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Abstract

Early requirements engineering and software architectural decisions are critical to the

success of software development projects. However, such decisions are confronted with

complexities resulting from uncertainty about the possible impacts of decision choices

on objectives; conflicting stakeholder objectives; and a huge space of alternative designs.

Quantitative decision modelling is a promising approach to tackling the increasing com-

plexity of requirements and architectural decisions. It allows one to use quantitative

techniques, such as stochastic simulation and multi-objective optimisation, to model

and analyse the impact of alternative decisions on stakeholders’ objectives. Existing re-

quirements and architecture methods that use quantitative decision models are limited

by the difficulty of elaborating quantitative decision models and/or lack of integrated

tool support for automated decision analysis under uncertainty.

This thesis addresses these problems by presenting a novel modelling language and au-

tomated decision analysis technique, implemented in a tool called radar, intended to

facilitate requirements and architecture decisions under uncertainty. radar’s modelling

language has relations to quantitative AND/OR goal models used in requirements engi-

neering and feature models used in software product lines. The language enables mod-

elling requirements and architectural decision problems characterised by (i) single option

selection similar to mutually exclusive option selection (XOR-nodes) of feature diagrams;

(ii) multiple options selection similar to non-mutually exclusive options selections (OR-

nodes) of feature diagrams; and (iii) constraints dependency relationships, e.g., excludes,

requires and coupling, between options of decisions. radar’s analysis technique uses

multi-objective simulation optimisation technique in evaluating and shortlisting alter-

natives that produces the best trade-off between stakeholders’ objectives. Additionally,

the analysis technique employs information value analysis to estimate the financial value

of reducing uncertainty before making a decision.

We evaluate radar’s applicability, usefulness and scalability on a set of real-world sys-

tems from different application domains and characterised by design space size between

6 and 250. Our evaluation results show that radar’s modelling language and analysis

technique is applicable on a range of real-world requirements and architecture decision

problems, and that in few seconds, radar can analyse decision problems characterised

by large design space using highly performant optimisation method through the use of

evolutionary search-based optimisation algorithms.



Impact Statement

Designing software systems involves deciding what software functions should be pro-

vided, what levels of quality requirements (e.g., performance, security and availability)

should be met, what software architecture to use in satisfying these functional and

quality requirements, what components and connectors to use and what deployment

strategies to use. Making the right decisions is critical to satisfy stakeholders’ goals and

ensuring successful development and evolution of software systems. Such decisions, how-

ever, are complicated by conflicting stakeholders’ objectives and significant uncertainty.

This thesis presents the Requirements and Architecture Decision AnalyseR (radar)

–a lightweight yet expressive modelling language and automated decision analysis open

source tool. radar is intended to assist requirements engineers and software architects

in making informed and confident software requirements and architecture decisions under

uncertainty. Using radar also benefits the end-users (customers) of the software system

as the system-to-be will be performant, reliable, secure, delivered on time and ultimately

satisfy their needs.

radar can be used as a stand-alone tool by requirements engineers and software ar-

chitects. The tool can be deployed as an add-on to existing goal-oriented modelling

frameworks, such as KAOS/Objectiver. radar can also be used as a plug-in to existing

software release planning tools, such as EVOLVE, to help elaborate domain-specific re-

lease planning decision models and analyse uncertainty in the decision models. Finally,

radar can be used to improve other software engineering decisions under uncertainty;

this includes decisions about test case selection and prioritisation under uncertainty and

product (set of software features) configuration decisions in Software Product Line Engi-

neering in the presence of conflicting stakeholder goals (e.g. maximising business values

and minimising costs) and uncertainty.

Preliminary work have been done to propagate the benefit of using radar to sup-

port requirements and architecture decisions under uncertainty. In this regard, parts of

radar’s implementation and its evaluation on five real-world systems (e.g., fraud detec-

tion system, security policy system, emergency response system) have been presented

in two prestigious software engineering venues (ICSE’17 and ASE’17). In the nearest

future, we intend to apply radar on a real-world case study and evaluate the benefit

and effort required to use the radar decision analysis tool in an organisation. We also

intend to investigate and implement techniques for validating and calibrating radar

models against run time data of a system. To achieve these future goals, we may have

to collaborate with other researchers and industry professionals in the field of software

engineering, and in particular requirements engineering and software architecture.
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Chapter 1

Introduction

Requirements Engineering and Software Architecture are key software development ac-

tivities that play significant roles in building and evolving software intensive systems.

While requirements engineering aims at identifying and documenting the problems to

be solved, software architecture defines the solution(s) to these problems. Making the

right requirements and architecture decisions is critical to the success of any software

project [264], but such decisions are confronted with significant uncertainty. The thesis

presents a novel modelling language and analysis tool to support such decisions under

uncertainty.

1.1 Requirements Engineering and Software Architecture

1.1.1 Requirements Engineering

Requirements engineering is a fundamental phase in any software development project.

It addresses a wide range of problems from project initiation, design and evolution of

software systems [264]. Requirements are statements that describe what a proposed sys-

tem must do, and conditions in which the system must operate. In general, requirements

are representations of the decisions concerning the behaviour of a software system [28],

and they can be classified as either functional or non-functional [180]. Functional re-

quirements describe the intended functions the system is to perform i.e. how the system

responds to certain inputs. Non-functional requirements (NFR) [104], also known as soft

1
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goals [180, 242] or quality requirements [140], are constraints on the functions provided

by the system. Such constraints could be on the system’s performance, availability,

security, scalability and reliability etc.

Requirements engineering involves identifying and extracting the purpose of a proposed

system; system stakeholders and their needs; conditions in which the system must op-

erate; the interaction between the system and its environment; and documenting these

information in a specification that can be used for future analysis, modelling and design

[189].

Requirements engineering involves a series of activities that clarify the software system

goals, deal with conflicts, uncertainty and risks in requirements [264]. These activities

form the basis and prerequisite for a successful delivery of a software project [264], and

are mostly iterative and performed in parallel [129]. These activities generally include:

requirements elicitation [12], requirements modelling and analysis [11], requirements

specification [260], validation & verification and requirements management.

1.1.2 Software Architecture

Software architecture has gained recognition as a key aspect of software engineering.

This is due to the increasing complexity and the need for reliable software systems [29].

The architecture of a software intensive system represents the first design artefact, and

it is mainly developed at the early stages of a software development process. Devoting

substantial effort in designing and documenting the architecture of software systems not

only helps to ease the attainment of certain functional requirements, quality require-

ments (e.g. security, availability, performance etc.) and organisation‘s business goals

[86], but also provides a software developer with control of how to evolve and maintain

the system [146].

The software architecture of a system is the set of significant decisions that describe the

structure(s) of a system in terms of the software elements (e.g. modules, object-oriented

classes or packages, database stored procedures, services, data files); the externally vis-

ible properties of those elements in terms of quality attributes; the relationships among

the elements; and the architectural styles that guide the system structure(s), deployment

and evolution [214]. In this definition, the system’s structure can be viewed as static
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and dynamic: the static structure defines the elements and their arrangement whereas

the dynamic structure shows how the system responds to external or internal events at

run time.

In general, software systems possess an architecture, whether implicitly or explicitly

designed [86]. A good software architecture is one that reduces risk and is flexible to

handle changes in requirements, hardware and software technology. Deciding an opti-

mal software architecture is an iterative process and involves some activities that guide

the derivation of a software architecture from the functional and non-functional re-

quirements. These activities can be categorised into three phases [86]: the first phase is

domain understanding of the problem a proposed system intends to solve, and the stake-

holder objectives in order to elicit the requirements that are architecturally significant.

The second phase involves evaluating alternative software architectures to determine the

extent at which it solves the stakeholders’ goals. The last phase involves deciding the

optimal architectural solution(s) that fulfils the stakeholders’ goals. These activities end

when decision-makers are confident that the selected candidate solution can solve the

problem to an acceptable level, otherwise, the requirements are re-analysed and other

alternative solutions are considered.

1.2 Requirements Engineering and Software Architecture

Decisions

Requirements engineering decisions involve deciding what software functions should be

provided and what levels of quality requirements the system should deliver at run time

[42]. In goal-oriented requirements engineering, requirements decisions involves deciding

among alternative system designs; making decisions about alternative ways to resolve

conflicts and decisions about assigning responsibilities to humans, software or hardware

systems [264]. Software architecture decisions involves deciding the structure(s) of a

software system; what software and hardware components and connectors to use; and

the deployment strategies [214].

Requirements and architecture decisions often have critical impacts on the software

development costs, duration, and the system’s ability to satisfy stakeholders’ goals and

deliver business value [214, 264]. Such decisions are complicated by large number of
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possible alternatives; multiple conflicting stakeholders’ objectives; and high levels of

uncertainty which may include: uncertainty about the impact of the dynamic nature

of the organisation or system run time environment; uncertainty about the accurate

project estimations; uncertainty about the availability of human and technical resources;

uncertainty about the presence of obstacles that may hinder the achievement of goals;

and uncertainty about the possible impacts of decision choices on the stakeholders’

objectives [166].

In engineering, uncertainty is commonly defined as the lack of complete knowledge about

some entity, such as an unknown quantity, a future event, or even a past event about

which we are unsure [87]. There is more than one possible value for the quantity or more

than one possible outcome for the event, and the ”true” value or outcome is uncertain.

Uncertainty can be measured by assigning probabilities to the different possible values

and outcomes.

In this thesis, we will be concerned with analysing the software architects’ uncertainty

about the impacts of design decisions on stakeholders’ objectives. We will not address

other design-time uncertainties such as the software architects’ uncertainty about having

identified all relevant stakeholders’ objectives and having identified a suitable set of

design alternatives.

We will also not address run-time uncertainties dealing with uncertain information that

software systems have about their environment, design goals, and assumptions [231].

Research on adaptive systems aims to manage such run-time uncertainty and have pro-

posed various classification of run-time uncertainty and their sources [172, 200, 207].

In contrast, in this thesis, we are dealing with design-time uncertainty due to incom-

plete knowledge about the impacts of design decisions on goals. In the final chapter, we

will revisit how the design-time techniques presented in the thesis might be adapted to

support run-time decisions in self-adaptive systems.

Motivating example. Suppose an architect wants to improve the efficiency of a bank’s

plastic card financial fraud detection system (shown in Fig. 1.1) so that the system

minimises financial loss due to undetected frauds; minimises the cost of investigating

frauds; and minimises cardholders’ inconvenience due to false alerts that result in their



Chapter 1. Introduction 5

cards being blocked unnecessarily. In this situation, the architect is faced with design

decisions such as [42]:

• the processing type that can be continuous or batch; continuous processing analyses

transactions individually as they arrive, whereas batch processing performs an

overnight analysis of the transactions that occurred during the day.

• the fraud detection method which can be a two-class supervised classification

method in which a classifier is trained from samples of past fraudulent and non-

fraudulent transactions, or a non-statistical rule-based method that flags transac-

tions matching configurations known to be high risk.

• if the classifier fraud detection method is chosen, the alert threshold defines some

threshold above which the classifier should flag a transaction as suspect. A low

alert threshold means more alerts will be generated and thus a higher ratio of false

alerts.

• the blocking policy that can include blocking an account as soon as the fraud

detection method flags a transaction as suspected fraud, or only blocking the

account after human investigators (e.g., bank staff) have confirmed the suspected

fraud.

These decisions impact the number of fraud alerts generated and the speed at which

compromised accounts are blocked, which ultimately affects how much effort the bank

needs to devote to investigate alerts manually and how much money it loses to fraud.

Therefore, the optimisation of plastic card fraud detection systems typically includes

two conflicting objectives [115]: minimising financial loss, and minimising manual inves-

tigation costs. Deciding what combination of processing type, fraud detection method

and blocking policy to use is not trivial. The decisions are complicated by uncertainty

about domain quantities, such as the ratio of compromised accounts, and the uncertainty

about the impact of decisions on future financial loss and investigation costs.

Relying on intuitions alone to make such critical and complex decisions is not ideal.

Intuitive decisions, even by experts, are subject to many cognitive biases and errors [141],

which may lead to sub-optimal solutions. Some of these biases have been shown to

happen in software engineering contexts [26].
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Figure 1.1: The plastic card fraud detection system: detects when plastic card ac-
counts may have been compromised by fraudsters who are using the account to steal
funds [115]. The system generates fraud alerts when authorised card transactions are
suspected to be fraudulent. The bank staff investigates fraud alerts and blocks the card

if it is confirmed that such transactions are not performed by the cardholder.

In this thesis, we aim to support requirements engineers and software architects in

making this kind of decisions. The thesis introduces a decision support tool that enables

modelling and analysing such requirements and architecture decisions under uncertainty.

1.3 State of the Art

The scientific literature has a large body of research works devoted to assist decision-

makers in modelling and analysing requirements engineering and software architecture

decision problems. Typical problems studied in the literature include: decisions about

which set of software requirements (features) to implement in the next release of a prod-

uct [30]; selection and evaluation of software architectures that meet certain functional

and non-functional requirements; the selection of software and hardware components,

their replication, the mapping of software components to available hardware nodes, and

the overall system topology.

Many requirements and architectural decision support approaches exist to aid decision-

makers in selecting decision choices that produce the best trade-off between conflicting

objectives. These approaches can be grouped into three categories [41]:
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1) Qualitative decision models such as the NFR framework [180] introduced to model,

analyse, refine and expose the impact of alternatives on non-functional requirements

[180]; the i∗ [277] framework which adapts the NFR to model and reason about soft-

ware systems and the organisational environments where they are used [276]; and the

GRL framework that combines i∗ and NFR frameworks to model goals, non-functional

requirements, alternatives and decision rationale. These approaches are used to model,

reason and analyse the impact of decisions on stakeholders’ goals. However, they only

provide information about how the decisions positively or negatively impact stakehold-

ers’ goals. They provide no quantitative information about the impact of alternatives

on goals.

2) Generic quantitative decision models such as the CBAM (Cost-Benefit Analysis

Method) [149] –an economic modelling approach to support software architecture de-

cision making in a multi-stakeholder context; the EVOLVE evolutionary and iterative

release planning method to optimally allocate requirements incrementally to software

releases subject to resource and budget constraints [216]; and other search based soft-

ware engineering methods [201]. These approaches employ pre-established model equa-

tions (e.g. typically weighted sums) to specify “cost” and “value” scores to alternative

solutions. The cost and value scores in these methods usually represent abstract (non-

observable) quantities rather than financial metrics expressed in monetary units (e.g. in

Dollars or Euros). While the generic decision objectives and models ease the applicabil-

ity of these methods, they may not express the actual stakeholders’ goals and may not

correctly predict the impacts of alternatives on these goals.

3) Problem-specific quantitative decision models such as the quantitative extensions to

NFR/i* [3, 199], KAOS [126, 165] and the Bayesian decision analysis approach in soft-

ware engineering [166]. These approaches are more accurate in modelling, reasoning and

analysing domain-specific decision problems. However, they require higher modelling ef-

fort and generally have limited automated tool support for decision analysis. Using

these approaches involves manual encoding of decision models in widely used statistical

programming languages, such as R and MATLAB. This results in modellers spending

time on implementation details rather than concentrating on the conceptual decision

problem.
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To mitigate the limitations of existing approaches, this thesis aims to introduce a quan-

titative approach that supports the elaboration and analysis of domain-specific require-

ments engineering and software architecture decision problems under uncertainty.

1.4 Thesis Objectives and Contributions

The objective of this thesis is to develop a new modelling language and automated deci-

sion analysis technique for requirements engineering and software architectural decisions.

The result is a tool called radar —Requirements and Architecture Decision AnalyseR.

radar’s modelling language is a simplified form of quantitative goal models designed

to be similar to simple equations that software architects use for back-of-the-envelope

calculations (i.e. rough, imprecise calculations) [214]. radar, however, provides sophis-

ticated analysis that cannot be performed through back-of-the-envelope calculations:

it allows analysing uncertainty through Monte-Carlo simulations, shortlisting Pareto-

optimal solutions through multi-objective optimisation, and computing expected value

of information that can be used to decide whether to seek more information or perform

a more detailed analysis before making a decision [166].

The proposed modelling language and automated decision analysis tool provide decision-

makers with useful information about: which decisions are better than others in the

decision model of a particular software intensive system; what objective values can be

attained with different designs; what trade-off can be made between shortlisted designs

(solutions); what parameter uncertainty may deserve additional data collection and

analysis before making their decision; and what parameter uncertainty does not matter

to their decision.

In this thesis, we define a novel modelling language and automated decision analysis

tool that facilitates the application of the earlier MODA requirements and architec-

ture decision method [166]. The thesis contribution with respect to MODA and other

requirements and architecture decision methods are:

1. A novel modelling language that facilitates the elaboration of domain-

specific requirements and architecture decisions under uncertainty. The

modelling language has relation to AND/OR quantitative goal models used in
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requirements engineering [126, 165] and similar to feature models used software

product lines [236]. The language enables decision-makers model problem-specific

decision problems at different level of complexities:

(a) Decisions characterised by single option selection similar to mutually exclusive

option selection (XOR-nodes) of feature diagrams used in software product

lines.

(b) Decisions with multiple options selection similar to non-mutually exclusive

options selections (OR-nodes) of feature diagrams.

(c) Decisions characterised by constraints relationships between options of deci-

sions. The constraint relationship considered are excludes and requires con-

straints widely used in feature diagrams and the coupling constraints com-

monly studied in requirements selection and optimisation [216, 285].

2. An automated decision analysis approach for analysing domain-specific

requirements and architecture decision models under uncertainty.

The analysis technique generates AND/OR goal graphs and decision graphs from

the model’s equations; generates design space and infers decision dependencies

from model’s equations; analyses model uncertainty through Monte-Carlo simu-

lations, shortlists Pareto-optimal solutions through multi-objective optimisation,

and employs information value analysis technique to compute expected value of in-

formation that can be used to decide whether to seek more information or perform

a more detailed analysis before making a decision.

3. Implementation of the modelling language and automated decision anal-

ysis technique in a tool, called radar —Requirements and Architecture

Decision AnalyseR. The tool is open source with a GUI and command line ca-

pabilities to facilitate wider adoption in practice and can be used as an add-on to

existing goal-oriented modelling frameworks, such as KAOS/Objectiver [220].

4. An evaluation and validation of the applicability, usefulness, scalability

and performance of the modelling language and the automated deci-

sion analysis technique on a set of real world systems from different

application domains.

The thesis used the following real-world software systems for evaluation: Plastic

Card Fraud Detection System introduced earlier; Emergency Response System,
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NASA Satellite Processing System, Building Security Policy System, Public Bike

Sharing System; the London Ambulance System; Microsoft Word Processor; Com-

mercial Decision Support tool; Berkeley Relational Database Management System;

Amazon Web Service Elastic Computing Cloud System; Drupal PHP framework

for web content management; E-Commerce Web Portal.

Using these real world systems will help to evaluate the expressiveness and gen-

erality of radar’s modelling language and analysis techniques. We evaluate the

radar tool by answering the following research questions:

• RQ1 (Applicability): Is the radar tool applicable to real-world require-

ments and architectural decision problems (chapter 7.3.1)?

• RQ2 (Usefulness): Does radar’s decision analysis technique provide useful

improvements to real-world requirements and architecture decisions (chapter

7.3.2)?

• RQ3 (Scalability): What is the scalability of radar’s exhaustive simula-

tion and optimisation approach (chapter 8)?

• RQ4 (Performance Analysis): What is the performance of radar’s al-

ternative search-based evolutionary algorithms (chapter 8)?

1.5 Scope and Assumptions

The thesis focuses on developing a new modelling language expressive enough to model

real world requirements and architecture decisions; implementing the decision analysis

technique and evaluating the modelling language and analysis technique on real world

examples. However, the thesis did carry out any user study to evaluate the effort required

to develop a decision model and the benefit of our approach in industrial case studies.

As in most research works, we have made some assumptions as follows:

1. The thesis assumes modellers have some analytical skills and can identify design

decisions and elicit stakeholders’ objectives/goals.

2. The thesis assumes that the requirements specification about stakeholders’ and

system goals are not vague.
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3. We also assume modellers can use existing methods for systematic model elabora-

tion [162, 264] when developing decision models.

4. Finally, we assume the modelling language is applicable to a variety of applica-

tion domains. However, like many other requirements and architecture decision

methods, the thesis has not considered techniques for validating decision models

against run time data.

1.6 Research Methodology

The research presented in this thesis is both theoretical and empirical. At the early

phase, the first task was to identify the research problem and justify its significance to

requirements engineering and software architecture research community. I performed a

comprehensive literature review summarising the state-of-the-art approaches for mod-

elling and analysing requirements and architecture decision problems, their strength and

weaknesses are identified as presented in Chapter 2 of this thesis. The findings in this

phase serve as a basis for proposing a new modelling language and automated decision

analysis tool.

The next phase involves a number of research activities to design and implement the

proposed modelling language and automated decision analysis tool [155]:

• Identify the requirements of the new modelling language and automated decision

analysis tool as presented in Section 1.4.

• Identify and document the prototype tool’s components and their relationships

(see chapters 4, 5 and 6).

• Design the tool’s data structure; design the tool’s language and automated decision

analysis techniques and integrate the different components that make up the tool;

implement a GUI for the tool (see chapter 6).

The final phase involves the evaluation of the prototype tool against the formulated

research problem. We answer the research questions presented section 1.4 (see chapters

7 and 8).

0https://ucl-badass.github.io/radar/

https://ucl-badass.github.io/radar/
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1.7 Thesis Outline

In this chapter, we gave an overview of requirements engineering and software architec-

ture decisions; described state of the art requirements and architecture decision methods

and their limitations; described the thesis objectives and contributions; clarified the the-

sis scope and assumptions. The remaining parts of the thesis are as follows:

Chapter 2 presents a background and the state-of-the-art in requirements engineering

and software architecture in detail. Since many requirements and architecture decision

problems are multi-objective in nature, we first present an overview of multi-objective op-

timisation. Next, we summarise and review the state-of-the-art models and approaches

employed to tackle requirements and architecture decisions.

Chapter 3 presents a guided tour of the proposed Requirements and Architecture

Decision AnalyseR (radar) to give a high-level overview of the language capability and

to provide background on the decision analysis method used.

Chapter 4 formally describes the modelling language. We describe the language con-

struct for modelling decisions with single option selection; decisions with multiple options

selection; and decisions with constraints relationships between options of decisions.

Chapter 5 details the automated decision analysis technique. We describe the technique

for analysing model uncertainty using Monte-Carlo Simulation; shortlisting Pareto-

optimal solutions through exact and evolutionary algorithms; estimating expected value

of information to help in identifying parts of the decision model that need detailed

analysis or additional data collection before making a decision.

Chapter 6 describes the tool design and implementation.

Chapter 7 shows the modelling language and analysis technique in action by applying

the tool on a set of real world examples. Here, the focus on evaluating the applicability

and usefulness of radar. For each example real-world requirements and architecture

decision problem, we describe the problem statement of the decision problem, present the

decision model, presents the results of the model analysis, and where possible compare

the analysis results to previous analysis in the literature. We conclude this section with

conclusions from the experiment by discussing the applicability, usefulness and threats

to validity.
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Chapter 8 presents a critical evaluation of radar’s optimisation analysis technique.

The evaluation focuses on the tool’s performance in analysing real-world requirements

and architecture decision problems. We also discuss the threats to validity.

Chapter 9 presents the conclusion by summarising the thesis contributions and high-

lights potential future works.



Chapter 2

Background and State of the Art

As mentioned in Chapter 1, this thesis proposes a new modelling language and auto-

mated decision analysis techniques for requirements engineering and software architec-

ture decisions under uncertainty. In order to provide a good perspective and foundation

for the thesis, this chapter presents a background and state-of-the-art in software require-

ments and architecture decisions. Requirements and architecture decisions are generally

multi-objective optimisation problems. Thus, Section 2.1 provides an overview of multi-

objective optimisation problems and the algorithms commonly used to solve these prob-

lems. The thesis modelling language is a simplified version of quantitative AND/OR

goal models. To this end, we give a brief background on goal-oriented requirements

engineering in Section 2.2. Requirements prioritisation and release planning are a vital

activities in requirements engineering decisions, therefore we presents its overview in

Section 2.3. Software architecture decision methods for evaluating and selecting the op-

timal architecture of software systems are described in Section 2.4. Finally, Section 2.5

presents some works related to this thesis on product configuration decisions in Software

Product Lines.

2.1 Multi-Objective Optimisation

Optimisation is at the heart of software engineering; it entails making decisions aimed

at optimising software products and their development processes [28, 107, 205, 226].

Many requirements and architecture decision problems are characterised by multiple and

14
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usually conflicting objectives. For example, minimising cost, maximising stakeholders’

values and minimising project risks. Additionally, the large number of possible alterna-

tive decision choices makes it difficult to explore the design space manually. Decision

problems of this nature are known as multi-objective optimisation problems.

Multi-objective optimisation problems have been well studied in a field known as Search-

Based Software Engineering (SBSE) [121] — a term, coined by Harman and Jones [119],

that seeks to transform software engineering problem to a search based optimisation

problems, and then search through a search space of possible solutions guided by objec-

tive function to obtain optimal or near optimal solutions.

In the rest of this section, we present a formal definition of multi-objective optimisation

problems and Pareto optimality. Then, provide a brief description of the algorithms

used to solve multi-objective optimisation problems.

Definition 2.1. A multi-objective optimisation problem (MOOP) [59] is a set of objec-

tive functions {O1, ..., On}, to be either maximized or minimized, where each objective

function Oi : S → R assigns a real value to each solution s in the problem solution

space S. The solution s is also known as decision vector —a vector of decision vari-

ables {s1, s2, . . . , sn}, where s1, s2, . . . , sn could be Boolean variables commonly used in

encoding requirements selection problems in which a value of 1 (or 0) for s1 means a

requirements r1 is selected (or not selected).

Definition 2.2. A solution s dominates another solution s′ if (i) it is better than s′ in

at least one objective and (ii) not worse than s′ in all other objectives. Assuming all

objective functions have to be maximised, these conditions are formalised as (i) there

is an objective function Oi such that Oi(s) > Oi(s
′), and (ii) for all other objective

functions Oj with j 6= i, Oj(s) ≥ Oj(s
′).

Definition 2.3. A solution s ∈ S is Pareto-optimal if it is not dominated by any other

solution when all objectives are considered. The set of all Pareto-optimal solutions is

called the Pareto set. The Pareto front is the set of objective values allowed by the

Pareto set.

MOOPs can be solved through exact algorithms [72, 112, 139] that evaluate possible so-

lutions in the solution space and find exact optimal solutions. MOOP can also be solved
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through approximate algorithms or meta-heuristics techniques to search a problem so-

lution space guided by objective (fitness) function to obtain optimal or near optimal

solutions [119].

Exact algorithms guarantee finding optimal solutions, if they exist [112], but spend

longer time for large-scale problems. Exact algorithms, such as dynamic programming

[33, 53], branch and bound [154, 160, 183], explore the search space in a non-exhaustive

way, i.e. a huge size of the sub-space are dropped on the basis that the sub-space cannot

contain the optimal solutions [187]. Enumerative methods, such as exhaustive search

[187, 252] and Guided Improvement Algorithm (GIA) [139], however, scan all possible

alternative solutions in the search space. In general, when the size of the problem is very

large, exact algorithms scale poorly [79, 112, 139, 193]. Parallel exact approaches have

been developed to improve the scalability of exact algorithms. Examples of parallel exact

algorithms includes: Two Parallel Partitioning Method [161] and K-Parallel Partition

Method (K-PPM) [72] used for the job scheduling problem, Parallel Guided Improvement

Algorithm (ParGIA) [112] used for the feature selection in software product lines. While

these parallel algorithms have been attempted on relatively large problems, they still do

not scale for many real world problems with extremely large solution space [112]. There

has been considerable amount of efforts devoted to developing approximate algorithms

that scale well in tackling real world problems with extremely large solution space.

Approximate algorithms address the scalability limitations of exact algorithms, but they

do not guarantee finding exact optimal solutions and are sensitive to algorithmic pa-

rameter settings, which determine the accuracy of their search process. Approximate

algorithms can be classified into single point local-search methods and population based

methods [122]. In the case of the former, a single candidate solution is considered at

a time and improved by making alterations incrementally until an optimal solution is

found. The population based methods evolve and improve a set of solutions simulta-

neously by iteratively making changes to highly fit solutions in the population until a

pre-defined terminating criterion (e.g. number of iterations or fixed run-time) is at-

tained. Hill climbing [58, 240], simulated annealing [58, 78], tabu search [105, 106]

are single point local search, while evolutionary algorithms [287], such as NSGAII [69],

SPEAII [289] and IBEA [288], and evolutionary strategies [93, 245] are population based

methods. Among these approximate techniques, evolutionary algorithms are the most

widely used to solve multi-objective optimisation problems. They use the principles of
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natural selection and evolution to evolve a set of encoded solutions, called a population,

towards Pareto-optimality [287].

In summary, requirements engineering and software architecture decisions are generally

multi-objective optimisation problems. In this section, we have provided an overview of

multi-objective optimisation problems and the algorithms commonly used to solve these

problems.

2.2 Goal-Oriented Requirement Engineering

In this thesis, the proposed radar modelling language has relations to AND/OR quan-

titative goal models commonly used in Goal-oriented requirement engineering (GORE).

