on Order

LimitOnOrders = decision(” Order Chunking”){
”Current: no oder chunking”: deterministic(30%);

”Order Chunking” : deterministic(15%);

Notification Frequency

NotificationFrequency = decision(” Order Bundling”){
”No Order Bundling” : deterministic(1);

”Order Bundling” : deterministic(0.01);

Performance

Performance = decision(” Order Bundling”){
”No Order Bundling” : deterministic(60%);

”Order Bundling” : deterministic(55%);

Modelling Cost

Cost = CostOrderReassignment +
CostForcedOrderCompletion +
CostOrderPersistenceStrategy +
CostOrderSegmentation +
CostHungOrderRecovery +
CostFailedOrderNotification +
CostOrderTracking +

CostAvailableUserInformation +
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CostOrderReassignment = decision(” Order Reassignment”){
”Current: not possible to reassign order” : deterministic(0);
” Allow Order Reassignment”: triangular(360, 400, 440);

}

CostForcedOrderCompletion = decision(”Forced Order Completion” ){
?Current: not possible to force order completion” : deterministic(0);
” Allow Forced Order Completion”: triangular(180, 200, 220);

}

CostOrderPersistenceStrategy = decision(” Order Persistence Strategy”){
”Current: store when processed” : deterministic(0);
”Store as soon as received” : triangular(1200, 1200, 7150);

}

CostOrderSegmentation = decision(” Order Segmentation”){
”Current: no order segmentation” : deterministic(0);
”Orders are segmented” : triangular(180, 200, 220);

}

CostHungOrderRecovery = decision(”Hung Order Recovery”){
?Current: no order retry” : deterministic(0);
” Allow Order Retry” : triangular(180, 200, 220);

}

CostFailedOrderNotification = decision(”Failed Order Notification”){
”Current: no notification”: deterministic(0);
” User notified of failed order”: triangular(270, 300, 330);

}

CostOrderTracking = decision(Order Tracking){
”Current: order level” : deterministic(0);
” Granule-level order tracking” : triangular(900, 1000, 1650);

}

CostAvailableUserInformation = decision(” Available User Information”){
”Current: no link to user info” : deterministic(0);
”Link to user information” : triangular(90, 100, 440);

}

CostOrderChunking = decision(”Order Chunking”){
?Current: no oder chunking” : deterministic(0);

?Order Chunking” : triangular(360, 400, 440);
}

CostOrderBundling = decision(” Order Bundling”){
”No Order Bundling” : deterministic(0);

?Order Bundling” :triangular(360, 400, 440);
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To help visualise the model structure, RADAR generates the AND/OR refinement graph
and decision dependency graphs from the NASA ECS model equations. Fig. B.1la shows
the partial AND/OR refinement graphs for the building security model starting from
the model variable FailureInfoGivenToUsersUtility. Fig. B.1b shows a partial decision

graph for the model.

Analysis Results

The RADAR analysis of the NASA ECS Decision Model (ECSM) is presented in Fig.
B.3, which shows the results of the optimisation and information value analysis on the

model.

The first part of Fig. B.3 is the optimisation analysis results, which shows that all short-
listed solutions include the options “Order Chunking” , “Orders are segmented” and
“No order Bundling”. This means that, in our model, these three options, respectively,
outperform the options “Current: No Order Chunking”, “Current: No Order Segmen-
tation” and “No Order Bundling” on both objectives. But once these three options
are selected, the shortlist includes different combinations of Order Reassignment, Forced
Order Completion, Order Persistence Strateqy, Hung Order recovery, Failed Order No-
tification, Order Tracking, Available User Information; each combination representing
a different tradeoffs between maximising ExpectedUtility and minimising the Cost. To
visualise such tradeoffs, RADAR generates the graph in Fig. B.2, plotting the objective
values for the shortlised solutions (i.e. shown squares at the top of the graph) and all

other non shortlisted ones (shown as circles).

The information value analysis results is presented in Table B.2, which shows that the
EVTPI for this problem is 0.04 and EVPPI for all the model parameters is 0. This
means that in this model, there is no parameter worth investigating further before
deciding between the shortlisted solutions to be selected for implementation. Reducing

uncertainty about any of the parameters would bring no value to the decision.
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ExpectedUtility

FIGURE B.2: Pareto front of the NASA’s ECS model analysis.
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6,000

Parameter

EVPPI

LostRequestsRatio

CostOrderReassignment[Allow Order Reassignment]

CostForcedOrderCompletion[Allow Forced Order Completion]
CostOrderPersistenceStrategy[Store as soon as received]

CostOrderSegmentation[Orders are segmented|
CostHungOrderRecovery[Allow Order Retry]

CostFailedOrderNotification[User notified of failed order]

CostOrderTracking[Granule-level order tracking]

CostAvailableUserInformation[Link to user information)]

CostOrderChunking[Order Chunking]
CostOrderBundling[Order Bundling]

O OO OO DO O OO OO

TABLE B.2: Information Value Analysis for the NASA ECS System.

Comparison To Previous Analysis

Previous analysis involves the application of the Cost Benefit Analysis Method (CBAM)

[149, 179] to the ECS project. This analysis has been presented in the 2002 Software
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Engineering Institute (SEI) report. The analysis estimates individual impact of individ-
ual architectural strategies on the utility derived from the system, but does not consider
the combined impacts of architectural strategies on goals. In our approach, we model
the interactions between architectural strategies. i.e. the combined impact of architec-
tural strategies. In addition, our analysis technique allows the selection of more than
one architectural strategy and analyses uncertainty by computing the expected value of

total and partial perfect information.
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Appendix C

Modelling and Analysing Feature
Selection of Drupal (PHP

Framework)

The optimisation objectives are given below:

Objective Min ExpectedComplexity = EV (Complexity);
Objective Max ExpectedTestAssertions = EV (TestAssertions);
Objective Max ExpectedNumberOfInstallations = EV (TotalNumberOflnstallations);

Objective Min ExpectedNumberOfDeVelopers = EV (TotalNumberOfDevelopers);

248
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Modelling Complexity

Complexity = FeatureNodeComplexity
+ FeatureSystemComplexity
+ FeatureFilterComplexity
+ FeatureFieldComplexity
+ FeatureUserComplexity
+ OtherFeaturesComplexity;

FeatureNodeComplexity = ComplexityForFeatureNode+ FeatureNodeSubFeatureComplexity;
ComplexityForFeatureNode = deterministic(0.27);
FeatureNodeSubFeatureComplexity = decision-subset(+) ("Node”) {

“Blog” : deterministic(0.16);

“Forum” : deterministic(0.24);

FeatureSystemComplexity = deterministic(0.31);

FeatureFilterComplexity = deterministic(0.17);

FeatureFieldComplexity = ComplexityForFeatureField + FeatureTextComplexity + Feature-
FieldSQLStorageComplexity + FeatureOptionsComplexity;

ComplexityForFeatureField = deterministic(0.41);
FeatureTextComplexity= deterministic(0.29);
FeatureFieldSQLStorageComplexity = deterministic(0.3);

FeatureOptionsComplexity = decision(”Field Options”){
“Options” : deterministic(0.17);

“Without Options” : deterministic(0);
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FeatureUserComplexity = deterministic(0.26);

OtherFeaturesComplexity = decision-subset(+)(”Drupal Non-Mandatory Features”){
“Path” : deterministic(0.14);
“Image” : deterministic(0.29);
“Field UI” : deterministic(0.28);
“File” : deterministic(0.67);
“Comment” : deterministic(0.23);
“Views” : FeatureViewsComplexity + FeatureViewsUIComplexity ;
“Libraries API” : deterministic(0.55);
“IMCE” : deterministic(0.47);
“Ctools” : FeatureCToolsComplexity + CToolsSubFeaturesComplexity;
“Token”: deterministic(0.51);
“Taxonomy” : deterministic(0.23);
“Date” : FeatureDateComplexity + DateSubFeaturesComplexity;
“WebForm” : deterministic(0.51);
“Link” : deterministic(0.63);
“EntityAPT” : FeatureEntity APIComplexity + Entity APISubFeatureComplexity ;
“CKEditor” : deterministic(0.59);
“Captcha” : FeatureCaptchaComplexity + CaptchaSubFeatureComplexity;
“Features” : deterministic(0.56);
“Panels” : FeaturePanelsComplexity + PanelSubFeatureComplexity;
“Pathauto” : deterministic(0.23);
“JQuery” : deterministic(0.26);
“GoogleAnalytics” : deterministic(0.29);
“Rules” : FeatureRuleComplexity + RuleSubFeatureComplexity;

“BackUpMigration” : deterministic(0.37);
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FeatureViewsComplexity = deterministic(0.41);
FeatureViewsUIComplexity = decision(” Views Ul SubFeature”){
“Views UI”: deterministic(0.37);
“Without UI”: deterministic(0);

FeatureCToolsComplexity = deterministic(0.52);
CToolsSubFeaturesComplexity = decision-subset(+)(” Ctool SubFeature”){
“Ctools access ruleset” : deterministic(0.19);
“Ctools custom content” : deterministic(0.3);

“Views content” : deterministic(0.46);

FeatureDateComplexity = deterministic(0.44);
DateSubFeaturesComplexity = decision-subset(+)(”Date SubFeature”){
“Date API” : deterministic(0.6);
“Date views” : deterministic(0.44);

“Date popups” : deterministic(0.36);

FeatureEntity APIComplexity = deterministic(1);
EntityAPISubFeatureComplexity = decision(”Entity API SubFeatures”){
“Entity Tokens” : deterministic(1.09);

“Without Entity Tokens” : deterministic(0);
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FeatureCaptchaComplexity = deterministic(0.19);
CaptchaSubFeatureComplexity = decision(” Captcha SubFeature”){
“Image Captcha” : deterministic(0.28);
“Without Image Captcha” : deterministic(0);

FeaturePanelsComplexity =deterministic(0.35);
PanelSubFeatureComplexity = decision-subset(+)(”Panels SubFeatures”){
“Panel Nodes” : deterministic(0.35);

“Panels IPE” : deterministic(0.23);

FeatureRuleComplexity = deterministic(0.49);
RuleSubFeatureComplexity = decision-subset(+)(” Rules SubFeatures”){
“Rules Scheduler” : deterministic(0.15);

“Rules UI” : deterministic(0.39);

Modelling Test Assertions

tions
+ FeatureFilterTest Assertions
+ FeatureField Test Assertions
+ FeatureUserTest Assertions

+ OtherFeaturesTest Assertions;

TestAssertions = FeatureNodeTestAssertions + FeatureSystemTest Asser-
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FeatureNodeTestAssertions = TestAssertionsForFeatureNode+ FeatureNodeSubFeatureTes-
tAssertions;
Test AssertionsForFeatureNode = deterministic(1391);
FeatureNodeSubFeatureTest Assertions = decision-subset(+)(”Node”) {
“Blog” : deterministic(244);

“Forum” : deterministic(677);

FeatureSystemTest Assertions = deterministic(2138);

FeatureFilterTest Assertions = deterministic(958);

FeatureFieldTest Assertions = TestAssertionsForFeatureField + FeatureTextTestAssertions +
FeatureFieldSQLStorageTest Assertions + FeatureOptionsTestAssertions;

TestAssertionsForFeatureField = deterministic(870);
FeatureTextTest Assertions = deterministic(444);

FeatureFieldSQLStorageTest Assertions = deterministic(94);

FeatureOptionsTest Assertions = decision(”Field Options”){
“Options” : deterministic(227);

“Without Options” : deterministic(0);
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}

FeatureUserTest Assertions = deterministic(1335);

OtherFeaturesTest Assertions = decision-subset(+)(”Drupal Non-Mandatory Features”){

“Path” : deterministic(330);

“Image” : deterministic(667);

“Field UI” : deterministic(287);

“File” : deterministic(2293);

“Comment” : deterministic(3287);

“Views” : FeatureViewsTestAssertions + FeatureViewsUITestAssertions ;
“Libraries API” : deterministic(135);

“IMCE” : deterministic(0);

“Ctools” : FeatureCToolsTestAssertions + CToolsSubFeaturesTestAssertions;
“Token”: deterministic(347);

“Taxonomy” : deterministic(677);

“Date” : FeatureDateTestAssertions + DateSubFeaturesTestAssertions;
“WebForm” : deterministic(456);

“Link” : deterministic(1275);

“EntityAPI” : FeatureEntity APITestAssertions + Entity APISubFeatureTestAssertions ;
“CKEditor” : deterministic(0);

“Captcha” : FeatureCaptchaTest Assertions + CaptchaSubFeatureTest Assertions;
“Features” : deterministic(16);

“Panels” : FeaturePanelsTestAssertions + PanelSubFeatureTestAssertions;
“Pathauto” : deterministic(316);

“JQuery” : deterministic(0);

“GoogleAnalytics” : deterministic(200);

“Rules” : FeatureRuleTestAssertions + RuleSubFeatureTest Assertions;

“BackUpMigration” : deterministic(0);

FeatureViewsTest Assertions = deterministic(1089);

FeatureViewsUITest Assertions = decision(” Views UI SubFeature”){

“Views UI”: deterministic(538);

“Without UI”: deterministic(0);
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FeatureCToolsTest Assertions = deterministic(1);

CToolsSubFeaturesTest Assertions = decision-subset(+)(” Ctool SubFeature”){
“Ctools access ruleset” : deterministic(0);
“Ctools custom content” : deterministic(0);

“Views content” : deterministic(0);

FeatureDateTest Assertions = deterministic(1);

DateSubFeaturesTest Assertions = decision-subset(+)(”Date SubFeature”){
“Date API” : deterministic(106);
“Date views” : deterministic(0);

“Date popups” : deterministic(0);

FeatureEntity APITest Assertions = deterministic(1);
Entity APISubFeatureTest Assertions = decision(”Entity API SubFeatures”){
“Entity Tokens” : deterministic(6);

“Without Entity Tokens” : deterministic(0);
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FeatureCaptchaTestAssertions = deterministic(851);
CaptchaSubFeatureTest Assertions = decision(” Captcha SubFeature”){
“Image Captcha” : deterministic(1);

“Without Image Captcha” : deterministic(0);

FeaturePanelsTest Assertions =deterministic(0);
PanelSubFeatureTest Assertions = decision-subset(+)(”Panels SubFeatures”){
“Panel Nodes” : deterministic(0);

“Panels IPE” : deterministic(0);

FeatureRuleTestAssertions = deterministic(285);
RuleSubFeatureTest Assertions = decision-subset(+)(”Rules SubFeatures”){
“Rules Scheduler” : deterministic(7);

“Rules UI” : deterministic(0);

Modelling Total Number Of Installations

TotalNumberOflnstallations = FeatureNodeTotalNumberOflnstallations
+ FeatureSystemTotalNumberOflnstallations
+ FeatureFilterNumberOflnstallations
+ FeatureFieldNumberOfInstallations
+ FeatureUserNumberOfInstallations

+ OtherFeaturesNumberOfInstallations;
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FeatureNodeTotalNumberOfInstallations =  TotalNumberOfInstallationsForFeatureNode-+

FeatureNodeSubFeatureTotalNumberOfInstallations;

TotalNumberOfInstallationsForFeatureNode = deterministic(5259525);
FeatureNodeSubFeatureTotalNumberOfInstallations = decision-subset(+)(”Node”) {
“Blog” : deterministic(5259525);

“Forum” : deterministic(5259525);

FeatureSystemTotalNumberOfInstallations= deterministic(5259525);
FeatureFilterTotalNumberOfInstallations= deterministic(5259525);

FeatureField TotalNumberOfInstallations= TotalNumberOflnstallationsForFeatureField + Fea-
tureTextTotalNumberOfInstallations+ FeatureFieldSQLStorageTotalNumberOflInstallations+

FeatureOptionsTest Assertions;

TotalNumberOfInstallationsForFeatureField= deterministic(5259525);
FeatureTextTotalNumberOfInstallations= deterministic(5259525);
FeatureFieldSQLStorageTotalNumberOfInstallations= deterministic(5259525);

FeatureOptionsTotalNumberOfInstallations= decision(”Field Options”){
“Options” : deterministic(5259525);
“Without Options” : deterministic(0);

}

FeatureUserTotalNumberOfInstallations= deterministic(5259525);
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OtherFeaturesNumberOflnstallations = decision-subset(+)(”Drupal Non-Mandatory Fea-
tures” ){

“Path” : deterministic(5259525);

“Image” : deterministic(5259525);

“Field UI” : deterministic(5259525);

“File” : deterministic(5259525);

“Comment” : deterministic(5259525);

“Views” : FeatureViewsTotalNumberOfInstallations+ FeatureViewsUITotalNumberOfIn-
stallations;

“Libraries API” : deterministic(516333);

“IMCE” : deterministic(392705);

“Ctools” : FeatureCToolsTotalNumberOfInstallations+ CToolsSubFeaturesTest Assertions;

“Token”: deterministic(715563);

“Taxonomy” : deterministic(677);

“Date” : FeatureDateTotalNumberOfInstallations+ DateSubFeaturesTest Assertions;

“WebForm” : deterministic(402163);

“Link” : deterministic(286892);

“EntityAPI” : FeatureEntity APITotalNumberOfInstallations+ Entity APISubFeatureTotal-
NumberOflInstallations;

“CKEditor” : deterministic(280919);

“Captcha” : FeatureCaptchaTotalNumberOfInstallations+ CaptchaSubFeatureTestAsser-
tions;

“Features” : deterministic(209653);

“Panels” : FeaturePanelsTotalNumberOfInstallations+ PanelSubFeatureTestAssertions;

“Pathauto” : deterministic(622478);

“JQuery” : deterministic(286556);

“GoogleAnalytics” : deterministic(348278);

“Rules” : FeatureRuleTotalNumberOflInstallations+ RuleSubFeatureTest Assertions;

“BackUpMigration” : deterministic(281797);
}
FeatureViewsTotalNumberOfInstallations= deterministic(1);
FeatureViewsUITotalNumberOfInstallations= decision(” Views UI SubFeature”){

“Views UI”: deterministic(802467);

“Without UI”: deterministic(0);
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FeatureCToolsTotalNumberOfInstallations= deterministic(1);
CToolsSubFeaturesTotalNumberOfInstallations= decision-subset(+)(” Ctool SubFeature”){
“Ctools access ruleset” : deterministic(747248);
“Ctools custom content” : deterministic(747248);

“Views content” : deterministic(747248);

FeatureDateTotalNumberOfInstallations= deterministic(412324);
DateSubFeaturesTotalNumberOfInstallations= decision-subset(+)(”Date SubFeature”){
“Date API” : deterministic(412324);
“Date views” : deterministic(412324);

“Date popups” : deterministic(412324);
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FeatureEntity APITotalNumberOfInstallations= deterministic(407569);

Entity APISubFeatureTotalNumberOflInstallations= decision(”Entity API SubFeatures”){
“Entity Tokens” : deterministic(407569);
“Without Entity Tokens” : deterministic(0);

FeatureCaptchaTotalNumberOfInstallations= deterministic(226295);
CaptchaSubFeatureTotalNumberOfInstallations= decision(” Captcha SubFeature”){
“Image Captcha” : deterministic(226295);
“Without Image Captcha” : deterministic(0);

FeaturePanelsTotalNumberOflnstallations=deterministic(206805);
PanelSubFeatureTotalNumberOflnstallations= decision-subset(+)(” Panels SubFeatures”){
“Panel Nodes” : deterministic(206805);
“Panels IPE” : deterministic(206805);
}
FeatureRuleTotalNumberOfInstallations= deterministic(238388);
RuleSubFeatureTotalNumberOfInstallations= decision-subset(+)(” Rules SubFeatures”){
“Rules Scheduler” : deterministic(238388);

“Rules UI” : deterministic(238388);

Modelling Total Number Of Developers

TotalNumberOfDevelopers = FeatureNodeTotalNumberOfDevelopers
+ FeatureSystemTotalNumberOfDevelopers
+ FeatureFilterNumberOfDevelopers
+ FeatureFieldNumberOfDevelopers
+ FeatureUserNumberOfDevelopers