Therefore, this section provides a background on GORE; the common GORE framework-

s/approaches (e.g., NFR [180], i* [277], KAOS [264]); quantitative extensions to these

approaches and their limitations with respect to making requirements and architecture

decisions.

Goal-oriented requirement engineering (GORE) research emerged to address some of the

limitations of requirements engineering approaches [212, 219], which failed to capture a

proposed system’s motive and reason about the system and its operating environments

[159]. GORE have gained popularity over the past years as they have been widely

used to provide systematic support for eliciting, modelling and reasoning about the

proposed software system and its environment. Some research areas where GORE has

been successfully applied include: goal elicitation [20, 73, 74, 258, 263], goal refinement

and analysis [66, 66, 75, 103, 137, 163, 165, 180, 237, 248], obstacle analysis [19, 256, 266],

agent-oriented requirements engineering, handling conflicts [36, 132, 210, 256, 257] and

variability [137, 165, 211] in GORE, from requirements to architecture design [55, 108,

125, 261, 279] and analysing security requirements [24, 170, 262, 277, 280].

2.2.1 Goals

Goals are prescriptive statements of the objectives a proposed system should achieve

through the cooperation of agents that form the system and the environment [125, 260].

Goals can also be defined as statements of high-level objectives of the system, which
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provide information about the purpose of the system and the guidance on both strate-

gic and operational decisions during the different activities of the system development

process [22].

Goals have been classified based on different taxonomies in the literature [56, 259].

The first classification is functional and non-functional goals [259]. Functional goals,

also known as satisfaction or behavioural goals are declarative statements about the

services the proposed system is expected to achieve, while non-functional goals refer

to the constraints on the functions provided by the system. Such constraints could be

on the performance, availability, security, scalability and reliability etc. For example,

in the design of the plastic card fraud detection system introduced in Chapter 1.2, a

functional goal could be: “the system should send a fraud alert once a fraud is suspected

on a customer’s card” and a non-functional goal for this system might be that “the

system should generate such alerts within 8 hours”. Goals can also be classified as

either hard goals [65] or soft goals [180]. Hard goals can be satisfied in an unambiguous

manner, while soft goals are goals whose satisfaction cannot be established in a clear-cut

manner. Soft goals are related to the concept of goal satisficing [159]: they may never

be satisfied, which implies that a good enough solution is only needed to satisfice them

to an acceptable level. Soft goals are particularly used when comparing alternative goal

refinements to determine the one that produces the best contribution towards the overall

goal [259].

Goals have also been classified according to the temporal behaviour prescribed by a goal

[65, 259]. For example, an Achieve (or cease) goal can be used to describe some target

future state required by the system to satisfy (or deny). A maintain (or avoid) goal can

be used to restrict the behaviour of the system to constantly satisfy (or deny) all future

states of the system. Optimise goal can be used to compare alternative system designs,

and favours the alternatives that best meet some soft target property.

Another classification of goals proposed by Sutcliffe et al. [246] is based on the desired

states of the system (e.g. positive, negative, alternative, feedback, or exception-repair)

and desired goal level (i.e., policy level, functional level and domain level). These taxon-

omy of goal types have been used in formulating goals [21, 180, 211], defining heuristics

for acquiring goals, refining goals, deriving goals, and for checking semi-formal consis-

tency and completeness [21, 23, 56, 65, 246].
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In GORE, the system of interest and the environment where the system operates are

considered as a series of agents [159, 259]. An agent in this context refers to an active

component, such as human, hardware or software component that has some responsi-

bility towards satisfying a goal. A goal whose responsibility is assigned to a human

agent is regarded as a domain assumption, and when a responsibility of satisfying a goal

is assigned to a single software agent, it is termed a requirement. While requirements

can be enforced by the proposed system, domain assumptions rely on an organisation’s

policies and norms to be enforced.

2.2.2 Goal Refinement

Goal refinement (or decomposition) is another vital aspect of GORE. Goals can be

refined (or decomposed) and related into sub-goals using AND/OR refinement graphs

[259]. The AND/OR graphs capture alternative goal refinements [65, 182, 211], possible

goal conflicts [40, 65], and how the lower level goals contribute partially, positively or

negatively to higher level goals through the use of AND/OR contribution links [56, 180,

182]. The AND–refinement link implies the satisfaction of sub-goals ensures the parent

goal is satisfied. An OR–refinement link relates the parent goal to a set of alternative

AND–refinements, such that any one of the AND–refinements is sufficient to satisfy

the parent goal. The OR–refinements are commonly used to model alternative design

choices for satisfying a parent goal.

Goals are continuously refined into sub-goals until their sub-goals are assigned to system

agent(s). At this point, only the agent can restrict the goal’s behaviour to ensure their

satisfaction. OR–responsibility assignments are used to model alternative assignment of

goals to agents [126]. This corresponds to alternative design choices called options at

decision points, where a decision point could be OR refinement or an OR responsibility

assignment in the goal model.

To illustrate the concept of goal refinement, we have used Fig. 2.1, an example goal

model of the plastic card fraud detection system introduced in Section 1.2. The paral-

lelograms represent goals. Agents in this figure are the human, software and hardware

devices attached to the goals. In Fig. 2.1, the goal ACHIEVE[Card Fraud Detected

and Resolved] is AND-refined into the goals ACHIEVE[Card Transactions Processed]

and ACHIEVE[Compromised Card Resolved]. The goal MAINTAIN[Accurate Fraud
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Figure 2.1: AND/OR goal model of the plastic card fraud detection system.

Detection] is OR-refined into the goals ACHIEVE[Fraud Detected Using Classifier

Method] and ACHIEVE[Fraud Detected Using Rule-Based Method]. The agent fraud

investigator attached to the goal ACHIEVE[Compromised Card Investigated Before

Blocked] is expected to manually carry out the investigation on a suspected compromised

account (this is an example of a domain assumption), whereas the agent alert generator

attached to the goal ACHIEVE[Alert Generated For Matched Fraud] is required to

generate alert when a card transaction is suspected to be fraudulent (an example of a

requirement). The leafgoal MAINTAIN[Fraud Detection Rules Stored] could be as-

signed to a system agent Data Store, with option choices of either using a local database

or cloud-based database system (this is an example of OR responsibility assignment).

2.2.3 Goal-Oriented Requirement Engineering Approaches

Many goal modelling approaches exist, but the main ones include: NFR [180], i∗/TROPOS

[47, 276], URN/GRL [14] and KAOS [264]. These approaches rely on having sufficient

conceptual meta-model to systematically capture a complete and consistent functional
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and non-functional requirements of a proposed system [65]. These goal modelling ap-

proaches provide diverse notations, refinement patterns and support for analysing goals

using informal, semi-formal and formal methods [20, 103, 164, 165, 180, 237, 256]. In

the rest of this section, we present a brief description of the core ideas of the main

goal-oriented approaches.

2.2.3.1 NFR Framework

The NFR framework [56, 180] was proposed to reason, model, refine and analyse non-

functional requirements. The NFR framework is a process oriented approach that ratio-

nalises the development process with respect to non-functional requirements [180]. Its

main activities deal with the vagueness, priorities, dependencies and trade-off among

non-functional requirements; also, it deals with capturing and exposing the positive and

negative contributions of design alternatives on non-functional requirements. The NFR

framework’s main modelling tool is the Softgoal Inter-dependency Graph (SIG), which

is a graph that represents non-functional requirements as softgoals and their AND/OR–

refinements, positive/negative contributions, operationalisation and claims. The softgoal

operationalisation models low-level technical details of satisficing non-functional require-

ments softgoals, and the softgoal claims enable architects to document design rationale

for the refinements of softgoals [56].

The NFR framework uses a label propagation algorithm to determine which design

decisions best satisfice the high-level non functional requirements[180]. The algorithm

starts from the leaf-level softgoals, which encode the design decisions of the architect, and

traverses the graph upward towards the top-level softgoals, while considering the labels

on the softgoal refinement links. This type of alternative operationalisation guides an

architect in selecting the design that gives the best contributions towards the high-level

non-functional requirements.

The NFR framework provides an architect with three main types of directory or cata-

logue for storing a list of design knowledge [56]. First, it provides directory for storing

the ideas about the different types of non-functional requirements, such as performance,

availability, security, scalability and reliability etc. Second, it provides a directory for

storing methods used in guiding softgoal refinements and operationalisation. For exam-

ple, this catalogue could have a method which states that when a softgoal is applied to
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a data item with different sub-components, then the softgoal can be refined into other

subgoals for each of the components in the item. Third, the correlation directory encodes

knowledge to assist in identifying softgoal dependencies.

2.2.3.2 i∗ Framework

The i∗ framework [276, 278] is an agent-oriented modelling framework to support both

early and late requirements engineering phases. At the early phase of requirements

engineering, i∗ framework facilitates domain analysis by enabling visualisation of the

current organisational/business processes, the stakeholders relationships and objectives.

The models developed in this phase provide rationale for the proposed software and

organisational processes. In the late requirements engineering phase, emphasis is on

how to use the i∗ models to present a new system design and organisational processes,

and an evaluation of how the processes and design impact the stakeholders’ functional

and non-functional requirements.

The i∗ modelling approach is based on the idea of intentional actor and intentional

dependency [170]. Actors in this context can be agents of the proposed system, a role

and a position. An agent could be a software, hardware or human designated with certain

functionalities; a role is an “abstract actor embodying expectations and responsibilities”

[170], e.g. a Fraud Investigator in the Plastic Card Fraud Detection System; and a

position is a list of roles carried out by a single agent. In general, actors have certain

attributes, notably goals, capability and responsibility. They depend on other actors to

achieve their goals and task executions efficiently. However, an actor is at risk when

other actor(s) it relies on fail to deliver. Thus, it becomes imperative for actors to strike

an equilibrium between the opportunities they are presented with and the possible risks

in order to achieve their objectives. Intentional dependency captures the relationship

between actors. For example, an actor may depend on another actor(s) to achieve a

goal. Dependency relationships can be classified according to the goal, softgoal, task

and resource [170].

The i∗ framework consists of two main components, namely the Strategic Dependency

(SD) model and the Strategic Rationale (SR) model. An SD model is “a network of

intentional dependencies”[170]. An SD model is used to analyse: actor dependencies,

organisational changes due to the proposed new system and the possible opportunities
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and risks an actor could face. An SR model enables the exploration and description of

the rationale for the system and organisational processes in terms of the process elements

(e.g. goals, softgoals, tasks and resources) and their relationships. Unlike SD model,

which focus on the external relationships among actors, SR model focus on the internal

processes of actors, thus providing fine-grained abstraction for representing intentional

features of the organisations and systems.

In the i∗ model, AND/OR refinements of process elements, such as goals, softgoals, tasks

and resources, can be achieved using the decomposition, means-ends and softgoal contri-

bution links. The decomposition link attaches a goal/task with a subtask and soft goals.

The means-ends links are mainly used for goals and the alternative means of achieving

them. The softgoal contribution links can be used to relate a softgoal/goal/task to other

softgoals. The softgoal contribution link, which are similar to the contribution links in

NFR framework, uses two levels of positive (“+” and “++”) and negative (“–” and “–

–”) contributions links. The i∗ meta-framework, which describes the semantics and con-

straints of the i∗ are elaborated in a tool called Telos [181] –a tool that enables diverse

analysis of the i∗ models, such as consistency checking and scalability management.

2.2.3.3 TROPOS Framework

The TROPOS framework [47] is a requirement-driven agent oriented development ap-

proach that guides the analysis, design and implementation of agent-based systems. This

framework models, reasons and analyses system requirements and design choices using

the i∗ framework. However, it extends i∗ by providing textual symbols for i∗ models

and methodology for describing dynamic constraints in first order temporal logic [47].

2.2.3.4 URN/GRL Framework

The GRL framework [14] is one of the sub-languages of a semi-formal, goal and sce-

nario based modelling language known as User Requirements Notation (URN) [1]. GRL

means Goal-oriented Requirement Language. GRL combines the i∗ and NFR frame-

works to model goals (represented by rounded rectangle); softgoals (represented using

cloud shape); alternatives and the impact of decisions on high-level softgoals; and ra-

tionales, which are declared as beliefs and represented using eclipse shape. GRL is
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implemented in the jUCMNav tool [2], which is currently integrated in the Eclipse de-

velopment environment.

2.2.3.5 GBRAM Framework

GBRAM [19, 20] is a Goal Based Requirements Analysis Method that emphasises early

elicitation and abstraction of goals from diverse sources. The framework supports goal

analysis and refinement process. Goal analysis entails three main activities, namely

the exploration, identification and organisation activities, in which the different sources

of information are explored in order to identify goals and agents responsible for those

goals, and then organise the goals using dependency relations (similar to inter-actor

dependency in i∗ models) that declare which goals must be satisfied before other goals.

Similarly, goal refinement involves three activities, such as refinement, elaboration and

operationalisation activities, i.e. the identified goals are refined so that redundancy

among goals are discarded; goals are elaborated to identify hidden goals and obstacles

to the goals; and operationalisation of the goals to identify agents (e.g. entities or

processes) that ensure the goals. GBRAM does not support graphical syntax, rather it

uses goal schemas to specify agents, goals and stakeholders in textual form.

2.2.3.6 KAOS Framework

KAOS means Keep All Objects Satisfied [266] or Knowledge Acquisition in autOmated

Specification [65]. The KAOS framework is a multi-paradigm language characterised by

a two-layer structure, namely: (i) the outer conceptual modelling layer for specifying

concepts, their attributes and relationships with other concepts; (ii) an inner formal

layer for accurate reasoning about the concepts [162]. A KAOS specification consists of

core models, which can be related to one another by inter-model consistency rules. The

core models are enumerated below [162]:

1. A goal model made up of a two-layer structure. The first layer is an outer semantic

net [38] used to declare goals and their links. The second layer is a textual com-

ponent used to define goals in natural language, or formally in real time temporal

logic.
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2. An object model which represents objects of interest, their attributes and associa-

tion links to other objects. Objects are classified as entities, relationships, agents

or events.

3. An agent responsibility model which represents assignment of goals to agents re-

sponsible for ensuring the satisfaction of the goals. Goal responsibility assignment

provides the basis for halting a goal refinement process. Thus, when a goal is

assigned to a single agent, such goal cannot be refined further. Alternative goal

responsibility assignment is possible using the OR–refinement link.

4. An operation model that represents transitions between states within an appli-

cation domain. Operations are defined by domain pre, post and trigger condi-

tions and the operational model uses these conditions to specify operational re-

quirements, which are related to goals by operationalisation links and ensure the

achievements of goals assigned to agents.

2.2.4 Quantitative Goal Oriented Requirements Engineering

The GORE approaches described in previous section, such as the NFR and KAOS

frameworks, have quantitative extensions [3, 4, 44, 57, 64, 81, 126, 165, 199, 222, 223,

265, 270] that provide more precision for decision support than qualitative approaches

[103, 165]. In addition, quantitative GORE approaches help to clarify decision models

and evaluate the impact of decision choices on the stakeholders’ objectives.

The NFR framework and its variants (e.g i∗ [276, 278], TROPOS [47] and GRL [14])

have been quantitatively extended by replacing the “++/+” and “– –/–” symbols on

the goal refinement contribution links with numbers (usually between -1 and 1), and

attaching weight values (between 0 and 1) to the leaf goal/softgoal to denote the extent

of satisfaction of the goal/softgoals [3, 4, 81, 199, 270]. The degree of satisfaction of a

goal/softgoal is computed using the weighted average of the degree of satisfaction of the

sub-goals.

Giorgini et al. [103] developed a formal framework that uses NFR AND/OR refinements

to qualitatively and quantitatively reason about the goal model of a US car manufactur-

ing company. The authors also presented a qualitative and quantitative axiomatisation

for goal model primitives, and label propagation algorithms for each axiomatisation.
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This approach does not capture uncertainty in decision models explicitly and lacks tool

support for decision analysis.

Affleck et al. [3, 4] extended the NFR framework by proposing an optimisation model

that aims to maximise the attainment score (i.e. a score representing the degree of

satisfaction of the softgoals); minimise denial of softgoals; and avoid superfluous im-

plementation through the acceptance and rejection of leaf softgoals according to their

scores and decomposition. Developing the optimisation model involves converting the

NFR softgoal inter-dependency graph (SIG) to a directed graph with associated con-

stants and variables, and the objective function is constructed from the graph constants

and variables. The authors evaluated the optimisation model through simulation-based

analysis of synthetic test data. While this approach aims at tackling the scalability

issues in SIG, the optimisation model does not support elaboration of domain-specific

decision models, and does not take into consideration the fact that real world problems

have multiple objectives, for example, the model did not consider the cost of alternative

operationalisations in determining the optimum solution; it analysed uncertainty in the

graph variables through sensitivity analysis, which does not consider the probability of

change in decisions that optimise stakeholder goals and probability of changes in model

parameters’ values [166]; and finally, it lacks tool support for automated analysis.

Pasquale et al. [199] introduced an approach to quantitatively analyse security goals

and their trade-offs between other goals, such as availability and cost, for a service-based

email system. Their approach consists of three phases, namely: modelling, formalisation

and analysis phases. The modelling phase involves developing a threat model, goal model

and asset model of the security concerns and goals of the system. The formalisation

phase combines the models using mathematical representations of metric functions that

quantify the satisfaction of the security goals and concerns. Finally, the analysis phase

involves encoding the formalised model into a Boolean satisfiability problem, by adding

a set of constraints to the model and then solving the problem using SMT Solver (Z3).

This approach is semi-automated as the analysis phase requires manual encoding of

the satisafiability problem in the solver, thereby requiring that decision makers have

an understanding of how the solver operates. In addition, the authors compute goal

satisfaction using point based estimate using range normalisation i.e. normalise the

final output between -1 and 1.
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Wei et al. [270] developed an approach, driven by quality requirements, for making

implementation decisions according to the quality goals of a system, in the context of

internet aware. The approach consist of four steps, namely: the model generation; sat-

isficing status assignment; model reasoning and decision making. The model generation

step involves transforming the goal models to a tree model and then to a symbolic for-

mular, according to the syntax of the proposed symbolic modelling language
∑

. The

satisficing status assignment assigns quantitative (e.g. numbers in the range of 0 and

1) and qualitative (e.g. “++” and “– –” ) values to the generated symbolic formu-

lar. The next step is to reason about the model in order to determine all candidate

implementation decisions. Model reasoning can be quantitative, qualitative or hybrid

of both; it is quantitative when the model’s contributions and satisficing statuses are

fully quantified; it is qualitative when they are not quantified and hybrid when partially

quantified. Finally, the implementation decision is made by incorporating users’ pref-

erences and priority on goals. This approach, however, does not handle uncertainty in

model parameter, and while it has tool support, there is still the issue of the scalability

and complexity of goal models. The effect of this is that symbolic formula generated in

step one becomes complex to read when dealing with large goal models.

Qin et al.[171] proposed a goal-based decision making framework that clearly demon-

strates the link between goal-oriented requirements engineering and multi-criteria de-

cision making technique. Using a case study that involves selecting an IT solution for

registering customer profiles, in the insurance domain; they evaluated their approach

by importing quantitative goal models developed in the jUCMNav tool [213] into Excel,

where strategies for alternative selection and/or elimination is implemented. The strate-

gies used are disjunctive rules and Rank Order Centroid (ROC) formular. Disjuctive rule

simply states that an alternative that exceeds certain threshold are jettisoned, whereas

the ROC formular is used to convert the importance ranking assigned to different alter-

native’s attributes (e.g., cost, scalability and interoperability) to quantitative weights.

While this approach tackles decision making in a multi-objective optimisation context,

it lacks an integrated tool support for analysing decision models and suffers from the

scalability and readability problems in cases where the decision models are large.

While the techniques described above enable the elaboration of domain-specific decision

models in requirements and architecture decisions, the numbers (-1 or 1) assigned to
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the contribution links in the goal models have no physical interpretations in the appli-

cation domains [126]. In contrast, Letier et al. [165] proposed a quantitative extension

of the KAOS framework [65, 266] where levels of goals satisfaction are defined using

domain-specific metrics with physical interpretation. They developed a technique that

specifies partial degrees of goal satisfaction, and quantifies the impact of alternatives on

the extent of goal satisfaction in terms of refinement equations, which are defined over

random variables involved in the system‘s functional goals. They computed their ob-

jective functions for higher-level goals using estimated probability distribution functions

from the leaf or low level quality variables. This approach does not cater for automated

analysis of goal models, as the analysis is done through an ad-hoc process that involves

the use of analytical and numerical methods.

Heaven et al. [126] leverages the quantitative goal refinement model based on the KAOS

framework presented in [165] to simulate and optimise the impact of alternative system

designs on high level goals using multi-objective genetic algorithm (NSGA2). They

found the Pareto optimal design options among the alternatives options that optimises

the achievement of 8 and 14 minutes response time of the London Ambulance System,

at a low cost. This approach, however, lacks tool support and requires manual encoding

of the simulation models in a general programming language, such as R and MATLAB.

Sabetzadeh et al. [222] proposed a goal based approach, using the KAOS framework, for

assessing the satisfaction of new technology goals, such as safety and reliability goals.

The approach uses sensitivity analysis to figure out system components that needs fur-

ther improvements in satisfying the system goals. This approach involves the following

steps: (1) developing a goal model of the system; (2) plan and collate evidences in order

to quantify the probabilities that low level goals are satisfied, probabilities of obstacle

blocking low level goals and probabilities of risk occurring due to incomplete decom-

position of goals; (3) Elicit the probabilities from experts according to the evidences

presented; (4) propagate the elicited probabilities from the leaf goals to compute the

probability distributions for the satisfaction of the high level goals; (5) given that un-

certainty about the satisfaction of the overall goal exist, perform sensitivity analysis to

determine which model parameter inputs lead to great variations in the model output

parameters. Although this approach has tool support that is presented in [223], it is

only targeted at safety and reliability technological quantification and the complexity of

goal models limits the scalability of this approach.
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In summary, Section 2.2 describes existing qualitative and quantitative Goal-oriented

requirement engineering (GORE) approaches used in making design decisions in Re-

quirements engineering. Qualitative goal oriented approaches such as the NFR frame-

work [180], i∗/TROPOS [47, 276], URN/GRL [14] and KAOS [264] allow one to model,

reason and analyse the impact of decisions on stakeholders’ goals. However, they only

provide information about how the decisions positively or negatively impact stakehold-

ers’ goals. They provide no quantitative information about the impact of alternatives on

goals. Quantitative goal oriented approaches, however, are more accurate in modelling,

reasoning and analysing domain-specific decision problems [3, 199] [126, 165]. But they

require higher modelling effort and generally have limited automated tool support for

decision analysis.

2.3 Software Release Planning Decisions

Requirements modelling and analysis are critical activities carried out during require-

ments engineering of a proposed software system [264]. A prominent research area that

tackles requirements decisions during modelling and analysis of a proposed system is

Software Release Planning [208]. Since this thesis proposed to develop a novel mod-

elling language and automated decision analysis technique for requirements engineering

decisions, this section reviews the state-of-the-art software release planning decisions

approaches.

Software release planning addresses decisions related to the selection and prioritisation

of requirements when developing a sequence of consecutive product releases that satisfy

important and often conflicting constraints, such as benefits to business and stakeholders,

cost of implementation, development effort and risk, delivery time and dependencies

among requirements [208].

Software release planning decisions can be viewed from two perspectives [7]: first, as

strategic release planning [215], where decision-makers make relevant decisions about

the prioritisation and assignment of requirements (features) to different releases in a way

that both resource and technical constraints are met and at the same time satisfying the

stakeholders’ goals. Second, as operational release planning [5, 25], in which resources,
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such as developers and testers, are allocated to the tasks required to implement the set

of requirements agreed for a particular release.

Release planning decisions are generally complicated by the uncertainty about the impact

of decision choices on the business and technical constraints. Poor decisions, such as

abrupt exclusion and inclusion of requirements, may lead to stakeholders’ dissatisfaction;

a software release plan that does not meet the technical, resource, budget and risk

constraints [218].

The literature has several decision support methods for modelling and analysing release

planning decision problems. Examples of these methods are cost-value approach [143],

next release problem [30], EVOLVE release planning method [216], incremental funding

method. Many of these methods have been applied with techniques from search based

software engineering, which offer adaptive automated and semi-automated solutions.

The major limitation of these methods is that they rely on pre-defined generic equa-

tions (generally weighted sums) to assign scores to the objective metric(s), e.g. ’cost’,

’revenue’ and ’value’, for each alternative design. The metric scores in these methods

usually represent abstract (non verifiable) quantities rather than obtaining metric scores

from domain specific measurable values. For example, using financial metric that is ex-

pressed in monetary units (e.g. in Dollars or Euros). Also, the generic equations do not

adequately define the stakeholders’ goals and correctly predict the impacts of decisions

on these goals. The remaining part of this section describes some of the quantitative

requirements decision support methods applied to software release planning.

2.3.1 Cost-Value Approach

Traditional cost-value approach [143] uses the relative costs and value assigned to each

requirement to compute a ranked set of requirements, and a cost–value plot of the

requirements is used by stakeholders as a basis of decision-making. Examples include;

AHP process [221] , Karl Wiegers Requirements Prioritisation Model [273], Rational

Focal Point and Volere requirements prioritisation technique [209].

Karlsson et al. [144] proposed an efficient cost-value approach, based on AHP [221], for

managing and quantifying the differences in requirements importance. Using pre-defined

criteria, such as requirement importance and cost, the author demonstrated how their
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approach could be used by decision-makers to decide on what set of requirements to be

selected according to individual requirement contributions.

2.3.2 Next Release Problem Model

A common strategy to software requirements selection and prioritisation, which are vital

activities of release planning decisions, is the Next Release Problem (NRP). The NRP

tackles the selection of a deliverable set of requirements within a company’s budget and

at the same time satisfying the stakeholders. This sections reviews the NRP optimisation

approaches to release planning decisions. We categorise these approaches based on the

novelties introduced to the NRP model, notably: single-objective optimisation approach,

multi-objective optimisation approach and uncertainty handling in the NRP model.

2.3.2.1 Single Objective Optimisation Approach to NRP

Bagnal et al. [30] was first to formulate the NRP as a single objective optimisation prob-

lem. The author aimed to maximise the cumulative measure of stakeholders’ importance

given the cost constraints, and found the subset of customers whose requirements are to

be satisfied in the next release of an existing software product.

Ruhe et al. [217] extended the NRP model by proposing an evolutionary and iterative

approach, called EVOLVE, which is aimed at maximising the advantages of optimally

allocating requirements incrementally to software releases, subject to resource and bud-

get constraints. The EVOLVE approach evaluates and optimises the degree to which

requirements ordering conflict with stakeholder priorities and balances the required and

available resources.

Albourae et al. [9] proposed a release re-planning process model. Their approach uses

Analytical Hierarchy Process (AHP) to compare old requirements to the newly added

ones, and then applied a greedy algorithm to obtain the most promising requirements

that accommodate the varying demands driven by the market. Baker et al. [31] also

formulated the ranking and selection of candidate software components as a series of fea-

ture subset selection problem. Their approach was evaluated using large scale data sets

from a telecommunication company. They employed the greedy and simulated anneal-

ing algorithms to the formulated problem and compared the optimum solution obtained
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with human experts’ judgement. Their empirical results show that both algorithms

convincingly outperformed the human experts.

The models and problems described above do not handle dependencies between require-

ments. However, in reality dependencies, such as precedence, and , or, cost and value

based, exist among requirements and they tend to complicate the requirements selection

and prioritisation decision making process [282, 285].

Many research studies have been conducted to handle requirements inter-dependencies.

Carlshamre et al. [46] conducted a survey studying requirement dependency, such as

and, requires, temporal (precedence) or, cost and value dependencies. In this study, there

were 5 distinct sets of requirements, each including 20 high-priority requirements of 5

distinct products from 5 different companies. Three out of the five products have been

implemented and their improvements are market-driven. The remaining two products

were bespoke software. The author found that bespoke software often have functionality

based dependencies (e.g, and/requires) while market-driven software products tend to

have value based dependencies.

Van den Akker [255] studied a variation of the NRP model through the combination

of requirement selection and scheduling. This work applied a mathematical formalism

and optimisation technique based on Integer Linear Programming (ILP) to find exact

optimal solutions to the maximisation of projected revenue in the presence of budgetary

constraints within a given time period. The author, in addition, modelled team trans-

fers, extensions in release deadline and resources, and considered five different types of

requirements dependencies, such as implication, combination, exclusion, revenue–based

and cost–based.

2.3.2.2 Multi Objective Optimisation Approach to NRP

The release planning models and approaches discussed thus far are single objective

optimisation problems. However, most real world requirements decision problems have

multiple objectives. The challenge with single objective requirements decision problems

is that the optimisation of one objective may be at the expense of another, thereby

leading to a bias in the search process towards one of the objectives.
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Recently, many requirements selection and prioritisation approaches have been viewed

as a multi-objective decision problems. Zhang et al. [283] was the first to extend the

Next Release Problem by generalising it to a Multi-Objective Next Release Problem

(MONRP). Unlike the formulation by Bagnal et al. [30], Zhang treated the cost con-

straints as an objective. The author used search based techniques, such as GA and

NSGAII, to find the subset of customers’ requirements to be fulfilled that will give

maximum value to the stakeholders at a minimum cost.