+ OtherFeaturesNumberOfDevelopers;
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FeatureNodeTotalNumberOfDevelopers = TotalNumberOfDevelopersForFeatureNode+ Fea-
tureNodeSubFeatureTotalNumberOfDevelopers;

TotalNumberOfDevelopersForFeatureNode = deterministic(94);
FeatureNodeSubFeatureTotalNumberOfDevelopers = decision-subset(+)(”Node”) {
“Blog” : deterministic(94);

“Forum” : deterministic(94);

FeatureSystemTotalNumberOfDevelopers= deterministic(94);
FeatureFilterTotalNumberOfDevelopers= deterministic(94);

FeatureField TotalNumberOfDevelopers=TotalNumberOfDevelopersForFeatureField + Fea-
tureTextTotalNumberOfDevelopers+ FeatureFieldSQLStorageTotalNumberOfDevelopers+
FeatureOptionsTotalNumberOfDevelopers;

TotalNumberOfDevelopersForFeatureField= deterministic(94);
FeatureTextTotalNumberOfDevelopers= deterministic(94);
FeatureFieldSQLStorageTotalNumberOfDevelopers= deterministic(94);

FeatureOptionsTotalNumberOfDevelopers= decision(”Field Options”){
“Options” : deterministic(94);

“Without Options” : deterministic(0);




Modelling and Analysing Feature Selection of Drupal (PHP Framework) 262

FeatureUserTotalNumberOfDevelopers= deterministic(94);
OtherFeaturesNumberOfDevelopers = decision-subset(+)(”Drupal Non-Mandatory Fea-
tures” ){

“Path” : deterministic(94);

“Image” : deterministic(94);

“Field UI” : deterministic(94);

“File” : deterministic(94);

“Comment” : deterministic(94);

“Views” : FeatureViewsTotalNumberOfDevelopers+ FeatureViewsUITotalNumberOfDevel-
opers;

“Libraries API” : deterministic(7);

“IMCE” : deterministic(13);

“Ctools” : FeatureCToolsTotalNumberOfDevelopers+ CToolsSubFeaturesTest Assertions;

“Token”: deterministic(31);

“Taxonomy” : deterministic(94);

“Date” : FeatureDateTotalNumberOfDevelopers+ DateSubFeaturesTest Assertions;

“WebForm” : deterministic(46);

“Link” : deterministic(31);

“EntityAPI” : FeatureEntity APITotalNumberOfDevelopers+ Entity APISubFeatureTotal-
NumberOfDevelopers;

“CKEditor” : deterministic(29);

“Captcha” : FeatureCaptchaTotalNumberOfDevelopers+ CaptchaSubFeatureTestAsser-
tions;

“Features” : deterministic(36);

“Panels” : FeaturePanelsTotalNumberOfDevelopers+ PanelSubFeatureTest Assertions;

“Pathauto” : deterministic(33);

“JQuery” : deterministic(17);

“GoogleAnalytics” : deterministic(21);

“Rules” : FeatureRuleTotalNumberOfDevelopers+ RuleSubFeatureTestAssertions;

“BackUpMigration” : deterministic(7);
}
FeatureViewsTotalNumberOfDevelopers= deterministic(178);
FeatureViewsUITotalNumberOfDevelopers= decision(” Views UI SubFeature”){

“Views UI”: deterministic(178);

“Without UI”: deterministic(0);
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FeatureCToolsTotalNumberOfDevelopers= deterministic(75);
CToolsSubFeaturesTotalNumberOfDevelopers= decision-subset(+)(” Ctool SubFeature”){
“Ctools access ruleset” : deterministic(75);
“Ctools custom content” : deterministic(75);

“Views content” : deterministic(75);

FeatureDateTotalNumberOfDevelopers= deterministic(42);
DateSubFeaturesTotalNumberOfDevelopers= decision-subset(+)(”Date SubFeature”){
“Date API” : deterministic(42);
“Date views” : deterministic(42);

“Date popups” : deterministic(42);

FeatureEntity APITotalNumberOfDevelopers= deterministic(45);
Entity APISubFeatureTotalNumberOfDevelopers= decision(”Entity API SubFeatures”){
“Entity Tokens” : deterministic(45);

“Without Entity Tokens” : deterministic(0);
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FeatureCaptchaTotalNumberOfDevelopers= deterministic(43);
CaptchaSubFeatureTotalNumberOfDevelopers= decision(” Captcha SubFeature”){
“Image Captcha” : deterministic(43);
“Without Image Captcha” : deterministic(0);

FeaturePanelsTotalNumberOfDevelopers=deterministic(43);
PanelSubFeatureTotalNumberOfDevelopers= decision-subset(+)(” Panels SubFeatures”){
“Panel Nodes” : deterministic(43);

“Panels IPE” : deterministic(43);

FeatureRuleTotalNumberOfDevelopers= deterministic(52);
RuleSubFeatureTotalNumberOfDevelopers= decision-subset(+)(” Rules SubFeatures” ){
“Rules Scheduler” : deterministic(52);

“Rules UI” : deterministic(52);

Modelling Total Number of Changes

TotalNumberOfChanges = FeatureNodeTotalNumberOfChanges
+ FeatureSystemTotalNumberOfChanges
+ FeatureFilterNumberOfChanges
+ FeatureFieldNumberOfChanges
+ FeatureUserNumberOfChanges

+ OtherFeaturesNumberOfChanges;
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FeatureNodeTotalNumberOfChanges = TotalNumberOfChangesForFeatureNode+ FeatureN-
odeSubFeatureTotalNumberOfChanges;

TotalNumberOfChangesForFeatureNode = deterministic(9);
FeatureNodeSubFeatureTotalNumberOfChanges = decision-subset(+) (?Node”) {
“Blog” : deterministic(0);

“Forum” : deterministic(3);

FeatureSystemTotalNumberOfChanges= deterministic(19);
FeatureFilterTotalNumberOfChanges= deterministic(1);

FeatureField TotalNumberOfChanges= TotalNumberOfChangesForFeatureField + FeatureText-
TotalNumberOfChanges+ FeatureFieldSQLStorageTotalNumberOfChanges+ FeatureOption-
sTotalNumberOfChanges;

TotalNumberOfChangesForFeatureField= deterministic(6);
FeatureTextTotalNumberOfChanges= deterministic(0);
FeatureFieldSQLStorageTotalNumberOfChanges= deterministic(1);

FeatureOptionsTotalNumberOfChanges= decision(”Field Options”){
“Options” : deterministic(0);
“Without Options” : deterministic(0);

}

FeatureUserTotalNumberOfChanges= deterministic(7);
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}

OtherFeaturesNumberOfChanges = decision-subset(+)(” Drupal Non-Mandatory Features”){

“Path” : deterministic(0);

“Image” : deterministic(9);

“Field UI” : deterministic(4);

“File” : deterministic(1);

“Comment” : deterministic(2);

“Views” : FeatureViewsTotalNumberOfChanges+ FeatureViewsUITotalNumberOfChanges;
“Libraries API” : deterministic(7);

“IMCE” : deterministic(9);

“Ctools” : FeatureCToolsTotalNumberOfChanges+ CToolsSubFeaturesTestAssertions;
“Token”: deterministic(10);

“Taxonomy” : deterministic(2);

“Date” : FeatureDateTotalNumberOfChanges+ DateSubFeaturesTestAssertions;
“WebForm” : deterministic(46);

“Link” : deterministic(11);

“EntityAPI” : FeatureEntity APITotalNumberOfChanges+ EntityAPISubFeatureTotal-

NumberOfChanges;

“CKEditor” : deterministic(40);

“Captcha” : FeatureCaptchaTotalNumberOfChanges+ CaptchaSubFeatureTestAssertions;
“Features” : deterministic(72);

“Panels” : FeaturePanelsTotalNumberOfChanges+ PanelSubFeatureTest Assertions;
“Pathauto” : deterministic(2);

“JQuery” : deterministic(1);

“GoogleAnalytics” : deterministic(14);

“Rules” : FeatureRuleTotalNumberOfChanges+ RuleSubFeatureTestAssertions;

“BackUpMigration” : deterministic(90);

FeatureViewsTotalNumberOfChanges= deterministic(27);

FeatureViewsUITotalNumberOfChanges= decision(” Views UI SubFeature”){

“Views UI”: deterministic(0);

“Without UI”: deterministic(0);
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FeatureCToolsTotalNumberOfChanges= deterministic(32);
CToolsSubFeaturesTotalNumberOfChanges= decision-subset(+)(” Ctool SubFeature”){
“Ctools access ruleset” : deterministic(0);
“Ctools custom content” : deterministic(1);

“Views content” : deterministic(5);

FeatureDateTotalNumberOfChanges= deterministic(9);
DateSubFeaturesTotalNumberOfChanges= decision-subset(+)(”Date SubFeature”){
“Date API” : deterministic(11);
“Date views” : deterministic(6);

“Date popups” : deterministic(4);

FeatureEntity APITotalNumberOfChanges= deterministic(14);
EntityAPISubFeatureTotalNumberOfChanges= decision(” Entity API SubFeatures”){
“Entity Tokens” : deterministic(1);
“Without Entity Tokens” : deterministic(0);

FeatureCaptchaTotalNumberOfChanges= deterministic(15);
CaptchaSubFeatureTotalNumberOfChanges= decision(” Captcha SubFeature”){
“Image Captcha” : deterministic(0);

“Without Image Captcha” : deterministic(0);
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FeaturePanelsTotalNumberOfChanges=deterministic(34);
PanelSubFeatureTotalNumberOfChanges= decision-subset(+)(”Panels SubFeatures”){
“Panel Nodes” : deterministic(2);

“Panels IPE” : deterministic(20);

FeatureRuleTotalNumberOfChanges= deterministic(5);
RuleSubFeatureTotalNumberOfChanges= decision-subset(+)(” Rules SubFeatures”){
“Rules Scheduler” : deterministic(4);

“Rules UI” : deterministic(1);
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Modelling constraints

Constraint ”Node”: ”Forum” requires” Drupal Non-Mandatory Features” : ” Taxonomy”;
Constraint "Node”: ”Forum” requires”Field Options” : ”Options”;

Constraint "Node”: ”"Forum” requires” Drupal Non-Mandatory Features” : ”Comment”;
Constraint ”Drupal Non-Mandatory Features”: ”Image” requires” Drupal Non-Mandatory
Features” : ”File”;

Constraint ”"Drupal Non-Mandatory Features”: ”Views” requires”Drupal Non-Mandatory
Features” : ”Ctools”;

Constraint ”Views Ul SubFeature”: ”Views UI” requires” Drupal Non-Mandatory Features”

: 7Ctools”;

Constraint ”Ctools”: ”Views content” requires” Drupal Non-Mandatory Features” : ”Views”;
Constraint ”Drupal Non-Mandatory Features”: ”Taxonomy” requires”Field Options”
” Options”;

Constraint ”"Date SubFeature”: ”Date views” requires” Drupal Non-Mandatory Features” :
”Ctools”;

Constraint ”"Date SubFeature”: ”Date views” requires” Drupal Non-Mandatory Features” :

”Views”;

Constraint ”Drupal Non-Mandatory Features”: ”Panels” requires” Drupal Non-Mandatory
Features” : ”Ctools”;

Constraint ”Panels”: ”Panels IPE” requires” Drupal Non-Mandatory Features” : ” Ctools”;
Constraint ”Panels”: ”Panel Nodes” requires” Drupal Non-Mandatory Features” : ”Ctools”;

Constraint ”Drupal Non-Mandatory Features”: ”Pathauto” requires” Drupal Non-Mandatory
Features” : ”Token”;

Constraint ”Drupal Non-Mandatory Features”: ”Pathauto” requires” Drupal Non-Mandatory
Features” : ”Path”;

)

Constraint ”"Drupal Non-Mandatory Features”: ”Rules” requires”Drupal Non-Mandatory
Features” : ”Entity API”;
Constraint ”Drupal Non-Mandatory Features”: ”Rules” requires” Entity API SubFeatures” :

”Entity Tokens”;
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Constraint ”Rules SubFeatures”: ”Rules Scheduler” requires” Drupal Non-Mandatory
Features” : ”Entity API”;

Constraint ”Rules SubFeatures”: ”Rules Scheduler” requires”Entity API SubFeatures” :
”Entity Tokens”;

Constraint ”Rules SubFeatures”: ”Rules UI” requires” Drupal Non-Mandatory Features” :
?EntityAPI”;

Constraint ”Rules SubFeatures”: ”"Rules UI” requires” Entity API SubFeatures” : ”Entity

Tokens”;

Analysis Result

The RADAR analysis of Drupal (PHP framework) model is presented in Fig.C.1. The
problems was analysed using NSGAII using the 14+ optimisation approach [130] and
algorithmic parameters similar to the settings used in [285]: population size of 100,
crossover probability of 0.9, mutation probability of 0.1 and maximum number of fit-
ness evaluation of 50000. The optimisation results shows RADAR shortlists 28 optimal
alternatives each representing different trade-offs between minimising code complexity;
maximising the number of test assertions; maximising the number of installations and

minimising the number of developers.
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Appendix D

Modelling and Analysing An

E-Commerce System

The optimisation objectives are given below:

Objective Min ExpectedCost = EV (Cost);
Objective Min ExpectedTotalDefect = EV (TotalDefects);
Objective Max TotalFeaturesUsedBefore = EV (FeaturesUsedBefore);

Objective Max TotalFeatureCount = EV (FeatureCount);

We model the Cost below:

Cost = CostOfFeatureWebServer 4+ CostOfAchievingOtherServices;

CostOfFeatureWebServer = CostOfProtocolAndLogging +CostOfFeatureContent;

CostOfProtocolAndLogging = decision-subset(+)(”Protocol And Logging” ){
”Logging”: CostOfFeaturelogging;

”Protocols”: CostOfFeatureProtocols;

272
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CostOfFeatureLogging = decision(”Feature Logging” ){

"DB”: CostOfUsingDB;
?File”: CostOfUsingFile;

}

CostOfUsingDB = deterministic(10.308317459185346);

CostOfUsingFile = deterministic(5.901282664841281);

CostOfFeatureProtocols = decision-subset(+) ("Feature Protocol”){
"NTTP”: deterministic(13.682644828346174);

"FTP”: deterministic(13.008853827785588);
"HTTPS” : deterministic(10.048601003623034);

}

CostOfFeatureContent = CostOfFeatureStatic + CostOfFeatureActive;

CostOfFeatureStatic = deterministic(11.101621731632662);

CostOfFeatureActive = decision-subset(+) (” Active Features”){

” Active”: deterministic(12.247116996854373);
7 ASP”: deterministic(8.620782055044714);
"PHP”: deterministic(10.641905327748809);
7 JSP”: deterministic(12.95291397374664);
”CGI”: deterministic(12.141681946598066);

}

CostOfAchievingOtherServices = decision-subset(+)(” Other Services”){
” Additional Services”: CostOfFeatureAdditionalServices;
”Security”: CostOfFeatureSecurity;

”Persistence”: CostOfFeaturePersistence;

”Performance”: CostOfFeaturePerformance;

CostOfFeatureAdditionalServices = decision-subset(+)(”Feature Additional Services”){
” Additional Services”: deterministic(7.5092053767634654);
”Site Statistics”: CostOfFeatureSiteStatistics;
”Site Search”: CostOfFeatureSiteSearch;

” Ad Server”: CostOfFeatureAdServer;
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CostOfFeatureSiteStatistics = CostOfFeatureStatistics
+ CostOfFeatureBasicStat
+ CostOfFeatureAdvancedStat;
CostOfFeatureStatistics =deterministic(14.689398134577047);
CostOfFeatureBasicStat = deterministic(6.166499393904992);
CostOfFeatureAdvancedStat = decision(”Feature Advanced Stat”){
?Without Advanced Stat”: deterministic(0);
”With Advanced Stat”: deterministic(10.419039139443939);
}
CostOfFeatureSiteSearch = decision-subset(+)(”Feature Site Search”){
”Site Search”: CostOfSiteSearch;
”Images”: CostOfFeaturelmages;
?Text”: CostOfFeatureText;
}
CostOfSiteSearch = deterministic(9.758947026333994);
CostOfFeaturelmages = deterministic(8.148236814831348);
CostOfFeatureText = CostOfText + CostOfFeatureHTML + CostOfFeatureDynamic;
CostOfText = deterministic(13.465111749758071);
CostOfFeatureHTML = deterministic(10.95267855613079);

CostOfFeatureDynamic = decision(”Feature Dynamic”){
?Without Dynamic”: deterministic(0);
”With Dynamic”: deterministic(8.863099463028671);
}

CostOfFeatureAdServer = CostOfAdServer + CostOfFeatureReports
+ CostOfFeatureBanners
+ CostOfPopupsAndKeywordSupport;

CostOfAdServer = deterministic(7.7496457787452195);

CostOfFeatureReports = deterministic(6.4745651041969055);

CostOfFeatureBanners = CostOfBanners + CostOfFeaturelmage + CostOfFeatureFlash;
CostOfBanners = deterministic(7.363245163135134);

CostOfFeaturelmage = deterministic(13.428384485896377);
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CostOfFeatureFlash = decision(”Flash”){
”Without Flash”: deterministic(0);
”With Flash”: deterministic(5.452286607902222);
}
CostOfPopupsAndKeywordSupport = decision-subset(+)(”Popups And Keyword Support”){
?Popups”: CostOfFeaturePopups;
?Keyword Support”: CostOfFeatureKeywordSupport;
}
CostOfFeatureKeywordSupport =deterministic(6.100473520805334);
CostOfFeaturePopups = deterministic(11.397415959703473);
CostOfFeaturePersistence = CostOfPersistence + CostOfPersistenceSubFeatures;
CostOfPersistence = deterministic(10.474662762049276);
CostOfPersistenceSubFeatures = decision(” Persistence Mechanism”){
"XML”: deterministic(14.054171683911981);
”Database”: deterministic(6.7377605081216725);
}
CostOfFeatureSecurity = CostOfSecurity + CostOfSecuritySubFeatures;
CostOfSecurity = deterministic(5.013527622729248);
CostOfSecuritySubFeatures = decision-subset(+)(” Security Mechanism”){
”Data Storage”: deterministic( 9.556632783363145);
”Data Transfer”: deterministic(5.222981863350846);
”User Authentication”: deterministic(12.234241931520607);

}

CostOfFeaturePerformance = CostOfPerformance + CostOfPerformanceSubFeatures;
CostOfPerformance = deterministic(5.013527622729248);
CostOfPerformanceSubFeatures = decision(”Feature Performance”){

”Milli Sec”: deterministic(11.690308919683972);

”Seconds”: deterministic(9.08978755801254);

”Minutes”: deterministic(8.283453001056765);

We model the total feature defects below:
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TotalDefects = DefectCountOnFeatureWebServer + DefectCountOnAchievingOtherServices;
DefectCountOnFeatureWebServer = Defect CountOnProtocolAndLogging
+DefectCountOnFeatureContent;

DefectCountOnProtocolAndLogging = decision-subset(+)(”Protocol And Logging”){
”Logging”: DefectCountOnFeatureLogging;
”Protocols” : DefectCountOnFeatureProtocols;
}
DefectCountOnFeatureLogging = decision(” Feature Logging”){
”DB” : DefectCountOnUsingDB;
?File” : DefectCountOnUsingFile;
}
DefectCountOnUsingDB = deterministic(5);
DefectCountOnUsingFile = deterministic(0);
DefectCountOnFeatureProtocols = decision-subset(+) (”Feature Protocol”){
"NTTP” : deterministic(6);
"FTP” : deterministic(6);
"HTTPS” : deterministic(0);
}
DefectCountOnFeatureContent = DefectCountOnFeatureStatic + DefectCountOnFeatureAc-
tive;
DefectCountOnFeatureStatic = deterministic(3);
DefectCountOnFeatureActive = decision-subset(+) (7 Active Features”){
” Active” : deterministic(0);
7?ASP”: deterministic(0);
"PHP”: deterministic(3);
7 JSP”: deterministic(6);
”?CGI”: deterministic(5);