Finkelstein et al. [91, 92] introduced the concept of fairness in requirement analysis

and optimisation in order to balance the satisfaction among stakeholders with different

preferences. They introduced three fairness models, which are fairness on the absolute

number of fulfilled requirements; fairness on the absolute value of fulfilled requirements

and fairness on the percentage of value and cost of fulfilled requirement.

Zhang et al. [284] extended their previous work on the MONRP [283] to find an optimal

set of customers’ requirements that balances the initial set of requirements to be selected,

i.e. “needs of today”, against the requirements to be selected later i.e. “needs of the

future”. They formulated three objectives which are: minimise the cost of requirement

implementation and maximise stakeholders’ value for today and value for the future.

Zhang et al. [282, 285] further extended their previous work on the MONRP[283] by

conducting an empirical study to tackle requirements interactions and dependencies,

such as and, or, precedence, cost– and value–based constraints.

Ruhe et al. extended the EVOLVE [217] method to propose EVOLVE*, a hybrid method

that combines experts’ judgement with mathematical models and evolutionary compu-

tation, to find the optimal solutions that maximises time, benefit and quality while

planning two releases ahead. They also considered requirement changes and two re-

quirements interaction relationship, such as coupling and precedence. Saliu et al. [226]

extended the EVOLVE* approach to include proactive analysis of risk involved when

combining existing system requirements to new ones and the benefit of estimating the

effort required to add the requirements.

Saliu et al. [225] presented a decision support approach that formulates the release

planning problem as a bi-objective optimization problem. In their work, they proposed

a tool called Bi-Objective Release Planning for Evolving Systems (BORPES), which is
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aimed at optimizing the overall value of release plans from both the business perspectives

and the implementation perspectives.

Durillo et el. [76] conducted an empirical study to check the performance of three state

of the art multi-objective evolutionary algorithms (e.g. NSGAII, MoCell and PAES) on

the MONRP [283], using a benchmark that consisted of six academic problems and a

real world data set from Motorola. Srinivas et al. [243] also introduced a Quantum-

inspired elitist multi-objective algorithm (QEMEA) to solve the MONRP, using six test

problems from the literature. The authors use QEMEA to improve and balance the

exploration and exploitation of solutions within the search space.

Veerappa et al. [267] studied the cost-value requirements selection problem in the con-

text of MONRP and proposed a hierarchical clustering technique to identify a group of

strongly related Pareto optimal solutions for requirements selection problems. The au-

thor used a series of visualization tools to support decision makers in (i) understanding

how group of solutions are spread on Pareto front (ii) identifying areas where strongly

divergent solutions achieve similar objectives. iii) make incremental decisions by first

selecting among group of solutions before selecting one of the variants within the chosen

group.

2.3.2.3 Uncertainty Handling in NRP

The release planning models and methods described so far do not handle uncertainty

explicitly in the decision model. They used point-based estimation of model parameter

inputs rather than using range of model parameter values. The point estimates fail to

take into consideration the inherent uncertainty in model parameter values, and such

underestimation of uncertainty may result in project failure and bring risks into the

project [166].

Uncertainty can be analysed either as a post-optimisation process or during the optimi-

sation process. The post-optimisation process includes uncertainty analysis and sensi-

tivity analysis. Uncertainty analysis measures the total uncertainty about conclusions of

the model and how the uncertainty propagates, i.e., it provides quantitative information

about the probable occurrence of different outcomes [241]. Sensitivity analysis, however,

concerns the study of the effect of uncertainty about model inputs on the cumulative
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uncertainty of model outputs [227, 241]. That is, sensitivity analysis provides useful

information about the input model parameters that causes the highest variations in the

output parameters.

With respect to handling uncertainty as a post analysis, Harman et al. [123] introduced

an exact requirements sensitivity analysis approach to help users explore sensitivity

of requirements attributes, such as cost estimates, for the NRP using both synthetic

and real-world data. The optimisation algorithm used an exact algorithm instead of

approximate algorithms in order to be sure that the variations in results obtained from

the original and perturbed NRP problems are actually due to inherent sensitivity and

not due to the stochastic nature of the approximate algorithms. The exact algorithm

used is a variant of dynamic programming, called Nemhauser-Ullmann algorithm [186].

Al-Emran et al. [6] applied a post analysis integrated method that combines Monte

Carlo Simulation and process simulation, in order to study the impact of uncertainty in

release planning. The focus was on operational and product release planning.

In dealing with uncertainty as part of the optimisation process, Li et al. [169] studied the

trade-off between the robustness and performance of optimal solutions. They optimized

the fitness value (measures design solution performance) and a robustness index (quan-

titative measures for solutions that are sensitive to parameter variations), and presented

a metric for uncertainty to guide multi-objective optimization problem. In their work,

the uncertainty of a parameter’s actual value and solutions were represented as interval

and tolerance region (uncertainty size) respectively.

Paixao et al. [196] introduced a scenario based robust formulation of the NRP to obtain

robust optimal solutions. They maximised the overall requirements importance for all

possible scenarios (i.e. values that symbolise the occurrence of certain events in different

context) subject to cost constraints. This approach produces a conservative robust

solution that does not cater for the impact of uncertainty in the worst case scenario.

Li et al. [167] extended the MONRP formulation by integrating Monte Carlo Simu-

lation in evaluating alternative designs and then finding robust optimal solutions that

maximise the expected revenue, expected cost and minimise the size of uncertainty.

The author introduced two notions of uncertainty measurement, which are the proba-

bility that actual cost exceeds a set value (failure possibility) and the size of uncertainty
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region. In a later work, Li et al. [168] proposed an approach to handle algorithmic

uncertainty resulting from the use of stochastic optimisation algorithms. They achieved

this by augmenting a variant of dynamic programming (Nemhauser-Ullmann algorithm)

with Conflict Graph that transforms the NRP model to a search tree whose leaves are

independent sub-problems.

2.3.3 Incremental Funding Method

The Incremental Funding Method (IFM) [70, 71] was developed to address the inherent

risk in implementing a monolithic software system in a single development period. The

approach advocates incremental delivery of software features in bits in order to deliver

early business values to the stakeholders. The advantage IFM has over the other release

planning methods, such as the Next Release Problem methods, is that it supports finan-

cially informed decision making on projects that are yet to be funded and the flexibility

of the approach to dynamic project environments.

According to Denne et al., the IFM is “a financially informed approach to software

development, designed to maximize returns through delivering functionality in chunks

of customer valued features, carefully sequenced so as to optimize Net Present Value

(NPV)” [71]. The IFM typically breaks down a monolithic software system into smaller

components, known as Minimum Marketable Features (MMF) that can provide market

value to customers. The MMFs are assumed to be implementable over a specific period

and their development and delivery are sequenced in order to minimise the investment

cost to the business, maximise the generation of revenue quickly and hopefully move the

projects to a self-funding status.

Figure 2.2 illustrates a typical pattern that a successful project that benefited from the

application of the IFM should follow. In the IFM parlance, a self funding status describes

the situation where an initially funded project starts to generate revenue, which can then

be used to develop additional MMFs. Consequently, as more MMFs are developed and

rolled out to the market, stakeholders gradually recuperate the initial investment costs.

This is called the repayment period. A break even point is reached when the Net Present

Value is zero. Beyond this point, stakeholders accrue profit from the software project.
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Figure 2.2: Ideal financial pattern of a project that uses the IFM. [71].

The IFM has been tackled traditionally using the IFM heuristic [71] and greedy method

[10]. The IFM heuristic selects the most promising MMF by analysing the whole MMFs

according to the generated revenue in the current and future periods, while the greedy

approach to IFM optimises the NPV by selecting the next MMF according to the MMF

with the highest NPV in the current development period.

The original IFM model has a few limitations: (i) the IFM optimisation was not solved

using any of the state of the art multi-objective optimisation algorithms, such as NS-

GAII [69], SPEAII [289] and IBEA [288]; (ii) it does not handle uncertainty in the

estimation of future cash values in cost and revenue; (iii) the model ignores the fact

that competition exist in business environments; (iv) the authors treated the IFM as a

single objective optimisation problem, thereby ignoring the fact that real world software

engineering problems tend to have multiple and conflicting objectives; (v) the decision

model equations use weighted sums of cash flows to compute the NPV of alternative

delivery sequences; (vi) there is lack of tool support for automated decision analysis.

Modellers have to encode the decision models in general programming language.

Although there have been some extensions to the original IFM, these extensions only ad-

dressed the first four limitations. Alencar et al. [10] extended the IFM with a statistical

approximation approach to obtain approximate delivery sequences that are close to the

exact delivery sequence with some level of confidence. In particular, their approach was

applied on a large set of interconnected MMFs and architectural elements. Murray et
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al. [45] extended the IFM to incorporate uncertainty in the cash flow, and to determine

adaptable investment policies, depicted using decision trees. They modelled uncertainty

using triangular probability distribution and Monte Carlo Simulation. Eduardo et al.

[63] also extended the IFM to introduce the application of Game Theory in maximising

the financial returns of a software projects in the context of a duopolistic market. Their

main contribution was to model the IFM as a strategic game to represent the competition

that exist in real world business settings. Oni et al. [194, 195] extended the IFM from a

single objective optimisation problem to a multi-objective optimisation problem. They

considered three objectives, namely: NPV, investment cost and the investment risk, and

also represented uncertainty in model parameters using the triangular distribution and

Monte Carlo simulation.

So far, there is no improvement of the IFM model with respect to the last two limitations

highlighted. However, the modelling language and automated decision analysis tool

proposed in this thesis addresses these concerns.

In summary, Section 2.3 described some related work to this thesis on Requirements

prioritisation and release planning which are vital activities in requirements engineering

decisions. We reviewed existing quantitative software release planning approaches such

as the Cost-Value approach, Next Release Problem model (single objective optimisation

approach, multiple objective optimisation approach and uncertainty handling in NRP)

and Incremental Funding Method (IFM). These approaches ease their applicability by

relying on pre-defined generic equations (generally weighted sums) to assign scores to the

objective metric(s), e.g. ’cost’, ’revenue’ and ’value’, for each alternative design. How-

ever, such generic equations may not express the actual stakeholders’ goals and may

not correctly predict the impacts of alternatives on these goals. In addition, existing

software release planning approaches generally lack automated technique for analysing

uncertainty and informing decision makers about the financial value of reducing uncer-

tainty in a decision model.
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2.4 Software Architecture Decisions

Early decisions about the architecture of a software system have significant impact on

the business and quality goals of a system. Deciding which architecture among alter-

native software architectures would satisfy these goals is not trivial. This is due to the

multiple stakeholders and their conflicting goals; the presence of many alternative archi-

tecture solutions; and uncertainty about the impact of an architectural solution on the

stakeholders’ goals. Thus, there is a need to support decision-makers in evaluating the

impact of alternative architectural solutions on stakeholders’ conflicting goals and then

selecting the one that gives the best trade-off between these goals.

Many approaches exist to help software architects model and analyse software architec-

ture decision problems, such as selecting and evaluating software architectures that meet

certain functional and non-functional requirements; the selection of software and hard-

ware components, their replication, the mapping of software components to available

hardware nodes, and the overall system topology. Many of these methods use generic

decision models and objectives, and assess alternative architectural solutions quantita-

tively and choose the ones that satisfy the desired stakeholders’ goals. Examples of these

methods include: the Architecture Tradeoff Analysis Method (ATAM) [147], the Cost

Benefit Analysis Method (CBAM) [150], GuideArch [84] and Multi-objective Decision

Analyser (MODA) [166].

2.4.1 Architecture Trade-off Analysis Method— ATAM

The Architecture Trade-off Analysis Method (ATAM) [147, 148] evaluates the effects of

architecture decisions on the quality requirements of a proposed software system. It pro-

vides insights into the relationships that exist among the quality requirements. ATAM

focuses on the use of scenarios to identify critical stakeholders’ goals; alternative archi-

tectural styles and approaches needed to satisfy the goals; potential risks and possible

means of mitigating them; and sensitivity points within the architecture and trade-off

points. The ATAM steps are as follows [147]:

1. Elicit scenarios from representative stakeholders. Scenarios can be a description

of: (1) the system usage; (2) how the system will accommodate increased load;
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(3) extreme changes in system functionalities and running platforms/environments

[148]. Scenario elicitation helps in assigning responsibilities of achieving functional

and non-functional requirements to agents; and to facilitate communication and

common understanding of the system goals among stakeholders.

2. Elicit requirements/constraints/environment. This step also entails identifying

and characterising attribute-based requirements.

3. Using architecture views (e.g. process view, module view, class view or data flow

view [32]), describe and model the multiple and competing candidate system archi-

tectures derived from analysing the requirements and scenarios. The architecture

models (qualitative or quantitative) help to reason about the system architectures,

which are described in terms of the architectural components and properties that

determine important quality requirements.

4. Analysis of the individual quality attributes with respect to the identified can-

didate architectures identified in step 3. Such analysis is important as it enable

separation of concerns by allowing stakeholders with expertise on each system’s

quality attributes to perform independent quality attribute analysis. The result

of this analysis is a statement about the system behaviour with respect to specific

quality attributes, for example, “the average response time of the system is 30ms”.

5. Identify Sensitivity points. These are points that significantly bring about varia-

tions in one or more quality attributes in the architecture. When such variations

occur, the architecture model is updated to cater for the changes in design, and

the updated model is evaluated.

6. Identify Trade-offs points. Trade-off points refer to architectural elements that are

sensitive to or dependent on multiple quality attributes.

While the ATAM method evaluates the impact of alternative architecture on multiple

and conflicting quality goals, it has some limitations: it does not handle uncertainty

in model parameters; it does not emphasise detailed analysis of a system’s measurable

quality attributes, such as latency and response time, to be successful [148]; and the

analysis technique of ATAM lacks tool support.
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2.4.2 Cost Benefit Analysis Method— CBAM

The Cost Benefit Analysis Method (CBAM) [149, 179] was proposed in the early 2000s,

at the Carnegie Mellon Software Engineering Institute. It is an economic modelling

approach that extends ATAM to aid software architecture decision making in a multi-

stakeholder context. CBAM models the cost and benefits of using alternative architec-

tural strategies in achieving the system’s quality goals (e.g. performance, availability

and security) identified by the stakeholders during the ATAM process. Similar to ATAM,

the CBAM makes use of different kinds of scenarios (e.g. usage scenarios, growth sce-

narios and exploratory scenarios [148]), and each scenario is associated with a quality

attribute response goals. The response goals depict various ways by which an architec-

ture responds to quality attribute stimuli. Response goals can be classified as current,

desired, best-case or the worst-case. The level of utility (i.e. a measure of the bene-

fit of a response for each scenario) associated to each response goal is described using

utilty-response curve. Below is a summary of the CBAM steps:

1. Representative stakeholders collate the newly elicited scenarios and the ones ob-

tained during the ATAM process .

2. Representative stakeholders define the quality attributes associated with each sce-

nario.

3. The collated scenarios and quality attributes are prioritised using a voting system,

where individual stakeholders distribute an allocated 100 points among the sce-

narios based on the desired response goal of each scenario. Typically, a weight of

1.0 is assigned to the scenario with the highest priority and other scenarios assume

weights relative to the highest one. At the end of this step, some scenarios are

shortlisted based on their weights.

4. For each shortlisted scenario, stakeholders assign utility score to each quality at-

tribute response goals (e.g. current, desired, best-case and worst-case).

5. Next, stakeholders define a set of architectural strategies and their corresponding

expected quality attribute response levels for each scenario. Each strategy has an

associated cost.
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6. For each scenario in each strategy, estimate the expected utility of the quality

attributes response levels using interpolation.

7. For each strategy, evaluate the total benefit as the weighted sum of the difference

between the expected and current utility score, for all scenarios. The weight values

come from step 3.

8. For each strategy, compute the Return on Investment (ROI) as the ratio of the

benefit to the cost and then rank the strategies according to their ROI.

9. Select a new architectural strategy with the best ROI and satisfies costs and sched-

ule constraints.

10. Confirm the results with expert stakeholders and when necessary, repeat any of

the steps that needs refinement and analysis.

The CBAM steps, described above, provide a transparent and structured software ar-

chitecture decision-making process. Thus, the final architecture would most likely be

agreed by the stakeholders and any resulting disagreement would be handled quickly.

However, the CBAM decision objectives focus on the cost–benefit trade-offs of changing

an architecture and may not be adequate to model stakeholders’ objectives defined in

terms of software quality attributes, such as response time and latency. In addition,

the CBAM approach elicits uncertainty from the variations in the single point estimates

supplied by the stakeholders. Such approach mixes up the stakeholders’ disagreement

about a parameter’s probable value with uncertainty about a parameter’s range of val-

ues. Finally, CBAM uses predefined equations and weighted sums of utility scores to

compute the overall benefit of an architecture for each scenario. This ignores the pos-

sibility of having relationships among scenarios. More so, the assigned “scores” usually

represent abstract (non verifiable) quantities that cannot be easily distinguished to mean

either “importance” or “likelihood”.

2.4.3 GuideArch

The GuideArch approach is a fuzzy logic-based framework that was proposed by Esfa-

hani et al.[84] to explore architectural solution space to aid informed decisions in the

presence of uncertainty. Using this approach, the authors simultaneously optimised the
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design of a Situation Awareness System (described in section 7.2.2) by considering seven

system properties, such as development time, battery usage, response time, cost, ramp

uptime and reliability. The GuideArch approach compares candidate architectures under

uncertainty through the following four steps:

1. Identify a subset of candidate architectures that are valid according to some critical

constraints.

2. Formulating the problem as a linear programming problem subject to architec-

tural constraints, such as dependency constraint between architectures, conflict

constraint between architectures and property constraints, such as the cost of an

architecture cannot exceed a certain threshold. Then, find the optimal architecture

by using fuzzy operators in comparing two architectures.

3. Rank the optimal architecture from the best to worst. This help domain experts

incorporate domain knowledge, which may not be possible to model in the tool to

select the final architecture for implementation.

4. Identify critical decisions that have big impact on the properties of ranked archi-

tectures and high level of uncertainty on the ranked architectures. Such decisions

are given extra attention during the next iteration of decision making.

The drawbacks of the GuideArch approach are: the use of pre-defined fixed equations

in assigning scores to candidate architecture; the use of fuzzy logic values that are not

falsifiable or cannot be validated empirically, and the lack of techniques to analyse model

uncertainties.

2.4.4 PRISM/Evochecker

PRISM [131, 156], a tool for modelling and analysing the dynamic behaviour of systems

in diverse application domains, such as communication, energy and financial systems.

PRISM also performs model checking of probabilistic models and enables the quantita-

tive extensions of such models using the cost and rewards functions. The probabilistic

models that PRISM supports are discrete-time Markov chains (DTMCs), continuous-

time Markov chains (CTMCs), probabilistic automata (PAs), probabilistic timed au-

tomata (PTAs) and Markov decision processes (MDPs).
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The PRISM models are expressed in a PRISM language, which is a state-based modelling

language and based on the Reactive Module Formalism [13]. In the PRISM language,

probabilistic models are represented as a set of modules, with each module state defined

by some local variables that have a finite range of values, and the dynamic behaviour of

a module can be described using probabilistic guarded commands as shown below:

[action]guard− >
n∑
i

expri : updatei (2.1)

where expri(1, 2, . . . , n) is an arithmetic expression defined over all model variables,

guard is a Boolean expression, which when evaluates to true, gives the probability (or

rate) at which an updatei change happens on a model variable, for a discrete-time model

(or a continuous time model).

An extension of the PRISM modelling language is the Evochecker [101], which is a

search based synthesiser of probabilistic models that satisfy design time quality of service

requirements of software systems. Evochecker language extends the PRISM language

with three constructs as follows:

1. evolvable parameters used to declare range of values for model parameter of type

“int” and “double” in any command field except the action command. For exam-

ple, the equation const int x = 10 is written as evolve const int x = [9 . . . 20].

2. evolvable probability distributions used to declare more than one element discrete

probability distribution and the different probability ranges of the elements. For

example, the equations const double x1 = 0.3; const double x2 = 0.7; const

double y1 = 0.45; const double y2 = 0.55; will be written as evolve distribu-

tionx[0.2 . . . 0.4][0.8 . . . 1.0]; evolve distribution y[0.4 . . . 0.7][0.5 . . . 0.8];

3. evolvable modules used to define at least two alternative modules. For example,

module FraudDetector will be written as evolve module FraudDetector.

Evochecker [101] takes as input: (1) a probabilistic model template, which encodes al-

ternative system architectural designs and their parameter ranges and (2) Quality of

service requirements that specify both the optimisation objectives and constraints. For
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example, a constraint statement for the plastic card fraud detection system could be

that “ the investigation cost of all daily alerts must not exceed £5,000”. The quality of

service requirements are modelled using the reward probabilistic temporal logic formu-

lar [16, 61]. It then automatically analyses the quantitative probabilistic model using

multi-objective genetics algorithms (such as NSGAII) to find the set of Pareto optimal

probabilistic models that satisfy the quality of service requirements.

The PRISM and Evochecker models are best suited for modelling system’s dynamic be-

haviours. They are not adequate for modelling stakeholders objectives and/or-refinement

structure that the thesis proposed modelling language is well suited for. In addition,

PRISM and Evochecker do not analyse model uncertainty.

2.4.5 SysML

SysML, which stands for Systems Modelling Language [96, 247] is an all-purpose systems

engineering modelling language for analysing, specifying, designing and verifying a vari-

ety of complex engineering systems, namely: software, hardware, embedded, control and

electro-mechanical systems. It also models other system entities, such as agents, pro-

cedures, data and facilities. SysML reuses existing Unified Modelling Language (UML)

[254] diagrams, such as the behavioural diagrams (e.g. use cases, activity and sequence

diagrams) and package diagrams. However, it provides additional modelling ability

through the introduction of requirements diagrams— to model system requirements

and the traceability to the design, and parametric diagrams— to model and analyse

constraints on system properties, such as performance and availability, using constraint

blocks.

In a SysML parametric model, a constraint is synonymous to a mathematical equation,

e.g. the Newtonian equation F = m ∗ a; a constraint block defines such equations in

a manner that they are amenable to different modelling and quantitative analysis. A

constraint property is a specific usage type of a constraint block in analysing a particular

design. In a constraint, a parameter represents an equation variable, such as F , m and a

in the Newtonian equation. A value property is a measurable quantity of a system or its

components to be used for analysis, for example, the “mass” of an accelerating car or the

“response time” of a London Ambulance System. Value properties of a constraint block
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are bound to value properties of other constraint blocks or other constraint parameters

through connectors, represented by solid lines.

Quantitative modelling with parametric diagrams is based on the concepts of blocks

and ports, which are used to model conceptual entities of systems, system hardware and

software components, information or data that flow from one component to another.

A SysML block is an extension of the UML structured class that represents a system

at different hierarchy, from the top-level system to subsystems and physical or logical

components or system environment. A SysML port allows access to the inner structure

of a block. They can be categorised as standard and flow ports. Standard ports specify

client-server communications using the required and provided interfaces for describing

the required services by a block and the set of services a block provides, respectively.

Flow ports are entry or exit points of a block. They describe the data or information

allowed between a block and its immediate environments. Figure 2.3, extracted from [96],

illustrates the concept of block and ports in details. The rounded rectangle represents

constraint blocks and the small tiny boxes depict the ports and the solid line that links

the blocks are the connectors.

SysML parametric models are executed using external engineering tools (e.g. mathemat-

ica, Abaqus and Ansys) to perform diverse model analysis, such as sensitivity analysis,

trade-off analysis and design optimisation [96]. Sensitivity analysis in this context in-

volves varying the value properties of the model to determine the ones that impact

certain requirements greatly. Trade-off analysis involves the comparison of alternative

designs using some set of metrics or system properties known as Measure of Effectiveness

(MOE) [96] as shown in figure 2.3. In a trade-off analysis, the objective functions are de-

scribed using SysML constraint block and their parameters are associated to the MOEs

of interest with the aid of a parametric diagram . The analysis solutions are portrayed

as specialised blocks, which are defined in a general block and have different instance

values of the MOEs. Using the parametric diagram, the design optimisation defines

an opitmisation function that models the net operational effectiveness of a system in

terms of different MOEs. Such model visualises how the leaf-level parameter diagrams

contribute to the MOEs at the top-level parameter diagrams as shown in figure 2.3.

SysML parametric modelling language and the modelling language proposed in the the-

sis are similar in many ways: They both use declarative equations for modelling system
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Figure 2.3: A parametric model for two design alternatives with the MOEs related
to the parameters of an objective function [96].

quality attributes (e.g. performance and availability); allow trade-off analysis and design

optimisation. However, since SysML parametric models are based on block diagrams,

it suffers similar scalability and complexity issues like the quantitative goal modelling

approaches described in section 2.2.3. SysML parametric modelling language would

not be adequate to model the objectives and/or-refinement structure that the proposed

thesis language is well suited for. Unlike the proposed modelling language which has

an integrated tool support for performing decision analysis, SysML parametric mod-

elling language requires external engineering analysis tool. Using such tools, however,

involves transforming SysML parametric models to other models that are executable

by the external tools. Such model transformation could lead to model synchronisation

complexity and a risk of model inconsistencies. Finally, our modelling language and

automated analysis tool analyses uncertainty using the concept of expected value of

information, unlike SysML parametric models where uncertainty is not explicitly repre-

sented but can be modelled using constraint blocks and the engineering analysis tools

(e.g. mathematica, Abaqus and Ansys) used by SysML parametric modelling language

do not perform information value analysis.
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Figure 2.4: An example model in ACOL language [158].

2.4.6 ACOL

ACOL [158] is an annotation based modelling language for specifying architecture mod-

els using three types of expressions, namely: analysis, constraints and optimisation

expressions. As shown in figure 2.4, the analysis expression allows a modeller to analyse

custom and derived non-functional properties of interest. The constraint expression,

which follows the analysis expression allows the specification of bound(s) for the non-

functional properties’ values. The optimisation expression maximises or minimises one

or more non-functional properties.

The drawbacks of ACOL is that the tool requires external analysis tools to perform its

optimisation analysis; it does not analyse the uncertainty in model parameters, and is

not adequate for modelling the stakeholders’ objective and/or-refinement structure that

the proposed thesis modelling language is well suited for.

2.4.7 POISED

POISED, POssIbilistic SElfaDaptation, is an approach introduced by Esfahani et al. [83]

to deal with uncertainty in architecture decisions at run-time in self-adaptive systems

(SAS) –systems that adapt to changes to requirements or environement conditions in

order to meet certain goals. POISED supports SAS in making optimal adaptation

decisions when there is uncertainty in the impact of such decisions on a system non-

functional goals, such as response time, power consumption etc.

Esfahani et al. [83] formally defined Self-Adaption decision problem as:
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1. A system consists of a set of components with different configuration decisions

that have alternative options that are mutually exclusive.

2. A set of constraints that define a valid architecture configuration.

3. A set of quantifiable system quality attributes of interests. The quality attributes

are observed through different configuration combinations during system execu-

tion.

4. A set of available resources accessible to the system during execution.

5. A set of user preferences to capture stakeholders’ satisfaction about the changes

in the quality attributes.

The optimisation problem involves maximising the weighted sum of the overall stake-

holder satisfaction of the quality attributes subject to configuration and resource con-

straints. POISED approached this problem using Linear Programming optimisation

techniques augmented with fuzzy set theory to represent and estimate the positive and

negative consequences of uncertainty on alternative adaptation decision choices of a

system.

The thesis proposed approach is similar to POISED in some ways: both approaches em-

phasise and capture uncertainty explicitly and they capture constraints between options

of decisions. However, both approaches differ in uncertainty representation: POISED

uses Possibility theory based on fuzzy set defined over fuzzy variables, this thesis uses

Bayesian probability defined over random variables and further analyses uncertainty

through information value analysis. Also, the optimisation model developed in POISED

uses weighted sum of utility functions while our approach supports elaboration of do-

main specific decision models. Finally, unlike our approach, POISED does not have an

integrated tool support for automated decision analysis as it uses an online NEOS sever

for solving numerical optimisation problems [62].

2.4.8 Multi-Objective Decision Analyser— MODA

The Multi-Objective Decision Analyser (MODA) [166] is Bayesian decision analysis ap-

proach in software engineering, which was proposed to aid software architects in deal-

ing with uncertainty about the impact of alternatives on stakeholders’ goals. MODA
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employs statistical decision analysis technique and Pareto-based multi-objective optimi-

sation to early requirements and architecture design decisions. The MODA approach

formalises a requirements and architecture decision problem in terms of domain-specific

measurable goals; elicits and presents uncertainty as probability distributions; uses

Monte-Carlo (MC) simulations to simulate the impact of alternatives on goals; and

shortlists the Pareto set. In quantifying and reducing uncertainty, MODA uses a pow-

erful decision analysis concept known as expected value of information, which is the

expected benefit accrued due to having additional information about a model parame-

ter.

With respect to previous requirements and software architecture decision methods such

as NRP, EVOLVE, IFM, ATAM, CBAM, POISED and GuideArch, the MODA method

addresses some of their limitations which include: the use of unprincipled methods to

elicit uncertainty; the evaluation of alternatives using criteria that are not falsifiable, or

cannot be validated empirically; the lack of provision for information about the risks that

could result from uncertainty; the lack of support for determining the degree to which

the risks can be reduced by obtaining additional information about model parameters.

The authors of MODA noted the complexity of developing and validating sound re-

quirements and software architecture decision models that capture the real stakeholders’

goals. The complexity of developing such models comes from the fact that real world

models typically have: (i) large number of model parameters and are composed of sub-

models of the software systems, which measure the impact of alternative design decisions

on software quality attributes, such as security and availability; (ii) sub-models of the

application domain, which measure the impact of the software and alternative design

decisions on the stakeholder goals, such as reducing financial loss due to fraud in a fraud

detection system. The MODA approach deals with the complexity described through

the following steps [166]:

1. Software architect define the architecture decision model.

2. Software architect define the cost-benefit decision model.

3. Software architect define the decision risks.

4. Software architect elicit domain and system parameters’ values from stakeholders

.
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5. Next is the shortlist of candidate architectures among alternative architectures.

6. Software architect identify closed and open design decisions. Closed decisions are

said to be made when all the shortlisted architectural solutions agree on the options

to be selected for those decisions; otherwise, we say the decision is open.

7. Next is the computation of the expected value of having additional information of

a model parameter.

This thesis builds on the statistical decision analysis technique used in MODA. However,

the thesis approach extends MODA by presenting a modelling language that helps soft-

ware architects write requirements and architecture decision models that are sound and

falsifiable. The automated decision analysis technique presented in this thesis hides man-

ual implementation details about evaluating the impact of alternatives on stakeholder

goals and estimating the financial value of reducing uncertainty in model parameters.

This enables software architects focus on the conceptual decision modelling of the prob-

lem. In addition, unlike MODA, the thesis approach (i) generates AND/OR refinement

graphs and decision graphs from the model’s equations (see chapter 4.2 and 4.4). Such

graphs can enhance model communication with stakeholders [264]; (ii) minimises the op-

timisation problem’s search space by inferring the set of minimal and complete solutions

associated to a decision model (see chapter 4.3).

2.4.9 Other Search-Based Architecture Decision Methods

The literature is abound with many search based approaches to model and analyse

software architecture decisions from the perspective of run time and design time of a

system. A comprehensive survey on software architecture decisions exist in [117, 121,

122, 232]. But this section focuses only on the approaches applied in the context of

multi-objective decision problems in the early phase of architecture design of software

systems. These approaches, however, either lack tool support for automated analysis

of decision models, or those that provide tool support do not support elaboration of

domain specific decision models, but rather rely on pre-defined models and objective

equations, which often do not capture the actual stakeholders objectives and are not

valid models of the impacts of decisions on objectives.
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In the area of Quality of Service, Web services and component selection and allocation;

Fredriksson et al. [95] presented an approach for optimally allocating components to real

time tasks while considering trade-offs like CPU-overhead and resource usage. In their

work, they developed a model for tasks and components allocations, deriving memory

consumption and CPU overhead for task deployment. Their objective was to minimise

resource usage (e.g CPU time and memory) using scheduling and optimisation techniques

and incorporate real time analysis to achieve feasible allocation.

Liu Zhuang et al. [286] proposed a Muti-Criteria Decision Making (MCDM ) approach

to enable users (or experts) to search Pareto Optimal Design Alternatives (PODA).

Amongst the PODA, they found the best one by incorporating corresponding weighted

fuzzy preferences in the global plan of web services selection based on QoS criteria such

as price, response time, availability, reliability and reputation.

Wang et al. [268] proposed multi-objective genetic algorithm (MOGA) to find a set of

Pareto optimal solutions that optimise three objectives such as minimise cost, maximise

reliability and minimise reponse time, while still satisfying the functional requirements.

With respect to research done in the area of software quality; Khoshgoftaar et al. [152]

proposed a Module Order Model using Genetic programming to predict the relative

quality of each software module, particularly the most faulty ones. They simultaneously

optimise four performance objectives and evaluated their approach using two real-world

software systems.

Grunske et al. [109] applied an evolutionary approach in architecture refactorings, to

select good design alternatives within reasonable time for a satellite control system that

is based on Bi-spectral InfraRed Detector [39]. They optimised the system architecture

such that the reliability of the satellite is maximised and cost is minimised, subject to a

particular weight constraint to limit the number of redundant components.

Harman et al. [120] extended and improved previous work on search based re-factoring

approaches that produce single sequence of re-factorings through combined complex

metrics; their approach, however, finds multiple Pareto optimal sequence of refactorings

that takes into account the availability of resources and giving users the opportunity to

specify the level at which to re-factor.
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Simons et al. [239] introduced an interactive search based approach to support a human

designer at the start and during conceptual design of a software system before the actual

implementation of the design is transformed to source code. They optimised the design

of a Cinema booking system by maximising cohesion and minimising coupling between

class objects using UML class diagram as representations.

Raiha et al. [206] proposed a multi-objective genetic algorithm to find the optimal

trade-off solutions to the design of an electronic home system (that controls devices and

provides interfaces to enable users manage their home ) given two quality attributes

such as modifiability and efficiency.

Al-Naeem et al. [8] presented a quality driven approach called ArchDesigner that obtains

the optimal trade-off between conflicting stakeholders‘ goals, project constraints (cost

and time) and competing architectural concerns. In their work, they maximised the

accumulative value score subject to constraints that specified cost and time are not

exceeded and only one alternative is selected.

Meedeniya et al. [174] presented a simulation-based method that handles parameter

range estimates using probability distributions. The authors used Monte Carlo simula-

tion in the estimation of a software architecture reliability through the combination of

the reliability of its component elements.

Noppen et al. [188] presented a design tree approach that scans a design space for design

decisions, their sequences and all the alternatives considered in the presence of imperfect

information about estimates and requirements.

Cortellessa et al. [60] proposed an optimisation framework called CODER for a com-

ponent based selection and optimisation procedure based on cost minimization of the

proposed system while ensuring a certain level of satisfaction of the system reliability

and delivery time.

To summarise, Section 2.4 reviewed some related work to this thesis on software archi-

tecture decisions which impact stakeholders’ business and non-functional (quality) goals

of a system. We described the state-of-the art software architecture decision methods

such as Architecture Trade-off Analysis Method (ATAM) [148], Cost Benefit Analy-

sis Method (CBAM) [149, 179] , GuideArch [84], PRISM [131, 156], Evochecker [101],

Systems Modelling Language (SysML) [96, 247], POISED [83], MODA [166] and other
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search-based software architecture decision methods [109, 117, 121, 122, 152, 174, 232].

These approaches require higher modelling effort and generally have limited automated

tool support for decision analysis. Using these approaches involves manual encoding of

decision models in widely used statistical programming languages, such as R and MAT-

LAB. This results in modellers spending time on implementation details rather than

concentrating on the conceptual decision problem.

2.5 Product Configuration Decisions in Software Product

Line Engineering

The proposed thesis modelling language is aimed at enabling software architects in mod-

elling requirements and architectural decision problems characterised by (i) single option

selection similar to mutually exclusive option selection (XOR-nodes) of feature diagrams

used in Software Product Line Engineering (SPLE); (ii) multiple options selection sim-

ilar to non-mutually exclusive options selections (OR-nodes) of feature diagrams; and

(iii) constraints dependency relationships, e.g., excludes and requires constraints used

in SPLE. Since radar’s modelling language extends SPLE feature models, this section

reviews some of the related work to this thesis on product configuration decisions in

SPLE.

Software Product Line Engineering (SPLE) is the engineering of a portfolio of similar

products with variations in some features and functions [203]. In SPLE, products can

be software, or a system that have software running within it, and can be similar with

respect to requirements, design specification, test cases, project schedules and project

budget. Products are described by features. The similarities and variations in products

are depicted using feature models.

A feature model defines constraints between features and specifies which combination

of features defines valid products. For example, Fig. 2.5 is an example of an attributed

feature model of GPS software. The nodes in the model represent features and arrows

depict relationships between features. These relationships can be a (i) mandatory parent

child relationship, in which a child must be included in all the products where the parent

feature appears, e.g., all products configuration possible in the GPS example must have

Routing feature; (ii) optional parent child relationship where a child may be included in
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Figure 2.5: An example attributed feature model for GPS software [130].

products that have its parent feature. The Keyboard feature in the GPS feature model

example is an optional feature of the user Interface of GPS products; (iii) alternative

relationship where only one feature among a list of features should be selected when

its parent feature is selected in a product. In Fig. 2.5, a GPS product can have either

a Touch screen feature or an LCD screen feature but not both; or-relationship states

that at least one child feature can be selected in the products where the parent feature

appears. e.g., a GPS product can have the 3D map viewing feature, Auto-rerouting

feature, or both of them.

There are also constraint relationships between features: (i) a feature f1 requires a

feature f2, if when f1 is in a product, then f2 must be included in this product; (ii) a

feature f1 excludes a feature f2, means that features f1 and f2 cannot be in the same

product.

Many tools have been proposed for reasoning [153, 175, 253] and configuring [17, 52, 145,

190] systems based on feature models. These tools allow modelling different relationships

(XOR and OR) and constraints (exclude and requires) between features. However, they

have no means to explicitly capture and analyse model uncertainty.

Another line of research in Software Product Lines is optimal product selection based on

feature models and stakeholders’ preferences such as minimising cost, minimising feature

defect counts. Initial approaches to tackling optimal product selection used search-based

single-objective optimisation [110, 271, 272]. But these techniques could lead to a bias

in the search process, as the optimisation of one objective may be at the expense of the
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other. To address this problem, several state of the art Evolutionary Multi Objective

Algorithms (EMOAs) have been explored [235], with further enhancements to increase

the number of valid solutions obtained from the EMOAs. These include seeding the

search with valid products [233], augmenting the search with SAT solvers and smart

mutation and crossover implementation [128], and introducing a novel solution encoding

which removes features that appear in all valid products and does not add features whose

children are not included in a product [130].

The main limitation with existing SPLE approaches for product configuration deci-

sions is that they generally use weighted sums of feature attribute (cost, defect count,

frequency of use, peformance) values. These approaches do not handle Boolean expres-

sions and do not allow the elaboration of domain specific decision models that radar

supports through AND/OR refinements. In addition, existing approaches generally lack

automated technique for analysing uncertainty and informing decision makers about the

financial value of reducing uncertainty in a decision model.

2.6 Summary

This chapter presented a background and state of the art requirements and architecture

decisions. The chapter first gave a general background on multi-objective optimisation

since requirements engineering and software architecture decisions are generally multi-

objective optimisation problems. This is followed by a presentation of the state-of-

the-art approaches for modelling and analysing requirements engineering and software

architecture decisions. Table 2.1 summarises the these approaches. The main drawbacks

of these approaches is that they are limited by the difficulty in elaborating problem

specific decision models and/or lack integrated tool support for automated decision

analysis under uncertainty.

The objective of this thesis is to mitigate the limitations of existing requirements and ar-

chitecture decision approaches. The thesis achieves this by introducing a new modelling

language and automated decision analysis technique implemented in a tool called radar

—Requirements and Architecture Decision AnalyseR. We evaluate the tool on a number

of real-world systems (see Table 7.1) by answering the following research questions:
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• RQ1 (Applicability): Is the radar tool applicable to real-world requirements

and architectural decision problems (chapter 7.3.1)?

• RQ2 (Usefulness): Does radar’s decision analysis technique provide useful im-

provements to real-world requirements and architecture decisions (chapter 7.3.2)?

• RQ3 (Scalability): What is the scalability of radar’s exhaustive simulation and

optimisation approach (chapter 8)?

• RQ4 (Performance Analysis): What is the performance of radar’s alternative

search-based evolutionary algorithms (chapter 8)?
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Chapter 3

RADAR: A Guided Tour

3.1 Introduction

Many software requirements and architecture decisions have to deal with multiple con-

flicting objectives. For example, deciding which set of requirements to implement in the

next release of a product [30] or deciding among alternative system designs in a goal

model [126], such that we minimise cost, maximise value and minimise risks. In both

of these decisions, decision-makers are often confronted with high levels of uncertainty

and a huge space of alternatives to choose from [166].

Making the right requirements and software architectural decisions is critical to the

successful delivery of software intensive systems [265]. Poor decisions, however, may

lead to delay in project delivery, huge financial loss, and stakeholders’ dissatisfaction.

This justifies the need for automated techniques that aid decision-makers in evaluating

the impact of decision choices on stakeholders’ objectives and in selecting the one that

produces the best trade-off between their objectives. Such techniques are only possible

and valid in the presence of detailed decision models that are amenable to decision

analysis and capture both the proposed software system and the application domain of

interest.

Quantitative decision models allow requirements engineers and software architects to

analyse requirements and architecture decisions using quantitative techniques, such as

stochastic simulation and multi-objective optimisation, but the difficulty of elaborating
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the decision models is an obstacle to the wider adoption of such techniques. Many re-

quirements and architecture decision support methods, such as EVOLVE [217], CBAM

[149, 179] , GuideArch [84], avoid this problem by relying on pre-defined model equa-

tions, which fail to model the real stakeholders’ objectives. Other techniques that use

quantitative goal-oriented decision models [3, 4, 103, 126, 165, 222] require decision-

makers to manually encode the decision models in general programming language, such

as R and MATLAB. This impairs model readability and forces modellers to consider

implementation concerns instead of focusing solely on the conceptual decision problem.

To address these limitations, this thesis introduces radar, a novel modelling language

and analysis tool, intended to facilitate requirements and architecture decision analysis.

The language has relations to quantitative AND/OR goal models described in Section

2.2, and to feature models used in software product lines described in Section 2.5. How-

ever, radar simplifies such models to a minimum set of language constructs essential

for decision analysis. This chapter presents a guided tour on how to make requirements

and architecture decisions with radar. The purposes are to give a high-level overview

of the modelling language and to provide background on the decision analysis method

used [166]. Formal descriptions of the modelling language and analysis technique will

be given in Chapter 4 and 5, respectively.

3.2 Running Example

We illustrate radar’s modelling language and decision analysis technique using a public

bike sharing system used in many urban cities, such as Beijing, London and New York.

This example is a case study of an European project (QUANTICOL) used in the design

and quantitative analysis of Collective Adaptive Systems (CAS) [177, 250].

The main goal of a bike sharing system is to increase commuters’ transit options, min-

imise energy consumption, enhance the quality of life by reducing air and noise pollution,

and lessen traffic congestion within the city. The operation of the bike sharing system

at a high-level is thus: a city has bike docking stations usually within walking distances

from the train and tram stations. A registered user rents a bike from a docking station

and returns the bike, after using it, to any docking station.
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The bike sharing system consists of different components that pose high level decision

choices. These decisions are described below:

• The bikes security strategy that can use an optional localisation feature or an

optional anti-theft feature that requires a GPS device.

• If the localisation security strategy is selected, the bikes can be equipped with a

tracking mechanism that uses a GPS or RFID or both.

• The bikes’ manufacturer brand that can be any one of “Cortina Cyclese”, “Derby

Cycle”, “Catrike”, “Bianchi-Bike” or “A-Bike”, with A-Bike not able to support

the localisation feature.

• The bikes docking station whose capacity is either permanently fixed, temporarily

fixed, or flexible.

• The system registration management in which users can register through a website,

at the dock stations, or in a kiosk located around the dock stations.

• If the kiosk registration option is selected, the kiosk registration method can be

equipped with optional features, such as a touch screen option to improve user

experience, a keycard reader option to check out usage statistics, a credit card

option for payment, and a keycard dispenser to disburse cards for short-term

passes.

• The system access management that can have an option to use a smart card

technology, or a smart phone technology, or a keycard technology which requires

a key card reader and must be implemented together with the keycard dispenser.

• The non-mandatory system components that include a bike maintenance program

option for small-scale repairs such as flat tyres; a bike redistribution mechanism

option for timely distribution of bikes to dock stations; a real time system status

option for providing updates about the availability of bikes.

• If the bike redistribution mechanism is implemented, a reward program for users

to encourage returning of bikes to inconvenient locations, such as locations with

higher or lower elevations.
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• If the system is equipped with real time information update, the system status

method in which real time system update is provided through a website, or a mobile

application that uses the mapping and localisation features of smart phones.

Suppose, a decision-maker wants to decide on the best combination of the different com-

ponent options (features) to deploy to maximise the overall system’s benefit at minimal

cost. The decision making process is beyond human capabilities: it is compounded by

the stakeholders’ conflicting concerns; uncertainty about domain quantities (e.g. num-

ber of bicycles to deploy); uncertainty about the impact of different decision choices on

the stakeholders’ concerns; the different complexity of decisions which include: single

option selection (e.g. in the bike manufacturer brand and dock station capacity); mul-

tiple option selections (e.g. between the bike anti-theft feature and the GPS option of

the bike localisation strategy); and constraints relationship between options of decisions

(e.g. A-Bike does not support the localisation feature).

3.3 Making Decisions with RADAR

The following are the steps involved when making decision with radar:

Step 1. Model the requirements and architecture decision problem. This involves

identifying the decisions to be made; defining stakeholders objectives of interest; and

modelling the impact of the decisions on the objectives. The result of this step is a

decision model.

Step 2. Analyse the decision model. This involves i) analysing model uncertainty and

evaluating the impact of decisions on the objectives using Monte-Carlo Simulation; ii)

shortlisting the optimal decisions using multi-objective optimisation techniques; iii) eval-

uating and quantifying the financial value of additional information or model refinement

to reduce uncertainty about model parameters before making a decision. Depending on

the outcome of the analysis, stakeholders can either make a decision or perform step 3.

Step 3. Get additional information or perform additional analysis through requirements

elicitation, prototyping and modelling. Then update the decision model and this will

trigger a new modelling and analysis cycle. This cycle stops once the financial value of

additional information is not sufficient to justify the effort required.
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3.4 Developing Decision Models

Before we formally define radar in detail in Chapter 4, we first illustrate the application

of radar on two examples: first is a simple, complete but illustrative example about

refactoring the architecture of a system. The second example is the design of a public

bike sharing system previously described in Section 3.2.

3.4.1 Example 1: Software Architecture Refactoring

Imagine having to perform a cost-benefit analysis for deciding whether to re-factor the

architecture of an existing application. With the current architecture, the application

generates relatively predictable benefits. Refactoring creates the possibility of generating

much higher benefits, but the refactoring costs and benefits are highly uncertain.

A radar model for this decision problem might look like this:

1 Model Refactoring;

2 Objective Max ENB = EV(NB);

3 Objective Min LP = Pr(NB < 0);

4 NB = Benefit − Cost;

5 Cost = decision(“Architecture choice”){

6 “As-is” : deterministic(0);

7 “Refactoring” : normalCI(1, 5);

8 }

9 Benefit = decision(“Architecture choice”){

10 “As-is” : normalCI(0.9, 1.1);

11 “Refactoring” : normalCI(1, 9);

12 }

The language keywords are in bold. The first line declares the name of the model prob-

lem. The next two lines define the optimisation objectives: maximising expected net

benefit (ENB) and minimising loss probability (LP). The function EV denotes the ex-

pected value (or mean) of a random variable and Pr denotes the probability of a Boolean

expression. The model’s fourth line then defines net benefit (NB) as the difference be-

tween benefit and cost.
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The next four lines state that cost depends on the architectural choice. The decision

keyword expresses alternative options at decision points in which only a single option

can be selected. If the choice is to keep the as-is architecture, we assume the cost to be

zero. The deterministic keyword means we believe this cost to be certain. If the choice

is to refactor, we believe the cost has a 90% chance of being between £1m and £5m.

The expression normalCI(1, 5) means the cost follows a normal distribution whose 90%

confidence interval is between 1 and 5. Similarly, the last four lines state that benefit

depends on the architecture choice and records our beliefs about the benefit’s likelihood

for the as-is and refactored architecture.

Probabilities in our approach are Bayesian; probability distributions denote the decision

makers’ beliefs about the likelihood of uncertain quantities and events. These beliefs

can be informed by subjective judgements, objective data, or a combination of both.

Bayesian methods typically start with probability distributions informed by subjective

judgements alone, then update the distributions (using Bayes rule) as new data and

information becomes available [275].

Reliable methods exist for eliciting a person’s beliefs about uncertain quantities or events,

and model these beliefs as probability distributions [191]. A recommended simple ap-

proach consists in eliciting 90% confidence interval as used above [136]. For these elici-

tation methods to be reliable, people providing estimations have to be ’calibrated’ on a

set of estimation exercises intended to mitigate their under- or over-confidence biases.

3.4.2 Example 2: Design of a Bike Sharing System

Below is a partial decision model developed for the bike sharing system example using

radar’s modelling language. This model consists of decisions with single and multiple

option selections. It also includes constraints relationships between options of decisions.

The remaining model is presented in Chapter 7.2.5.
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1 Model BSS;

2 Objective Max ExpectedNetBenefit = EV(NB);

3 Objective Min LossProbability = Pr(NB < 0);

4 NB = Benefit − Cost;

// Lines omitted represent equations for system’s Benefit

60 Cost = CostOfBikes

61 + CostOfSecuringBicycles

62 + CostOfDockStations

63 + CostOfSystemAccessMgt

64 + CostSystemRegistrationMgt

65 + CostOfOtherComponents;

66 CostOfBikes = (NbrBikesToDeploy - NbrBikesDeployed) * UnitCost;

67 NbrBicyclesToDeploy = triangular(500, 550, 600);

68 NbrOfBicyclesCurrentlyDeployed = deterministic(500);

69 UnitCost = decision (“Bike Manufacturer Brand”){

70 “A-Bike”: normalCI(80 ,100);

71 “Bianchi” : normalCI(200 ,300);

72 “Cortina Cyclese”: normalCI(100 ,150);

73 “Derby Cycle”: normalCI(140, 200);

74 “Catrike” : normalCI(250 ,350);

}

75 CostOfSecuringBikes=decision-subset(+)(“Bikes Security”){

76 “Anti-theft feature” : normalCI(1,5);

77 “Localisation feature” : CostOfLocalisation;

78 }

79 CostOfLocalisation=decision-subset(+)(“Tracking Mechanism”){

80 “GPS feature” : normalCI(5,10);

81 “RFID feature” : normalCI(2, 7);

82 }
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83 CostOfDockStations = decision (“Dock Station”){

84 “Permanently Fixed” : triangular(25,30, 35);

85 “Temporarily Fixed ” : triangular(30,35,40);

86 “Flexible ” : triangular(30,40,50);

87 }

88 CostOfSysAccessMgt = decision-subset(+)(”Access Management”){

89 “Smart card” : triangular(30,35, 40);

90 “Smart Phone” : triangular(25, 30,35);

91 “Key Card” : triangular(35, 40,45);

92 }

93 CostSysRegMgt = decision-subset(+)(“Registration Management”){

94 “Kisok Reg” : CostOfKioskReg;

95 “Dock Station Reg” : triangular(28, 30,32);

96 “Web Reg” : triangular(30, 40,50);

97 }

98 CostOfKioskReg = decision-subset(+)(”Kisok Registration”){

99 “Touch Screen” : triangular(10, 15, 20);

100 “Key card reader” : triangular(15, 20,25);

101 “Credit Card” : triangular(20, 22,25);

102 “Card Dispenser” : triangular(20, 25, 30);

103 }

104 CostOfOtherComponents =

105 decision-subset(+)(“Non Mandatory Component”){

106 “System Status Info” : CostOfStatusInfo;

107 “Bike Maintenance” : triangular(8,10, 12);

108 “Bike Redistribution” : CostOfRedistribution;

109 }

110 CostOfStatusInfo = decision-subset(+)(”System Status”){

111 “Real Time Web Info” : triangular(35,40, 55);

112 “Real Time Mobile App Info” : triangular(50, 80, 100);

113 }
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114 CostOfRedistribution =

115 RedistributionCostWithoutReward + CostForRewardingUsers;

116 RedistributionCostWithoutReward = normalCI(8, 10);

117 CostForRewardingUsers = decision(”Reward Users”){

118 “Without reward” : deterministic(0);

119 “With Reward” : deterministic(10);

120 }

121 Constraint “Bike Manufacturer Brand” : “A-Bike” excludes

122 “Tracking Mechanism ”: “GPS feature”;

123 Constraint “Kiosk Registration” : “Card Dispenser” couples

124 “System Access Management”: “Key Card”;

125 Constraint “System Access Management” : “Key Card” requires

126 “Kiosk Registration” : “Key card reader”;

In the bike sharing model described above, lines 2 and 3 declare the model objectives:

the first objective is a maximisation of the expected net benefit of the system (Ex-

pectedNetBenefit) and the second objective is a minimisation of the loss probability

(LossProbability).

Line 4 states that the net benefit is benefit minus cost. Lines 60 to 65 state that the

total cost is the sum of the cost of different system components. Lines 66 states that

the cost of bikes is the product of the unit cost of a bike and the difference between the

number of bikes to deploy and the number of bikes already deployed.

In line 67, the expression triangular(500, 550, 600) means that the decision-maker

believes the number of additional bikes to deploy (NbrBikesToDeploy) is between 500

and 600, with a likely value of 550. Line 68 states that the decision-maker knows with

certainty that the number of bikes currently deployed (NbrOfBikesCurrentlyDeployed)

is 500.

In lines 69 to 74, the keyword decision expresses a decision with single option selec-

tion. The expression states that the unit cost of a bike (UnitCost) depends on the bike

manufacturer brand. If the choice is to purchase the A-Bike brand, the cost is believed

to be between £80 and £100, and if the choice is to purchase the Bianchi brand, the
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cost is believed to be between £200 and £300. Similar interpretations can be made if

the option is to purchase Cortina Cyclese brand, Derby Cycle brand, or Catrike brand.

Also, in lines 78 to 82 the keyword decision-subset expresses a decision with multiple

option selections. The expression states that the cost of bike localisation depends on

the tracking mechanism. Zero cost is incurred if none of the tracking mechanism is

selected. However, if the choice is to select only the GPS option, the cost is believed to

be between £5m and £10m; if the choice is to select only the RFID option, the cost is

believed to be between £2m and £7m. Finally, if the choice is to select both GPS and

RFID options, the cost is the sum of the individual cost incurred by implementing each

feature separately. We added the costs because of the ‘+’ operator in the expression.

Lines 121 to 126 declare the constraint relationships in the problem using the keyword

Constraint . The constraint expressions state that a bike of brand “A-Bike” does not

support the GPS feature; the card dispenser option of the Kiosk registration and the

key card option of the systems access management must be implemented together; and

the key card option of the kiosk registration requires a key card reader.

3.5 Visualising AND/OR Refinements and Decision De-

pendencies

To help visualise the model structure, radar automatically generates the AND/OR

refinement graph and decision dependency graphs from the model equations.

In radar’s AND/OR refinement graphs, rectangles denote objectives; rounded rectan-

gles denote random variables (i.e. variables characterised by a probability distribution

rather than a single value), a black dot denotes an AND-refinement, an octagon de-

notes an XOR decisions, double octagon denotes OR decisions, arrows from a variable

to an objective denotes that the objective refers to that variable. The leaf nodes in the

refinement graphs are the model parameters. Their values are defined by probability

distributions.

In the refactoring example, Fig. 3.1 shows that the objectives ENB and LP both re-

fer to NB, that NB depends on Benefit and Cost (an AND-refinement), while Benefit

depends on Benefit[As-is] or Benefit[Refactoring] based on which option is chosen (an
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Figure 3.1: AND/OR refinement graph for the cost-benefit analysis example

Figure 3.2: Partial AND/OR sub-graph for cost of bikes (CostOfBikes) in the bike
sharing model. The rounded rectangles represent random variables, a black dot repre-
sents an AND-refinement, an octagon represents an OR-refinement. The leaf nodes in

the graph represent the model parameter estimations.

OR-refinement). Similarly, in the bike sharing example, Fig. 3.2 represents a partial

AND/OR graph of the bike sharing example that shows that CostOfBikes depends on

NbrBikesToDeploy, NbrBikesCurrentlyDeployed and UnitCost which depends on Unit-

Cost[Bianchi] or UnitCost[A-Bike].

radar decision graphs play a similar role to feature models in software product lines

[236]; they help visualise the model decisions, their options and possible decision de-

pendencies. In our refactoring model example, the decision graph presented in Fig.
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Architecture choice

As-is Refactoring

Figure 3.3: Decisions dependency graph for the cost-benefit analysis example

3.3 is extremely simple because the model includes a single decision and no decision

dependency. Fig. 3.4 shows a more interesting decision graph for our bike sharing ex-

ample. Octagons denote decisions with single option selection, double octagons represent

decisions with multiple option selection, the ovals represent options, the arrows from de-

cisions to options represent possible options for that decision; the arrows from option

to a decisions state that such decisions have to be made only in situations where that

option has been selected, the dotted arrows represent constraint relationships between

options.

3.6 Analysing Decision Models

radar supports a decision analysis method that consists in first shortlisting a set of

Pareto-optimal solutions through simulation and multi-objective optimisation, then com-

puting the expected value of information to evaluate whether to seek additional infor-

mation before making a decision between the shortlisted candidates [166]. This section

provides a brief overview of this method and how radar supports it.