}

DefectCountOnAchievingOtherServices = decision-subset(+)(” Other Services”){
” Additional Services”: DefectCountOnFeatureAdditionalServices;
”Security” : DefectCountOnFeatureSecurity;
”Persistence” : DefectCountOnFeaturePersistence;

?Performance” : DefectCountOnFeaturePerformance;
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DefectCountOnFeatureAdditionalServices = decision-subset(+)(”Feature Additional
vices” ){
” Additional Services” : deterministic(6);
”Site Statistics” : DefectCountOnFeatureSiteStatistics;
”Site Search” : DefectCountOnFeatureSiteSearch;
” Ad Server” : DefectCountOnFeatureAdServer;
} DefectCountOnFeatureSiteStatistics = DefectCountOnFeatureStatistics
+ DefectCountOnFeatureBasicStat
+ DefectCountOnFeatureAdvancedStat;

DefectCountOnFeatureStatistics =deterministic(0);
DefectCountOnFeatureBasicStat = deterministic(8);
DefectCountOnFeatureAdvancedStat = decision(”Feature Advanced Stat”){

”Without Advanced Stat” : deterministic(0);

”With Advanced Stat” : deterministic(5);
}
DefectCountOnFeatureSiteSearch = decision-subset(+)(” Feature Site Search”){

”Site Search” : DefectCountOnSiteSearch;

”Images” : DefectCountOnFeaturelmages;

"Text” : DefectCountOnFeatureText;
}
DefectCountOnSiteSearch = deterministic(6);
DefectCountOnFeaturelmages = deterministic(5);
DefectCountOnFeatureText = DefectCountOnText

+ DefectCountOnFeatureHTML
+ DefectCountOnFeatureDynamic;

DefectCountOnText = deterministic(6);
DefectCountOnFeatureHTML = deterministic(4);
DefectCountOnFeatureDynamic = decision(”Feature Dynamic”){

”Without Dynamic” : deterministic(0);

”With Dynamic” : deterministic(4);

}

DefectCountOnFeatureAdServer = DefectCountOnAdServer
+ DefectCountOnFeatureReports
+ DefectCountOnFeatureBanners

+ Defect CountOnPopupsAndKeywordSupport;

Ser-
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DefectCountOnAdServer = deterministic(6);
DefectCountOnFeatureReports = deterministic(4);
DefectCountOnFeatureBanners = DefectCountOnBanners
+ DefectCountOnFeaturelmage
+ DefectCountOnFeatureFlash;
DefectCountOnBanners = deterministic(2);

DefectCountOnFeaturelmage = deterministic(4);

DefectCountOnFeatureFlash = decision(”Flash”){
”Without Flash” : deterministic(0);
?With Flash” : deterministic(5);
}
DefectCountOnPopupsAndKeywordSupport = decision-subset(+)(”Popups And Keyword
Support”){
?Popups” : DefectCountOnFeaturePopups;
?Keyword Support” : DefectCountOnFeatureKeywordSupport;
}
DefectCountOnFeatureKeywordSupport =deterministic(5);
DefectCountOnFeaturePopups = deterministic(0);
DefectCountOnFeaturePersistence = DefectCountOnPersistence + DefectCountOnPersistence-
SubFeatures;

DefectCountOnPersistence = deterministic(0);

DefectCountOnPersistenceSubFeatures = decision(”Persistence Mechanism” ){
?XML” : deterministic(0);
”Database” : deterministic(5);

}

DefectCountOnFeatureSecurity = DefectCountOnSecurity + DefectCountOnSecuritySubFea-
tures;
DefectCountOnSecurity = deterministic(0);
DefectCountOnSecuritySubFeatures = decision-subset(+)(”Security Mechanism”){
”Data Storage” : deterministic( 3);
”Data Transfer” : deterministic(4);

?User Authentication” : deterministic(4);
}

DefectCountOnFeaturePerformance = DefectCountOnPerformance + DefectCountOnPerfor-
manceSubFeatures;
DefectCountOnPerformance = deterministic(0);
DefectCountOnPerformanceSubFeatures = decision(” Feature Performance”){
”Milli Sec” : deterministic(0);
”Seconds” : deterministic(6);

”Minutes” : deterministic(6);
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FeatureCount = FeatureWebServerCount + CountOfOtherServices;
FeatureWebServerCount = ProtocolAndLoggingCount +FeatureContentCount;
ProtocolAndLoggingCount = decision-subset(+)(”Protocol And Logging” ){
”Logging”: FeatureLoggingCount;
”Protocols” : FeatureProtocolsCount;
}
FeatureLoggingCount = decision(”Feature Logging”){
”DB” : CountOfUsingDB;
?File” : CountOfUsingFile;
}
CountOfUsingDB = deterministic(1);
CountOfUsingFile = deterministic(1);
FeatureProtocolsCount = decision-subset(+) (”Feature Protocol”){
"NTTP” : deterministic(1);
"FTP” : deterministic(1);
"HTTPS” : deterministic(1);
}
FeatureContentCount = FeatureStaticCount + FeatureActiveCount;
FeatureStaticCount = deterministic(1);
FeatureActiveCount = decision-subset(+) (” Active Features”){
” Active” : deterministic(1);
?ASP”: deterministic(1);
"PHP”: deterministic(1);
7JSP”: deterministic(1);
”CGI”: deterministic(1);

}

CountOfOtherServices = decision-subset(+)(” Other Services”){
” Additional Services”: FeatureAdditionalServicesCount;
?Security” : FeatureSecurityCount;

”Persistence” : FeaturePersistenceCount;

”Performance” : FeaturePerformanceCount;
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FeatureAdditionalServicesCount = decision-subset(+)(”Feature Additional Services”){
” Additional Services” : deterministic(1);
?Site Statistics” : FeatureSiteStatisticsCount;
”Site Search” : FeatureSiteSearchCount;

? Ad Server” : FeatureAdServerCount;

}
FeatureSiteStatisticsCount = FeatureStatisticsCount + FeatureBasicStat-
Count + FeatureAdvancedStatCount;

FeatureStatisticsCount =deterministic(1);
FeatureBasicStatCount = deterministic(1);
FeatureAdvancedStatCount = decision(”Feature Advanced Stat”){
”Without Advanced Stat” : deterministic(1);
”With Advanced Stat” : deterministic(1);

}

FeatureSiteSearchCount = decision-subset(+)(”Feature Site Search”){
?Site Search” : SiteSearchCount;
”Images” : FeaturelmagesCount;

?Text” : FeatureTextCount;

SiteSearchCount = deterministic(1);
FeatureImagesCount = deterministic(1);
FeatureTextCount = TextCount 4+ FeatureHTMLCount + FeatureDynamicCount;
TextCount = deterministic(1);
FeatureHTMLCount = deterministic(1);
FeatureDynamicCount = decision(”Feature Dynamic”){
”Without Dynamic” : deterministic(1);

”?With Dynamic” : deterministic(1);

We model the number of feature counts i.e., the number of features as below:
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FeatureAdServerCount = AdServerCount
+ FeatureReportsCount
+ FeatureBannersCount

+ PopupsAndKeywordSupportCount;

AdServerCount = deterministic(1);

FeatureReportsCount = deterministic(1);

FeatureBannersCount = BannersCount + FeaturelmageCount + FeatureFlashCount;
BannersCount = deterministic(1);

FeatureImageCount = deterministic(1);

FeatureFlashCount = decision(”Flash”){
”Without Flash” : deterministic(1);
?With Flash” : deterministic(1);

PopupsAndKeywordSupportCount = decision-subset(+)(”Popups And Keyword Support”){
?Popups” : FeaturePopupsCount;
”?Keyword Support” : FeatureKeywordSupportCount;

}

FeatureKeywordSupportCount =deterministic(1);
FeaturePopupsCount = deterministic(1);
FeaturePersistenceCount = PersistenceCount + PersistenceSubFeaturesCount;
PersistenceCount = deterministic(1);
PersistenceSubFeaturesCount = decision(” Persistence Mechanism”){
?XML” : deterministic(1);

”Database” : deterministic(1);

FeatureSecurityCount = SecurityCount + SecuritySubFeaturesCount;
SecurityCount = deterministic(1);
SecuritySubFeaturesCount = decision-subset(+)(” Security Mechanism”){
”Data Storage” : deterministic( 1);
?Data Transfer” : deterministic(1);

”User Authentication” : deterministic(1);

FeaturePerformanceCount = PerformanceCount + PerformanceSubFeaturesCount;
PerformanceCount = deterministic(1);
PerformanceSubFeaturesCount = decision(” Feature Performance”){

”Milli Sec” : deterministic(1);

”Seconds” : deterministic(1);

”Minutes” : deterministic(1);
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Since we want to maximise the number of features used before as they are likely more

stable big-free than a new features. Hence, we model whether a feature has been used

before as below:

FeaturesUsedBefore = FeatureWebServerUsedBefore + UsedBeforeOfOtherServices;
FeatureWebServerUsedBefore = ProtocolAndLoggingUsedBefore +FeatureContentUsedBefore;
ProtocolAndLoggingUsedBefore = decision-subset(+)(” Protocol And Logging” ){
”Logging”: FeatureLoggingUsedBefore;
?Protocols” : FeatureProtocolsUsedBefore;
}
FeatureLoggingUsedBefore = decision(”Feature Logging” ){
”DB” : DBUsedBefore;
?File” : FileUsedBefore;
}
DBUsedBefore = deterministic(1);
FileUsedBefore = deterministic(0);
FeatureProtocolsUsedBefore = decision-subset(+) (”Feature Protocol”){
"NTTP” : deterministic(1);
"FTP” : deterministic(1);
"HTTPS” : deterministic(0);
}
FeatureContentUsedBefore = FeatureStaticUsedBefore + FeatureActiveUsedBefore;
FeatureStaticUsedBefore = deterministic(1);
FeatureActiveUsedBefore = decision-subset(+) (7 Active Features”){
” Active” : deterministic(0);
7 ASP”: deterministic(0);
"PHP”: deterministic(1);
7JSP”: deterministic(1);
”CGI”: deterministic(1);

}

UsedBeforeOfOtherServices = decision-subset(+)(”Other Services”){
” Additional Services”: FeatureAdditionalServicesUsedBefore;
”Security” : FeatureSecurityUsedBefore;

?Persistence” : FeaturePersistenceUsedBefore;

”Performance” : FeaturePerformanceUsedBefore;
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FeatureAdditionalServicesUsedBefore = decision-subset(+)(” Feature Additional Services”){
” Additional Services” : deterministic(1);
”Site Statistics” : FeatureSiteStatisticsUsedBefore;
”Site Search” : FeatureSiteSearchUsedBefore;
? Ad Server” : FeatureAdServerUsedBefore;

FeatureSiteStatisticsUsedBefore = FeatureStatisticsUsedBefore + FeatureBasicStatUsedBefore
+ FeatureAdvancedStatUsedBefore;
FeatureStatisticsUsedBefore =deterministic(0);
FeatureBasicStatUsedBefore = deterministic(1);
FeatureAdvancedStatUsedBefore = decision(”Feature Advanced Stat”){
?Without Advanced Stat” : deterministic(0);
”With Advanced Stat” : deterministic(1);
}
FeatureSiteSearchUsedBefore = decision-subset(+)(” Feature Site Search”){
?Site Search” : SiteSearchUsedBefore;
”Images” : FeaturelmagesUsedBefore;
?Text” : FeatureTextUsedBefore;
}
SiteSearchUsedBefore = deterministic(1);
FeatureImagesUsedBefore = deterministic(1);
FeatureTextUsedBefore = TextUsedBefore + FeatureHTMLUsedBefore + FeatureDynami-
cUsedBefore;
TextUsedBefore = deterministic(1);
FeatureHTMLUsedBefore = deterministic(1);
FeatureDynamicUsedBefore = decision(”Feature Dynamic”){
”Without Dynamic” : deterministic(0);

”With Dynamic” : deterministic(1);

FeatureAdServerUsedBefore = AdServerUsedBefore
+ FeatureReportsUsedBefore
+ FeatureBannersUsedBefore

+ PopupsAndKeywordSupportUsedBefore;
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AdServerUsedBefore = deterministic(1);
FeatureReportsUsedBefore = deterministic(1);
FeatureBannersUsedBefore = BannersUsedBefore
+ FeaturelmageUsedBefore
+ FeatureFlashUsedBefore;

BannersUsedBefore = deterministic(1);

FeaturelmageUsedBefore = deterministic(1);
FeatureFlashUsedBefore = decision(”Flash”){
”Without Flash” : deterministic(0);
?With Flash” : deterministic(1);
}
PopupsAndKeywordSupportUsedBefore = decision-subset(+)(” Popups And Keyword Sup-
port”){
?Popups” : FeaturePopupsUsedBefore;
?Keyword Support” : FeatureKeywordSupportUsedBefore;
}
FeatureKeywordSupportUsedBefore =deterministic(1);
FeaturePopupsUsedBefore = deterministic(0);
FeaturePersistenceUsedBefore = PersistenceUsedBefore + PersistenceSubFeaturesUsedBefore;
PersistenceUsedBefore = deterministic(0);
PersistenceSubFeaturesUsedBefore = decision(” Persistence Mechanism”){
?XML” : deterministic(0);
”Database” : deterministic(1);
}
FeatureSecurity UsedBefore = SecurityUsedBefore + SecuritySubFeaturesUsedBefore;
Security UsedBefore = deterministic(0);
SecuritySubFeaturesUsedBefore = decision-subset(+)(” Security Mechanism” ){
”Data Storage” : deterministic( 1);
”Data Transfer” : deterministic(1);

”User Authentication” : deterministic(1);
}

FeaturePerformanceUsedBefore = PerformanceUsedBefore + PerformanceSubFeaturesUsedBe-
fore;
PerformanceUsedBefore = deterministic(0);
PerformanceSubFeaturesUsedBefore = decision(” Feature Performance”){
”Milli Sec” : deterministic(0);
”Seconds” : deterministic(1);

”Minutes” : deterministic(1);
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Constraint ”Security Mechanism” : ”Data Transfer” requires”Feature Protocol”: "HTTPS”;
Constraint ”Feature Logging”: "DB” requires” Persistence Mechanism” : ”Database”;
Constraint ”Feature Protocol”: "HTTPS” excludes”Feature Performance” : ”Milli Sec”;
Constraint ”Feature Logging” : ”File” requires” Feature Protocol” : "FTP”;

Constraint ”Popups And Keyword Support” : ”Keyword Support” requires”Feature Site
Search” : ”Text”;

Constraint ”"Feature Dynamic” : ”With Dynamic” requires” Active Features”: ” Active”;

Analysis Result

The RADAR analysis of the Web Portal decision model is presented in Fig.D.1. The
problems was analysed using NSGAII using the 14+ optimisation approach [130] and
algorithmic parameters similar to the settings used in [285]: population size of 100,
crossover probability of 0.9, mutation probability of 0.1 and maximum number of fitness
evaluation of 50000. The optimisation results shows RADAR shortlists 76 optimal alterna-
tives each representing different trade-offs between minimising the cost and maximising

total feature count and total feature used before; minimising total defect count.
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Appendix E

Modelling and Analysing
Configuration Decisions in AWS

Modelling Optimisation Objectives

The optimisation objectives is given below:

Objective Max ExpectedFeatureCountMonth = EV (FeatureCount);
Objective Min ExpectedCostMonth = EV (TotalCostMonth);
Objective Max ExpectedInstanceCores = EV (TotallnstanceCores );
Objective Max ExpectedInstanceECU = EV (TotallnstanceECU);
Objective Max ExpectedInstanceRAM = EV (TotallnstanceRAM);
Objective Min ExpectedCostHour = EV (TotalCostHour);

Objective Max ExpectedInstanceSSDBacked = EV (TotallnstanceSSDBacked);

In the above expression, the first objective is a maximisation of the features count to be
implemented; minimisation of the feature costs; maximisation of the number of cores;
maximisation of the RAM usage; minimisation of cost of implementing the features; and

maximisation of the number of SSD used.

We model the feature count as below:

287
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FeatureCount = FeatureOSCount
+ FeatureBlockStorageCount
+ FeaturelnstanceCount
+ FeatureDedicationCount
+ FeatureLocationCount

+ FeaturePurchaseCount;

FeatureOSCount = decision(”0S”){
“Windows Based” : FeatureWindowBasedOSCount + FeatureWindowsBasedServerCount;

“Linux Based” : FeatureLinuxBasedOSCount ;
}

FeatureWindowBasedOSCount = deterministic(1);

FeatureWindowsBasedServerCount = FeatureWindowsServerCount + FeatureSQLServerCount;
FeatureWindowsServerCount = deterministic(1);

FeatureSQLServer =decision-subset(+)(”Feature SQL Server” ){

“SQL Server” : FeatureSQLServerOptionCount;
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FeatureSQLServerOptionCount = decision(”SQL Server”){
“Web” : deterministic(1);
“Std” : deterministic(1);

}

FeatureLinuxBasedOSCount = decision(”Linux OS”){
“Suse” : deterministic(1);
“Amazon Linux” : deterministic(1);

“RedHat” : deterministic(1);

}

FeatureBlockStorageCount = decision-subset(+)(”Feature Block Storage”){

“Block Storage” : FeatureBlockStorageOptionCount;

}

FeatureBlockStorageOptionCount = decision(”Block Storage”){
“Std” : deterministic(1);
“SSD” : deterministic(1);

}

FeatureInstanceCount = decision(”Instance” ){
“Memory Opt” : deterministic(1);
“General” : deterministic(1);

“Compute Opt” : deterministic(1);
“Storage Opt” : deterministic(1);

“GPU” : deterministic(1);
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FeatureDedicationCount = decision(” Dedication” ){
“Public” : deterministic(1);
“Ded” : deterministic(1);
}
FeatureLocationCount = decision(”Location”){
“Sau Paulo”: deterministic(1);
“North America” : FeatureNorthAmericaCount;
“Asia Oceania” : FeatureAsiaOceaniaCount;
“IR” : deterministic(1);
} FeatureNorthAmericaCount = decision(”North America”){
“VA” : deterministic(1);
“CA” : deterministic(1);
“OR” : deterministic(1);
}
FeatureAsiaOceaniaCount = decision(” Asia Oceania”){
“Sin” : deterministic(1);
“JP” : deterministic(1);
“Aus” : deterministic(1);
}
FeaturePurchaseCount = decision(”Purchase” ){
“On Demand” : deterministic(1);
“Reserved” : FeatureReservedCount;
}
FeatureReservedCount = ReservedFeatureCount + FeatureReservedSubFeatureCount;
FeatureReservedSubFeatureCount = FeatureYearCount + FeatureModeCount;
FeatureYearCount = decision(” Years”){
“l1Year” : deterministic(1);
“3Years” : deterministic(1);

}

FeatureModeCount = decision(”Mode”){
“Light” : deterministic(1);
“Heavy” : deterministic(1);

“Med” : deterministic(1);

We model the monthly cost as:
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TotalCostMonth = FeatureOSCostMonth
+ FeatureBlockStorageCostMonth
+ FeatureDedicationCostMonth
+ FeatureLocationCostMonth
+ FeaturePurchaseCostMonth;

FeatureOSCostMonth = decision(”0S”){

“Windows Based” : FeatureWindowBasedOSCostMonth + FeatureWindowsBasedServer-
CostMonth;

“Linux Based” : FeatureLinuxBasedOSCostMonth ;
}
FeatureWindowBasedOSCostMonth =triangular(800, 1000, 1200);
FeatureWindowsBasedServerCostMonth =  FeatureWindowsServerCostMonth ~ +  Fea-
tureSQLServerCostMonth; FeatureWindowsServerCostMonth = triangular(400,500,600);
FeatureSQLServerCostMonth =decision-subset(+)(”Feature SQL Server”){