Fig. 3.5 shows the result of the analysis performed by radar on our small refactoring

model. The first part shows the results of radar’s optimisation analysis. It lists the

optimisation objectives and the objective values for the two architecture choices: refac-

toring has an expected net benefit of £2m, but a loss probability of 23%, whereas keeping

the current architecture has an expected net benefit of £1m but the loss probability is

zero.
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Optimisation Analysis

Objective: Max ENB
Objective: Min LP

Architecture choice ENB LP

Refactoring 2 0.23
As-is 1 0

Information Value Analysis

Objective: Max ENB
EVTPI: 0.64

Parameter EVPPI

Benefit[Refactoring] 0.54
Cost[Refactoring] 0.14
Benefit[As-is] 0
Cost[As-is] 0

Figure 3.5: Analysis results for the cost-benefit analysis model

In this small refactoring example, we have only two solutions to choose from. Larger

problems such as the fraud detection problem of Section 1.2 and the public bike shar-

ing problem of Section 3.2 have a larger number of solutions. Before displaying the

optimisation analysis results, radar shortlists the set of Pareto-optimal solutions and

presents only those to the decision makers. A solution is Pareto-optimal if there is no

other solution that is better on all objectives simultaneously [166]. In our small refac-

toring decision problem, a solution is thus Pareto-optimal if no other solution has both

higher expected net benefit and lower loss probability. Here, both solutions are Pareto-

optimal because none of them is better than the other on both objectives. For larger

problems, shortlisting Pareto-optimal solutions can reduce a large set of solutions to a

smaller set of candidates worthy of further investigation. For example, Fig. 3.6 shows

the Pareto optimal solutions shortlisted through optimisation analysis of the public bike

sharing model presented in Section 3.4.2. radar shortlists 35 candidate solutions out of

a total of 15×220 possible alternatives. The shortlisted solutions represent the trade-off

between maximising expected net benefit and minimising risk.

The second part of Fig. 3.5 shows the result of information value analysis [133, 166].

In many decision situations, we might be able to perform additional data collection and
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analysis to reduce our uncertainty before making a decision. Additional data collection

and analysis, however, are worthwhile only if their cost is lower than the value of the

new information they will bring.

Evaluating the expected value of perfect information provides an upper bound on the

value of additional data collection and analysis to our decision problem. The expected

value of total perfect information (EVTPI) is a theoretical measure of the expected gain

in some objective value (usually, maximising net benefit) that would result from having

access to perfect information about all model parameters, that is from having access to

an oracle who could tell us the exact values of all model parameters. The EVTPI gives

an upper bound to the information that would result from additional data collection

and analysis.

The expected value of partial perfect information (EVPPI) is the expected gain in some

objective value resulting from having access to perfect information about a single model

parameter Θ. It gives an upper bound to how much we should spend to reduce uncer-

tainty about that model parameter. A more detailed explanation of these concepts can

be found in previous publications [133, 134, 166, 224] and Chapter 5.

Analysing the expected value of information is important because it helps mitigate a

measurement bias, known as measurement inversion, where decision makers would spend

sometimes considerable efforts measuring quantities with low or even zero information

values but disregard measuring quantities with high information value [136]. This bias

has notably been observed in a study of 20 IT project business cases [135]. This study

cites the effort spent by an organisation conducting detailed measurement of software

development productivity as an example of measurement with very low information

value, whereas quantities with high information value that are not measured at all are

typically those related to benefits that are wrongly perceived to be intangible.

In the refactoring example, we evaluate information value with respect to maximising

expected net benefit. The EVTPI is £0.64 million. Spending a small fraction of that

amount on reducing uncertainty could have high value. The EVPPI analysis shows

that reducing uncertainty about the benefits of refactoring has by far the highest value

(£0.54m). By contrast, reducing uncertainty about the refactoring cost has little value

and reducing uncertainty about benefits of the current architecture has no value.
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One way to reduce uncertainty about the benefits of refactoring would be to elaborate

a finer-grained decision model by refining the Benefit variable into lower-level variables

(e.g. customers retention and acquisition rates, savings in software maintenance costs)

and potentially identifying finer-grained architecture decisions corresponding to alter-

native ways to refactor the existing architecture. This would trigger a new decision

analysis. The cycle of model refinement and analysis would eventually stop when the re-

maining expected value of perfect information is too low to justify further data collection

and analysis.
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Chapter 4

The RADAR Modelling Language

4.1 The Modelling Language

A radar model is defined as a tuple (Obj, V ar, Contr), where Obj is set of objective

definitions, V ar is a set of variable definitions and Contr is a set of constraint definitions.

4.1.1 Objective Definition

An objective definition has the form:

Objective (Min | Max) Name = Statistic(X)

where Name is the objective name, Min or Max declares whether the objective function

should be minimised or maximised, and Statistic(X) is a statistical measure on a single

random variable X. Statistical measures include:

• EV(X) denoting the expected value of X.

• Pr(X ∼ x) denoting the probability that X ∼ x where ∼ is ≤, <, =, >, or ≥.

• x=percentile(X, i) denoting the ith percentile of X, i.e. the value x such that

Pr(X ≤ x) = i.

76
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We saw examples of the use of first two types of statistics in the refactoring model and

the bike sharing model in Chapter 3. Percentiles are useful statistics for measuring risk.

For example, in the refactoring example, the Value at Risk (VaR) can be defined as:

Objective Min VaR = percentile(NB, 5);

4.1.2 Variable Definition

A variable definition is either an AND-refinement, an OR-refinement, or a parameter

estimation.

An And-refinement has the form:

X = F (X1, ..., Xn)

where X is a variable and F (X1, ..., Xn) is an arithmetic or Boolean expression involving

variables X1, ..., Xn.

The equation defining NB in bike sharing model in Section 3.2 is an example of And-

Refinement where NB is defined as Benefit − Cost.

A parameter estimation has the form:

X = ProbabilityDistribution

where ProbabilityDisribution defines a probability distribution for the variable X. Prob-

ability distributions include:

• uniform(min, max) denoting the uniform distribution between values min and

max.

• exponential(x) denoting an exponential distribution that describes the time be-

tween events which occur at a constant average rate x.

• triangular(min, mode, max) denoting the triangular distribution with lower limit

min, upper limit max and the most likely value mode.
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• normalCI(lower, upper) denoting a normal distribution characterised by the lower

and upper bounds of its 90% confidence interval (i.e. lower is the 5th percentile

and upper the 95th) percentile.

• geometric(x, n) denotes the geometric distribution that describes the probability

of occurrence of the first success (x) in n independent trials.

• deterministic(x) denoting that the variable has the certain value x.

Examples of parameter estimations in our motivating example are:

68 NbrBikesToDeploy = triangular(500, 550, 600);

69 NbrOfBikesCurrentlyDeployed = deterministic(500);

An OR-refinement is used to express alternative option choices at a decision point.OR-

refinements can be characterised by exclusive-or (single option selection) or inclusive-or

(multiple option selections).

An OR-refinement with exclusive-or (XOR) selection has the form:

X = decision(label){

Option1 : Expression1;

...

Optionn: Expressionn;

}

where label is the decision name, Optioni are option names, and Expressioni is an

AND-refinement or parameter estimation defining the value of X if Optioni is selected.

When Expressioni is a parameter estimation, the value of a variable X is a parameter

X[Optioni]. For example, in the cost-benefit refactoring model, the OR-refinement for

Cost introduces the parameters Cost[As-is] and Cost[Refactoring].

The definitions of Cost and Benefit in the refactoring model are examples of OR-

refinement with single option selection.
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NbrFraudPerAccountBeforeBlocked = decision(“blocking policy”){
“block first” : NbrFraudBeforeDetection;
“investigate first” : NbrFraudBeforeDetection + NbrFraudDuringInvestigation;

}
NbrFraudBeforeDetection = decision(“processing type”){

“continuous” : 1 / ContinuousTrueAlertRate;
“batch” : NbrFraudsPerCompromisedAccountPerDay / BatchTrueAlertRate ;

}
ContinuousTrueAlertRate = decision(“fraud detection method”){

“classifier” : ContinuousAlertThreshold;
“rule-based” : deterministic(0,75)

}
BatchTrueAlertRate = decision(“fraud detection method”){

“classifier” : BatchAlertThreshold;
“rule-based” : deterministic(0,80);

}
ContinuousAlertThreshold = decision(“alert threshold”){

“high” : deterministic(0.9);
“medium” : deterministic(0,8);
“low” : deterministic(0,7);

}
BatchAlertThreshold = decision(“alert threshold”){

“high” : deterministic(0.95);
“medium” : deterministic(0,85);
“low” : deterministic(0,75);

}

Figure 4.1: Fragment of radar model showing all OR-refinements in the financial
fraud detection system

Consider also Fig. 4.1 that shows all OR-refinements with single option selection of the

fraud detection example introduced in Section 1.2. The first OR-refinement states that

NbrFraudPerAccountBeforeBlocked depends on the blocking policy; the second that

NbrFraudBeforeDetection depends on the processing type; etc. Justification for these

equations can be found in the detailed model in Chapter 7.2.1

Multiple OR-refinements can refer to the same decision. For example, in Fig 4.1, the

variables ContinuousTrueAlertRate and BatchTrueAlertRate depend both on the fraud

detection method.

An OR-refinement with multiple option selection (inclusive-or) has the form:
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X = decision-subset(op)(label){

Option1 : Expression1;

...

Optionn: Expressionn;

}

where label is the decision name, Optioni denotes options’ names, Expressioni denotes

AND-refinement or parameter estimation corresponding to the selection of Optioni, op

is an arithmetic operator (‘+’ or ‘*’) for combining multiple Expressioni if multiple

Optioni are selected. The value of X, V alue(X), is defined as:

OPo∈O(d)selected(o)× Expression(o) (4.1)

where OP is either a
∑

or
∏

, O(d) is the set of options in decision d, selected(o) =

1 if option o is selected and 0 otherwise, Expression(o) denotes AND-refinement or

parameter estimation corresponding to the selection of option o. An OR-refinement

with inclusive OR selection has a total of 2|O| possible option combinations, where |O|

is the number of options of a particular decision.

An example of OR-refinements with multiple option selection from the bike sharing

example is:

79 CostOfBikeLocalisation = decision-subset(+)(“Tracking Mechanism”){

80 “GPS feature” : normalCI(5,10);

81 “RFID feature” : normalCI(2, 7);

82 }

The above example states that the cost of bike localisation depends on the tracking

mechanism. Zero cost is incurred if none of the tracking mechanism is selected. However,

if the choice is to select only the GPS option, the cost is believed to be between £5m and

£10m; if the choice is to select only the RFID option, the cost is believed to be between
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£2m and £7m. Finally, if the choice is to select both GPS and RFID options, the cost

is the sum of the individual cost incurred by implementing each feature separately. The

costs are added because of the ‘+’ operator in the expression.

An inclusive-or refinement with a multiplication operator is useful for modelling reli-

ability of system components. For example, in the bike sharing system example, the

reliability of the system’s localisation component is defined as:

ReliabilityOfSystemLocalisationComponent = 1 - FailureOfSystemLocalisationComponent

FailureOfSystemLocalisationComponent = decision-subset(*)(“Tracking Mechanism”){

“GPS feature” : FailureProbabilityOfGPSComponent;

“RFID feature” : FailureProbabilityOfRFIDComponent;

}

FailureProbabilityOfGPSComponent = normalCI(0.01, 0.05);

FailureProbabilityOfRFIDComponent = normalCI(0.10, 0.20);

The above example states that the reliability of the system localisation components

depends on the tracking mechanism. If none of the tracking mechanism is selected, the

reliability is zero. However, if the choice is to select only the GPS option, the reliability

is the failure probability of the GPS component deducted from one. Similarly, if the

choice is to select only the RFID option, the reliability is the failure probability of the

RFID component deducted from one. Finally, if the choice is to select both GPS and

RFID options, the reliability is the product of the reliabilities of each component.

It is important to note that one can model inclusive-or option selections in the bike

sharing example using the XOR construct of an OR-refinement. For example, we model

the tracking mechanism decision that involves inclusive OR option selection between

GPS and RFID as below:
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79 CostOfLocalisation=decision(“Tracking Mechanism”){

80 “No feature” : deterministic(0);

81 “GPS” :CostOfGPS;

82 “RFID” : CostOfRFID;

83 “GPS and RFID” : CostOfGPS + CostOfRFID;

84 }

85 CostOfGPS = normalCI(5,10);

86 CostOfRFID = normalCI(2, 7);

The limitation of using the XOR construct to model an OR option selection is that the

modelling effort increases as the number of options for an OR decision increases. As a

result, one would have to write expressions explicitly for all possible option combina-

tions. This implies introducing AND-refinements (e.g. CostOfGPS and CostOfRFID)

for each possible option combination. radar addresses this problem using the inclusive-

or constructs.

4.1.3 Constraint Definition

radar provides constructs to model constraint relationships between options of deci-

sions. Such Constraints have the syntax

Constraint labeli : optioni ./ labelj : optionj

where optioni and optionj are options’ names, labeli and labelj are decisions names,and

./ is a constraint relationship in the set {requires, excludes, couples}.

Definition (requires). optioni : label1 requires optionj : labelj means that the selec-

tion of optioni implies the selection of optionj . However, optionj can be selected without

optioni being selected.

Definition (excludes). optioni : labeli excludes optionj : labelj means that both

optioni and optionj cannot be selected together.
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Definition (couples). optioni : labeli and optionj : labelj are said to be coupled if

none of option1 or option2 can be selected separately.

Examples of constraints relationships in the bike sharing model example of Section 3.4

are:

121 Constraint “Bike Manufacturer Brand” : “A-Bike” excludes

122 “Tracking Mechanism ”: “GPS feature”;

123 Constraint “Kiosk Registration” : “Card Dispenser” couples

124 “System Access Management”: “Key Card”;

125 Constraint “System Access Management” : “Key Card” requires

126 “Kiosk Registration” : “Key card reader”;

The expressions above declare that a bike of brand “A-Bike” does not support the GPS

feature; the card dispenser option of the Kiosk registration and the key card option of

the systems access management must be implemented together; and the key card option

of the kiosk registration requires a key card reader.

4.2 AND/OR Refinement Graph

The equations in a radar model create an acyclic AND/OR refinement graph between

variables. An AND-refinement relates a variable to the set of variables involved in

its definition. An OR-refinement relates a variable to the set of AND-refinement or

parameter estimations involved in the OR-refinement definition. As an example, Fig.

4.2 shows the AND/OR refinement graphs for the fraud detection model fragments in

Fig. 4.1.

The AND/OR refinement graph of a model must be acyclic. The tool generates an error

if it detects a circular dependency between variables in the model.

By showing the variable dependencies, the AND/OR refinement graph helps the mod-

ellers to review and validate the model structure with other stakeholders. Such AND/OR

graphs are commonly used in goal-oriented requirements engineering to communicate



Chapter 4. The RADAR Modelling Language 84

threshold level

ContinuousAlertThreshold

ContinuousAlertThreshold[high]ContinuousAlertThreshold[medium] ContinuousAlertThreshold[low]

fraud detection method

ContinuousTrueAlertRate

ContinuousTrueAlertRate[rule-based]

processing type

NbrFraudBeforeDetection

threshold level

BatchAlertThreshold

BatchAlertThreshold[high] BatchAlertThreshold[medium] BatchAlertThreshold[low]

fraud detection method

BatchTrueAlertRate

BatchTrueAlertRate[rule-based]

NbrFraudPerCompromisedAccountPerDay

blocking policy

NbrFraudPerAccountBeforeBlocked

NbrFraudDuringInvestigation

Figure 4.2: AND/OR Refinement Graph for the Financial Fraud Detection System

and validate traceability links between technical software characteristics (e.g. the clas-

sifier’s true alert rate) and high-level stakeholders’ concerns (e.g the financial loss due

to fraud) [264].

4.3 The Design Space

A model’s OR-refinement equations introduce a set of decisions and options. Select-

ing an option for a particular decision replaces all OR-refinements that refer to this

decision by AND-refinements or parameters estimation corresponding to the selected

option. Consider the fraud detection example, selecting the ”block first” option for the

”decision policy” option in Fig. 4.1 replaces the OR-refinement for NbrFraudPerAc-

countBeforeBlocked by the AND-refinement corresponding to the ”block first” option,

i.e. NbrFraudPerAccountBeforeBlocked = NbrFraudBeforeDetection. Consider also the

bike sharing system example, in the OR-refinement defined on the variable CostOfLo-

calisation between lines 79 to 84 of page 63, the selection of the “GPS” option of the

“Tracking Mechanism” decision replaces the OR-refinement of CostOfLocalisation by the

AND-refinement CostOfLocalisation = CostOfGPS. Similarly the selection of “GPS and

RFID” option would replace the OR-refinement by CostOfLocalisation = CostOfGPS
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+ CostOfRFID. This idea provides the basis for how we define the set of valid solutions

for a radar decision model.

Definition (Solution). A radar solution, s, is defined as a mapping between decisions

and the power set of options i.e. s : D → P(O) such that s(d) ⊆ O(d), where D is the set

of all decisions in a model, O(d) is the set of options in decision d, and O = ∪d∈DO(d)

is the set of all options in a model.

For example, in the fraud detection model shown in Fig. 4.1, the solution s1 =

{(blocking policy, block first), (processing type, {continuous}), (fraud detection

method, {classifier}), (alert threshold, {high})} is an example of a radar solution

with only XOR decisions. The solution s2 = {(bike brand, {A-bike}), (Security

Strategy, {Localisation Feature}) (Tracking Mechanism, {GPS}), (Dock station,

{flexible}), (System Access, {Smart Card}), (System Registration, {Kiosk}), (Kiosk

System Registration, {Touch Screen}), (Non Mandatory Component, {(System

Status, Bike Maintenance, Bike Redistribution}), (System Status, {Web Info}), (Redistribution

Reward, {No Reward})} is a radar solution that contains both XOR and OR deci-

sions.

Definition (Solution Space). Given any radar model, the size of the solution space

is computed using
∏

d∈XOR−D |O(d)| ×
∏

d∈OR−D 2|O(d)|, where the first factor gives

the total solutions for XOR decisions and the second gives the total solutions for OR

decisions. In the bike sharing example, which has 3 XOR decisions and 7 OR decisions,

the solutions space is given as XOR(5×3×2)×OR(22×22×23×23×24×23×22) = 15×220.

Definition (Design Space). Given any radar model, the design space is the set

of minimal and complete solutions. A solution s is complete if applying s to a model

replaces all OR-refinements with AND-refinements or parameter estimations that corre-

spond to the selected option for each decision in s. A solution s is minimal if any subset

of s is complete.

For example, in the bike sharing system, the solution s3 = {(Bike Brand, {A-bike}),

(Tracking Mechanism, {GPS}), (Dock station, {flexible}), (Redistribution Re-

ward, {Reward Users})} is minimal and complete. It is minimal because its subset s4

= {(Bike Brand, {A-bike}), (Dock station {flexible}), (Redistribution Reward,
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{Reward Users})} is complete. It is complete because applying the solution to the model

results in no OR-refinements.

The design space of a radar model defines the set of all valid solutions to be considered

during optimisation. radar generates the design space of a model by recursion over

the acyclic AND/OR refinement graph by merging the set of solutions associated to

a variable subgraph. For any model, the size of the design space is always smaller or

equal to the size of the solution space. For the fraud detection model, the design space

contains 16 solutions.

It is important to note that the decision-based solution encoding used in radar is

different from the alternative option-based encoding commonly used in search-based

software engineering, notably for the problem of selecting optimal designs in software

product lines [111, 127, 234]. In the option-based encoding, solutions are encoded as a

mapping s : O → Boolean such that for each option o ∈ O, s(o) denotes whether o is

selected or not. For problems with only XOR decisions, additional constraints must then

be added to remove invalid solutions such as those that select two mutually exclusive

options. With an option-based encoding, the solution space would include 2|O| solutions

against
∏

d∈D |O(d)| for our decision-based encoding. In the fraud detection model, an

option-based encoding would have resulted in 29 = 512 total solutions instead of 24.

For a slightly larger model including 10 decisions with 3 options each, an option-based

encoding would include 23∗10 ≈ 109 total solutions, whereas the decision-based encoding

would have only 310 ≈ 59000 solutions, i.e. 0.005% of the number of solutions in the

option-based encoding. The benefits of a decision-based encoding over an option-based

encoding are thus enormous: the solution space is much smaller and it does not need

additional constraints to remove invalid solutions.

4.4 The Decision Graph

The equations in a radar model may create dependencies between decisions. For ex-

ample, in the fraud detection model, the “alert threshold” decision is dependent on the

selection of the “classifier” option in the “fraud detection method” decision.

Definition (Decision Dependency). A decision d1 is dependent on the selection of

option x in decision d0 if, and only if, for all solutions s in the design space, if d1 is
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defined then the selected option for decision d0 is x; formally: ∀s ∈ DesignSpace | d1 ∈

dom(s)⇒ s(d0) = x, where dom(s) denotes the domain of the function s, i.e. the set of

decisions that have a mapping in s.

radar infers decision dependencies by first generating the design space, then checking

for dependency between every pair of decisions. To visualise such dependencies, the

tool generates a decision diagram showing all decisions, their options, and dependencies

between decisions and options. The decision diagram for the fraud detection model is

shown in Fig. 4.3. These diagrams play a similar role to that of feature diagrams in

software product lines [236]: they help us visualise a potentially large design space in

terms of a smaller set of decisions and options.
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Chapter 5

RADAR Decision Analysis

In Chapter 4, we have formally presented radar’s modelling language. radar’s mod-

elling language extends and simplifies quantitative AND/OR goal models used in re-

quirements engineering, and has relations to feature diagrams used in software product

lines. This chapter describes radar’s decision analysis technique which is based on the

statistical decision analysis steps presented in Chapter 2.4.8.

Once a decision-maker, such as software architects or requirements engineers, develops

a radar model that defines the problem objectives, refinement equations, decisions and

parameter uncertainty, then radar performs two main types of analysis: the optimisa-

tion analysis and information value analysis.

5.1 Optimisation Analysis

Given a model’s abstract syntax tree (AST), the optimisation analysis consists of three

activities: generating the design space, simulating a design solution and shortlisting

the Pareto-optimal solutions using exhaustive search or evolutionary multi-objective

algorithms.

5.1.1 Generating Design Space

The design space is generated through a single traversal on radar’s semantic model

(an acyclic AND/OR refinement graph that consist of different model elements, such

89
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as objectives, variables, decisions, expressions and operators) created from a model’s

abstract syntax tree. The design space consist of all valid solutions to be used for the

simulation and optimisation process.

Algorithm 1 presents a pseudo-code for generating the design space of a radar model.

The algorithm takes as input the radar model and for each objective (line 2), it gets

the variable (ObjV ar) associated to the objective definition (line 3) and then generates

the solution set of the objective variable (line 4), by invoking the getAllSolutions method

(described in Algorithm 2) starting from the variable’s definition and then recursively

traversing the model until reaching the leaf-variables, i.e., ParameterEstimations. The

solution set obtained for each objective are then merged using Algorithm 3 (line 5).

In Algorithm 2, the solution set (S) returned depends on whether the calling variable’s

definition is a parameter estimation, an AND-Refinement, or an OR-refinement. If the

variable’s definition is a parameter estimation (line 3), S is always an empty set (line

4), since a parameter estimation has no decision. If the variable’s definition is an AND-

Refinement (line 7), S is obtained by merging the solution set obtained (using Algorithm

3) for each Boolean or arithmetic expression that define the AND-Refinement. If the

variable’s definition is an OR-Refinement (line 13); first, we retrieve the solution set for

each option declared in the OR-Refinement by invoking the getSolutionSetPerOption

method (line 14). Next, the decision (d) associated with OR-Refinement is obtained

(line 15): if the decision type is mutually exclusive (XOR), we combine all solution set

obtained for each AND-Refinement corresponding to each option in the OR-Refinement

(lines 18-21). If the decision type is inclusive-or (OR), we obtain all possible option

combinations (optionCombinations) for the OR-decision (line 24), and for each option

combination (oc), the algorithm gets the combined solution set (lines 27-29) and update

each solution s in the solution set ss with decision d and a list of option (lines 30-33).

In Algorithm 3, the merging of two solution sets S1 and S2 requires a pair-wise com-

parison of all solutions s1 ∈ S1 and s2 ∈ S2, and if they do not conflict (line 10), i.e. if

they do not disagree on the selected option for the same decisions, then s1 and s2 are

combined (line 11).

The time and space complexity of generating the design space is O(m), where m is the

model length measured as number of nodes in the model’s abstract syntax tree .
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Input : Model m = {Obj, V ar, Constr}
Output: SolutionSet S

1 S ← ∅
2 foreach Objective obj in m.Obj do
3 Variable objV ariable← obj.getObjectiveVariable()
4 SolutionSet objSolutionSet← objV ariable.getAllSolutions(m)
5 S.mergeSolutionSet(objSolutionSet)

6 end
7 return S

Algorithm 1: GenerateDesignSpace

5.1.2 Simulating A Design

This is the most computationally expensive step. It returns simulation values of all ob-

jectives for a candidate design s, by evaluating the impact of s on the model’s objectives

through Monte-Carlo simulation (MCS) [113] –a mathematical technique for exploring

the range of possible outcomes when analysing a model and the chance that the out-

come will occur. Given a radar semantic model generated from a model’s abstract

syntax tree (AST), radar’s simulation algorithm traverses the semantic model (acyclic

AND/OR refinement graph) by recursion while sampling and evaluating large number

of possible scenarios. Scenarios are generated through probability distributions of the

model’s parameter estimations.

Algorithm 6 describes the simulation of a single design: it takes a radar model and a

candidate design s as inputs, then simulates s (lines 2-9). The algorithm loops through

each model objective (line 2), then gets the variable associated to the objective defini-

tion (line 4), and simulates solution s through recursion over the variable’s sub-graph

(line 5) by invoking the Simulate method in Algorithm 7. Simulate returns an array of

simulated objective values. If the variable’s definition is a parameter estimation (line 3),

the algorithm returns N samples of the probability distribution (e.g. normal, trian-

gular and normalCI) associated to the variable’s definition. If the variable’s definition

is an ANDRefinement (line 7), the algorithm determines whether the ANDRefinement’s

definition is a BinaryExpression or a UnaryExpression: if the definition is a BinaryEx-

pression (line 8), the algorithm simulates the left and right expressions and returns the

combined expressions using a binary operator, which may be an arithmetic operator (+,

-, /, ×) or Boolean operator(!, &&); if the definition is a UnaryExpression (line 13),

the algorithm simulates the expression and returns the simulated values with the unary



Chapter 5. RADAR Decision Analysis 92

Input : Model, m = {Obj, V ar, Constr}
Output: SolutionSet S

1 S ← ∅
2 Expression expr ← this.getDefinition
3 if expr == ParameterEstimation then
4 Solution newSol← ∅
5 S.add(newSol)

6 end
7 if expr == ANDRefinement then
8 foreach Expression childV ar in expr.Children do
9 SolutionSet andSolSet← childV ar.getAllSolutions(m)

10 S.mergeSolutionSet(andSolSet)

11 end

12 end
13 if expr == OR Refinement then
14 Map<String, SolutionSet> spo← getSolutionSetPerOption(m,expr)
15 Decision d← expr.getDecisions
16 if d.decisionType = ExclusiveOR Refinement then
17 i← 0
18 foreach Map<String, SolutionSet> entry : spo.EntrySet() do
19 S.addAll(entry.V alue[i])
20 i+ +

21 end

22 end
23 if d.decisionType == InclusiveOR Refinement then
24 List<List<String>> optionCombinations←

getAllOptionCombinations(d)
25 foreach List<String> oc in optionCombinations do
26 SolutionSet ss← ∅
27 foreach String option in oc do
28 ss.addAll(spo[option])
29 end
30 foreach Solution s in ss do
31 s.addDecision(d, oc)
32 S.add(s)

33 end

34 end

35 end

36 end
37 return S

Algorithm 2: GetAllSolutions: algorithm to recursively retrieve all solutions
staring from a specified variable to the leaf variables in the goal graph.
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Input : SolutionSet S1
Output: SolutionSet S

1 S ← ∅
2 if S1.empty() then
3 return this
4 end
5 if this.empty() then
6 return S1
7 end
8 foreach solution s1 in S1 do
9 foreach solution s2 in this do

10 if !conflicting(s1, s2) then
11 Solution newSolution = s1.union(s2)
12 S.add(newSolution)

13 end

14 end

15 end
16 return S

Algorithm 3: MergeSolutionSets: algorithm to merge two solutions if they do
not conflict in selected options.

Input : Model, m = {Obj, V ar, Constr}, Expression expr
Output: Map<String, SolutionSet> S

1 S ← ∅
2 Decision d← expr.getDecisions
3 foreach option in d.getOptions do
4 AND Refinement andRef ← expr.get(option)
5 SolutionSet andRefSolutions← andRef.getAllSolutions(m)
6 foreach solution soln in andRefSolutions do
7 soln.addDecision(d, option)
8 end
9 S.put(option, andRefSolutions)

10 end
11 return S

Algorithm 4: GetSolutionSetPerOption

Input : Solution, s1, s2
Output: Boolean true/false

1 foreach decision d in s1.getDecisions do
2 if s2.selection(d) 6= null and s2.selection(d) 6= s1.selection(d)

then
3 return true
4 end

5 end
6 return false

Algorithm 5: ConflictingSolutions: algorithm to check if two solutions
conflict in their selections.
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operator (e.g. -, !) applied on them. If the variable’s definition is an OR Refinement

with single option selection (exclusive-or), the algorithm simulates the AND Refinement

of the selected option o in decision d; if the variable’s definition is an OR Refinement

with multiple option selection (inclusive-or), the algorithm combines (adds or multiplies)

the simulated values of each AND Refinement corresponding to a selected option o in

decision d.

Input : Model, m = {Obj, V ar,D,O}, Design (s)
Output: SimulatedObjectiveValues SOV

1 Double [ ]SOV ← ∅
2 foreach Objective obj in m.Objectives do
3 Statistic st ← obj.getDefinition()
4 Variable objV ariable← obj.getObjectiveVariable()
5 Double [ ]objectiveValueArray ← st.Simulate(s, objVariable)
6 DoubleobjectiveValue ← Mean(objectiveValueArray)
7 SOV.add(objectiveValue)

8 end
9 return SOV

Algorithm 6: Simulating A Design

Simulating a design involves a single recursive traversal of the semantic model. Thus

the time and space complexity is O(m), where m is the number of nodes in the model’s

AST. Generating N simulations for all objectives and a set of solutions thus has a time

and space complexity of O(|Obj| × |SS| ×N ×m), where Obj is the model objectives,

SS is the set of solutions considered during simulation, N is the number of simulations.

5.1.3 Shortlisting Pareto Optimal Solution using Exhaustive Search

radar shortlists Pareto optimal solutions together with their objective values through

multi-objective optimisation technique presented in Chapter 2.1. By default, radar

finds optimal solutions through exhaustive search of the design space. As shown in Al-

gorithm 8, its exhaustive strategy implementation involves comparing pairs of solutions

and selecting the one with higher objective value(s). This algorithm has a complexity

of O(|S|2), where S is the number of simulated solutions the algorithm takes as input.
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Input : Solution (s), Variable (V ar)
Output: Array of Simulated Objective Values (SOV )

1 Double [ ] SOV ← ∅
2 Expression expr ← Var.getDefinition()
3 if expr == ParameterEstimation then
4 Distribution distr = expr.getDefinition()
5 return distr.getProbabilityDistribution()

6 end
7 if expr == ANDRefinement then
8 if expr.Definition == BinaryExpression then
9 leftSim ← Simulate(s, expr.leftExpr)

10 rightSim ← Simulate(s,expr.rightExpr)
11 return leftSim ⊕ rightSim

12 end
13 if expr.Definition == UnaryExpression then
14 return ⊕Simulate(s,expr)
15 end

16 end
17 if expr == OR Refinement then
18 Decision d← expr.getDecisions()
19 List<Option> options ← s[d]
20 foreach Option o in options do
21 ANDRefinement andRef ← expr [o]
22 Double [ ] simV alue← Simulate(s, andRef )
23 if d.decisionType = ExclusiveOR Refinement then
24 SOV ← simV alue
25 break

26 end
27 if d.decisionType == InclusiveOR Refinement then
28 Integer i ← 0
29 foreach Double sv in simValue do
30 if d.op == Addition then
31 SOV [i]← SOV [i] + sv
32 end
33 if d.op == Multiplication then
34 SOV [i]← SOV [i]× sv
35 end
36 i++

37 end

38 end

39 end

40 end
41 return SOV

Algorithm 7: radar’s Simulate method: ⊕ is a binary operator (+,
-, /, ×) or a Boolean operator (!, &&)
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Input : SimulatedSolutions (SimS), Model, m = {Obj, V ar,D,O}
Output: Pareto Set S

1 S ← ∅
2 SolutionSet SS = SimS.getEvaluatedSolutions()
3 solutionSize← SS.size()
4 ObjectiveValues = SimS.getObjectiveValues()
5 Boolean[ ] isPareto = new Boolean[solutionSize]
6 ArrayFill(isPareto, true)
7 int i = 0
8 while i < ObjectiveV alues.size()-1 do
9 int j = i +1

10 while isPareto[i] AND j < ObjectiveV alues.size() do
11 if ObjectiveV alues[i].dominates(ObjectiveV alues[j]) then
12 isPareto[j] ← false
13 else
14 isPareto[i] ← false
15 end
16 j++

17 end
18 i++

19 end
20 int k = 0
21 foreach Boolean b in isPareto do
22 if b == true then
23 S.add(S[k], ObjectiveValues[k])
24 end
25 k++

26 end
27 return S

Algorithm 8: radar exhaustive strategy to find Pareto optimal so-
lutions.

5.1.4 Shortlisting Pareto Optimal Solution using Evolutionary Algo-

rithms

In a situation where a radar model contains OR decisions with multiple options se-

lections, the size of the solution space increases, and therefore may make the use of

exhaustive search infeasible because it requires enormous memory resources to store

matrix results Result of dimension |DS| × |Obj|, where DS is the model’s design space

and Obj the model’s objectives [43]. To overcome this problem, radar implements

alternative search-based approaches, such as evolutionary multi-objective optimisation

algorithms [287] to explore solution space in shortlisting Pareto optimal solutions.

Evolutionary Multi-objective Optimisation Algorithms (EMOAs), such as NSGAII [69],
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use the principles of natural selection and evolution to iteratively evolve a set of solu-

tions (chromosomes), called a population, towards Pareto-optimality [287]. Applying

EMOAs requires (i) selecting the population size, the number of generations, and the

mutation and crossover probabilities that will determine how the best solutions (par-

ents) from one generation will be combined to form new solutions (offsprings) for the

next generation; (ii) determining a termination criterion, which could be either a fixed

number of fitness function evaluations, or a fixed amount of time the algorithm is al-

lowed to run [122]. Guidelines on how to use EMOAs have been proposed in the field

of search-based software engineering [118]—a field that reformulates software engineer-

ing problems as optimisation problems, and then search for optimal or near optimal

solutions in a solution space guided by the fitness functions.

radar uses elitist EMOAs, such as NSGAII [69], SPEAII [289], MoCell [184] and IBEA

[288], implemented in JMetal5 [185]— a JAVA-based optimisation framework. These

algorithms are elitist because they maintain their best solutions throughout the gener-

ations. Apart from IBEA, the other algorithms are similar in dominance criteria: they

use the Boolean Pareto dominance (see definition 2.2) and give priority to solutions that

are more spread out in the Pareto front. IBEA, however, incorporates decision-maker’s

preference information when estimating its dominance values between two solutions, i.e.,

it assign weight values to each solution based on quality indicator, typically hypervolume

[288].

Next, we detail radar’s approaches for handling the key ingredients of search-based

optimisation approaches, i.e., the solution encoding, the fitness function evaluation, a

set of variation operators (i.e. crossover and mutation), and the optimisation approach

used in handling constraints.

Solution Encoding. Search-based approaches generally encode solutions using bit

strings i.e. a vector of bits [122, 281]. For radar’s EMOAs to explore the solution

space of a model, we encoded the solutions using an “array of bit strings”, where the

size of the array is the number of decisions in the model, |D|, and each element of the

array, i.e. the bit strings, represents the set of options, O(d), corresponding to decision

d ∈ D, and are used to encode mutually exclusive option (XOR) and inclusive option

(OR) selections. A bit value of 1 (respectively 0) denotes an option represented by the

bit is selected (respectively not selected).
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For example, in the bike sharing model example, the solution s = {( Bike Man-

ufacturer Brand, {A-bike}), (Bike Security, {localisation feature}), (Tracking

Mechanism, {GPS}), (Dock station, {flexible}), (System Access, {smart card}),

(System Registration, {kiosk}), (Kiosk System Registration, {touch screen}),

(Non Mandatory Component, {(system status, bike maintenance, bike redistribu-

tion)}), (System Status, {web info}), (Redistribution Reward, {no reward})} has

the equivalent binary representation of {[10000],[10],[10],[001],[100],[100],[1000],[111],[10],[10]}.

In this representation, each bit string encodes option selection of decisions in the bike

sharing model. The bit strings in this representation have an order that corresponds to

the order in which the options of each decision are presented in the radar model. For

example, the bit string “10000” in which only the A-bike option is selected encodes all

options in the XOR decision ‘Bike Manufacturer Brand’ of solution s below:

69 UnitCost = decision (“Bike Manufacturer Brand”){

70 “A-Bike”: normalCI(80 ,100);

71 “Bianchi” : normalCI(200 ,300);

72 “Cortina Cyclese”: normalCI(100 ,150);

73 “Derby Cycle”: normalCI(140, 200);

74 “Catrike” : normalCI(250 ,350);

}

Also, the bit string “111” in which the system status, bike maintenance and bike reward

options are selected encodes options in the OR decision ‘Non Mandatory Component’

of solution s below:

104 CostOfOtherComponents = decision-subset(+)(“Non Mandatory Component”){

106 “System Status Info” : CostOfStatusInfo;

107 “Bike Maintenance” : triangular(8,10, 12);

108 “Bike Redistribution” : CostOfRedistribution;

}
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Fitness Evaluation. radar performs a decoding process in order to evaluate the

fitness function of candidate solutions. The decoding process involves a conversion of

EMOA solutions (encoded as array of bit strings) to a radar solution (represented

as a mapping from decisions to power set of options). Such decoding is necessary for

evaluating the impact of alternative solutions on the objectives through a simulation of

model parameters.

Crossover and Mutation. radar performs the crossover and mutation operations

ensuring that the offspring produced by combining two parent solutions have valid set

of decision choices in the model. Currently, radar implements single point crossover,

but can be extended to use other crossover methods available in JMetal5 [185], such as

uniform crossover and two-point crossover. Given a radar solution encoded using an

array of bit strings of size n, the crossover point, cp(0 < cp < n), is randomly chosen at

the boundaries of adjacent bit strings in the array. The offspring are generated through

a copy of array contents from the start of the crossover point from the first parent and

the remaining contents from the second parent.

For the mutation operation, radar implements bit flip mutation such that the deci-

sions characteristics are preserved, i.e., a decision with a single option selection is not

transformed to decisions with multiple option selection, and vice versa.

Constraint Handling. When a radar model has constraint(s), there is the possibility

of generating and evolving invalid solutions, and consequently shortlisting these solutions

in the Pareto front approximation. For instance, in our bike sharing example, the

solution s = {(Bike brand, A-bike), (Bikes Security, Anti-theft feature), (Tracking,

RFID), (Dock station, flexible), (Redistribution Reward, Reward Users)} is invalid.

This is because it violates the constraint that the Anti-theft feature of Bike security

requires the selection of GPS option of Tracking mechanism. In order to guide the

search towards valid solutions in the Pareto front, an approach is to consider an extra

objective, which is the number of violated constraints which is minimised [130, 235].

radar adopts two established optimisation approaches to handle constraint relation-

ships in a decision model [130]. These are the (λ+1) approach and 1+λ approach,

where λ is the number of optimisation objectives declared in the radar model.
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The (λ+1) approach is a classical approach used in optimal product selection based on

feature models [235]. In this approach, all optimisation objectives, including the “num-

ber of violated constraints”, are treated equally during the optimisation process. The

parenthesis around “λ+1” gives the notion that the model objectives and the objective

“number of constraints violated” are considered simultaneously.

The 1+λ approach, introduced by Hierons et al. [130], treats the objective “number of

violated constraints” as the primary and first objective during optimisation and other

objectives declared in the model are treated equally as the secondary objectives. This

approach gives priority to a solution with fewer constraint violations when estimating

dominance value between two solutions, and if the number of violated constraints of the

compared solutions are the same, then, the solution with better fitness is preferred.

Although the EMOAs implemented in radar have better scalability than the exhaustive

strategy. These algorithms do not guarantee finding the Pareto optimal solutions. This

is because they are designed to explore a subset of the problem solution space, i.e.,

some design decisions may not be considered during the solution encoding step of an

EMOA. As a consequence, when these algorithms are used to analyse a decision model,

radar may generate a partial decision dependency graph that would not contain all

model decisions, options and relationships between decisions and options. Such partial

decision dependency graph, for example in Figure 3.4 of Section 3.4, can be used to

provide information about how much of the solution space was explored by running an

EMOA on a problem.

5.2 Information Value Analysis

Uncertainty complicates requirements engineering and software architecture decisions.

Uncertainty is the lack of total knowledge about the actual consequences of alternative

decision choices on stakeholders’ goals [166]. Despite the inherent uncertainty in require-

ments and architecture decisions, requirements engineers and software architects have to

make decisions. Thus, to aid requirements and architecture decisions under uncertainty,

radar automatically computes the expected value of information [133, 166, 224] which

is defined as the “expected gain in net benefit between the selected alternatives with and

without additional information” [166]. The expected value of information helps decision
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makers answer the question of whether reducing uncertainty about model parameters

may lead to the selection of an alternative with a higher net benefit (see section 3.6 for

illustrative example).

radar estimates the financial value of reducing uncertainty in model parameters with

respect to a given set of optimal solutions and a single model objective (e.g. Max Ex-

pectedNetBenefit). Based on the estimated financial value, decision-makers can make

a decision or seek additional information or even perform further analysis through re-

quirements elicitation, prototyping and modelling. Then the decision model is updated

to trigger a new modelling and analysis iteration. Such iteration will stop once the

financial value of additional information is insufficient to justify the effort required.

The expected value of information about an objective can be computed given perfect

and imperfect information. radar, however, computes the expected value of infor-

mation given only perfect information about model parameter(s), as expected value of

information with imperfect information may not produce significant benefit over simple

information value analysis [166]. Specifically, radar computes the expected value of

total perfect information (EVTPI) and expected value of partial perfect information

(EVPPI) [133, 166].

The EVTPI about all non-deterministic model parameter estimations, Ω, is a theoretical

measure of the upper bound to the value of reducing uncertainty through additional data

collection or analysis. The EVTPI for an objective variable X̂ can be computed using

the formular below [166]:

EV TPI =
1

N

N∑
i=1

max
j:1..M

X̂[i, j]− max
1:1..M

1

N

N∑
i:1

X̂[i, j]

where X̂[i, j] represents the objective value of X in a simulation i = {1 . . . N} for a

solution j = {1 . . .M}. The first term in the expression above refers to the expectation

of the highest value of objective X̂ over all possible value of the model parameters. The

second term in the expression is the highest expected X̂ in the presence of the current

uncertainty about model parameters. The EVTPI is always positive or zero, and the

time complexity of the formular is O(N × |S|), where N is the number of simulations

and S is the shortlisted solutions.
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The EVPPI of a single model parameter with respect to an objective gives us information

about whether reducing uncertainty about a single model parameter is worthwhile. In

other words, EVPPI gives the expected gain in the objective X̂ given perfect information

about a single model parameter Θ. radar estimates EVPPI using a recent efficient

algorithm that computes EVPPI for a model parameter Θ from X̂ and the vector ~Θ

containing the simulations of parameter Θ [224]. The EVPPI is always positive or zero.

In the bike sharing model example presented in Section 3.2, radar estimates the EVTPI

as £0.81m. It also estimates the EVPPI about the unit cost of A-Bike brand to be

£0.03m, and the EVPPI of the number of bikes to deploy to be £0.70m. This means

that reducing uncertainty about the number of bikes to deploy has a higher value than

reducing uncertainty about the cost of the A-Bike brand.



Chapter 6

The RADAR Tool

This chapter describes the design of the radar tool. We first present an overview of

the radar tool by describing how to make decisions with the tool. This is followed by

a presentation of the detailed tool design which entails an overview of radar’s system

architecture; radar’s implementation details; the description of radar’s context free

grammar, the tool’s semantic model used during decision analysis.

6.1 Running RADAR

The radar tool is a self-contained jar file. Figure 6.1 shows radar’s graphical user

interface (GUI) that appears once the tool is launched. The GUI consists of three

main tabs. These include: (i) An editor tab that modellers can use to write decision

models and load existing models. The decision model in the editor tab of Figure 6.1

is for the refactoring decision problem introduced in Section 3.4. Once the model is

completely written, modellers can analyse the model by clicking the “solve” button

under the “action” menu. (ii) Analysis result tab which displays the results of the

optimisation and information value analysis. Figure 6.2 shows the analysis results of

refactoring decision problem. These results are also saved in a directory where the jar

file is located. (iii) Console tab, shown in Fig. 6.3, for logging radar’s analysis status,

such as the time taken for each decision analysis steps.

Additional tabs are displayed on completion of radar decision analysis. These include:

the AND/OR goal graph of a decision model (Figure 6.5); the decision dependency graph

103



Chapter 6. The RADAR Tool 104

Figure 6.1: radar refactoring model example.

(Figure 6.6); and the Pareto-front, which shows the Pareto optimal solutions (Figure

6.7).

Another tab that is important during the analysis of a radar model is analysis settings

tab. This tab, shown in Figure 6.8, is used to specify parameters for model analysis. Ex-

amples of these parameters include: (i) the number of Monte-Carlo simulation run which

is default to 104; (ii) the objective variable, for example NB of the refactoring example,

to be used for computing the expected value of total and partial perfect information

(EVTPI and EVPPI); and the model variable (e.g., NB) for which the generation of the

AND/OR goal graph starts from.

In Figure 6.9, radar provides modellers with an option to specify evolutionary algorithm

parameters such as the population size, maximum number of fitness function evaluations,

crossover, mutation probabilities and optimisation approach. radar validates these

input parameters to ensure users enter valid values and displays an error message when

the values are invalid.

RADAR Command-line Tools. The radar tool also provides command-line in-

terface. The command java -jar radar console app.jar - -help will display a list
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Figure 6.2: radar refactoring model analysis result.

of radar commands for decision analysis. These commands and their functions are

enumerated below:

1. - -EVPI: computes EVTPI and EVPPI. Input to this command option is an

objective name. An example usage of this command is - -EVPI ’ENB’ (used by

default).

2. - -model: Specifies the path where the decision model is stored. Input to the

command option is the file that contains the decision model <file path>.

3. - -nbr sim: Number of Monte-carlo simulation run. Input to the command option

is <sample size> (default: 10000).

4. - -opt: Optimisation approach for handling radar’s constraints defined in a

model. Example usage is - -opt ’n+1’ (default: n+1).

5. - -output: Output folder where the results are saved. Input to the command

option is <file path>.

6. - -param: Specify the approximate algorithm parameters. Inputs to this com-

mand option <population size> (datatype: integer), <crossover rate> (datatype:
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Figure 6.3: radar refactoring model output log in a console tab.

double), <mutation rate> (datatype: double), <maximum evaluation> (datatype:

integer) and <runs> (datatype: integer) in this order.

7. - -param-default: Tells the approximate algorithm to use default parameters for

<population size> (100), <crossover rate> (0.8), <mutation rate> (1/options),

<maximum evaluation> (1000) and <runs> (10).

8. - -solve-using: Solves the decision model. Input to this command option is

<algorithm name> e.g. ExhaustiveSearch (default), NSGAII, SPEA2, MOCell,

IBEA, RandomSearch. Specify ’SbseAlgs’ to use all the EMOAs.

9. - -subGraphObj: Generates AND/OR sub-graph for the specified objective

only. Input is an objective name. An example usage of this command is: - -

subGraphObjective ’InvestigationCost’.

An example of a full command to analyse a decision model in radar is thus: java -jar

radar console app.jar - -model ../models/SAS.rdr - -param 100 0.8 0.1 50000

30 - -solve-using NSGAII - -EVPI ’ENB’ - -opt ’n+1’ . In the above command:

• The argument after - -model specifies the path where the decision model is stored.
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Figure 6.4: High-level system architecture of radar.

• The arguments after - -param specifies the SBSE parameters: 100 is the popula-

tion size, 0.8 is the crossover rate, 0.1 is the mutation rate, 50000 is the maximum

number of fitness evaluation, 30 is the number of independent runs.

• The argument after - -solve-using specifies the algorithm to be used in analysing

the model. In this case NSGAII was specified. We can specify other algorithms

like Exhaustive search, SPEA2, MOCell, IBEA, Random search.

• The argument - -EVPI specifies the objective for which to compute the expected

value of information, i.e, Expected Net Benefit (ENB).

• The argument - -opt specifies the optimisation approach to be used in handling

constraints. In this case, we used n+1 (i.e. lambda plus one approach).

6.2 RADAR Tool Design

radar’s design follows an object-oriented architecture which encourages the addition

of new system components and the re-use of existing components. The tool has a set of

JAVA classes that a user can extend to implement new model constructs and decision

analysis approaches. The tool also uses the state-of-the-art object-oriented java-based
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Figure 6.5: radar refactoring model AND/OR graph.

multi-objective optimisation framework with different implementations of meta-heuristic

algorithms, such as the evolutionary algorithms discussed in Chapter 5.1.4.

To describe radar’s tool design, we start by presenting the architecture of the tool,

followed by the implementation details; grammar of radar’s modelling language and

its semantic model.

6.2.1 RADAR System Architecture

Figure 6.4 presents the high-level system architecture of the radar tool. The radar

system is made up of six components namely: model parser, design space generator,

simulator, optimiser, visualiser and information value analyser.

Model Parser. This takes a radar model as input and checks for syntax correctness.

If the model is valid, the parser generates the model’s abstract syntax tree, AST , and

then populates the semantic model described in Section 6.2.4.

Design Space Generator. This component performs a single traversal on radar

semantic model to generate all valid solutions to be used for the simulation and optimi-

sation process.
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Figure 6.6: radar refactoring model Decision graph.

Simulator. This component analyses model uncertainty through Monte-Carlo simula-

tion (MCS) [113]. The simulator performs two main task: (i) given a candidate solution

s, it returns simulation values of all objectives for s; (ii) given a set S of candidate

solutions and a variable X, e.g., the ExpectedNetBenefit variable of the fraud detec-

tion example, it returns a simulation vector X that contains simulations of X and a

simulation matrix P that contains the simulations for all model parameters used to

compute X. The first function is used when shortlisting Pareto optimal solutions. The

second function is used for Information Value Analysis. Internally, both functions use

the same Monte-Carlo simulation where simulations of variables are generated by recur-

sion through the AND/OR refinement equations by selecting the appropriate decision

options through OR-refinements. The number N of simulations is set by the user and

has a default value of 104. To ensure correctness in a given simulation run, all solutions

are evaluated using the same parameter simulation data.

Optimiser. This component shortlists the Pareto-optimal solutions. It implements an

exhaustive search strategy and alternative search-based approaches, such as evolutionary

multi-objective optimisation algorithms [287].

Information Value Analyser. This component returns the expected value of total
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Figure 6.7: Pareto front for the radar refactoring model example.

and partial perfect information, i.e. EVTPI and EVPPI, for all non-deterministic model

parameters with respect to a given objective, X̂, and set of candidate solutions.

Visualiser. This component generates a visualisation of a radar model and the anal-

ysis results. Given radar’s semantic model, the visualiser creates: (i) a variable de-

pendency graph similar to the AND/OR goal refinement graph; and (ii) the decision

dependency graph similar to feature diagrams in software product lines. This graph

contains all decisions, their corresponding options and possible dependencies that exist

between decisions.

For the model analysis results, the visualiser generates a tabular representation of the

optimisation analysis and information value analysis results. Information about the op-

timisation analysis presented include: the optimisation objectives, size of the solutions

space, size of design space, number of shortlisted solutions, number of model variables,

number of model parameters, number of model decisions, the analysis run-time, and a

tabular presentation of the shortlisted decisions and their corresponding options. For

problems that have constraints, only the solutions without constraint violations are

displayed with other solutions that violate constraints written to a file for further con-

siderations. Information about the information value analysis presented are the EVTPI
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Context free grammar for the radar modelling language

1 model : Model VAR ‘;’ NL* model-element*
2 model-element : objective-def+ | variable-def+ | constraint-def+
3 objective-def : Objective (Max | Min) VAR (= statistic)? ‘;’ NL*
4 statistic : EV ‘(’ VAR ‘)’ | Pr ‘(’ VAR ‘)’ | Pr ‘(’ comparison ‘)’ | percentile ‘(’ (+|-)? VAR ‘,’ NUMBER ‘)’
5 variable-def : VAR ‘=’ variable-def NL*
6 variable-def : or-refinement | and-refinement | param-def
7 or-refinement : decision ‘(’ decision-name ‘)’ ‘{’ option-name ‘:’ option-def ‘;’ ‘}’
8 | decision-subset ‘(’ ‘*’ | ‘+’ ‘) (’ decision-name ‘)’ ‘{’ option-name ‘:’ option-def ‘;’ ‘}’
9 option-def : and-refinement | param-def
10 and-refinement : expr
11 constraint-def : Constraint constraint-arg (‘requires’|‘excludes’|‘couples’) constraint-arg ‘;’ NL*
12 constraint-arg : decision-name ‘:’ option-name
13 expr : ‘(’ expr ‘)’

14 | expr ( ‘̂’ | ‘/’ | ‘*’ | ‘+’ | ‘-’ ‘‖’ | ‘&&’ ) expr
15 | ‘+’ | ‘-’ expr
16 | expr ‘%’
17 | ‘!’ expr
18 | comparison
19 | NUMBER
20 | VAR
21 param-def : distribution ‘(’ (expr ( ‘,’ expr)* ‘)’
22 comparison : VAR ( ‘>’ | ‘>=’ | ‘<’ | ‘<=’ | ‘==’ ‘! =’ ) expr
23 distribution : (‘normal’|‘normalCI’|‘geometric’|‘exponential’|‘random’ |‘triangular’|‘deterministic’)
24 decision-name : STRING
25 option-name : STRING
26 STRING : ‘”’ (‘”’ | ‘ ’ | .)*? ‘”’
27 VAR : (LETTER | ‘ ‘) (LETTER | DIGIT | ‘ ‘)*
28 LETTER : [a-zA-Z] NL*
29 NUMBER : DIGIT+ ‘.‘ DIGIT* | DIGIT+ | ‘.‘ DIGIT+
30 DIGIT : [0-9]

Table 6.1: radar grammar: Implemented using ANTLR 4 [198]: rule start (:),
subrule ((...)), termination (;), alternative (|), optional (?), repetition-one or more

(+), repetition-zero or more (*) concatenation (,)

and EVPPI for all non-deterministic model parameters. The visualiser also generates a

plot of the dominated and non-dominated (i.e. Pareto-optimal) solutions.

6.2.2 Implementation Details

radar is implemented entirely in JAVA. This is because JAVA has proven to be re-

liable, expressive, has rich libraries and above all platform independent. radar uses

the ANTLR4 [197] tool to generate the model parser and traverse the abstract syn-

tax tree to populate the semantic model. radar generates the AND/OR refinement

graphs and decision dependency graphs in DOT format [97] that can be visualised

and converted to other formats (e.g., GIF, PNG, SVG, PDF, or PostScript) using

Graphviz [82]. The multi-objective evolutionary algorithms, such as NSGAII [69],

SPEAII [289], MoCell [184] and IBEA [288], implemented in the tool’s optimiser com-

ponent uses JMetal5 [185]— a JAVA-based optimisation framework. The tool’s GUI

is implemented using Java Swing Windows builder. The open source radar tool and

models discussed in the thesis can be downloaded from the tool’s webpage (https:

//ucl-badass.github.io/radar/).

https://ucl-badass.github.io/radar/
https://ucl-badass.github.io/radar/
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Figure 6.8: radar analysis settings page.

6.2.3 Language Grammar

radar is a domain specific language (DSL) [94]. One of the first and key steps in

designing such language is to define grammar rules used by the language parser to

convert the DSL to abstract syntax tree or parse tree. Table 6.1 presents the context

free grammar of radar’s modelling language. The grammar defines the exact syntax

of radar’s language and can be extended to cater for new language constructs. The

grammar contains terminals, non-terminals, production rules1 and a starting symbol.

Terminals are alphabet characters in form of strings. They are in bold or in single quote

and cannot be changed by a production rule. Examples of terminals in Table 6.1 are

the operators (‘/’, ‘*’, ‘+’, ‘>’ and ‘==’)), digits (0-9), alphabets (a-zA-Z) and the

bold keywords (Model, Objective, Max, Min and decision).

Non-terminals are placeholder for sequence of terminal symbols. Such terminal symbols

are created by recursively decomposing non-terminals using production rules until they

are replaced by terminals only. Non-terminals are defined in terms of terminals and

1Production rules are set of rules for replacing non-terminal symbols (on the left side of the rule
definition) with other terminal and non-terminal symbols (on the right side of the rule definition)
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Figure 6.9: radar SBSE parameter settings page.

other non terminals declared at some other place in the grammar. In table 6.1, ob-

serve how the grammar builds the non-terminal “model element” (row 2) by combining

the objective definition (row 3: objective-def), variable definition (row 5: variable-def)

and constraint definition (row 11: constraint-def). A model’s objective(s) is declared

as either a maximisation or a minimisation, whose statistic could be an expectation,

probability, Boolean probability or percentile defined over a random variable (row 4).