“SQL Server” : FeatureSQLServerOptionCostMonth;
}
FeatureSQLServerOptionCostMonth = decision(”SQL Server”){

“Web” : triangular(1300, 1500, 1700);

“Std” : triangular (2000, 2500, 3000);
}
FeatureLinuxBasedOSCostMonth = decision(”Linux OS”){

“Suse” : triangular(1500, 2000, 2500);

“Amazon Linux” : triangular(2000, 2500, 3000);

“RedHat” : triangular(1000, 1500, 2000);

}

FeatureBlockStorageCostMonth = decision-subset(+)(” Feature Block Storage”){

“Block Storage” : FeatureBlockStorageOptionCostMonth;
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FeatureBlockStorageOptionCostMonth = decision(”Block Storage”){
“Std” : triangular (4500, 5000, 5500);
“SSD” : triangular(9000, 10000, 11000);
}
FeatureDedicationCostMonth = decision(”Dedication”){
“Public” : triangular(8000, 10000, 12000);
“Ded” : triangular (15000, 20000, 25000);
}
FeatureLocationCostMonth = decision(”Location”){
“Sau Paulo”: deterministic(100);
“North America” : FeatureNorthAmericaCostMonth;
“Asia Oceania” : FeatureAsiaOceaniaCostMonth;
“IR” : triangular(300, 500, 700);
}
FeatureNorthAmericaCostMonth = decision(”North America”){
“VA” : triangular(100, 150, 200);
“CA” : triangular(150, 180, 200);
“OR” : triangular(150, 200, 250);
}

FeatureAsiaOceaniaCostMonth = decision(” Asia Oceania”){
“Sin” : triangular(200, 250, 300);
“JP” : triangular(200, 270, 300);

“Aus” : triangular(100, 300, 500);
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FeaturePurchaseCostMonth = decision(” Purchase”){
“On Demand” : triangular(800, 1000, 1200);
“Reserved” : FeatureReservedCostMonth;
}
FeatureReservedCostMonth = ReservedFeatureCostMonth + FeatureReservedSubFeatureCost-
Month;
FeatureReservedSubFeatureCostMonth = FeatureYearCostMonth + FeatureModeCostMonth;
FeatureYearCostMonth = decision(” Years” ){
“1Year” : triangular(800, 1000, 1200);
“3Years” : triangular(1000, 1500, 2000);
}

FeatureModeCostMonth = decision(”Mode”){
“Light” : triangular(1000, 1500, 2000);
“Heavy” : triangular(6000, 7000, 8000);

“Med” : triangular(3000, 3500, 4000);
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TotallnstanceCores = decision(”Instance”){
“Memory Opt” : deterministic(8);
“General” : deterministic(16);
“Compute Opt” : deterministic(8);
“Storage Opt” : deterministic(16);
“GPU” : deterministic(32);

}

TotallnstanceECU = decision(”Instance”){
“Memory Opt” : deterministic(12);
“General” : deterministic(36);
“Compute Opt” : deterministic(48);
“Storage Opt” : deterministic(60);
“GPU” : deterministic(108);

}

TotallnstanceRAM = decision(” Instance” ){
“Memory Opt” : deterministic(32);
“General” : deterministic(160);
“Compute Opt” : deterministic(64);
“Storage Opt” : deterministic(128);
“GPU” : deterministic(250);

}

TotalCostHour = decision(”Instance” ){
“Memory Opt” : deterministic(5);
“General” : deterministic(15);
“Compute Opt” : deterministic(10);
“Storage Opt” : deterministic(8);
“GPU” : deterministic(20);

}

TotallnstanceBacked = decision(” Instance”){
“Memory Opt” : deterministic(15);
“General” : deterministic(30);
“Compute Opt” : deterministic(60);
“Storage Opt” : deterministic(120);

“GPU” : deterministic(240);
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Analysis Result

The RADAR analysis of the AWS decision model is presented in Fig.E.1. The problems
was analysed using NSGAII using the 1+\ optimisation approach [130] and algorith-
mic parameters similar to the settings used in [285]: population size of 100, crossover
probability of 0.9, mutation probability of 0.1 and maximum number of fitness evalua-
tion of 50000. The optimisation results shows RADAR shortlists 68 optimal alternatives:
each including the “public” option of the Dedication decision and “sau paulo” option of
Location decision. But when these options are selected, the shortlist includes different
combinations of other options; each combination representing a different tradeoffs be-
tween maximising the expected feature count; minimising the cost per month and per

hour and maximising the number of instance cores, ECUS and SSD, RAMS.
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Appendix F

Modelling and Analysing Feature
Selection in Berkeley Relational

Database System

The Optimisation objectives are given below:

Objective Max ExpectedNetBenefit = EV (NB);

Objective Min ExpectedFeatureSize = EV (TotalFeatureSize);

We model the net benefit as:

NB = Revenue - TotalFeatureCost;

Revenue = normalCI(1000, 1200);

TotalFeatureCost = FeatureIlndexesCost

+ NonMandatoryFeaturesCost;
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NonMandatoryFeaturesCost = decision-subset (+) ("Non Mandatory Feature”){
”Statistics” : triangular(200,250,300);
”Cryptography” : triangular(250, 300, 350);
”Replication” : triangular(150,200,250);
”Verification” : triangular(50,100,150);
”Diagnostic” : triangular (250,300,350);

”Sequence” : triangular(40,50,60);

FeaturelndexesCost = CostOfFeaturelndex + FeaturelndexesSubFeatureCost;
CostOfFeatureIndex = deterministic(10);

FeatureIndexesSubFeatureCost = FeatureBTreeCost + NonMandatoryIndexSubFeatureCosts;
FeatureBTreeCost = decision(”B-Tree”){

”B-Tree Fast” : triangular(45,50,55);

”B-Tree Small” : triangular(50,75,100);

}

NonMandatoryIndexSubFeatureCosts = decision-subset(+)(”Index Non Mandatory SubFea-
tures” ){
”Hash” : triangular(100, 125,150);

”Queue” : triangular(40,50,60);

We model the feature size as:

TotalFeatureSize = FeaturelndexesSize

+ NonMandatoryFeaturesSlze;
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NonMandatoryFeaturesSIze = decision-subset(+) (?Non Mandatory Feature”){
”Statistics” : deterministic(285);
”Cryptography” : deterministic(19);
”Replication” : deterministic(89);
”Verification” : deterministic(50);
”Diagnostic” : deterministic(191);

”Sequence” : deterministic(50);

FeaturelndexesSlze = SlzeOfFeaturelndex + FeaturelndexesSubFeatureSlze;
SIzeOfFeaturelndex = deterministic(1);
FeaturelndexesSubFeatureSlze = FeatureBTreeSIze + NonMandatoryIndexSubFeatureSlzes;
FeatureBTreeSIze = decision (”B-Tree”){

”B-Tree Fast” : deterministic(1800);

”B-Tree Small” : deterministic(340);

}

NonMandatoryIndexSubFeatureSIzes = decision-subset(+)(”Index Non Mandatory SubFea-
tures” ){

”Hash” : deterministic(113);

”Queue” : deterministic(58);

}

The RADAR analysis of the BerkeleyDB decision model is presented in Fig.F.1. The
problems was analysed using NSGAII using the 14+ optimisation approach [130] and
algorithmic parameters similar to the settings used in [285]: population size of 100,
crossover probability of 0.9, mutation probability of 0.1 and maximum number of fit-
ness evaluation of 50000. The optimisation results shows RADAR shortlists two optimal

alternatives which is to select B-Tree Small or B-Tree Fast options.
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Appendix G

Modelling and Analysing the
Requirements Selection of

Microsoft Word Processor

Modelling the Optimisation Objectives

The optimisation objectives are given below:

Objective Max ENB = EV(NB);

Objective Min ProjectRisk = Pr(Failure);

In the above expression, the first objective is a maximisation of the expected net benefit
(ENB) from selecting a subset of requirements, and the second objective is a minimisa-

tion of the project risk.

This net benefit is the difference between the benefit of implementing the requirements

and the cost of the requirements. We define the NB below:

[ NB = Value - Cost; ]
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The Value derived from the subset of requirements implemented is estimated considering
uncertainty in the perceived values supplied by the stakeholders. We use probability

distributions to capture stakeholders’ value scores for each requirement.

We model the Value as below:

Value = decision-subset(+)(” Next Release”){
”NewFile”: normalCI(10,20);
?OpenFile” : normalCI(30,40);
”CloseFile” : normalCI(10,30);
”SaveFile” : normalCI(70,80);

”Save As Different File” : normalCI(5,10);
”SearchFile” : normalCI(30,50);
”ProtectFile” : normalCI(10,50);
”PrintPreview” : normalCI(5,10);
”Print File” : normalCI(50,80);

”Send To” : normalCI(10,80);

”Set Properties” : normalCI(10,20,70);
?Exit” : normalCI(30,90);

”Undo Task” : normalCI(50,60);
?Redo Task” : normalCI(20,60);
?Cut” : normalCI(60,70);

”Copy” : normalCI(60,70);

?Paste” : normalCI(30,60);

”Paste Special” : normalCI(20,40);
?Go To” : normalCI(10,20);

?Find” : normalCI(40,50);

?Replace” : normalCI(50,60);
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”Select All” : normalCI(10,90);
”Default” : normalCI(10,30);
?Print Layout” : normalCI(30,40);
”Web Layout” : normalCI(10,40);
”Zoom” : normalCI(10,50);
”Header Footer” : normalCI(30,90);
”Page Numbers” : normalCI(20,90);
?Date Time” : normalCI(50,90);
?Symbol” : normalCI (30,90);
”Bookmark” : normalCI(20,60);
”Hyper Link” : normalCI(20,90);
?Font” : normalCI(40,90);
?Paragraph” : normalCI(30,90);
”Bullets Numbering” : normalCI(30,90);
”Change Case” : normalCI(10,80);
”Background” : normalCI(10,20);
”Spell Check” : normalCI(60,90);
?Check Grammer” : normalCI(10,90);
”Speech” : normalCI(10,20);

”Mail Merge” : normalCI(10,70);
?Macro” : normalCI(10,60);

”Set Options” : normalCI(10,80);
”Insert Table” : normalCI(40,90);
?Delete Table” : normalCI(50,90);
”Table Format” : normalCI(50,90);
”Sort” : normalCI(30,90);

?Import Data” : normalCI(30,60);
”Help” : normalCI(20,90);

”Search” : normalCI(10,90);

In the above expression, each option represents a feature (requirements) to be imple-

mented. The total Value derived from these features is the sum of the assigned value
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corresponding to a selected requirement.

The total Cost (£) is a function of the requirements elicitation cost (ElicitationCost),
the design cost (DesignCost), the development cost (DevCost), the cost accrued from
external tool development (ExtToolDev), the cost due to software testing (CoTesting-

Cost).

Cost = ElicitationCost
+ DesignCost
+ DevCost
+ ExtToolDevCost

+ TestingCost;

Modelling Risk Of Exceeding Budget

ProjectFailure = 1 — ( (1 — RiskExceedingElicitationCost) x
(1 — RiskExceedingDesignCost) X
(1 — RiskExceedingDevCost) X
(1 — RiskExceedingExtToolDevCost) x

(1 — RiskExceedingTestingCost);

We model the risk of exceeding the elicitation cost as below:

RiskExceedingElicitationCost = ElicitationCost > ElicitationBudget;

ElicitationBudget = deterministic(150);

We model the risk of exceeding the design cost as below:

RiskExceedingDesignCost = DesignCost > DesignBudget;

DesignBudget = deterministic(150);

We model the risk of exceeding the development cost as below:
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RiskExceedingDevCost = DevCost > DevelopmentBudget;

DevelopmentBudget = deterministic(200);

The risk of exceeding external tool development cost is given as:

RiskExceedingExtToolDevCost = ExtToolDevCost > ExternalToolDevelopmentBudget;

ExternalToolDevelopmentBudget = deterministic(75);

The risk of exceeding testing cost is given below:

RiskExceedingTestingCost = TestingCost > TestingBudget;

TestingBudget = deterministic(150);

We model the Requirements Elicitation Cost as:
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ElicitationCost = decision-subset(+)(”Next Release”){
?NewFile”: triangular(14,15,16);
”OpenFile” : triangular(17,18, 19);
”CloseFile” : triangular(2,3, 4);
?SaveFile” : triangular(12,15,17);
”Save As Different File” : triangular(15, 16,17);
”SearchFile” : triangular(19, 20, 21);
”ProtectFile” : triangular(4,5,6);
?PrintPreview” : triangular(13,15, 17);
?Print File” : triangular(11, 12, 13);
?Send To” : triangular(9, 10, 11);
”Set Properties” : triangular(3,5,7);
7Exit” : triangular(2,3,4);
”Undo Task” : triangular(6,7,8);
”Redo Task” : triangular(4,6,8);
?Cut” : triangular(5,6,7);
”Copy” : triangular(3,5,7);
?Paste” : triangular(6,7, 8);
”Paste Special” : triangular(11,12,13);

”Go To” : triangular(6,7,9);
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”Find” : triangular(3,6,9);
”Replace” : triangular(3,5,7);
”Select All” : triangular(3,5,7);
”Default” : triangular(2,4,6);

?Print Layout” : triangular(2,4,6);
”Web Layout” : triangular(2,4,6);
”Zoom” : triangular(4,6,8);

”Header Footer” : triangular(1,2,4);
?Page Numbers” : triangular(1,2, 4);
”Date Time” : triangular(1,2, 4);
?Symbol” : triangular(1,2, 4);
?Bookmark” : deterministic(1);
”Hyper Link” : deterministic(1);
?Font” : triangular(1,3,5);
?Paragraph” : triangular(3,5,7);
”Bullets Numbering” : triangular(2,4,6);
”Change Case” : triangular(2,4,6);
?Background” : triangular(2,4,6);
?Spell Check” : triangular(6,8,10);
”Check Grammer” : triangular(7,9,11);
”Speech” : triangular(1,3,5);

”Mail Merge” : triangular(13,15,17);
”Macro” : triangular(10,12,14);

”Set Options” : triangular(1,3,5);
?Insert Table” : triangular(3,5,7);
”Delete Table” : triangular(2,4,6);
?Table Format” : triangular(5,7,9);
”Sort” : triangular(4,6,8);

”Import Data” : triangular(7,9,11);
”Help” : triangular(1,2,4);

”Search” : deterministic(1);
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The Design Cost is given as:

DesignCost = decision-subset(+)(”Next Release”){

?NewFile”: triangular(15,17,19);
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”OpenFile” : triangular(18, 20,22);
?CloseFile” : triangular(3, 5,7);
?SaveFile” : triangular(15,17,19);
”Save As Different File” : triangular(12, 14, 16);
”SearchFile” : triangular(16,18, 20);
?ProtectFile” : triangular(5,7,9);
”PrintPreview” : triangular(11,13,15);
”Print File” : triangular(8,10, 12);
”Send To” : triangular(7, 9, 11);

”Set Properties” : triangular(2,4,6);
?Exit” : triangular(1,2,4);

?Undo Task” : triangular(3,5,7);
”Redo Task” : triangular(4,7,8);
”Cut” : triangular(4,7,8);

?Copy” : triangular(1,3,5);

”Paste” : triangular(2,4, 6);

”Paste Special” : triangular (8,10,12);
?Go To” : triangular(3,5,7);

?Find” : triangular(4,5,7);

”Replace” : triangular(2,4,6);

”Select All” : triangular(2,4,6);
?Default” : triangular(1,3,5);

”Print Layout” : triangular(1,3,5);
”Web Layout” : triangular(1,3,5);
?Zoom” : triangular(4,7,8);

”Header Footer” : triangular(1,3,5);
?Page Numbers” : triangular(1,3, 5);
?Date Time” : triangular(1,3, 5);
”Symbol” : triangular(1,3, 5);
”Bookmark” : deterministic(1);
?Hyper Link” : deterministic(1);
”Font” : triangular(1,4,5);
?Paragraph” : triangular(3,5,7);
”Bullets Numbering” : triangular(2,5,6);
”Change Case” : triangular(2,5,6);
”Background” : triangular(2,5,6);

?Spell Check” : triangular(6,9,10);




Modelling and Analysing the Requirements Selection of Microsoft Word Processor 310

”Speech” : triangular(1,4,5);

”Mail Merge” : triangular(13,14,17);
?Macro” : triangular(10,13,14);
”Set Options” : triangular(1,4,5);
?Insert Table” : triangular(3,6,7);
”Delete Table” : triangular(2,5,6);
”Table Format” : triangular(5,6,9);
”Sort” : triangular(4,5,8);

?Import Data” : triangular(7,8,11);
"Help” : triangular(1,3,4);

”Search” : deterministic(2);

The Developement Cost is given as:

s ~

DevCost = decision-subset (+)(”Next Release” ){
”NewFile”: triangular(19,22,25);
”QOpenkFile” : triangular(22,25,27);
”CloseFile” : deterministic (1);

”SaveFile” : triangular(17,18,19);

?Save As Different File” : triangular(17,18,19);
”SearchFile” : triangular(20,25, 27);
”ProtectFile” : triangular(2,4,6);
”PrintPreview” : triangular(11,13,15);

?Print File” : triangular(8,10, 12);

”Send To” : triangular(7, 8, 11);

”Set Properties” : triangular(4,6,8);

?Exit” : triangular(2,4,6);
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”Undo Task” : triangular(7,8,10);
?Redo Task” : triangular(7,8,10);
?Cut” : triangular(7,8,10);

”Copy” : triangular(1,4,5);

?Paste” : triangular(4, 6,8);

”Paste Special” : triangular(8,10,12);
”Go To” : triangular(3,6,7);

?Find” : triangular(4,5,7);
”Replace” : triangular(2,4,6);
”Select All” : triangular(2,4,6);
?Default” : triangular(1,3,5);

?Print Layout” : triangular(1,3,5);
”Web Layout” : triangular(1,3,5);
?Zoom” : triangular(4,5,8);

”Header Footer” : triangular(1,3,5);
”Page Numbers” : triangular(1,3, 5);
”Date Time” : triangular(1,3, 5);
?Symbol” : triangular(1,3, 5);
?Bookmark” : deterministic(2);
”Hyper Link” : deterministic(2);
?Font” : triangular(1,4,5);
?Paragraph” : triangular(3,6,7);
”Bullets Numbering” : triangular(2,5,6);
?Change Case” : triangular(2,5,6);
?Background” : triangular(2,5,6);
”Spell Check” : triangular(9,10,12);
?Check Grammer” : triangular(10,11,13);
”Speech” : triangular(5,6,8);

”Mail Merge” : triangular(10, 13,14);
?Macro” : triangular(8,10,13);

”Set Options” : triangular(1,2,5);
”Insert Table” : triangular(3,4,7);
”Delete Table” : triangular(2,3,6);
?Table Format” : triangular(5,6,9);
”Sort” : triangular(4,7,8);

”Import Data” : triangular(7,8,11);

?Help” : triangular(1,3,4);
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We model the Testing Cost as:
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TestingCost = decision-subset(+)(”Next Release”){
?NewFile”: triangular(10,12,15);
?OpenFile” : triangular(12,13,17);
”CloseFile” : deterministic(2);
?SaveFile” : triangular(11,13,15);
”Save As Different File” : triangular(15, 17,18);
”SearchFile” : triangular(16,18, 20);
?ProtectFile” : triangular(2,3,6);
?PrintPreview” : triangular(9, 11,13);
”Print File” : triangular(8,10, 12);
”Send To” : triangular(7, 8, 11);
”Set Properties” : triangular(2, 4,6);
7Exit” : triangular(2,3,6);

?Undo Task” : triangular(3,5,10);
”Redo Task” : triangular(2,4,8);
?Cut” : triangular(3,4, 7);

”Copy” : triangular(1,3,5);

?Paste” : triangular(4, 6,8);

”Paste Special” : triangular(8,11,12);
”Go To” : triangular(3,5,7);

?Find” : triangular(2,3,7);
”Replace” : triangular(2,3,6);
”Select All” : triangular(2,3,6);
?Default” : triangular(1,2,5);
?Print Layout” : triangular (1,3,5);
”Web Layout” : triangular(1,3,5);
?Zoom” : triangular(4,7,8);
”Header Footer” : deterministic(1);
”Page Numbers” : deterministic(1);
”Date Time” : deterministic(1);
”Symbol” : deterministic(1);
”Bookmark” : deterministic(2);

”Hyper Link” : deterministic(1);
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”Font” : triangular(1,2,5);

?Paragraph” : triangular(3,6,7);
”Bullets Numbering” : triangular(2,5,6);
”Change Case” : triangular(2,5,6);
?Background” : triangular(2,5,6);
?Spell Check” : triangular(8,9,10);
”Check Grammer” : triangular(6,8, 10);
”Speech” : triangular (2,4, 5);

?Mail Merge” : triangular(10, 13,14);
”Macro” : triangular(8,11,13);

”Set Options” : triangular(1,4,5);
?Insert Table” : triangular(3,4,7);
”Delete Table” : triangular(2,3,6);
”Table Format” : triangular(5,6,9);
”Sort” : triangular(4,5,8);

”Import Data” : triangular(7,8,11);
”Help” : triangular(1,3,4);

”Search” : deterministic(2);

We model the constraint relationships between the requirements as below:

Constraint "Next Release” : "OpenFile” couples”Next Release” : ”SaveFile”;
Constraint "Next Release” : ”Save As Different File” couples”Next Release” : ”SaveFile”;
Constraint "Next Release” : "Cut” couples”Next Release” : ”Paste”;

Constraint ”Next Release” : ”Cut” couples”’Next Release” : ”Paste Special”;
Constraint "Next Release” : "Header Footer” couples” Next Release” : ”Page Numbers”;
Constraint "Next Release” : ”Insert Table” couples” Next Release” : ” Table Format”;

Constraint "Next Release” : ”Insert Table” couples” Next Release” : ”Delete Table”;

Constraint "Next Release” : "Help” couples”Next Release” : ”Search”;
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Constraint "Next Release” : ”OpenFile” requires” Next Release” : ”NewFile”;
Constraint ”Next Release” : ”Save As Different File” requires” Next Release” : ”NewFile”;
Constraint ”Next Release” : ”SearchFile” requires”Next Release” : ”NewFile”;
Constraint "Next Release” : ”ProtectFile” requires” Next Release” : ”NewFile”;
Constraint "Next Release” : ”PrintPreview” requires”Next Release” : ”NewFile”;
Constraint "Next Release” : ”Print File” requires” Next Release” : ”NewF'ile”;
Constraint "Next Release” : ”Send To” requires”Next Release” : ”"NewFile”;
Constraint "Next Release” : ”Set Properties” requires”Next Release” : "NewFile”;
Constraint "Next Release” : ”Exit” requires” Next Release” : ”NewF'ile”;
Constraint ”"Next Release” : ”Print Layout” requires” Next Release” : ”NewFile”;
Constraint "Next Release” : ”Web Layout” requires”Next Release” : "NewFile”;
Constraint "Next Release” : "Zoom” requires”Next Release” : "NewFile”;
Constraint "Next Release” : "Header Footer” requires” Next Release” : ”NewFile”;

Constraint ”Next Release” : ”Spell Check” requires” Next Release” : ”NewFile”;
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Constraint "Next Release” : ”Check Grammer” requires” Next Release” : ”NewFile”;
Constraint "Next Release” : ”CloseFile” requires” Next Release” : ”OpenFile”;
Constraint ”Next Release” : ”SearchFile” requires”Next Release” : ”OpenFile”;
Constraint "Next Release” : ”ProtectFile” requires” Next Release” : ”OpenFile”;
Constraint "Next Release” : ”PrintPreview” requires”Next Release” : ”OpenFile”;
Constraint ”Next Release” : ”Print File” requires” Next Release” : ”OpenFile”;
Constraint "Next Release” : ”Send To” requires”Next Release” : "OpenFile”;
Constraint ”Next Release” : ”Set Properties” requires” Next Release” : ”OpenFile”;
Constraint ”Next Release” : ”Go To” requires” Next Release” : ”OpenFile”;
Constraint "Next Release” : "Find” requires” Next Release” : ”OpenFile”;
Constraint "Next Release” : ”Print Layout” requires” Next Release” : ”OpenFile”;

Constraint ”Next Release” : ”Web Layout” requires” Next Release” : ”OpenFile”;

Constraint ”"Next Release” : ”Zoom” requires”’ Next Release” : ”OpenFile”;
Constraint "Next Release” : "Header Footer” requires”Next Release” : ”OpenFile”;
Constraint ”Next Release” : ”Page Numbersr” requires”Next Release” : ”OpenFile”;
Constraint "Next Release” : ”"Date Time” requires” Next Release” : ”OpenFile”;
Constraint "Next Release” : ”Symbol” requires” Next Release” : ”OpenFile”;
Constraint "Next Release” : ”Exit” requires” Next Release” : ” CloseFile”;

Constraint "Next Release” : ”Exit” requires” Next Release” : ”SaveFile”;
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Constraint "Next Release” : ”Exit” requires” Next Release” : ”Save As Different File”;
Constraint "Next Release” : ”Exit” requires” Next Release” : ”SearchFile”;
Constraint "Next Release” : ”Exit” requires” Next Release” : ”ProtectFile”;
Constraint "Next Release” : ”Exit” requires” Next Release” : ”PrintPreview”;
Constraint "Next Release” : ”Exit” requires” Next Release” : ”Print File”;
Constraint ”Next Release” : ”Exit” requires”Next Release” : ”Send To”;

Constraint "Next Release” : ”Send To” requires” Next Release” : ”ProtectFile”;

Constraint "Next Release” : "Redo Task” requires” Next Release” : ”Undo Task”;

Constraint ”Next Release” : ”Paste” requires” Next Release” : ”Go To”;

Constraint "Next Release” : ”"Replace” requires”Next Release” : "Go To”;
Constraint "Next Release” : ”Print File” requires” Next Release” : ”Print Layout”;
Constraint "Next Release” : ”Print Layout” requires” Next Release” : ”Header Footer”;
Constraint ”"Next Release” : ”Web Layout” requires”Next Release” : "Header Footer”;
Constraint "Next Release” : ”Bookmark” requires” Next Release” : ”Page Numbers”;
Constraint "Next Release” : "Hyper Link” requires” Next Release” : ”Page Numbers”;
Constraint ”"Next Release” : "Bookmark” requires” Next Release” : ”Date Time”;
Constraint "Next Release” : "Hyper Link” requires” Next Release” : ”Date Time”;

Constraint "Next Release” : ”"Paragraph” requires” Next Release” : ”Font”;
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Constraint "Next Release” : ”Bullets Numbering” requires ”Next Release” : ”Font”;
Constraint "Next Release” : ”Change Case” requires”Next Release” : ”Font”;
Constraint "Next Release” : ”Background” requires” Next Release” : ”Font”;

Constraint "Next Release” : ”Background” requires” Next Release” : ”Paragraph”;
Constraint ”Next Release” : ”Background” requires” Next Release” : ”Bullets Numbering”;
Constraint ”Next Release” : ”Background” requires” Next Release” : ” Change Case”;
Constraint ”Next Release” : ”Check Grammer” requires” Next Release” : ”Spell Check”;
Constraint "Next Release” : ”Speech” requires” Next Release” : ” Check Grammer”;

Constraint ”Next Release” : ”Spell Check” requires”Next Release” : ”Set Options”;
Constraint "Next Release” : ”Check Grammer” requires” Next Release” : ”Set Options”;
Constraint ”Next Release” : ”Speech” requires” Next Release” : ”Set Options”;
Constraint ”Next Release” : ”Mail Merge” requires” Next Release” : ”Set Options”;

Constraint "Next Release” : ”Macro” requires”’ Next Release” : ”Set Options”;

Analysis Result

Optimisation Analysis

The RADAR analysis of the RADAR models developed for the Microsoft Word Processor
presented in Fig. G.1 show that a solution is found to be optimal out of a total of 2%°
solutions. The solution include the following features: NewFile, OpenFile, CloseFile,
SaveFile, Save As Different File, ProtectFile, PrintPreview, Set Properties, Cut, Paste,
Paste Special, Go To, Find, Select All, Zoom, Header Footer, Symbol, Font, Paragraph,
Bullets Numbering, Change Case, Spell Check, Check Grammar, Set Options, Insert

Table, Delete Table, Table Format and Sort.

The EVTPI is £6.14m and EVPPI for all model parameters is approximately equal to
zero. This means that none of the model parameters is worth further data collection or

analysis.
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Optimisation Analysis

Objective: Max ENB
Objective: Min ProjectRisk
Solution Space: 250
Optimisation Approach: 1+A
Algorithm Name: NSGAIIL
Population Size: 100
Crossover Probability: 0.8
Mutation Probability: 0.1

Nbr. Fitness Evaluations: 50000
Shortlisted: 1

Nbr. Decisions: 1

Nbr. Variables: 29
Runtime(s) : 46

Feature in the Next Release

1 NewFile

2 OpenFile

3 CloseFile

4 SaveFile

5 Save As Different File
6 ProtectFile

7 PrintPreview

8 Set Properties

9 Cut

10 Paste

11 Paste Special

12 Go To

13 Find

14 Select All

15 Zoom

16 Header Footer
17 Symbol

18 Font

19 Paragraph

20 Bullets Numbering
21 Change Case

22 Spell Check

23 Check Grammer
24 Set Options

25 Insert Table

26 Delete Table

27 Table Format
28 Sort

ENB 409

ProjectRisk 0

F1cUrE G.1: Optimisation Analysis and Information Value analysis results of require-
ments subset selection problem for the Microsoft Word Processor.



Bibliography

1]

User Requirements Notation (URN). https://www.itu.int/rec/T-REC-Z.
151-201210-I/en, 2012. [Online; accessed 20-Sepetember-2016].

[2] jJUCMNav. http://jucmnav.softwareengineering.ca/ucm/bin/view/

ProjetSEG/WebHome, 2016. [Online; accessed 06-October-2016].

Amy Affleck, Aneesh Krishna, and Narasimaha R Achuthan. Optimal selection of
operationalizations for non-functional requirements. In Proceedings of the Ninth
Asia-Pacific Conference on Conceptual Modelling-Volume 143, pages 69-78. Aus-

tralian Computer Society, Inc., 2013.

Amy Affleck, Aneesh Krishna, and Narasimaha R Achuthan. Non-functional re-
quirements framework: A mathematical programming approach. The Computer

Journal, 58(5):1122-1139, 2015.

Ahmed Al-Emran and Dietmar Pfahl. Operational planning, re-planning and risk
analysis for software releases. In Product-Focused Software Process Improvement,

pages 315-329. Springer, 2007.

Ahmed Al-Emran, Puneet Kapur, Dietmar Pfahl, and Guenther Ruhe. Studying
the impact of uncertainty in operational release planning—an integrated method
and its initial evaluation. Information and Software Technology, 52(4):446-461,
2010.

Ahmed Al-Emran, Dietmar Pfahl, and Guenther Ruhe. Decision support for prod-
uct release planning based on robustness analysis. In Requirements Engineering

Conference (RE), 2010 18th IEEE International, pages 157-166. IEEE, 2010.

320


https://www.itu.int/rec/T-REC-Z.151-201210-I/en
https://www.itu.int/rec/T-REC-Z.151-201210-I/en
http://jucmnav.softwareengineering.ca/ucm/bin/view/ProjetSEG/WebHome
http://jucmnav.softwareengineering.ca/ucm/bin/view/ProjetSEG/WebHome

Bibliography 321

8]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

Tariq Al-Naeem, Ian Gorton, Muhammed Ali Babar, Fethi Rabhi, and Boualem
Benatallah. A quality-driven systematic approach for architecting distributed soft-
ware applications. In Proceedings of the 27th international conference on Software

engineering, pages 244-253. ACM, 2005.

Thamer AlBourae, Guenther Ruhe, and Mahmood Moussavi. Lightweight re-
planning of software product releases. In Software Product Management, 2006.

IWSPM’06. International Workshop on, pages 27-34. IEEE, 2006.

Antonio J Alencar, Carlos AS Franco, Eber A Schmitz, and Alexandre L. Correa.
A statistical approach for the maximization of the financial benefits yielded by a

large set of mmfs and aes. Computing and Informatics, 32(6):1147-1169, 2014.

Beatrice Alenljung. Envisioning a future decision support system for requirements

engineering: a holistic and human-centred perspective. 2008.

Tan Alexander. A taxonomy of stakeholders, human roles in system development.

Issues and Trends in Technology and Human Interaction, pages 25-71, 2006.

Rajeev Alur and Thomas A Henzinger. Reactive modules. Formal Methods in

System Design, 15(1):7-48, 1999.

Daniel Amyot, Sepideh Ghanavati, Jennifer Horkoff, Gunter Mussbacher, Liam
Peyton, and Eric Yu. Evaluating goal models within the goal-oriented requirement

language. International Journal of Intelligent Systems, 25(8):841-877, 2010.

Debra Anderson, Thane Frivold, and Alfonso Valdes. Next-generation intrusion

detection expert system (nides): A summary. 1995.

Suzana Andova, Holger Hermanns, and Joost-Pieter Katoen. Discrete-time re-
wards model-checked. In International Conference on Formal Modeling and Anal-

ysis of Timed Systems, pages 88—104. Springer, 2003.

Michal Antkiewicz and Krzysztof Czarnecki. Featureplugin: feature modeling
plug-in for eclipse. In Proceedings of the 2004 OOPSLA workshop on eclipse tech-
nology eXchange, pages 67-72. ACM, 2004.



Bibliography 322

18]

[21]

[22]

[24]

Michal Antkiewicz, Kacper Bak, Alexandr Murashkin, Rafael Olaechea, Jia
Hui Jimmy Liang, and Krzysztof Czarnecki. Clafer tools for product line engineer-
ing. In Proceedings of the 17th International Software Product Line Conference

co-located workshops, pages 130-135. ACM, 2013.

Ana I Anton. Goal identification and refinement in the specification of software-

based information systems. 1997.

Annie T Anton. Goal-based requirements analysis. In Requirements Engineer-
ing, 1996., Proceedings of the Second International Conference on, pages 136-144.
IEEE, 1996.

Annie T Antén and Colin Potts. The use of goals to surface requirements for evolv-
ing systems. In Software Engineering, 1998. Proceedings of the 1998 International
Conference on, pages 157-166. IEEE, 1998.

Annie I Antén, W Michael McCracken, and Colin Potts. Goal decomposition and
scenario analysis in business process reengineering. In International Conference

on Advanced Information Systems Engineering, pages 94-104. Springer, 1994.

Annie I Anton, Ryan A Carter, Aldo Dagnino, John H Dempster, and Devon F
Siege. Deriving goals from a use-case based requirements specification. Require-

ments Engineering, 6(1):63-73, 2001.

Annie I Antén, Julia Brande Earp, and Angela Reese. Analyzing website privacy
requirements using a privacy goal taxonomy. In Requirements Engineering, 2002.

Proceedings. IEEE Joint International Conference on, pages 23-31. IEEE, 2002.

Giuliano Antoniol, Massimiliano Di Penta, and Mark Harman. A robust search-
based approach to project management in the presence of abandonment, rework,
error and uncertainty. In Software Metrics, 2004. Proceedings. 10th International

Symposium on, pages 172-183. IEEE, 2004.

Jorge Aranda and Steve Easterbrook. Anchoring and adjustment in software
estimation. In 10th FEuropean Software Engineering Conference and 13th ACM
SIGSOFT International Symposium on Foundations of Software Engineering (ES-
EC/FSE 2013), pages 346-355. ACM, 2005.



Bibliography 323

[27]

[29]

[35]

Andrea Arcuri and Lionel Briand. A practical guide for using statistical tests to
assess randomized algorithms in software engineering. In Software Engineering

(ICSE), 2011 33rd International Conference on, pages 1-10. IEEE, 2011.

Aybiike Aurum and Claes Wohlin. The fundamental nature of requirements engi-
neering activities as a decision-making process. Information and Software Tech-

nology, 45(14):945-954, 2003.

Muhammad Ali Babar, Liming Zhu, and Ross Jeffery. A framework for classifying
and comparing software architecture evaluation methods. In Software Engineering

Conference, 2004. Proceedings. 2004 Australian, pages 309-318. IEEE, 2004.

Anthony J. Bagnall, Victor J. Rayward-Smith, and Tan M Whittley. The next
release problem. Information and software technology, 43(14):883-890, 2001.

Paul Baker, Mark Harman, Kathleen Steinhofel, and Alexandros Skaliotis. Search
based approaches to component selection and prioritization for the next release
problem. In Software Maintenance, 2006. ICSM’06. 22nd IEEE International
Conference on, pages 176-185. IEEE, 2006.

Len Bass. Software architecture in practice. Pearson Education India, 2007.

Richard Ernest Bellman and Stuart E Dreyfus. Applied dynamic programming.
1962.

Nelly Bencomo. Quantun: Quantification of uncertainty for the reassessment of
requirements. In Requirements Engineering Conference (RE), 2015 IEEE 23rd
International, pages 236-240. IEEE, 2015.

Nelly Bencomo, Jon Whittle, Pete Sawyer, Anthony Finkelstein, and Emmanuel
Letier. Requirements reflection: requirements as runtime entities. In Software
Engineering, 2010 ACM/IEEFE 32nd International Conference on, volume 2, pages
199-202. TEEE, 2010.

Barry Boehm, Prasanta Bose, Ellis Horowitz, and Ming June Lee. Software re-
quirements negotiation and renegotiation aids: A theory-w based spiral approach.
In Software Engineering, 1995. ICSE 1995. 17th International Conference on,
pages 243-243. IEEE, 1995.



Bibliography 324

[37]

[40]

[42]

Richard J Bolton and David J Hand. Statistical fraud detection: A review. Sta-
tistical science, pages 235-249, 2002.

Ronald J Brachman and Hector J Levesque. Readings in knowledge representation.

Morgan Kaufmann Publishers Inc., 1985.

Klaus Briess, Herbert Jahn, Eckehard Lorenz, Dieter Oertel, Wolfgang Skrbek,
and Boris Zhukov. Fire recognition potential of the bi-spectral infrared detection

(bird) satellite. International Journal of Remote Sensing, 24(4):865-872, 2003.

Janis Bubenko, Colette Rolland, Pericles Loucopoulos, and Valeria DeAntonellis.
Facilitating fuzzy to formal requirements modelling. In Requirements Engineering,
1994., Proceedings of the First International Conference on, pages 154-157. IEEE,
1994.

Saheed A Busari. Towards search-based modelling and analysis of requirements
and architecture decisions. In Proceedings of the 32nd IEEE/ACM International
Conference on Automated Software Engineering, pages 1026-1029. IEEE Press,
2017.

Saheed A Busari and Emmanuel Letier. Radar: A lightweight tool for require-
ments and architecture decision analysis. In Proceedings of the 39th International

Conference on Software Engineering, pages 552-562. IEEE Press, 2017.

Saheed A Busari and Emmanuel Letier. Scalability analysis of the radar decision

support tool. arXiv preprint arXiv:1702.02977, 2017.

Antoine Cailliau and Axel van Lamsweerde. Handling knowledge uncertainty in
risk-based requirements engineering. In 2015 IEEE 23rd International Require-
ments Engineering Conference (RE), pages 106-115. IEEE, 2015.

Murray Cantor. Calculating and improving roi in software and system programs.

Communications of the ACM, 54(9):121-130, 2011.

Par Carlshamre, Kristian Sandahl, Mikael Lindvall, Bjorn Regnell, and J Natt och
Dag. An industrial survey of requirements interdependencies in software product
release planning. In Requirements Engineering, 2001. Proceedings. Fifth IEEE
International Symposium on, pages 84-91. IEEE, 2001.