The variable definition can either be a OR-refinement (row 7), AND-refinement (row

10) and parameter estimation (row 21: param-def). The OR-refinement defines a vari-

able in terms of AND-refinement or parameter estimations. The AND-refinement is

an arithmetic or Boolean expression relating model variables (row 13). The parame-

ter estimation is used to define a probability distribution (row 21: distribution) of a

model variable. These distributions capture uncertainty in domain quantities and they

include: the normal, normalCI, triangular, exponential and geometric distributions. A

special type of non-terminal is the start symbol at the beginning of the grammar defini-

tion. For example, the non-terminal “model”, which is defined in terms of Model and

“model-element”.
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6.2.4 Semantic Model

radar’s semantic model is a fundamental component and input in radar’s automated

decision analysis. It is an acyclic graph-based data structure that consists of different

model elements, such as a set of objectives; a set model variables; model parameters;

model decisions and their corresponding options and a set of model constraints.

Figure 6.10 depicts a UML diagram showing the semantic model (Model) class which is

composed of a set of class objects, i.e. Decision, QualityVariable, Parameter, Objective

and Constraint, that are populated by a ModelConstructor class when the language

parser traverses the generated radar’s abstract syntax tree (AST) and visits nodes

(terminals and non-terminals) of the AST using the visitor design pattern.

The Model class also has a set of methods to (i) evaluate model objectives given a can-

didate radar solution (see Chapter 4.3 for the definition of a radar solution) through

Monte-Carlo simulation; (ii) get candidate radar solutions for all model objectives;

(iii) check non-existence of cyclic dependency between model variables; (iv) check de-

pendency between model decisions given a set of candidate radar solutions; (v) generate

AND/OR graph and decision dependency graph; (vi) get all non-deterministic model

parameters for information value analysis; (vii) perform information value analysis (i.e.

estimate EVTPI and EVPPI). Following the principle of data encapsulation, the Model

class has “setter” and “getter” methods for adding and accessing class fields.

6.2.4.1 Decision

The Decision class has a label, i.e. the name of the decision; a field that captures the

list of option tied to Decision; and a field to store the type of decision (i.e. exclusive-OR

or inclusive-OR). Though not shown in Figure 6.10, the Decision class has a “setter”

and “getter” methods for including and accessing each of the fields.

6.2.4.2 QualityVariable

The QualityVariable class has a label, i.e. the name of the variable, and has an Expres-

sion object that stores the definition of the QualityVariable object. Figure 6.11 is a UML
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diagram showing the Expression class. It is an abstract class extended by four class ob-

jects , i.e. ArithmeticExpression, Distribution, AND Refinement, and OR Refinement.

The Expression class has four abstract methods implemented by its derived classes and

each method traverses the calling Expression object instance recursively until reaching

the leaf Expression in the Model. The abstract methods are (i) the “simulate” method

which takes a radar solution (see Chapter 4.3) and returns an array of simulation

values, where the array size is N , the number of possible scenarios default to 104; (ii)

the “getAllSolutions” method that takes Model as input and returns a set of solutions;

(iii) the “checkCyclicDependency” method that takes Model as input and checks for

cyclic dependencies between variables within an expression and throws an exception if

one is found; and (iv) an “accept” method that takes a ModelVisitor and Model as

inputs and visits different model construct classes (e.g., Distribution, And-Refinement,

OR-Refinement and Objective) to generate AND/OR goal models.

The ArithmeticExpression class is an abstract class which is extended by four classes,

such as UnaryExpression, BinaryExpression, QualityVariable and Number. The Unary-

Expression defines an expression with a UnaryOperator (e.g., percentage and negation).

BinaryExpression defines an expression with a BinaryOperator (e.g., addition, subtrac-

tion, multiplication, division, logical AND, logical OR) and has a left and right operands

that are ArithmeticExpression object instances. QualityVariable has an Expression ob-

ject that stores its definition. Such definition points to an Expression object and can be

a Distribution, AND Refinement or OR Refinement.

The Distribution class is an abstract class extended by different probability distribution

classes. It has a RandomGenerator object that generates random numbers with the

option of using a seed. It also has methods that generate an array of simulation values

for each probability distribution class, such as the TriangularDistribution, NormalDis-

tribution, NormalCIDistribution, GeometricDistribution and ExponentialDistribution.

The AND Refinement class is a concrete implementation of the Expression class. It has

an Expression object that stores the definition of the AND Refinement object. Such

definitions points to an ArithmeticExpression.

The OR Refinement class is a concrete implementation of the Expression class. It has

a Decision object that represents the model decision the OR Refinement refers to; it

has a Boolean field that is set to determine if the OR Refinement is an exclusive-OR
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selection or inclusive-OR selection; and a field to store an arithmetic operator (addition

or multiplication) if the OR Refinement is an inclusive-OR. The OR Refinement stores

its definition in a data structure with a key-value pair, where the key is the name of

the option of Decision object and the value is an AND Refinement corresponding to a

decision option.

6.2.4.3 Objective

The Objective class, shown in Figure 6.10, has a label, i.e. the name of the objective;

a QualityVariable it refers to, an optimisation direction which can be either a maximi-

sation (Max ) or minimisation (Min); and a Statistic definition. Statistic is an abstract

class that is extended by the different radar’s statistical measures, such as Expectation

(used by default), Probability, BooleanProbability and Percentile. The Statistic class has

an abstract “evaluate” method, which takes a radar solution and a Variable that a

particular Objective refers to as input and returns simulation objective value.

The Objective class has an overloaded “evaluate” method: one that takes a radar

solution as input and the other takes a set of radar solutions as input. Internally, these

two “evaluate” methods invoke the “evaluate” method of the Statistic class to return

simulation objective value(s). The solution and corresponding simulation objective value

are stored in a field Value –a map with “Solution” as the key and “objective value” as

the value. Objective also has a method called “get All Solutions” that returns a set of

solutions by traversing Model recursively starting from the Variable associated to the

definition of Objective (see Chapter 5.1.1 for the algorithm description).

6.2.4.4 Constraint

The Constraint class in Figure 6.10 is an abstract class that has a left and right Con-

straintArgument object (stores a decision name and option name) that defines a con-

straint. The Constraint class is extended by its derived classes, such as RequireCon-

straint, ExcludeConstraint and CoupleConstraint. These derived classes implement an

IConstraint interface that has a method “isSolutionValid” which takes a candidate So-

lution and a Model as inputs and then checks that the solution does not violate the

constraint definition.
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Chapter 7

Evaluating RADAR’s

Applicablity and Usefulness

7.1 Research Questions

This chapter demonstrates radar in action and evaluates its applicability and usefulness

on a range of requirements and architecture decision problems. We thus aim to answer

the following research questions:

RQ1 (Applicability): Is the radar tool applicable to real-world requirements

and architectural decision problems? We use this research question to provide in-

sight about the applicability of radar’s modelling language and automated decision

analysis technique on different requirements and architecture decision problems in dif-

ferent application domains.

RQ2 (Usefulness): Does radar’s decision analysis technique provide useful

improvements to real-world requirements and architecture decisions? This

research question gives insight into the usefulness of the tool to guide decision-makers in

making better decisions in the presence of uncertainty. The performance and scalability

of radar will be evaluated in Chapter 8.

119
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7.2 Experiments

To answer these questions, we have applied radar on 12 requirements and architecture

decisions problems based on real design decisions problems described in the literature.

These problems cover five important categories of requirements and architecture deci-

sions problems:

1. Decisions in Goal Models. To evaluate radar’s ability to analyse decisions in

goal-oriented requirements engineering models, we have applied it to two problems

that had previously been used to illustrate quantitative goal modelling techniques.

The first is a financial fraud detection system [67, 74, 75]; the second is an ambu-

lance dispatching system [90, 126].

2. Decisions in Architecture Models. We have also applied radar to two typical

architecture decision problems. The first is the design of an emergency response

system to coordinate the deployment of emergency response teams [85, 166]; the

second is the NASA satellite processing system designed to collect and process

satellite images [151, 179].

3. Security Policy Decisions. We have also applied radar to guide decisions

about an organisation security policy regarding building access and sharing of

electronic documents [50, 51].

4. Next Release Problem (NRP). We show how radar can be used to support

decisions about what features to implement for the next release of a commercial

release planning system and a word processor system [142].

5. Feature selection in product line engineering. We have also applied radar

to a series of problems dealing with selecting an optimal set of features in a product

family. These includes: the public Bike Sharing System [177, 250]; Drupal system

—a PHP-based framework for web content management [228]; an e-commerce

System [176]; Amazon Web Service (AWS) elastic compute cloud [98]; Berkeley

Relational Database Management System [238].

Table 7.1 summarises these problems. They are characterised by different number of ob-

jectives; different number of decisions; different number of options per decision; different
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expressions (e.g., arithmetic, Boolean, AND-Refinements, OR-Refinements with single

option selection and OR-refinement with multiple option selections); different number

of constraints (e.g., excludes, requires and couples) between options of decisions; and

different design space sizes between 6 and 250 alternative designs. For each model, we

assigned values to domain quantities and parameters as prescribed in previous works.

To show that radar’s modelling language and automated decision analysis technique

are applicable to real-world requirements and architecture decision problems, we have

applied radar to five real-world examples, one from each problem category described

in Section 7.2. The radar analysis of the other 7 problems can be found in appendix.

We also compare radar’s analysis results presented in this section with previous work

where such problems have been analysed. The problems considered in this section are

enumerated below:

1. The design of a financial fraud detection system [73, 75, 115].

2. The design of a system to coordinate the deployment of emergency response teams

[85, 166, 173].

3. The decisions about system security policies on the leak of confidential information

[50, 51].

4. Requirements subset selection for the future release of a commercial decision sup-

port system [142].

5. Optimal feature selection in a public Bike Sharing System [177, 250].

7.2.1 Plastic Card Fraud Detection System

7.2.1.1 Problem Statement

According to the financial fraud figures published in the first half of 2015 by the Financial

Fraud Action UK (FFA-UK), financial fraud losses on cards in the UK totalled £250m,

which represent 1% increase from 2014 [89]. The FFA-UK figures reveal increasing at-

tempts of criminals employing sophisticated techniques to target cardholders despite the
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fraud detection methods deployed by banks and other financial institutions. Undoubt-

edly, the heterogeneous nature of card transactions on most accounts contributes greatly

to the low accuracy and performance of most fraud detection methods [37].

Plastic card fraud detection systems (PCFDS) are deployed in banks to detect fraud-

ulent transactions on plastic cards [115]. PCFDS process authorised card transactions

and generate an alert when a transaction is suspected to be fraudulent so that further

investigation can be carried out on the card . Card transactions are either processed in

batches or real-time, and a card is blocked if the corresponding transaction performed

on it is confirmed fraudulent.

In Chapter 1, we already introduced the plastic card fraud detection system, its op-

timisation objective and the design decisions. The optimisation of plastic card fraud

detection systems typically include two conflicting objectives [115]: minimise the finan-

cial loss due to fraud and to minimise the fraud investigation costs. The design decisions

include: the transaction processing type with the option of using continuous (real-time)

or batch processing; the fraud detection method which can be two-class supervised clas-

sification method or a non-statistical rule-based method; If the classifier fraud detection

method is chosen, the alert threshold needs to be decided on; and the blocking policy

with the option of blocking an account once a fraud detection method flags a transac-

tion as suspected fraud, or only blocking the account after the suspected fraud has been

confirmed by human investigators.

7.2.1.2 RADAR Model

Modelling the Optimisation Objectives

The design of the plastic card fraud detection system has two key concerns, namely:

minimise the financial loss due to fraud and to minimise the manual fraud investigation

load.
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Objective Max FraudDetectionBenefit= EV(Benefit)

Objective Min InvestigationLoad = percentile(NbrAlerts, 95)

Benefit = BaseLineFinancialLoss - FinancialLoss

FinancialLoss = NbrCompromisedAccounts × AverageFraudValue × NbrFraudPerAccountBe-

foreBlocked

BaseLineFinancialLoss = deterministic(500000)

AverageFraudValue = normalCI(100, 1000)

NbrFraudPerAccountBeforeBlocked = decision(“blocking policy”){

“block first” : NbrFraudBeforeDetection

“investigate first” : NbrFraudBeforeDetection + NbrFraudDuringInvestigation

}

The first objective of minimising financial loss is equivalent to maximising the benefits of

using a fraud detection system, where the benefits are defined as the reduction in finan-

cial loss with respect to the current system’s baseline. The formulation of the objective

FraudDetectionBenefit as a maximisation of expected benefits instead of minimisation

of expected loss is more convenient for radar’s information value analysis.

We model the second objective as minimising the alert investigation load defined here

as the 95th percentile of the number of alerts generated by the fraud detection system:

Objective Min InvestigationLoad = percentile(NbrAlerts, 95);

The percentile means that in 95 days out of 100, the number of alerts will be below the

investigation load.

Modelling Financial Loss

This plastic card fraud detection system analyses transactions after they have been

authorised by the bank. Therefore, if the fraud detection system detects a transaction

as fraudulent, the bank will still lose the fraudulent transaction amount (unless the

bank can prove the fraud is due to negligence from the cardholder or vendor, a concern

we will not consider in our model). The purpose of the fraud detection system is to
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block compromised card accounts as quickly as possible so as to prevent further fraud.

Plastic card fraud detection systems are thus evaluated by their ability to minimise

future financial losses.

We model the future financial loss as the product of the number of compromised ac-

counts, the average number of fraudulent transactions that will be authorised on an

account before it is blocked, and the average value of a fraudulent transaction:

FinancialLoss = NbrCompromisedAccounts × AverageFraudValue × NbrFraudPerAccountBe-

foreBlocked

The FinancialLoss is measured in £ per day, NbrCompromisedAccounts in number

accounts per day, and AverageFraudValue in £.

The number of compromised accounts is the total number of accounts multiplied by the

percentage of compromised accounts:

NbrCompromisedAccounts = NbrAccounts × CompromisedAccountRatio;

Both NbrAccounts and CompromisedAccountRatio are domain parameters that can be

estimated from past data. For our example, we asume the following:

NbrAccounts = normalCI(0.9×106, 1.1×106);

CompromisedAccountRatio = triangular(0, 0.0001, 0.0003);

The average fraudulent transaction value can also be estimated from past data. For

example:

AverageFraudValue = normalCI(100, 1000);

The average number of frauds on an account before it is blocked, NbrFraudPerAccount-

BeforeBlocked, depends on the blocking policy. If accounts are blocked as soon as the

fraud detection system suspects a fraud, the number of fraud before the account is
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blocked is the number of fraud before detection. If accounts are blocked only after sus-

pected frauds are confirmed by a fraud investigation, further frauds might occur during

investigation:

NbrFraudPerAccountBeforeBlocked = decision(“blocking policy”){

”block first” : NbrFraudBeforeDetection;

”investigate first” : NbrFraudBeforeDetection + NbrFraudDuringInvestigation;

}

The average number of frauds before detection, NbrFraudBeforeDetection, depends on

the processing type. For continuous processing, the mean number of fraud before detec-

tion is the infinite series:

1 * probability(fraud is detected after 1 fraudulent transactions)

+ 2 * probability(fraud is detected after 2 fraudulent transactions)

+ 3 * probability(fraud is detected after 3 fraudulent transactions)

+ ...

The probability that a fraudulent transaction is detected is the true alert rate (the ratio

of the number of detected fraud over the number of fraud). Factoring the above series

yield that for continuous processing:

NbrFraudBeforeDetection = 1/TrueAlertRate;

In batch processing, transactions are analysed at the end of every day. Batch processing

thus introduces a delay between a fraudulent transaction and its detections, a delay

during which additional fraud might occur, but because transactions are analysed in

groups rather than individually, the batch processing may have a better true alert rate

than the continuous processing. Assuming that batch processing adds on average a delay

of a day to fraud detection, our models assumes that:

NbrFraudBeforeDetection = NbrFraudsPerCompromisedAccountPerDay×1/BatchTrueAlertRate;
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Thus, the final equation for estimating NbrFraudBeforeDetection is:

NbrFraudBeforeDetection = decision(“processing type”) {

”continuous” : 1/ContinuousTrueAlertRate;

”batch” : NbrFraudPerCompromisedAccountPerDay/BatchTrueAlertRate;

}

The average number of frauds per day per compromised account is a domain parameter

that could be estimated from past data. For example:

NbrFraudsPerCompromisedAccountPerDay = normalCI(1, 20);

The average number of fraud per account committed during the investigation period is

also proportional to the number of frauds per compromised account per day.

NbrFraudDuringInvestigation = NbrFraudPerCompromisedAccountPerDay×InvestigationDelay;

InvestigationDelay = triangular(1/24, 1/3, 1);

The true alerts rates depend on the fraud detection methods and their parameters. True

alerts rates are typically estimated by analysing the performance of the fraud detection

method on past data.

To keep the model simple, we assume the classifier has three settings high, medium, and

low that generates high, medium, or low number of alerts; and the rule-based approach

has a single fixed true alert rate.

For the continuous true alert rate:
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ContinuousTrueAlertRate = decision(“fraud detection method”){

“classifier” : ContinuousAlertThreshold;

“rule-based” : deterministic(0.75);

}

ContinuousAlertThreshold = decision(“alert threshold”){

“low” : triangular(0.75, 0.85, 0.95);

“medium” : triangular(0.65, 0.75, 0.85);

“high” : triangular(0.55, 0.65, 0.75);

}

For the batch true alert rate:

BatchTrueAlertRate = decision(“fraud detection method”){

“classifier” : BatchAlertThreshold;

“rule-based” : deterministic(0.80);

}

BatchAlertThreshold = decision(“alert threshold”){

“low” : triangular(0.75, 0.85, 0.95);

“medium” : triangular(0.65, 0.75, 0.85);

“high” : triangular(0.55, 0.65, 0.75);

}

Modelling Fraud Investigation Load

The number of generated alerts is the sum of the number of true alerts and false alerts:

NbrAlerts = NbrTrueAlerts + NbrFalseAlerts;

The number of true and false alerts are functions of the number of accounts, the per-

centage of compromised accounts, and the true and false alert rates:
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NbrTrueAlerts = NbrFraud * TrueAlertRate;

NbrFalseAlerts = NbrLegitTransactions * (1 – TrueNegativeRate);

The true alert rate (the ratio of the number true alert over the number of fraud, a.k.a.

sensitivity) and true negative rate (the ratio of the number of un-flagged legitimate

transactions over the total number of legitimate transactions, a.k.a. specificity) vary

with the processing type:

TrueAlertRate = decision(“processing type”){

“continuous” : ContinuousTrueAlertRate;

“batch” : BatchTrueAlertRate;

}

TrueNegativeRate = decision(“processing type”){

“continuous” : ContinuousTrueNegativeRate;

“batch” : BatchTrueNegativeRate;

}

Models of the continuous and batch true alert rates have already been defined. The

models for the continuous and batch true negative rate follow the same structure:
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ContinuousTrueNegativeRate = decision(“fraud detection method”){

“classifier” : ContinuousClassierTrueNegativeRate;

“rule-based” : deterministic(0,99);

}

ContinuousClassierTrueNegativeRate = decision(“continuous classifier threshold level”){

“low” : triangular(0.95, 0.99, 0.995);

“medium” : triangular(0.99, 0.995, 0.999);

“high” : triangular(0.995, 0.999, 0.9999);

}

BatchTrueNegativeRate = decision(“fraud detection method”){

“classifier” : BatchClassifierTrueNegativeRate;

“rule-based” : deterministic(0,995);

}

BatchClassifierTrueNegativeRate = decision(“batch classifier threshold level”){

“low” : triangular(0.9, 0.99, 0.995);

“medium” : triangular(0.99, 0.995, 0.999);

“high” : triangular(0.995, 0.999, 0.9999);

}

Finally, the number of fraudulent and legitimate transactions depends on the number

of accounts and average number of transactions per account:

NbrFraud = NbrAccounts * CompromisedAccountRatio * NbrFraudPerCompromisedAccount-

PerDay;

NbrLegitTransactions = NbrAccounts * NbrLegitTransactionsPerAccountPerDay;

The average number of accounts and compromised account ratio are model parameters

that we have already estimated above. The average number of legitimate and fraudulent

transactions per compromised account per day are also model parameters that could be

estimated from past data. For example:
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Figure 7.1: AND/OR refinement graph for the model variable Benefit.

NbrFraudPerCompromisedAccountPerDay = triangular(0, 3, 10);

NbrLegitTransactionsPerAccountPerDay = triangular(0, 3, 10);

To help visualise the model structure, radar automatically generates the AND/OR

refinement graph and decision dependency graphs from the fraud detection model equa-

tions. Fig. 7.1 shows the partial AND/OR refinement graphs for the fraud detection

model starting from the model variable Benefit. Fig. 4.3 in Chapter 3 shows the de-

cisions; their corresponding options; and the dependency between a decision (threshold

level) and an option of another decision (classifier).

7.2.1.3 Analysis Results

The radar analysis of the plastic card fraud detection model is presented in Table 7.2,

which shows the results of the optimisation and information value analysis on the model.
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The first part of Table 7.2 is the optimisation analysis results, which shows that all

shortlisted solutions include the “block first” policy and “continuous processing” type.

This means that, in our model, these two options outperform the “investigate first”

policy and “batch processing” on both objectives. However, once these two options are

selected, the shortlist includes all possible combinations of fraud detection methods and

alert thresholds; each combination representing different tradeoffs between maximising

fraud detection benefit and minimising investigation load. To visualise such tradeoffs,

radar generates the graph in Fig. 7.2, plotting the objective values for the shortlised

solutions (shown squares at the top of the graph) and all other non shortlisted ones

(shown as circles).

The second part of Table 7.2 is the information value analysis results, which show that

the EVTPI for this problem is 220 and EVPPI for AverageFraudValue is 122. All other

parameters have EVTPI below 2. This means that in this model, the only parameter

worth investigating further before deciding between the shortlisted solutions is average

fraud value.

7.2.1.4 Comparison To Previous Analysis Approaches

Previous analyses on (plastic card) fraud detection systems have mainly focused on

developing various fraud detection methods and tools. Some of the widely used meth-

ods include: (i) Expert Systems that represent domain-specific knowledge in order to

solve detection problem by encoding fraud attacks as IF-THEN rules [15]; (ii) Artificial

Neural Networks which uses previously observed fraud patterns to detect future unseen

abnormal transactions [102]; (iii) Model-Based Reasoning technique in which frauds are

detected through observable attack activities using a database of attacks scenarios [99];

(iv) Data mining techniques where learning algorithms are used to construct detection

models from a large audit of transaction data [244]; (v) State Transition Analysis tech-

niques where attacks are modelled as series of state transactions of the software systems.

Fraud scenarios are represented by state transition diagram and actions that precedes

or initiates a fraud represent transitions between states [138]; (vi) Genetic Algorithms

technique which separates legitimate and fraudulent transactions using mathematical

models whose candidate solutions represent possible fraud scenarios [54].
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Optimisation Analysis

Objective: Max FraudDetectionBenefit
Objective: Min InvestigationLoad
SolutionSpace: 24
Minimal SolutionSet: 16
Shortlisted: 4
Nbr. Variables: 31
Nbr. Parameters: 19
Nbr. Decisions: 4
Runtime(s) : 0

ID blocking policy processing type fraud detection method alert threshold FraudDetectionBenefit InvestigationLoad

1 block first continuous rule-based — 402799 82709
2 block first continuous classifier medium 402516 52139
3 block first continuous classifier high 387394 22467
4 block first continuous classifier low 414087 232479

Information Value Analysis

Objective: Max ENB
EVTPI: 220

Parameter EVPPI

AverageFraudValue 122
ContinuousAlertThreshold[medium] 1.56
ContinuousAlertThreshold[low] 0
ContinuousClassierTrueNegativeRate[low] 0
ContinuousAlertThreshold[high] 1
BatchClassifierTrueNegativeRate[low] 0
BatchClassifierTrueNegativeRate[medium] 0
NbrAccounts 0
BatchAlertThreshold[medium] 0
NbrFraudPerCompromisedAccountPerDay 0
BatchAlertThreshold[low] 0
CompromisedAccountRatio 0
BatchAlertThreshold[high] 0
ContinuousClassierTrueNegativeRate[high] 0
NbrLegitTransactionsPerAccountPerDay 0
BatchClassifierTrueNegativeRate[high] 0
ContinuousClassierTrueNegativeRate[medium] 0
InvestigationDelay 0

Table 7.2: Optimisation analysis and information value analysis results
for the plastic card fraud detection model.

Recently, Hand et al. [116] proposed a mathematical model for defining optimisation ob-

jectives and introduced performance evaluation criteria for plastic card fraud detection

systems. Duboc et al. [67, 74, 75] proposed a goal-oriented requirements engineering

technique to analyse the scalability of a commercial financial fraud detection system,

i.e., Searchspace’s Intelligent Enterprise Framework (IEF). The authors used KAOS
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Figure 7.2: Pareto front of the the plastic card fraud detection model analysis.

approach to elaborate the plastic card fraud detection model and to capture conflicts

between system goals. They defined the degrees of satisfaction of each goal using objec-

tive functions defined in terms of quality variables, which are random variables, defined

over probability space. Each goal was specified using a natural language definition and

a formal specification in linear temporal logic. Finally, alternative designs are selected



Chapter 7. Evaluating RADAR’s Applicablity and Usefulness 135

using utility functions defined based on stakeholders’ preferences.

In this section, we have defined our plastic card fraud detection model following the

quantitative goal models presented by Duboc et al. [67, 75]. While Duboc’s approach

focused on analysing scalability of the fraud detection system, our approach seeks to

aid stakeholders in selecting the best alternative fraud detection system designs that

gives the best trade-off such that the optimisation objectives (i.e., maximising the fraud

detection benefit and minimsing the investigation load resulting from investigating a

fraud) are satisfied. In addition, the radar approach allows modellers to define differ-

ent model objectives and elaborate the objective definition using simple mathematical

equations. Unlike Duboc’s approach, radar provides automated tool support for de-

cision analysis and allows capturing uncertainties in domain quantities, a feature not

included in Duboc’s approach and analysis.

7.2.2 Emergency Response System

7.2.2.1 Problem Statement

The Emergency Response System, which is also known as the Situation Awareness Sys-

tem (SAS), was originally introduced by Naeem et al. [85], in their research presented

at the International Conference on Software Engineering (ICSE) in 2013, on the early

architecture selection problem under uncertainty. The SAS is a mobile software applica-

tion originally developed to deploy emergency staff in cases of emergencies, and allows

deployed individuals to share information about the status of an emergency situation.

Due to the proliferation of mobile technologies, standards, and platforms, the SAS stake-

holders decided to improve the system using some of the latest technologies. An example

of such improvements includes allowing deployed personnel to send and receive real-

time information about the status of an emergency situation (e.g., interactive overlay

on maps) and coordinate with one another (e.g., send reports, chat, and share video

streams).

The SAS project team, which consisted of academics and engineers from a government

agency, identified and described the design decisions and their corresponding alternative

options as presented in Table 7.3. These decisions impacts the system’s response time,
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Decisions Alternative Options
Location Finding GPS

Radio Triangulation
File Sharing Package OpenIntents

In house
Report Synchronisation Explicit

Implicit
Chat Protocol XMPP (Open Fire) Optimisation Objectives

In house Battery Usage
Map Access On demand (Google) Response Time

Cached on Server Reliability
Preloaded (ESRI) Ramp up Time

Hardware Platform Nexus 1 (HTC) Cost
Droid (Motorola) Development Time

Connectivity Wi-Fi Deployment Time
3G on Nexus 1
3G on Droid
Bluetooth

Database MySQL
sqlLite

Architectural Pattern Facade
Peer-to-peer
Push-based

Data Exchange format XML
Compressed XML
Unformatted data

Table 7.3: Overview of SAS Design decisions and optimisation goals [84]

reliability, ramp up time, cost, development time and deployment time, which ultimately

impacts the utility derived when the application delivers the intended goals and total

cost incurred in improving the SAS application. The team is faced with the decision of

selecting design options to be implemented in the new system that gives maximum net

benefit to the stakeholders at a reduced risk.