Bibliography 325

[47]

[50]

[53]

[54]

[57]

Jaelson Castro, Manuel Kolp, and John Mylopoulos. Towards requirements-driven
information systems engineering: the tropos project. Information systems, 27(6):

365-389, 2002.

Tristan Caulfield and David Pym. Improving security policy decisions with models.

IEEE Security & Privacy, 13(5):34-41, 2015.

Tristan Caulfield and David Pym. Modelling and simulating systems security
policy. In SIMUTOOLS 2015-8th EAI International Conference on Simulation
Tools and Techniques. ICST, 2015.

Tristan Caulfield and David Pym. Modelling and simulating systems security pol-
icy. In 8th International Conference on Simulation Tools and Techniques, pages
9-18. ICST (Institute for Computer Sciences, Social-Informatics and Telecommu-

nications Engineering), 2015.

Tristan Caulfield and David Pym. Improving security policy decisions with models.

IEEE Security and Privacy Magazine, 13(5):34-41, 2015.

Vaclav Cechticky, Alessandro Pasetti, O Rohlik, and Walter Schaufelberger. Xml-
based feature modelling. In International Conference on Software Reuse, pages

101-114. Springer, 2004.

Chieng-Yi Chang. Dynamic programming as applied to feature subset selection
in a pattern recognition system. In Proceedings of the ACM annual conference-

Volume 1, pages 94-103. ACM, 1972.

Adhitya Chittur. Model generation for an intrusion detection system using genetic
algorithms. High School Honors Thesis, Ossining High School. In cooperation with
Columbia Univ, 2001.

Lawrence Chung, Daniel Gross, and Eric Yu. Architectural design to meet stake-

holder requirements. In Software architecture, pages 545-564. Springer, 1999.

Lawrence Chung, Brian A Nixon, Eric Yu, and John Mylopoulos. Non-functional
requirements in software engineering, volume 5. Springer Science & Business Me-

dia, 2012.

Lawrence Chung, Tom Hill, Owolabi Legunsen, Zhenzhou Sun, Adip Dsouza, and

Sam Supakkul. A goal-oriented simulation approach for obtaining good private



Bibliography 326

[59]

[60]

[61]

[64]

cloud-based system architectures. Journal of Systems and Software, 86(9):2242—
2262, 2013.

John Clarke, Jose Javier Dolado, Mark Harman, Rob Hierons, Bryan Jones, Mary
Lumkin, Brian Mitchell, Spiros Mancoridis, Kearton Rees, Marc Roper, et al.
Reformulating software engineering as a search problem. IEF Proceedings-software,

150(3):161-175, 2003.

Carlos A Coello Coello, Clarisse Dhaenens, and Laetitia Jourdan. Multi-objective
combinatorial optimization: Problematic and context. In Advances in multi-

objective nature inspired computing, pages 1-21. Springer, 2010.

Vittorio Cortellessa, Fabrizio Marinelli, and Pasqualina Potena. Automated se-
lection of software components based on cost/reliability tradeoff. In Software

Architecture, pages 66-81. Springer, 2006.

PRISM Cost and Reward. SysML  Specification. http://wuw.
prismmodelchecker.org/manual/ThePRISMLanguage/CostsAndRewards, 2008.
[Online; accessed 28-October-2016].

Joseph Czyzyk, Michael P Mesnier, and Jorge J Moré. The neos server. IEEE

Computational Science and Engineering, 5(3):68-75, 1998.

Eduardo Maciel da. Cunha Mattos, Marcelo Vieira, Eber Assis Schmitz, and An-
tonio Juarez Alencar. Applying game theory to the incremental funding method

in software projects. Journal of Software, 9(6):1435-1443, 2014.

Jacek Dabrowski. Towards an adaptive framework for goal-oriented strategic
decision-making. In Requirements Engineering Conference (RE), 2017 IEEE 25th
International, pages 538-543. IEEE, 2017.

Anne Dardenne, Axel Van Lamsweerde, and Stephen Fickas. Goal-directed re-

quirements acquisition. Science of computer programming, 20(1):3-50, 1993.

Robert Darimont and Axel Van Lamsweerde. Formal refinement patterns for goal-
driven requirements elaboration. In ACM SIGSOFT Software Engineering Notes,
volume 21, pages 179-190. ACM, 1996.


http://www.prismmodelchecker.org/manual/ThePRISMLanguage/CostsAndRewards
http://www.prismmodelchecker.org/manual/ThePRISMLanguage/CostsAndRewards

Bibliography 327

[67]

73]

[77]

AL de Cerqueira Leite Duboc. A framework for the characterization and analysis
of software systems scalability. PhD thesis, UCL (University College London),
2010.

Leonardo De Moura and Nikolaj Bjgrner. Z3: An efficient smt solver. In Inter-
national conference on Tools and Algorithms for the Construction and Analysis of

Systems, pages 337-340. Springer, 2008.

Kalyanmoy Deb, Amrit Pratap, Sameer Agarwal, and TAMT Meyarivan. A fast
and elitist multiobjective genetic algorithm: Nsga-ii. Fwolutionary Computation,

IEEE Transactions on, 6(2):182-197, 2002.

Mark Denne and Jane Cleland-Huang. Software by numbers: Low-risk, high-return

development. Prentice Hall Professional, 2003.

Mark Denne and Jane Cleland-Huang. The incremental funding method: Data-
driven software development. IEEFE software, 21(3):39-47, 2004.

Clarisse Dhaenens, Julien Lemesre, and El-Ghazali Talbi. K-ppm: A new exact
method to solve multi-objective combinatorial optimization problems. Furopean

Journal of Operational Research, 200(1):45-53, 2010.

L. Duboc, E. Letier, D. S. Rosenblum, and T. Wicks. A case study in eliciting
scalability requirements. In 16th IEEE International Requirements Engineering

Conference (RE 2008), pages 247-252, 2008.

Leticia Duboc, Emmanuel Letier, David S Rosenblum, and Tony Wicks. A case
study in eliciting scalability requirements. In International Requirements Engi-

neering, 2008. RE’0S8. 16th IEEE, pages 247-252. IEEE, 2008.

Leticia Duboc, Emmanuel Letier, and David S. Rosenblum. Systematic elaboration
of scalability requirements through goal-obstacle analysis. IEEE Transactions on

Software Engineering, 39(1):119-140, 2013. ISSN 0098-5589.

Juan J Durillo, Yuanyuan Zhang, Enrique Alba, Mark Harman, and Antonio J
Nebro. A study of the bi-objective next release problem. FEmpirical Software

Engineering, 16(1):29-60, 2011.

Bruno Dutertre and Leonardo De Moura. The yices smt solver. Tool paper at

http://yices. csl. sri. com/tool-paper. pdf, 2(2):1-2, 2006.



Bibliography 328

78]

[84]

[85]

[36]

[87]

[88]

RW Eglese. Simulated annealing: a tool for operational research. Furopean journal

of operational research, 46(3):271-281, 1990.

Nasser A El-Sherbeny. Vehicle routing with time windows: An overview of exact,
heuristic and metaheuristic methods. Journal of King Saud University-Science,

22(3):123-131, 2010.

Renee Elio, Jim Hoover, loanis Nikolaidis, Mohammad Salavatipour, Lorna Stew-

art, and Ken Wong. About computing science research methodology, 2011.

Richard Ellis-Braithwaite, Russell Lock, Ray Dawson, and Badr Haque. Modelling
the strategic alignment of software requirements using goal graphs. arXiv preprint

arXw:1211.6258, 2012.

John Ellson, Emden Gansner, Lefteris Koutsofios, Stephen C North, and Gordon
Woodhull. Graphvizopen source graph drawing tools. In International Symposium

on Graph Drawing, pages 483-484. Springer, 2001.

Naeem Esfahani, Ehsan Kouroshfar, and Sam Malek. Taming uncertainty in self-
adaptive software. In Proceedings of the 19th ACM SIGSOFT symposium and the
13th European conference on Foundations of software engineering, pages 234-244.

ACM, 2011.

Naeem Esfahani, Salim Malek, and Kaveh Razavi. Guidearch: guiding the explo-
ration of architectural solution space under uncertainty. In Software Engineering

(ICSE), 2013 35th International Conference on, pages 43-52. IEEE, 2013.

Naeem Esfahani, Sam Malek, and Kaveh Razavi. Guidearch: guiding the ex-
ploration of architectural solution space under uncertainty. In 35th International

Conference on Software Engineering (ICSE 2013), pages 43-52. IEEE, 2013.

Davide Falessi, Giovanni Cantone, Rick Kazman, and Philippe Kruchten. Decision-
making techniques for software architecture design: A comparative survey. ACM

Computing Surveys (CSUR), 43(4):33, 2011.

Norman Fenton and Martin Neil. Risk assessment and decision analysis with

Bayesian networks. Crc Press, 2012.

Filomena Ferrucci, Mark Harman, Jian Ren, and Federica Sarro. Not going to

take this anymore: multi-objective overtime planning for software engineering



Bibliography 329

[90]

[93]

projects. In Proceedings of the 2013 International Conference on Software En-

gineering, pages 462-471. IEEE Press, 2013.

UK Financial Fraud Action. Plastic Card Frauds. https://
www.financialfraudaction.org.uk/wp-content/uploads/2016/09/
2015-h1-fraud-figures-release-final.pdf. [Ounline; accessed 28-November-

2015).

Anthony Finkelstein and John Dowell. A comedy of errors: the london ambulance
service case study. In Proceedings of the 8th International Workshop on Software

Specification and Design, page 2. IEEE Computer Society, 1996.

Anthony Finkelstein, Mark Harman, S Afshin Mansouri, Jian Ren, and Yuanyuan
Zhang. fairness analysis in requirements assignments. In International Require-

ments Engineering, 2008. RE’08. 16th IEEE, pages 115-124. IEEE, 2008.

Anthony Finkelstein, Mark Harman, S Afshin Mansouri, Jian Ren, and Yuanyuan
Zhang. A search based approach to fairness analysis in requirement assignments
to aid negotiation, mediation and decision making. Requirements Engineering, 14

(4):231-245, 2009.

Carlos M Fonseca, Peter J Fleming, et al. Genetic algorithms for multiobjective
optimization: Formulation discussion and generalization. In ICGA, volume 93,

pages 416-423, 1993.
Martin Fowler. Domain-specific languages. Pearson Education, 2010.

Johan Fredriksson, Kristian Sandstrém, and Mikael Akerholm. Optimizing re-
source usage in component-based real-time systems. In Component-Based Software

Engineering, pages 49-65. Springer, 2005.

Sanford Friedenthal, Alan Moore, and Rick Steiner. A practical guide to SysML:

the systems modeling language. Morgan Kaufmann, 2014.

Emden Gansner, Eleftherios Koutsofios, and Stephen North. Drawing graphs with
dot, 2006.

Jesus Garcia-Galan, Pablo Trinidad, Omer F Rana, and Antonio Ruiz-Cortes.
Automated configuration support for infrastructure migration to the cloud. Future

Generation Computer Systems, 55:200-212, 2016.


https://www.financialfraudaction.org.uk/wp-content/uploads/2016/09/2015-h1-fraud-figures-release-final.pdf
https://www.financialfraudaction.org.uk/wp-content/uploads/2016/09/2015-h1-fraud-figures-release-final.pdf
https://www.financialfraudaction.org.uk/wp-content/uploads/2016/09/2015-h1-fraud-figures-release-final.pdf

Bibliography 330

[99]

[100]

[101]

[102]

[103]

[104]

[105]
[106]

[107]

[108]

[109]

Thomas D Garvey and Teresa F Lunt. Model-based intrusion detection. In Pro-

ceedings of the 14th national computer security conference, volume 17, 1991.

Simos Gerasimou, Giordano Tamburrelli, and Radu Calinescu. Search-based syn-
thesis of probabilistic models for quality-of-service software engineering. In 30th
IEEE/ACM International Conference on Automated Software Engineering (ASE
2015), pages 319-330. IEEE, 2015.

Simos Gerasimou, Giordano Tamburrelli, and Radu Calinescu. Search-based syn-
thesis of probabilistic models for quality-of-service software engineering. In 30th
IEEE/ACM International Conference on Automated Software Engineering (ASE
2015). York, 2015.

Sushmito Ghosh and Douglas L Reilly. Credit card fraud detection with a neural-
network. In System Sciences, 1994. Proceedings of the Twenty-Seventh Hawaii
International Conference on, volume 3, pages 621-630. IEEE, 1994.

Paolo Giorgini, John Mylopoulos, Eleonora Nicchiarelli, and Roberto Sebastiani.
Reasoning with goal models. In International Conference on Conceptual Modeling,

pages 167-181. Springer, 2002.

Martin Glinz. On non-functional requirements. In Requirements Engineering Con-

ference, 2007. RE’07. 15th IEEE International, pages 21-26. IEEE, 2007.
Fred Glover. Tabu search-part i. ORSA Journal on computing, 1(3):190-206, 1989.
Fred Glover and Manuel Laguna. Tabu Search*. Springer, 2013.

Des Greer and Gunther Ruhe. Software release planning: an evolutionary and

iterative approach. Information and Software Technology, 46(4):243-253, 2004.

Daniel Gross and Eric Yu. Evolving system architecture to meet changing business
goals: an agent and goal-oriented approach. In Requirements Engineering, 2001.

Proceedings. Fifth IEEFE International Symposium on, pages 316-317. IEEE, 2001.

Lars Grunske. Identifying good architectural design alternatives with multi-
objective optimization strategies. In Proceedings of the 28th international con-

ference on Software engineering, pages 849-852. ACM, 2006.



Bibliography 331

[110]

[111]

[112]

[113]

[114]

[115]

[116]

[117]

[118]

[119]

Jianmei Guo, Jules White, Guangxin Wang, Jian Li, and Yinglin Wang. A genetic
algorithm for optimized feature selection with resource constraints in software

product lines. Journal of Systems and Software, 84(12):2208-2221, 2011.

Jianmei Guo, Edward Zulkoski, Rafael Olaechea, Derek Rayside, Krzysztof Czar-
necki, Sven Apel, and Joanne M. Atlee. Scaling exact multi-objective combinato-
rial optimization by parallelization. In 29th ACM/IEEE International Conference
on Automated Software Engineering (ASE 2014), pages 409420, 2014.

Jianmei Guo, Edward Zulkoski, Rafael Olaechea, Derek Rayside, Krzysztof Czar-
necki, Sven Apel, and Joanne M Atlee. Scaling exact multi-objective combinatorial
optimization by parallelization. In Proceedings of the 29th ACM/IEEE interna-

tional conference on Automated software engineering, pages 409-420. ACM, 2014.

John Hammersley. Monte carlo methods. Springer Science & Business Media,

2013.

Jiawei Han, Jian Pei, and Micheline Kamber. Data mining: concepts and tech-

niques. Elsevier, 2011.

D. J. Hand, C. Whitrow, N. M. Adams, P. Juszczak, and D. Weston. Performance
criteria for plastic card fraud detection tools. The Journal of the Operational

Research Society, 59(7):956-962, 2008.

DJ Hand, C Whitrow, NM Adams, P Juszczak, and D Weston. Performance
criteria for plastic card fraud detection tools. Journal of the Operational Research

Society, pages 956-962, 2008.

Mark Harman. The current state and future of search based software engineering.
In 2007 Future of Software Engineering, pages 342-357. IEEE Computer Society,
2007.

Mark Harman. Sbse: introduction and motivation. In Search Based Software

Engineering, pages 16-16. Springer, 2011.

Mark Harman and Bryan F Jones. Search-based software engineering. Information

and Software Technology, 43(14):833-839, 2001.



Bibliography 332

[120]

[121]

[122]

[123]

[124]

[125]

[126]

[127]

[128]

Mark Harman and Laurence Tratt. Pareto optimal search based refactoring at
the design level. In Proceedings of the 9th annual conference on Genetic and

evolutionary computation, pages 1106-1113. ACM, 2007.

Mark Harman, S Afshin Mansouri, and Yuanyuan Zhang. Search based software
engineering: A comprehensive analysis and review of trends techniques and ap-
plications. Department of Computer Science, Kings College London, Tech. Rep.
TR-09-03, 2009.

Mark Harman, Phil McMinn, Jerffeson Teixeira De Souza, and Shin Yoo. Search
based software engineering: Techniques, taxonomy, tutorial. In Empirical software

engineering and verification, pages 1-59. Springer, 2012.

Mark Harman, Jens Krinke, Inmaculada Medina-Bulo, Francisco Palomo-Lozano,
Jian Ren, and Shin Yoo. Exact scalable sensitivity analysis for the next release
problem. ACM Transactions on Software Engineering and Methodology (TOSEM),
23(2):19, 2014.

Sara Hassan, Nelly Bencomo, and Rami Bahsoon. Minimizing nasty surprises
with better informed decision-making in self-adaptive systems. In Proceedings
of the 10th International Symposium on Software Engineering for Adaptive and
Self-Managing Systems, pages 134-144. IEEE Press, 2015.

W. Heaven and E. Letier. Simulating and optimising design decisions in quantita-
tive goal models. In 19th IEEFE International Requirements Engineering Confer-
ence (RE 2011), pages 79-838. IEEE, 2011.

William Heaven and Emmanuel Letier. Simulating and optimising design decisions
in quantitative goal models. In Requirements Engineering Conference (RE), 2011

19th IEEFE International, pages 79-88. IEEE, 2011.

C. Henard, M. Papadakis, M. Harman, and Y. Le Traon. Combining multi-
objective search and constraint solving for configuring large software product
lines. In 37th IEEE International Conference on Software Engineering ICSE 2015),
pages 517-528, 2015.

Christopher Henard, Mike Papadakis, Mark Harman, and Yves Le Traon. Com-

bining multi-objective search and constraint solving for configuring large software



Bibliography 333

[129]

[130]

[131]

[132]

[133]

[134]

[135]

[136]

[137]

[138]

product lines. In Proceedings of the 37th IEEE/ACM International Conference on
Software Engineering (ICSE 2015), 2015.

Ann M Hickey and Alan M Davis. Requirements elicitation and elicitation tech-
nique selection: model for two knowledge-intensive software development pro-
cesses. In System Sciences, 2003. Proceedings of the 36th Annual Hawaii Interna-

tional Conference on, pages 10—pp. IEEE, 2003.

Robert M Hierons, Miqing Li, Xiaohui Liu, Sergio Segura, and Wei Zheng. Sip:
Optimal product selection from feature models using many-objective evolution-
ary optimization. ACM Transactions on Software Engineering and Methodology

(TOSEM), 25(2):17, 2016.

Andrew Hinton, Marta Kwiatkowska, Gethin Norman, and David Parker. Prism:
A tool for automatic verification of probabilistic systems. In Tools and Algorithms

for the Construction and Analysis of Systems, pages 441-444. Springer, 2006.

Jennifer Horkoff, Yijun Yu, and SK Eric. Openome: An open-source goal and

agent-oriented model drawing and analysis tool. iStar, 766:154—-156, 2011.

R.A. Howard. Information value theory. IFEE Transactions on Systems Science

and Cybernetics, 2(1):22-26, 1966.

Ronald A Howard. Readings on the principles and applications of decision analysis,

volume 1. Strategic Decisions Group, 1983.

Douglas Hubbard. The IT measurement inversion. CIO Enterprise Magazine,

1999.

D.W. Hubbard. How to measure anything: Finding the value of intangibles in
business. Wiley, 2010.

Bowen Hui, Sotirios Liaskos, and John Mylopoulos. Requirements analysis for
customizable software: A goals-skills-preferences framework. In Requirements En-
gineering Conference, 2003. Proceedings. 11th IEEFE International, pages 117-126.
TEEE, 2003.

Koral Tlgun, Richard A Kemmerer, and Phillip A Porras. State transition anal-
ysis: A rule-based intrusion detection approach. IEEE transactions on software

engineering, 21(3):181-199, 1995.



Bibliography 334

[139)]

[140]

[141]

[142]

[143]

[144]

[145]

[146]

[147]

[148]

[149]

Daniel Jackson, H Estler, Derek Rayside, et al. The guided improvement algorithm

for exact, general-purpose, many-objective combinatorial optimization. 2009.

Stephan Jacobs. Introducing measurable quality requirements: a case study. In
Requirements Engineering, 1999. Proceedings. IEEE International Symposium on,

pages 172-179. IEEE, 1999.
Daniel Kahneman. Thinking, Fast and Slow. Macmillan, 2011.

Muhammad Rezaul Karim and Guenther Ruhe. Bi-objective genetic search for
release planning in support of themes. In International Symposium on Search

Based Software Engineering, pages 123-137. Springer, 2014.

Joachim Karlsson and Kevin Ryan. A cost-value approach for prioritizing require-

ments. Software, IEEE, 14(5):67-74, 1997.

Joachim Karlsson, Stefan Olsson, and Kevin Ryan. Improved practical support for

large-scale requirements prioritising. Requirements Engineering, 2(1):51-60, 1997.

Christian Kastner, Thomas Thum, Gunter Saake, Janet Feigenspan, Thomas Le-
ich, Fabian Wielgorz, and Sven Apel. Featureide: A tool framework for feature-
oriented software development. In Software Engineering, 2009. ICSE 2009. IEEE
81st International Conference on, pages 611-614. IEEE, 2009.

Rick Kazman, Gregory Abowd, Len Bass, and Paul Clements. Scenario-based

analysis of software architecture. IEEE software, 13(6):47-55, 1996.

Rick Kazman, Mark Klein, Mario Barbacci, Tom Longstaff, Howard Lipson, and
Jeromy Carriere. The architecture tradeoff analysis method. In Engineering of
Complex Computer Systems, 1998. ICECCS’98. Proceedings. Fourth IEEE Inter-
national Conference on, pages 68-78. IEEE, 1998.

Rick Kazman, Mark Klein, and Paul Clements. Atam: Method for architecture

evaluation. Technical report, DTIC Document, 2000.

Rick Kazman, Jai Asundi, and Mark Klein. Quantifying the costs and benefits of
architectural decisions. In 23rd International Conference on Software Engineering

(ICSE 2001), pages 297-306. IEEE Computer Society, 2001.



Bibliography 335

[150]

[151]

[152]

[153]

[154]

[155]

[156]

[157]

[158]

[159]

Rick Kazman, Jai Asundi, and Mark Klein. Quantifying the costs and benefits
of architectural decisions. In Proceedings of the 23rd international conference on

Software engineering, pages 297-306. IEEE Computer Society, 2001.

Rick Kazman, Jai Asundi, and Mark Klien. Making architecture design decisions:
An economic approach. Technical Report CMU/SEI-2002-TR~035, Carnegie Mel-

lon University. Software Engineering Institute, 2002.

Taghi M Khoshgoftaar, Yi Liu, and Naeem Seliya. A multiobjective module-
order model for software quality enhancement. Fvolutionary Computation, IEEE

Transactions on, 8(6):593-608, 2004.

Alexander Kniippel, Thomas Thiim, Stephan Mennicke, Jens Meinicke, and Ina
Schaefer. Is there a mismatch between real-world feature models and product-
line research? In Proceedings of the 2017 11th Joint Meeting on Foundations of
Software Engineering, pages 291-302. ACM, 2017.

Warren L. G. Koontz, Patrenahalli M. Narendra, and Keinosuke Fukunaga. A
branch and bound clustering algorithm. IEEE Transactions on Computers, (9):

908-915, 1975.

Sameer Kumar and Promma Phrommathed. Research methodology. Springer,

2005.

Marta Kwiatkowska, Gethin Norman, and David Parker. Prism 4.0: Verification
of probabilistic real-time systems. In International Conference on Computer Aided

Verification (CAV 2011), pages 585-591. Springer Berlin Heidelberg, 2011.

Kiran Lakhotia, Mark Harman, and Phil McMinn. A multi-objective approach to
search-based test data generation. In Proceedings of the 9th annual conference on

Genetic and evolutionary computation, pages 1098-1105. ACM, 2007.

Dries Langsweirdt, Nelis Boucké, and Yolande Berbers. Architecture-driven de-
velopment of embedded systems with acol. In ISORC Workshops, pages 138-144,
2010.

Alexei Lapouchnian. Goal-oriented requirements engineering: An overview of the

current research. University of Toronto, page 32, 2005.



Bibliography 336

[160]

[161]

[162]

163

[164]

[165]

[166]

[167]

[168]

169

Eugene L Lawler and David E Wood. Branch-and-bound methods: A survey.
Operations research, 14(4):699-719, 1966.

Julien Lemesre, Clarisse Dhaenens, and El-Ghazali Talbi. Parallel partitioning
method (ppm): A new exact method to solve bi-objective problems. Computers

& operations research, 34(8):2450-2462, 2007.

Emmanuel Letier. Reasoning about agents in goal-oriented requirements engineer-

ing. PhD thesis, PhD thesis, Université catholique de Louvain, 2001.

Emmanuel Letier and Axel Van Lamsweerde. Agent-based tactics for goal-oriented
requirements elaboration. In Proceedings of the 24th International Conference on

Software Engineering, pages 83-93. ACM, 2002.

Emmanuel Letier and Axel Van Lamsweerde. Deriving operational software speci-
fications from system goals. In Proceedings of the 10th ACM SIGSOFT symposium,

on Foundations of software engineering, pages 119-128. ACM, 2002.

Emmanuel Letier and Axel Van Lamsweerde. Reasoning about partial goal sat-
isfaction for requirements and design engineering. In ACM SIGSOFT Software
Engineering Notes, volume 29, pages 53—62. ACM, 2004.

Emmanuel Letier, David Stefan, and Earl T. Barr. Uncertainty, risk, and infor-
mation value in software requirements and architecture. In 36th International

Conference on Software Engineering (ICSE 2014 ), pages 883-894, 2014.

Lingbo Li, Mark Harman, Emmanuel Letier, and Yuanyuan Zhang. Robust next
release problem: handling uncertainty during optimization. In Proceedings of
the 2014 conference on Genetic and evolutionary computation, pages 1247—1254.

ACM, 2014.

Lingbo Li, Mark Harman, Fan Wu, and Yuanyuan Zhang. The value of exact
analysis in requirements selection. IEEE Transactions on Software Engineering,

43(6):580-596, 2017.

Mian Li, Shapour Azarm, and Vikrant Aute. A multi-objective genetic algorithm
for robust design optimization. In Proceedings of the 7th annual conference on

Genetic and evolutionary computation, pages 771-778. ACM, 2005.



Bibliography 337

[170]

[171]

[172]

[173]

[174]

[175]

[176]

[177]

178

Lin Liu, Eric Yu, and John Mylopoulos. Security and privacy requirements analysis
within a social setting. In Requirements Engineering Conference, 2003. Proceed-

ings. 11th IEEE International, pages 151-161. IEEE, 2003.

Qin Ma and Sybren de Kinderen. Goal-based decision making. In International
Working Conference on Requirements Engineering: Foundation for Software Qual-

ity, pages 19-35. Springer, 2016.

Sara Mahdavi-Hezavehi, Paris Avgeriou, and Danny Weyns. A classification frame-
work of uncertainty in architecture-based self-adaptive systems with multiple qual-
ity requirements. In Managing Trade-Offs in Adaptable Software Architectures,
pages 45-77. Elsevier, 2017.

Sam Malek, Marija Mikic-Rakic, and Nenad Medvidovic. A style-aware architec-
tural middleware for resource-constrained, distributed systems. IEEFE Transactions

on Software Engineering, 31(3):256-272, 2005.

Indika Meedeniya, Irene Moser, Aldeida Aleti, and Lars Grunske. Architecture-
based reliability evaluation under uncertainty. In Proceedings of the joint ACM
SIGSOFT conference—QoSA and ACM SIGSOFT symposium—ISARCS on Quality
of software architectures—QoSA and architecting critical systems—ISARCS, pages
85-94. ACM, 2011.

Marcilio Mendonca, Moises Branco, and Donald Cowan. Splot: software product
lines online tools. In Proceedings of the 24th ACM SIGPLAN conference companion
on Object oriented programming systems languages and applications, pages 761—

762. ACM, 2009.

Marcilio Mendoncca, Thiago Tonelli Bartolomei, and Donald Cowan. Decision-
making coordination in collaborative product configuration. In Proceedings of the

2008 ACM symposium on Applied computing, pages 108-113. ACM, 2008.

Peter Midgley. Bicycle-sharing schemes: enhancing sustainable mobility in urban
areas. United Nations, Department of Economic and Social Affairs, pages 1-12,

2011.

Vajih Montaghami and Derek Rayside. Extending alloy with partial instances.
Abstract State Machines, Alloy, B, VDM, and Z, pages 122-135, 2012.



Bibliography 338

[179]

[180]

[181]

[182]

[183]

[184]

[185]

[186]

[187]

[188]

M. Moore, R. Kazman, M. Klein, and J. Asundi. Quantifying the value of archi-
tecture design decisions: lessons from the field. In 25th International Conference

on Software Engineering (ICSE 2003), pages 557562, 2003.

John Mylopoulos, Lawrence Chung, and Brian Nixon. Representing and using
nonfunctional requirements: A process-oriented approach. Software Engineering,

IEEFE Transactions on, 18(6):483-497, 1992.

John Mylopoulos, Alex Borgida, Matthias Jarke, and Manolis Koubarakis. Rep-
resenting knowledge about information systems in telos. In Database Application

Engineering with DAIDA, pages 31-64. Springer, 1993.

John Mylopoulos, Lawrence Chung, and Eric Yu. From object-oriented to goal-

oriented requirements analysis. Communications of the ACM, 42(1):31-37, 1999.

Patrenahalli M Narendra and Keinosuke Fukunaga. A branch and bound algorithm
for feature subset selection. Computers, IEEE Transactions on, 100(9):917-922,
1977.

Antonio J Nebro, Juan J Durillo, Francisco Luna, Bernabé Dorronsoro, and En-
rique Alba. Mocell: A cellular genetic algorithm for multiobjective optimization.

International Journal of Intelligent Systems, 24(7):726-746, 2009.

Antonio J Nebro, Juan J Durillo, and Matthieu Vergne. Redesigning the jmetal
multi-objective optimization framework. In Proceedings of the Companion Publi-

cation of the 2015 Annual Conference on Genetic and Evolutionary Computation,

pages 1093-1100. ACM, 2015.

George L Nemhauser and Zev Ullmann. Discrete dynamic programming and cap-

ital allocation. Management Science, 15(9):494-505, 1969.

Jirg Nievergelt. Exhaustive search, combinatorial optimization and enumeration:
Exploring the potential of raw computing power. In Sofsem 2000: theory and

practice of informatics, pages 18-35. Springer, 2000.

Joost Noppen, Pim van den Broek, and Mehmet Aksit. Software development

with imperfect information. Soft computing, 12(1):3-28, 2008.



Bibliography 339

[189)]

[190]

[191]

[192]

193]

[194]

[195]

[196]

[197]

198

Bashar Nuseibeh and Steve Easterbrook. Requirements engineering: a roadmap.
In Proceedings of the Conference on the Future of Software Engineering, pages

35-46. ACM, 2000.

Jeho Oh, Don Batory, Margaret Myers, and Norbert Siegmund. Finding near-
optimal configurations in product lines by random sampling. In Proceedings of the
2017 11th Joint Meeting on Foundations of Software Engineering, pages 61-71.
ACM, 2017.

A. O’Hagan, C.E. Buck, A. Daneshkhah, J.R. Eiser, P.H. Garthwaite, D.J. Jenk-

inson, J.E. Oakley, and T. Rakow. Uncertain Judgements: FEliciting Fxperts
Probabilities. Statistics in Practice. Wiley, 2006. ISBN 9780470033302.

Rafael Olaechea, Steven Stewart, Krzysztof Czarnecki, and Derek Rayside. Mod-
elling and multi-objective optimization of quality attributes in variability-rich soft-
ware. In Proceedings of the Fourth International Workshop on Nonfunctional Sys-

tem Properties in Domain Specific Modeling Languages, page 2. ACM, 2012.

Rafael Olaechea, Derek Rayside, Jianmei Guo, and Krzysztof Czarnecki. Compar-
ison of exact and approximate multi-objective optimization for software product
lines. In Proceedings of the 18th International Software Product Line Conference-

Volume 1, pages 92-101. ACM, 2014.

Olawole Oni. Towards a bayesian decision model for release planning in incremental
development. In Requirements Engineering Conference (RE), 2017 IEEE 25th
International, pages 520-525. IEEE, 2017.

Olawole Oni and Emmanuel Letier. Optimizing the incremental delivery of soft-
ware features under uncertainty. In International Working Conference on Re-
quirements Engineering: Foundation for Software Quality, pages 36—41. Springer,

2016.

Matheus Paixao and Jerffeson Souza. A scenario-based robust model for the next
release problem. In Proceedings of the 15th annual conference on Genetic and

evolutionary computation, pages 1469-1476. ACM, 2013.
Terence Parr. The definitive ANTLR /4 reference. Pragmatic Bookshelf, 2013.

Terence Parr. The definitive ANTLR J reference. Pragmatic Bookshelf, 2013.



Bibliography 340

199

200]

[201]

[202]

[203]

[204]

[205]

[206]

Liliana Pasquale, Paola Spoletini, Mazeiar Salehie, Luca Cavallaro, and Bashar
Nuseibeh. Automating trade-off analysis of security requirements. Requirements

Engineering, pages 1-24, 2015.

Diego Perez-Palacin and Raffaela Mirandola. Uncertainties in the modeling of
self-adaptive systems: a taxonomy and an example of availability evaluation. In
Proceedings of the 5th ACM/SPEC international conference on Performance en-
gineering, pages 3—14. ACM, 2014.

Antonio Mauricio Pitangueira, Rita Suzana P. Maciel, Marcio de Oliveira Barros,
and Aline Santos Andrade. A systematic review of software requirements selec-
tion and prioritization using sbse approaches. In 5th International Symposium on
Search Based Software Engineering (SSBSE 2013), pages 188-208. Springer Berlin
Heidelberg, 2013.

Antonio Mauricio Pitangueira, Paolo Tonella, Angelo Susi, Rita Suzana Maciel,
and Marcio Barros. Risk-aware multi-stakeholder next release planning using
multi-objective optimization. In International Working Conference on Require-

ments Engineering: Foundation for Software Quality, pages 3—18. Springer, 2016.

Klaus Pohl, Giinter Béckle, and Frank J van Der Linden. Software product line
engineering: foundations, principles and techniques. Springer Science & Business

Media, 2005.

Jakob Puchinger and Giinther R Raidl. Combining metaheuristics and exact al-
gorithms in combinatorial optimization: A survey and classification. Springer,

2005.

Chaiyong Ragkhitwetsagul, Matheus Paixao, Manal Adham, Saheed Busari, Jens
Krinke, and John H Drake. Searching for configurations in clone evaluation—a repli-
cation study. In International Symposium on Search Based Software Engineering,

pages 250-256. Springer, 2016.

Outi Raiha, Kai Koskimies, and Erkki Mékinen. Generating software architecture
spectrum with multi-objective genetic algorithms. In Nature and Biologically In-
spired Computing (NaBIC), 2011 Third World Congress on, pages 29-36. IEEE,
2011.



Bibliography 341

207]

208]

[209]

[210]

[211]

[212]

[213]

[214]

[215]

[216]

[217]

Andres J Ramirez, Adam C Jensen, and Betty HC Cheng. A taxonomy of un-
certainty for dynamically adaptive systems. In Proceedings of the 7th Interna-
tional Symposium on Software Engineering for Adaptive and Self-Managing Sys-
tems, pages 99-108. IEEE Press, 2012.

Norman Riegel and Joerg Doerr. A systematic literature review of requirements
prioritization criteria. In Requirements Engineering: Foundation for Software

Quality, pages 300-317. Springer, 2015.

Suzanne Robertson and James Robertson. Mastering the requirements process:

Getting requirements right. Addison-wesley, 2012.

William N Robinson. Integrating multiple specifications using domain goals, vol-

ume 14. ACM, 1989.

Colette Rolland, Carine Souveyet, and Camille Ben Achour. Guiding goal modeling
using scenarios. IEEFE transactions on software engineering, 24(12):1055-1071,
1998.

Douglas T Ross and Kenneth E Schoman. Structured analysis for requirements

definition. IEEFE transactions on Software Engineering, (1):6-15, 1977.

Jean-Francois Roy, Jason Kealey, and Daniel Amyot. Towards integrated tool
support for the user requirements notation. In International Workshop on System

Analysis and Modeling, pages 198-215. Springer, 2006.

Nick Rozanski and Edéin Woods. Software systems architecture: working with

stakeholders using viewpoints and perspectives. Addison-Wesley, 2011.

Guenther Ruhe and Joseph Momoh. Strategic release planning and evaluation of
operational feasibility. In System Sciences, 2005. HICSS’05. Proceedings of the
38th Annual Hawaii International Conference on, pages 313b—313b. IEEE, 2005.

Giinther Ruhe. Product Release Planning: Methods, Tools and Applications. CRC
Press, 2010.

Giinther Ruhe and Des Greer. Quantitative studies in software release planning
under risk and resource constraints. In Empirical Software Engineering, 2003. 1S-
ESE 2003. Proceedings. 2003 International Symposium on, pages 262-270. IEEE,
2003.



Bibliography 342

218]

[219]

[220]

[221]

[222]

[223]

[224]

[225]

[226]

[227]

Gunther Ruhe and Moshood Omolade Saliu. The art and science of software

release planning. Software, IEEE, 22(6):47-53, 2005.

James Rumbaugh, Michael Blaha, William Premerlani, Frederick Eddy, William E.
Lorensen, et al. Object-oriented modeling and design, volume 199. Prentice-hall

Englewood Cliffs, NJ, 1991.

Respect-IT SA. KAOS/Objectiver. http://www.objectiver.com. [Online; ac-
cessed 28-November-2017].

Thomas L Saaty. How to make a decision: the analytic hierarchy process. Furopean

journal of operational research, 48(1):9-26, 1990.

Mehrdad Sabetzadeh, Davide Falessi, Lionel Briand, Stefano Di Alesio, Dag Mc-
George, Vidar Ahjem, and Jonas Borg. Combining goal models, expert elicitation,
and probabilistic simulation for qualification of new technology. In High-Assurance
Systems Engineering (HASE), 2011 IEEE 13th International Symposium on, pages
63-72. IEEE, 2011.

Mehrdad Sabetzadeh, Davide Falessi, Lionel Briand, and Stefano Di Alesio. A goal-
based approach for qualification of new technologies: Foundations, tool support,
and industrial validation. Reliability Engineering & System Safety, 119:52—66,
2013.

Mohsen Sadatsafavi, Nick Bansback, Zafar Zafari, Mehdi Najafzadeh, and Carlo
Marra. Need for speed: an efficient algorithm for calculation of single-parameter

expected value of partial perfect information. Value in Health, 2013.

Moshood Omolade Saliu and Guenther Ruhe. Bi-objective release planning for
evolving software systems. In Proceedings of the the 6th joint meeting of the Euro-
pean software engineering conference and the ACM SIGSOFT symposium on The
foundations of software engineering, pages 105-114. ACM, 2007.

Omolade Saliu and Guenther Ruhe. Supporting software release planning deci-
sions for evolving systems. In Software Engineering Workshop, 2005. 29th Annual
IEEE/NASA, pages 14-26. IEEE, 2005.

Andrea Saltelli, Karen Chan, E Marian Scott, et al. Sensitivity analysis, volume 1.

Wiley New York, 2000.


http://www.objectiver.com

Bibliography 343

[228]

[229]

230]

[231]

[232]

233

[234]

[235]

Ana B Séanchez, Sergio Segura, José A Parejo, and Antonio Ruiz-Cortés. Variabil-
ity testing in the wild: The drupal case study. Software & Systems Modeling, 16
(1):173-194, 2017.

F. Sarro, F. Ferrucci, M. Harman, A. Manna, and J. Ren. Adaptive multi-objective
evolutionary algorithms for overtime planning in software projects. IEEE Trans-

actions on Software Engineering, 2017. doi: 10.1109/TSE.2017.2650914.

Federica Sarro, Alessio Petrozziello, and Mark Harman. Multi-objective software
effort estimation. In Proceedings of the 38th International Conference on Software
Engineering, ICSE 2016, Austin, TX, USA, May 14-22, 2016, pages 619-630,
2016. doi: 10.1145/2884781.2884830.

Pete Sawyer, Nelly Bencomo, Jon Whittle, Emmanuel Letier, and Anthony Finkel-
stein. Requirements-aware systems: A research agenda for re for self-adaptive
systems. In Requirements Engineering Conference (RE), 2010 18th IEEE Inter-
national, pages 95-103. IEEE, 2010.

Abdel Salam Sayyad and Hany Ammar. Pareto-optimal search-based software
engineering (posbse): A literature survey. In Realizing Artificial Intelligence Syn-
ergies in Software Engineering (RAISE), 2013 2nd International Workshop on,
pages 21-27. IEEE, 2013.

Abdel Salam Sayyad, Joseph Ingram, Tim Menzies, and Hany Ammar. Scalable
product line configuration: A straw to break the camel’s back. In Automated
Software Engineering (ASE), 2013 IEEE/ACM 28th International Conference on,
pages 4656-474. IEEE, 2013.

Abdel Salam Sayyad, Tim Menzies, and Hany Ammar. On the value of user
preferences in search-based software engineering: a case study in software product
lines. In 35th International Conference on Software Engineering (ICSE 2013),
pages 492-501, 2013.

Abdel Salam Sayyad, Tim Menzies, and Hany Ammar. On the value of user
preferences in search-based software engineering: a case study in software product
lines. In Software engineering (ICSE), 2013 35th international conference on,
pages 492-501. IEEE, 2013.



Bibliography 344

236

[237]

238

239

[240]

[241]

[242]

[243]

[244]

[245]

P-Y Schobbens, Patrick Heymans, and J-C Trigaux. Feature diagrams: A survey
and a formal semantics. In 1/th IEEE International Requirements Engineering

Conference (RE 2006), pages 139-148. IEEE, 2006.

Roberto Sebastiani, Paolo Giorgini, and John Mylopoulos. Simple and minimum-
cost satisfiability for goal models. In International Conference on Advanced Infor-

mation Systems Engineering, pages 20-35. Springer, 2004.

Norbert Siegmund, Marko Rosenmuller, Martin Kuhlemann, Christian Kastner,
Sven Apel, and Gunter Saake. Spl conqueror: Toward optimization of non-
functional properties in software product lines. Software Quality Journal, 20(3-4):

487-517, 2012.

Christopher L Simons, Ian C Parmee, and Rhys Gwynllyw. Interactive, evolution-
ary search in upstream object-oriented class design. Software Engineering, IEEE

Transactions on, 36(6):798-816, 2010.

David B Skalak. Prototype and feature selection by sampling and random mutation
hill climbing algorithms. In Proceedings of the eleventh international conference

on machine learning, pages 293-301, 1994.
Eric P Smith. Uncertainty analysis. Encyclopedia of environmetrics, 2002.

Tan Sommerville and Gerald Kotonya. Requirements engineering: processes and

techniques. John Wiley & Sons, Inc., 1998.

K Srinivas, MP Gupta, et al. Software requirements selection using quantum-
inspired elitist multi-objective evolutionary algorithm. In Advances in Engineering,
Science and Management (ICAESM), 2012 International Conference on, pages
782-787. IEEE, 2012.

Salvatore J Stolfo, Wenke Lee, Philip K Chan, Wei Fan, and Eleazar Eskin. Data
mining-based intrusion detectors: an overview of the columbia ids project. ACM

SIGMOD Record, 30(4):5-14, 2001.

Felix Streichert, Holger Ulmer, et al. Javaeva: a java based framework for evolu-

tionary algorithms. 2005.



Bibliography 345

[246]

[247]

[248]

[249]

250]

[251]

[252]

253

[254]

[255]

Alistair G Sutcliffe and Neil AM Maiden. Bridging the requirements gap: policies,
goals and domains. In Software Specification and Design, 1993., Proceedings of
the Seventh International Workshop on, pages 52-55. IEEE, 1993.

SysML. SysML Specification. http://www.omgsysml.org, 2008. [Online; accessed
28-October-2016].

Shan Tang, Xin Peng, Yijun Yu, and Wenyun Zhao. Goal-directed modeling of self-
adaptive software architecture. In Enterprise, Business-Process and Information

Systems Modeling, pages 313-325. Springer, 2009.

Maurice H ter Beek, Alessandro Fantechi, Stefania Gnesi, and Franco Mazzanti.
A collection of models of a bike-sharing case study. Technical report, Technical
Report TR-QC-07-2014, QUANTICOL (May 2014), http://milner. inf. ed. ac.
uk/wiki/files/yOR2Q6q/TRQCO072014pdf. html, 2014.

Maurice H Ter Beek, Alessandro Fantechi, and Stefania Gnesi. Applying the
product lines paradigm to the quantitative analysis of collective adaptive systems.
In Proceedings of the 19th International Conference on Software Product Line,

pages 321-326. ACM, 2015.

Stephen W Thomas, Hadi Hemmati, Ahmed E Hassan, and Dorothea Blostein.
Static test case prioritization using topic models. Empirical Software Engineering,

19(1):182-212, 2014.

Boris A Trakhtenbrot. A survey of russian approaches to perebor (brute-force

searches) algorithms. Annals of the History of Computing, 6(4):384-400, 1984.

Pablo Trinidad, David Benavides, Antonio Ruiz-Cortés, Sergio Segura, and Al-
berto Jimenez. Fama framework. In Software Product Line Conference, 2008.

SPLC’08. 12th International, pages 359-359. IEEE, 2008.

UML. UML Specification. http://www.uml.org, 2008. [Online; accessed 28-
October-2016].

Marjan van den Akker, Sjaak Brinkkemper, Guido Diepen, and Johan Versendaal.
Software product release planning through optimization and what-if analysis. In-

formation and Software Technology, 50(1):101-111, 2008.


http://www.omgsysml.org
http://www.uml.org

Bibliography 346

256

257]

[258]

[259]

260

[261]

[262]

263]

[264]

265]

[266]

A van Lamsweerde and E Letier. Handling obstacles in goal-oriented software

engineering. IEEE Transactions on Software Engineering, 26(10), 2000.

Axel Van Lamsweerde. Divergent views in goal-driven requirements engineering.
In Joint Proceedings of the Sigsoft96 Workshops—Specifications96, ACM. Citeseer,
1996.

Axel Van Lamsweerde. Requirements engineering in the year 00: a research per-
spective. In Proceedings of the 22nd international conference on Software engi-

neering, pages 5—19. ACM, 2000.

Axel Van Lamsweerde. Goal-oriented requirements engineering: A guided tour.
In Requirements Engineering, 2001. Proceedings. Fifth IEEE International Sym-
posium on, pages 249-262. IEEE, 2001.

Axel Van Lamsweerde. Goal-oriented requirements engineering: A guided tour.
In Requirements Engineering, 2001. Proceedings. Fifth IEEE International Sym-
posium on, pages 249-262. IEEE, 2001.

Axel Van Lamsweerde. From system goals to software architecture. In Formal

Methods for Software Architectures, pages 25—43. Springer, 2003.

Axel Van Lamsweerde. Elaborating security requirements by construction of in-
tentional anti-models. In Proceedings of the 26th International Conference on

Software Engineering, pages 148-157. IEEE Computer Society, 2004.

Axel van Lamsweerde. Goal-oriented requirements enginering: a roundtrip from
research to practice [enginering read engineering]. In Requirements Engineering

Conference, 2004. Proceedings. 12th IEEE International, pages 4-7. IEEE, 2004.

Axel van Lamsweerde. Requirements Engineering: From System Goals to UML

Models to Software Specifications. Wiley, 2009.

Axel van Lamsweerde. Reasoning about alternative requirements options. In Con-

ceptual Modeling: Foundations and Applications, pages 380-397. Springer, 2009.

Axel Van Lamsweerde and Emmanuel Letier. From object orientation to goal
orientation: A paradigm shift for requirements engineering. In Radical Innovations

of Software and Systems Engineering in the Future, pages 325-340. Springer, 2004.



Bibliography 347

267]

268]

[269]

[270]

[271]

[272]

273]

[274]

[275]

[276]

277]

Varsha Veerappa. Clustering methods for requirements selection and optimisation.

PhD thesis, UCL (University College London), 2013.

Junli Wang and Yubing Hou. Optimal web service selection based on multi-
objective genetic algorithm. In Computational Intelligence and Design, 2008.

ISCID’08. International Symposium on, volume 1, pages 553-556. IEEE, 2008.

Shuai Wang, Shaukat Ali, Tao Yue, Yan Li, and Marius Liaaen. A practical guide
to select quality indicators for assessing pareto-based search algorithms in search-
based software engineering. In Software Engineering (ICSE), 2016 IEEE/ACM
38th International Conference on, pages 631-642. IEEE, 2016.

Bo Wei, Zhi Jin, Didar Zowghi, and Bin Yin. Implementation decision making for
internetware driven by quality requirements. Science China Information Sciences,

57(7):1-19, 2014.

Jules White, Brian Doughtery, and Douglas C Schmidt. Filtered cartesian flatten-
ing: An approximation technique for optimally selecting features while adhering

to resource constraints. In SPLC (2), pages 209-216, 2008.

Jules White, Brian Dougherty, and Douglas C Schmidt. Selecting highly optimal
architectural feature sets with filtered cartesian flattening. Journal of Systems and

Software, 82(8):1268-1284, 2009.

Karl Wiegers. More about software requirements: thorny issues and practical ad-

vice. Microsoft Press, 2005.

Robert L. Winkler. An introduction to Bayesian inference and decision / Robert

L. Winkler. Holt, Rinehart and Winston New York, 1972.

Robert L Winkler. An introduction to Bayesian inference and decision (2nd Edi-

tion). Probabilistic Publishing, 2003.

Eric Yu. Modelling strategic relationships for process reengineering. Social Mod-

eling for Requirements Engineering, 11:2011, 2011.

Eric Yu and Lin Liu. Modelling trust for system design using the i* strategic

actors framework. In Trust in Cyber-societies, pages 175-194. Springer, 2001.



Bibliography 348

278

279]

[280]

[281]

[282]

[283]

[284]

[285]

[286]

[287]

Eric SK Yu. Towards modelling and reasoning support for early-phase require-
ments engineering. In Requirements Engineering, 1997., Proceedings of the Third

IEEFE International Symposium on, pages 226-235. IEEE, 1997.

Lin Liu Eric Yu. From requirements to architectural design—using goals and scenar-
ios. In First International Workshop From Software Requirements to Architectures-

STRAW, volume 1, page 22, 2001.

Yijun Yu, Haruhiko Kaiya, Nobukazu Yoshioka, Zhenjiang Hu, Hironori
Washizaki, Yingfei Xiong, and Amin Hosseinian-Far. Goal modelling for secu-
rity problem matching and pattern enforcement. International Journal of Secure

Software Engineering (IJSSE), 8(3):42-57, 2017.

Yuanyuan Zhang. Multi-Objective Search-based Requirements Selection and Opti-
misation. PhD thesis, University of London, 2010.

Yuanyuan Zhang and Mark Harman. Search based optimization of requirements
interaction management. In Search Based Software Engineering (SSBSE), 2010
Second International Symposium on, pages 47-56. IEEE, 2010.

Yuanyuan Zhang, Mark Harman, and S Afshin Mansouri. The multi-objective
next release problem. In Proceedings of the 9th annual conference on Genetic and

evolutionary computation, pages 1129-1137. ACM, 2007.

Yuanyuan Zhang, Enrique Alba, Juan J Durillo, Sigrid Eldh, and Mark Harman.
Today/future importance analysis. In Proceedings of the 12th annual conference

on Genetic and evolutionary computation, pages 1357-1364. ACM, 2010.

Yuanyuan Zhang, Mark Harman, and Soo Ling Lim. Empirical evaluation of
search based requirements interaction management. Information and Software

Technology, 55(1):126-152, 2013.

Liu Zhuang, Guo HeQing, Li Dong, Han Tao, and Zhang Juan Juan. Solving multi-
objective and fuzzy multi-attributive integrated technique for qos-aware web ser-
vice selection. In Wireless Communications, Networking and Mobile Computing,

2007. WiCom 2007. International Conference on, pages 735-739. IEEE, 2007.

Eckart Zitzler. Evolutionary algorithms for multiobjective optimization: Methods

and applications, volume 63. Citeseer, 1999.



Bibliography 349

[288] Eckart Zitzler and Simon Kiinzli. Indicator-based selection in multiobjective
search. In Parallel Problem Solving from Nature-PPSN VIII, pages 832-842.
Springer, 2004.

[289] Eckart Zitzler, Marco Laumanns, Lothar Thiele, Eckart Zitzler, Eckart Zitzler,
Lothar Thiele, and Lothar Thiele. Spea2: Improving the strength pareto evolu-
tionary algorithm, 2001.

[290] Eckart Zitzler, Lothar Thiele, Marco Laumanns, Carlos M Fonseca, and Vi-
viane Grunert Da Fonseca. Performance assessment of multiobjective optimizers:

an analysis and review. Fvolutionary Computation, IEEE Transactions on, 7(2):

117-132, 2003.



	Declaration of Authorship
	Abstract
	Impact Statement
	Acknowledgements
	Publications
	List of Figures
	List of Tables
	1 Introduction
	1.1 Requirements Engineering and Software Architecture
	1.1.1 Requirements Engineering
	1.1.2 Software Architecture

	1.2 Requirements Engineering and Software Architecture Decisions
	1.3 State of the Art
	1.4 Thesis Objectives and Contributions
	1.5 Scope and Assumptions
	1.6 Research Methodology
	1.7 Thesis Outline

	2 Background and State of the Art
	2.1 Multi-Objective Optimisation
	2.2 Goal-Oriented Requirement Engineering
	2.2.1 Goals
	2.2.2 Goal Refinement
	2.2.3 Goal-Oriented Requirement Engineering Approaches
	2.2.3.1 NFR Framework
	2.2.3.2 i* Framework
	2.2.3.3 TROPOS Framework
	2.2.3.4 URN/GRL Framework
	2.2.3.5 GBRAM Framework
	2.2.3.6 KAOS Framework

	2.2.4 Quantitative Goal Oriented Requirements Engineering

	2.3 Software Release Planning Decisions
	2.3.1 Cost-Value Approach
	2.3.2 Next Release Problem Model
	2.3.2.1 Single Objective Optimisation Approach to NRP
	2.3.2.2 Multi Objective Optimisation Approach to NRP
	2.3.2.3 Uncertainty Handling in NRP

	2.3.3 Incremental Funding Method

	2.4 Software Architecture Decisions
	2.4.1 Architecture Trade-off Analysis Method— ATAM
	2.4.2 Cost Benefit Analysis Method— CBAM
	2.4.3 GuideArch
	2.4.4 PRISM/Evochecker
	2.4.5 SysML
	2.4.6 ACOL
	2.4.7 POISED
	2.4.8 Multi-Objective Decision Analyser— MODA
	2.4.9 Other Search-Based Architecture Decision Methods

	2.5 Product Configuration Decisions in Software Product Line Engineering
	2.6 Summary

	3 RADAR: A Guided Tour
	3.1 Introduction
	3.2 Running Example
	3.3 Making Decisions with RADAR
	3.4 Developing Decision Models
	3.4.1 Example 1: Software Architecture Refactoring
	3.4.2 Example 2: Design of a Bike Sharing System

	3.5 Visualising AND/OR Refinements and Decision Dependencies
	3.6 Analysing Decision Models

	4 The RADAR Modelling Language
	4.1 The Modelling Language
	4.1.1 Objective Definition
	4.1.2 Variable Definition
	4.1.3 Constraint Definition

	4.2 AND/OR Refinement Graph
	4.3 The Design Space
	4.4 The Decision Graph

	5 RADAR Decision Analysis
	5.1 Optimisation Analysis
	5.1.1 Generating Design Space
	5.1.2 Simulating A Design
	5.1.3 Shortlisting Pareto Optimal Solution using Exhaustive Search
	5.1.4 Shortlisting Pareto Optimal Solution using Evolutionary Algorithms

	5.2 Information Value Analysis

	6 The RADAR Tool
	6.1 Running RADAR
	6.2 RADAR Tool Design
	6.2.1 RADAR System Architecture
	6.2.2 Implementation Details
	6.2.3 Language Grammar
	6.2.4 Semantic Model
	6.2.4.1 Decision
	6.2.4.2 QualityVariable
	6.2.4.3 Objective
	6.2.4.4 Constraint



	7 Evaluating RADAR's Applicablity and Usefulness
	7.1 Research Questions
	7.2 Experiments
	7.2.1 Plastic Card Fraud Detection System
	7.2.1.1 Problem Statement
	7.2.1.2 RADAR Model
	7.2.1.3 Analysis Results
	7.2.1.4 Comparison To Previous Analysis Approaches

	7.2.2 Emergency Response System
	7.2.2.1 Problem Statement
	7.2.2.2 RADAR Model
	7.2.2.3 Analysis Results
	7.2.2.4 Comparison To Previous Analysis Approaches

	7.2.3 Building Security Policy Decision System
	7.2.3.1 Problem Statement
	7.2.3.2 RADAR Model
	7.2.3.3 Analysis Results
	7.2.3.4 Comparison To Previous Analysis Approaches

	7.2.4 Multi-Objective Next Release Problem
	7.2.4.1 Problem Statement
	7.2.4.2 RADAR Model
	7.2.4.3  Analysis Result
	7.2.4.4 Comparison To Previous Analysis Approaches

	7.2.5 Public Bike Sharing System
	7.2.5.1 Problem Statement
	7.2.5.2 RADAR Model
	7.2.5.3 Analysis Results
	7.2.5.4 Comparison To Previous Analysis Approaches


	7.3 Conclusions From Our Experiments
	7.3.1 Applicability
	7.3.2 Usefulness
	7.3.3 Threats To Validity
	7.3.3.1 The model validity threats
	7.3.3.2 The cost of modelling threats


	7.4 Summary

	8 RADAR Performance Evaluation
	8.1 Research Questions
	8.2 RADAR Models Analysed 
	8.2.1 Real Models
	8.2.2 Synthetic Models

	8.3 Experimental Methodology
	8.4 Experimental Settings
	8.5 Results and Analysis
	8.5.1 Scalability of RADAR Exhaustive Strategy
	8.5.2 Performance Analysis of RADAR Search-Based Approaches

	8.6 Threats to Validity
	8.6.1 Internal validity threats
	8.6.2 External validity threat

	8.7 Summary

	9 Conclusion and Future Work
	9.1 Future Work
	9.1.1 Language and Analysis Extensions
	9.1.2 Iterative Decision Analysis Approach using Information Value Analysis
	9.1.3 Runtime Adaptation of Executing System
	9.1.4 Handing Other Forms of Uncertainty
	9.1.5 Automated Model Validation and Calibration
	9.1.6 Tool Evaluation in Organisation Context


	A Modelling and Analysing The London Ambulance System 
	B Modelling and Analysing the NASA ECS Satellite Processing System 
	C Modelling and Analysing Feature Selection of Drupal (PHP Framework)
	D Modelling and Analysing An E-Commerce System 
	E Modelling and Analysing Configuration Decisions in AWS
	F Modelling and Analysing Feature Selection in Berkeley Relational Database System
	G Modelling and Analysing the Requirements Selection of Microsoft Word Processor 
	Bibliography