7.2.2.2 RADAR Model

Modelling the Optimisation Objectives

The primary decision objectives of the SAS model include two objectives: maximise the

expected net benefit and minimise the risk associated to each alternative architecture:
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Objective Max ENB = EV(NB);

Objective Min Risk = EV(ProjectRisk);

Modelling the Net Benefit

The Net Benefit, NB, derived from each alternative architecture is defined as:

NB = BatteryUsageWeight × BatteryUsagePreference +

ResponseTimeWeight × ResponseTimePreference +

ReliabilityWeight × ReliabilityPreference +

RampUpTimeWeight × RampUpTimePreference +

CostWeight × CostPreference +

DevelopmentTimeWeight × DevelopmentTimePreference +

DeploymentTimeWeight × DeploymentTimePreference ;

BatteryUsageWeight = deterministic(9);

ResponseTimeWeight = deterministic(7);

ReliabilityWeight = deterministic(3);

RampUpTimeWeight = deterministic(2);

CostWeight = deterministic(1);

DevelopmentTimeWeight = deterministic(2);

DeploymentTimeWeight = deterministic(2);

Modelling the Project Risk

ProjectRisk = 1 − ( (1 − BatteryUsageRisk) ×

(1 − ResponseTimeRisk) ×

(1 − ReliabilityRisk) ×

(1 − RampUpTimeRisk) ×

(1 − CostRisk) ×

(1 − DevelopmentTimeRisk) ×

(1 − DeploymentTimeRisk)

) ;
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Modelling the Battery Usage

BatteryUsagePreference = (BatteryUsage - BatteryUsageWorst)/

(BatteryUsageBest - BatteryUsageWorst);

BatteryUsageRisk = Pr(BatteryUsage < BatteryUsageMust);

BatteryUsageBest = deterministic(24) ;

BatteryUsageWorst = deterministic(111) ;

BatteryUsageMust = deterministic(52);

BatteryUsage = BatteryUsageLocationFinding +

BatteryUsageFileSharing +

BatteryUsageReportSyncing +

BatteryUsageChatProtocol +

BatteryUsageMapAccess +

BatteryUsageHardwarePlatform +

BatteryUsageConnectivity +

BatteryUsageDataBase +

BatteryUsageArchitecturalPattern +

BatteryUsageDataExchangeFormat;

BatteryUsageLocationFinding = decision(”Location Finding”){

”GPS” : triangular(10, 10, 14);

”radio triangulation” : triangular(4, 5, 6);

}

BatteryUsageFileSharing = decision(”File Sharing”){

”OpenIntent” : triangular(5, 5, 6);

”In house” : triangular(0, 0, 0);

}
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BatteryUsageReportSyncing = decision(”Report Syncing”){

”Explicit” : triangular(1, 3, 4);

”Implicit” : triangular(7, 8, 10);

}

BatteryUsageChatProtocol = decision(”Chat Protocol”){

”XMPP (Open Fire)” : triangular(4, 5, 6);

”In house” : triangular(2, 3, 12);

}

BatteryUsageMapAccess = decision(”Map Access”){

”On Demand (Google)” : triangular(4, 4, 12);

”Cache on server” : triangular(4, 5, 12);

”Preloaded (ESRI)” : triangular(5, 7, 7);

}

BatteryUsageHardwarePlatform = decision(”Hardware Platform”){

”Nexus I (HTC)” : triangular(3, 5, 5);

”Droid (Motorola)” : triangular(4, 5, 14);

}

BatteryUsageConnectivity = decision(”Connectivity”){

”Wifi” : triangular(3, 4, 5);

”3G on Nexus I” : triangular(1, 2, 3);

”3G on Droid” : triangular(2, 4, 5);

”Bluetooth” : triangular(2, 3, 15);

}

BatteryUsageDataBase = decision(”Database”){

”MySQL” : triangular(3, 6, 7);

”sqLite” : triangular(5, 5, 10);

}

BatteryUsageArchitecturalPattern = decision(”Architectural Pattern”){ ”Peer-to-peer” :

triangular(7, 8, 10);

”Client-Server” : triangular(5, 6, 7);

”Push-based” : triangular(2, 4, 4);

}

BatteryUsageDataExchangeFormat = decision(”Data Exchange Format”){ ”XML” : tri-

angular(3, 4, 6);

”Compressed XML” : triangular(5, 5, 7);

”Unformatted data” : triangular(1, 1, 3);

}
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Modelling the Performance

ResponseTimePreference = (ResponseTime - ResponseTimeWorst)

/(ResponseTimeBest - ResponseTimeWorst);

ResponseTimeRisk = Pr(ResponseTime < ResponseTimeMust);

ResponseTimeBest = deterministic(203);

ResponseTimeWorst = deterministic(2850);

ResponseTimeMust = deterministic(882);

ResponseTime = ResponseTimeLocationFinding +

ResponseTimeFileSharing +

ResponseTimeReportSyncing +

ResponseTimeChatProtocol +

ResponseTimeMapAccess +

ResponseTimeHardwarePlatform +

ResponseTimeConnectivity +

ResponseTimeDataBase +

ResponseTimeArchitecturalPattern +

ResponseTimeDataExchangeFormat;

ResponseTimeLocationFinding = decision(”Location Finding”){

”GPS” : triangular(480, 500, 990);

”radio triangulation” : triangular(50, 100, 600);

}

ResponseTimeFileSharing = decision(”File Sharing”){

”OpenIntent” : triangular(50, 65, 70);

”In house” : triangular(40, 60, 100);

}

ResponseTimeReportSyncing = decision(”Report Syncing”){

”Explicit” : triangular(20, 30, 50);

”Implicit” : triangular(1, 4, 10);

}
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ResponseTimeChatProtocol = decision(”Chat Protocol”){

”XMPP (Open Fire)” : triangular(40, 60, 70);

”In house” : triangular(30, 40, 200);

}

ResponseTimeMapAccess = decision(”Map Access”){

”On Demand (Google)” : triangular(700, 800, 900);

”Cache on server” : triangular(1, 4, 500);

”Preloaded (ESRI)” : triangular(1, 2, 3);

}

ResponseTimeHardwarePlatform = decision(”Hardware Platform”){

”Nexus I (HTC)” : triangular(40, 60, 65);

”Droid (Motorola)” : triangular(50, 55, 200);

}

ResponseTimeConnectivity = decision(”Connectivity”){

”Wifi” : triangular(30, 35, 40);

”3G on Nexus I” : triangular(20, 25, 40);

”3G on Droid” : triangular(20, 25, 40);

”Bluetooth” : triangular(25, 30, 200);

}

ResponseTimeDataBase =decision(”Database”){

”MySQL” : triangular(20, 25, 30);

”sqLite” : triangular(8, 10, 50);

}

ResponseTimeArchitecturalPattern = decision(”Architectural Pattern”){

”Peer-to-peer” : triangular(10, 20, 30);

”Client-Server” : triangular(25, 30, 80);

”Push-based” : triangular(15, 25, 40);

}

ResponseTimeDataExchangeFormat = decision(”Data Exchange Format”){

”XML” : triangular(20, 35, 80);

”Compressed XML” : triangular(12, 20, 35);

”Unformatted data” : triangular(3, 10, 15);

}
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Modelling the Ramp Up Time

RampUpTimePreference = (RampUpTime - RampUpTimeWorst)

/(RampUpTimeBest - RampUpTimeWorst);

RampUpTimeRisk = Pr(RampUpTime < RampUpTimeMust);

RampUpTimeBest = deterministic(31);

RampUpTimeWorst = deterministic(83);

RampUpTimeMust = deterministic(58);

RampUpTime = RampUpTimeLocationFinding +

RampUpTimeFileSharing +

RampUpTimeReportSyncing +

RampUpTimeChatProtocol +

RampUpTimeMapAccess +

RampUpTimeHardwarePlatform +

RampUpTimeConnectivity +

RampUpTimeDataBase +

RampUpTimeArchitecturalPattern +

RampUpTimeDataExchangeFormat

RampUpTimeLocationFinding = decision(”Location Finding”){

”GPS” : triangular(5, 6, 7);

”radio triangulation” : triangular(7, 8, 9);

}

RampUpTimeFileSharing = decision(”File Sharing”){

”OpenIntent” : triangular(8, 9, 10);

”In house” : triangular(5, 8, 12);

}

RampUpTimeReportSyncing = decision(”Report Syncing”){

”Explicit” : triangular(2, 2, 3);

”Implicit” : triangular(1, 2, 2);

}
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RampUpTimeChatProtocol = decision(”Chat Protocol”){

”XMPP (Open Fire)” : triangular(5, 6, 7);

”In house” : triangular(3, 4, 14);

}

RampUpTimeMapAccess = decision(”Map Access”){

”On Demand (Google)” : triangular(7, 9, 10);

”Cache on server” : triangular(7, 9, 10);

”Preloaded (ESRI)” : triangular(10, 13, 14);

}

RampUpTimeHardwarePlatform = decision(”Hardware Platform”){

”Nexus I (HTC)” : deterministic(0);

”Droid (Motorola)” : deterministic(0);

}

RampUpTimeConnectivity = decision(”Connectivity”){

”Wifi” : triangular(1, 3, 4);

”3G on Nexus I” : triangular(1, 2, 3);

”3G on Droid” : triangular(1, 2, 3);

”Bluetooth” : triangular(1, 2, 8);

}

RampUpTimeDataBase = decision(”Database”){

”MySQL” : triangular(1, 2, 3);

”sqLite” : triangular(3, 4, 5);

}

RampUpTimeArchitecturalPattern = decision(”Architectural Pattern”){

”Peer-to-peer” : triangular(10, 11, 13);

”Client-Server” : triangular(7, 8, 10);

”Push-based” : triangular(9, 10, 12);

}

RampUpTimeDataExchangeFormat = decision(”Data Exchange Format”){

”XML” : triangular(2, 3, 4);

”Compressed XML” : triangular(4, 5, 6);

”Unformatted data” : triangular(1, 2, 3);

}
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Modelling the Cost

CostPreference = (Cost - CostWorst)/(CostBest - CostWorst);

CostRisk = Pr(Cost < CostMust);

CostBest = deterministic(550);

CostWorst = deterministic(2250);

CostMust = deterministic(1290);

Cost = CostLocationFinding +

CostFileSharing +

CostReportSyncing +

CostChatProtocol +

CostMapAccess +

CostHardwarePlatform +

CostConnectivity +

CostDataBase +

CostArchitecturalPattern +

CostDataExchangeFormat;

CostLocationFinding = decision(”Location Finding”){

”GPS” : triangular(50, 80 100);

”radio triangulation” : deterministic(0);

}

CostFileSharing = decision(”File Sharing”){

”OpenIntent” : deterministic(0);

”In house” : deterministic(0);

}

CostReportSyncing = decision(”Report Syncing”){

”Explicit” : deterministic(0);

”Implicit” : deterministic(0);

}

CostChatProtocol = decision(”Chat Protocol”){

”XMPP (Open Fire)” : deterministic(0);

”In house” : deterministic(0);

}
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CostMapAccess = decision(”Map Access”){

”On Demand (Google)” : deterministic(0);

”Cache on server” : triangular(700, 900, 950);

”Preloaded (ESRI)” : triangular(100, 170, 200);

}

CostHardwarePlatform = decision(”Hardware Platform”){

”Nexus I (HTC)” : triangular(500, 525, 530);

”Droid (Motorola)” : triangular(520, 520, 600);

}

CostConnectivity = decision(”Connectivity”){

”Wifi” : triangular(70, 80, 85);

”3G on Nexus I” : triangular(360, 400, 600);

”3G on Droid” : triangular(360, 400, 600);

”Bluetooth” : triangular(50, 70, 200);

}

CostDataBase = decision(”Database”){

”MySQL” : deterministic(0);

”sqLite” : deterministic(0);

}

CostArchitecturalPattern = decision(”Architectural Pattern”){

”Peer-to-peer” : deterministic(0);

”Client-Server” : deterministic(0);

”Push-based” : deterministic(0);

}

CostDataExchangeFormat = decision(”Data Exchange Format”){

”XML” : deterministic(0);

”Compressed XML” : deterministic(0);

”Unformatted data” : deterministic(0);

}
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Modelling the Development Time

DevelopmentTimePreference = (DevelopmentTime - DevelopmentTimeWorst)

/(DevelopmentTimeBest - DevelopmentTimeWorst);

DevelopmentTimeRisk = Pr(DevelopmentTime < DevelopmentTimeMust);

DevelopmentTimeBest = deterministic(61);

DevelopmentTimeWorst = deterministic(149);

DevelopmentTimeMust = deterministic(111);

DevelopmentTime = DevelopmentTimeLocationFinding +

DevelopmentTimeFileSharing +

DevelopmentTimeReportSyncing +

DevelopmentTimeChatProtocol +

DevelopmentTimeMapAccess +

DevelopmentTimeDataBase +

DevelopmentTimeArchitecturalPattern +

DevelopmentTimeDataExchangeFormat;

DevelopmentTimeLocationFinding = decision(”Location Finding”){

”GPS” : triangular(3, 4, 5);

”radio triangulation” : triangular(10, 14, 15);

}

DevelopmentTimeFileSharing = decision(”File Sharing”){

”OpenIntent” : triangular(3, 4, 6);

”In house” : triangular(5, 6, 15);

}

DevelopmentTimeReportSyncing = decision(”Report Syncing”){

”Explicit” : triangular(5, 6, 7);

”Implicit” : triangular(3, 4, 4);

}
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DevelopmentTimeChatProtocol = decision(”Chat Protocol”){

”XMPP (Open Fire)” : triangular(5, 6, 8);

”In house” : triangular(7, 8, 20);

}

DevelopmentTimeMapAccess = decision(”Map Access”){

”On Demand (Google)” : triangular(14, 18, 21);

”Cache on server” : triangular(14, 18, 21);

”Preloaded (ESRI)” : triangular(20, 27, 30);

}

DevelopmentTimeDataBase = decision(”Database”){

”MySQL” : triangular(15, 17, 18);

”sqLite” :triangular(15, 16, 22);

}

DevelopmentTimeArchitecturalPattern = decision(”Architectural Pattern”){

”Peer-to-peer” : triangular(20, 26, 30);

”Client-Server” : triangular(15, 16, 20);

”Push-based” : triangular(20, 24, 25);

}

DevelopmentTimeDataExchangeFormat = decision(”Data Exchange Format”){

”XML” : triangular(6, 7, 8);

”Compressed XML” : triangular(7, 9, 10);

”Unformatted data” : triangular(3, 4, 5);

}



Chapter 7. Evaluating RADAR’s Applicablity and Usefulness 148

Modelling the Deployment Time

DeploymentTimePreference = (DeploymentTime - DeploymentTimeWorst)

/(DeploymentTimeBest - DeploymentTimeWorst);

DeploymentTimeRisk = Pr(DeploymentTime < DeploymentTimeMust);

DeploymentTimeBest = deterministic(21) ;

DeploymentTimeWorst = deterministic(72) ;

DeploymentTimeMust = deterministic(38);

DeploymentTime = DeploymentTimeLocationFinding +

DeploymentTimeFileSharing +

DeploymentTimeReportSyncing +

DeploymentTimeChatProtocol +

DeploymentTimeMapAccess +

DeploymentTimeConnectivity +

DeploymentTimeDataBase +

DeploymentTimeArchitecturalPattern;

DeploymentTimeLocationFinding = decision(”Location Finding”){

”GPS” : triangular(2, 3, 3);

”radio triangulation” : triangular(1, 1, 2);

}

DeploymentTimeFileSharing = decision(”File Sharing”){

”OpenIntent” : triangular(1, 1, 2);

”In house” : deterministic(0);

}

DeploymentTimeReportSyncing = decision(”Report Syncing”){

”Explicit” : triangular(1, 2, 2);

”Implicit” : deterministic(1);

}

DeploymentTimeChatProtocol = decision(”Chat Protocol”){

”XMPP (Open Fire)” : triangular(1, 1, 2);

”In house” : deterministic(0);

}
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DeploymentTimeMapAccess = decision(”Map Access”){

”On Demand (Google)” : deterministic(0);

”Cache on server” : triangular(3, 4, 5);

”Preloaded (ESRI)” : triangular(3, 4, 5);

}

DeploymentTimeConnectivity = decision(”Connectivity”){

”Wifi” : triangular(5, 6, 7);

”3G on Nexus I” : triangular(2, 3, 4);

”3G on Droid” : triangular(2, 3, 4);

”Bluetooth” : triangular(4, 5, 15);

}

DeploymentTimeDataBase = decision(”Database”){

”MySQL” : triangular(10, 15, 16);

”sqLite” : triangular(13, 14, 22);

}

DeploymentTimeArchitecturalPattern = decision(”Architectural Pattern”){

”Peer-to-peer” : triangular(14, 18, 21);

”Client-Server” : triangular(7, 9, 10);

”Push-based” : triangular(8, 9, 12);

}

radar generates the AND/OR refinement graph and decision dependency graphs from

the SAS model equations to aid visualisation of model structure. Fig.7.3a shows the

partial AND/OR refinement graphs for the SAS model starting from the model variable

CostHardwarePlatform. Fig.7.3b shows the partial decision graph for the model which

consists of the decisions Map Access, Hardware Platform, Connectivity and Database.

7.2.2.3 Analysis Results

The radar analysis of the Situation Awareness System Decision Model (SAS) is pre-

sented in Table 7.4 and Table 7.5, which show the results of the optimisation and infor-

mation value analysis on the model, respectively.

Table 7.4 shows that all shortlisted solutions include options “radio triangulation” ,

“Open Intent” , “XMPP (Open Fire)” , “Preloaded (ESRI)” and “MySQL” . This

means that, in our model, the objective values of these five options, respectively, out-

perform the “GPS” option for decision Location Finding, the “In house” option for
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Hardware Platform

Cost_HardwarePlatform

Cost_HardwarePlatform[Nexus I (HTC)]Cost_HardwarePlatform[Droid (Motorola)]

(a) Partial AND/OR refinement graph for the model variable CostHardwarePlatform of the
SAS decision model.

(b) Partial decision dependency graph for the SAS decision model.

Figure 7.3: Partial AND/OR refinement graph and decision dependency graph for
the SAS model.

decision File Sharing, “In house” option for decision Chat protocol, “Cache on Server”

and “On Demand (Google)” options for decision Map Access and “SqLite” option for

decision Database on both objectives. However, once these five options are selected, the

shortlist includes all possible combinations of the decisions “Report Syncing”, “Hard-

ware Platform”, “Connectivity”, “Architectural pattern” and “Data Exchange Format”.

Each combination represents different tradeoffs between maximising Expected Net Ben-

efit (ENB) and minimising Risk. To visualise such tradeoffs, radar generates the graph

in Fig.7.4, plotting the objective values for the shortlised solutions (shown squares at

the top of the graph) and all other non shortlisted ones (shown as circles).

The information value analysis results is presented in Table 7.5, which shows that the

EVTPI for this problem is 0.04 and EVPPI for all the model parameters is approximately

0. This means that in this model, there is no parameter worth investigating further

before deciding between the shortlisted solutions to be selected for implementation.

Reducing uncertainty about any of the parameters would bring no value to the decision.
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Optimisation Analysis

Objective: Max ENB
Objective: Min Risk
SolutionSpace 6912
Minimal SolutionSet 6912
Shortlisted 15
Nbr. Variables 117
Nbr. Parameters 137
Nbr. Decisions 10
Runtime(s) 111

ID Location Finding File Sharing Report Syncing Chat Protocol Map Access Hardware Platform Connectivity Database Architectural Pattern Data Exchange Format ENB Risk

1 radio triangulation OpenIntent Implicit XMPP (Open Fire) Preloaded (ESRI) Droid (Motorola) Wifi MySQL Client-Server Compressed XML 16.37529833 0.9997
2 radio triangulation OpenIntent Implicit XMPP (Open Fire) Preloaded (ESRI) Nexus I (HTC) 3G on Droid MySQL Client-Server Unformatted data 15.96290754 0.5634
3 radio triangulation OpenIntent Explicit XMPP (Open Fire) Preloaded (ESRI) Nexus I (HTC) 3G on Droid MySQL Client-Server Unformatted data 15.1679976 0.039
4 radio triangulation OpenIntent Implicit XMPP (Open Fire) Preloaded (ESRI) Droid (Motorola) 3G on Droid MySQL Client-Server XML 16.24388763 0.9863
5 radio triangulation OpenIntent Implicit XMPP (Open Fire) Preloaded (ESRI) Droid (Motorola) 3G on Droid MySQL Client-Server Compressed XML 16.32688836 0.9983
6 radio triangulation OpenIntent Implicit XMPP (Open Fire) Preloaded (ESRI) Droid (Motorola) Wifi MySQL Client-Server XML 16.2922976 0.9961
7 radio triangulation OpenIntent Implicit XMPP (Open Fire) Preloaded (ESRI) Nexus I (HTC) 3G on Nexus MySQL Client-Server Unformatted data 15.79036997 0.4258
8 radio triangulation OpenIntent Implicit XMPP (Open Fire) Preloaded (ESRI) Nexus I (HTC) 3G on Droid MySQL Push-based Unformatted data 15.50738273 0.417
9 radio triangulation OpenIntent Implicit XMPP (Open Fire) Preloaded (ESRI) Droid (Motorola) 3G on Nexus MySQL Client-Server Unformatted data 15.99582951 0.7475

10 radio triangulation OpenIntent Explicit XMPP (Open Fire) Preloaded (ESRI) Nexus (HTC) 3G on Droid MySQL Client-Server XML 15.24351815 0.06
11 radio triangulation OpenIntent Explicit XMPP (Open Fire) Preloaded (ESRI) Nexus I (HTC) 3G on Droid MySQL Client-Server Compressed XML 15.32651889 0.1079
12 radio triangulation OpenIntent Implicit XMPP (Open Fire) Preloaded (ESRI) Droid (Motorola) Wifi MySQL Client-Server Unformatted data 16.21677705 0.9429
13 radio triangulation OpenIntent Implicit XMPP (Open Fire) Preloaded (ESRI) Droid (Motorola) 3G on Droid MySQL Client-Server Unformatted data 16.16836707 0.8782
14 radio triangulation OpenIntent Implicit XMPP (Open Fire) Preloaded (ESRI) Nexus I (HTC) Wifi MySQL Client-Server Unformatted data 16.01131751 0.7632
15 radio triangulation OpenIntent Explicit XMPP (Open Fire) Preloaded (ESRI) Droid (Motorola) 3G on Droid MySQL Client-Server Unformatted data 15.37345714 0.1928

Table 7.4: Optimisation analysis results for the Situation Awareness System analysis model
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Information Value Analysis

Objective: Max ENB
EVTPI: 0.04

Parameter EVPPI Parameter EVPPI Parameter EVPPI

BatteryUsageLocationFinding[GPS] 0 ReliabilityArchitecturalPattern[Push-based] 0 ReliabilityLocationFinding[GPS] 0
BatteryUsageLocationFinding[radio triangulation] 0 RampUpTimeLocationFinding[GPS] 0 DevelopmentTimeDataExchangeFormat[Compressed XML] 0
BatteryUsageFileSharing[OpenIntent] 0 RampUpTimeLocationFinding[radio triangulation] 0 ReliabilityLocationFinding[radio triangulation] 0
BatteryUsageFileSharing[In house] 0 RampUpTimeFileSharing[OpenIntent] 0 DevelopmentTimeDataExchangeFormat[Unformatted data] 0
BatteryUsageReportSyncing[Explicit] 0 RampUpTimeFileSharing[In house] 0 ReliabilityFileSharing[OpenIntent] 0
BatteryUsageReportSyncing[Implicit] 0 RampUpTimeReportSyncing[Explicit] 0 DeploymentTimeLocationFinding[GPS] 0
BatteryUsageChatProtocol[XMPP (Open Fire)] 0 RampUpTimeReportSyncing[Implicit] 0 ReliabilityFileSharing[In house] 0
BatteryUsageChatProtocol[In house] 0 RampUpTimeChatProtocol[XMPP (Open Fire)] 0 DeploymentTimeFileSharing[OpenIntent] 0
DeploymentTimeFileSharing[OpenIntent] 0 DeploymentTimeLocationFinding[radio triangulation] 0 DeploymentTimeReportSyncing[Explicit] 0
BatteryUsageMapAccess[On Demand (Google)] 0 RampUpTimeChatProtocol[In house] 0 ReliabilityReportSyncing[Explicit] 0
BatteryUsageMapAccess[Cache on server] 0 RampUpTimeMapAccess[On Demand (Google)] 0 ReliabilityReportSyncing[Implicit] 0
BatteryUsageMapAccess[Preloaded (ESRI)] 0 RampUpTimeMapAccess[Cache on server] 0 DeploymentTimeChatProtocol[XMPP (Open Fire)] 0
BatteryUsageHardwarePlatform[Nexus I (HTC)] 0 RampUpTimeMapAccess[Preloaded (ESRI)] 0 ReliabilityChatProtocol[In house] 0
BatteryUsageHardwarePlatform[Droid (Motorola)] 0 RampUpTimeConnectivity[Wifi] 0 DeploymentTimeMapAccess[Cache on server] 0
BatteryUsageConnectivity[Wifi] 0 RampUpTimeConnectivity[3G on Nexus I] 0 ReliabilityMapAccess[On Demand (Google)] 0
BatteryUsageConnectivity[3G on Nexus I] 0 RampUpTimeConnectivity[3G on Droid] 0 DeploymentTimeMapAccess[Preloaded (ESRI)] 0
BatteryUsageConnectivity[3G on Droid] 0 RampUpTimeConnectivity[Bluetooth] 0 DeploymentTimeConnectivity[Wifi] 0
BatteryUsageConnectivity[Bluetooth] 0 RampUpTimeDataBase[MySQL] 0
BatteryUsageDataBase[MySQL] 0 RampUpTimeDataBase[sqLite] 0
BatteryUsageDataBase[sqLite] 0 RampUpTimeArchitecturalPattern[Peer-to-peer] 0 ReliabilityMapAccess[Cache on server] 0
BatteryUsageArchitecturalPattern[Peer-to-peer] 0 RampUpTimeArchitecturalPattern[Client-Server] 0 ReliabilityMapAccess[Preloaded (ESRI)] 0
BatteryUsageArchitecturalPattern[Client-Server] 0 RampUpTimeArchitecturalPattern[Push-based] 0 DeploymentTimeConnectivity[3G on Nexus I] 0
BatteryUsageArchitecturalPattern[Push-based] 0 RampUpTimeDataExchangeFormat[XML] 0 ReliabilityConnectivity[Wifi] 0
BatteryUsageDataExchangeFormat[XML] 0 RampUpTimeDataExchangeFormat[Compressed XML] 0 DeploymentTimeConnectivity[3G on Droid] 0
BatteryUsageDataExchangeFormat[Compressed XML] 0 RampUpTimeDataExchangeFormat[Unformatted data] 0 ReliabilityConnectivity[3G on Nexus I] 0
BatteryUsageDataExchangeFormat[Unformatted data] 0 CostLocationFinding[GPS] 0 DeploymentTimeConnectivity[Bluetooth] 0
ResponseTimeLocationFinding[GPS] 0 CostMapAccess[Cache on server] 0 ReliabilityConnectivity[3G on Droid] 0
ResponseTimeLocationFinding[radio triangulation] 0 CostMapAccess[Preloaded (ESRI)] 0 DeploymentTimeDataBase[MySQL] 0
ResponseTimeFileSharing[OpenIntent] 0 CostHardwarePlatform[Nexus I (HTC)] 0 ReliabilityConnectivity[Bluetooth] 0
ResponseTimeFileSharing[In house] 0 CostHardwarePlatform[Droid (Motorola)] 0 DeploymentTimeDataBase[sqLite] 0
ResponseTimeReportSyncing[Explicit] 0 CostConnectivity[Wifi] 0 ReliabilityDataBase[MySQL] 0
ResponseTimeReportSyncing[Implicit] 0 CostConnectivity[3G on Nexus I] 0 DeploymentTimeArchitecturalPattern[Peer-to-peer] 0
ResponseTimeChatProtocol[XMPP (Open Fire)] 0 CostConnectivity[3G on Droid] 0 DeploymentTimeArchitecturalPattern[Client-Server] 0
ResponseTimeChatProtocol[In house] 0 CostConnectivity[Bluetooth] 0 ReliabilityDataBase[sqLite] 0
ResponseTimeMapAccess[On Demand (Google)] 0 DevelopmentTimeLocationFinding[GPS] 0 ReliabilityArchitecturalPattern[Peer-to-peer] 0
ResponseTimeMapAccess[Cache on server] 0 DevelopmentTimeLocationFinding[radio triangulation] 0 DeploymentTimeArchitecturalPattern[Push-based] 0
ResponseTimeMapAccess[Preloaded (ESRI)] 0 DevelopmentTimeFileSharing[OpenIntent] 0 ReliabilityArchitecturalPattern[Client-Server] 0
ResponseTimeHardwarePlatform[Nexus I (HTC)] 0 DevelopmentTimeFileSharing[In house] 0
ResponseTimeHardwarePlatform[Droid (Motorola)] 0 DevelopmentTimeReportSyncing[Explicit] 0
ResponseTimeConnectivity[Wifi] 0 DevelopmentTimeReportSyncing[Implicit] 0
ResponseTimeConnectivity[3G on Nexus I] 0 DevelopmentTimeChatProtocol[XMPP (Open Fire)] 0
ResponseTimeConnectivity[3G on Droid] 0 DevelopmentTimeChatProtocol[In house] 0
ResponseTimeConnectivity[Bluetooth] 0 DevelopmentTimeMapAccess[On Demand (Google)] 0
ResponseTimeDataBase[MySQL] 0 DevelopmentTimeMapAccess[Cache on server] 0
ResponseTimeDataBase[sqLite] 0 DevelopmentTimeMapAccess[Preloaded (ESRI)] 0
ResponseTimeArchitecturalPattern[Peer-to-peer] 0 DevelopmentTimeDataBase[MySQL] 0
ResponseTimeArchitecturalPattern[Client-Server] 0 DevelopmentTimeDataBase[sqLite] 0
ResponseTimeArchitecturalPattern[Push-based] 0 DevelopmentTimeArchitecturalPattern[Peer-to-peer] 0
ResponseTimeDataExchangeFormat[XML] 0 DevelopmentTimeArchitecturalPattern[Client-Server] 0
ResponseTimeDataExchangeFormat[Compressed XML] 0 DevelopmentTimeArchitecturalPattern[Push-based] 0
ResponseTimeDataExchangeFormat[Unformatted data] 0 DevelopmentTimeDataExchangeFormat[XML] 0

Table 7.5: Information Value Analysis for the Situation Awareness System Model.
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7.2.2.4 Comparison To Previous Analysis Approaches

Esfahani et al.[84] was the first to use the Emergency Response System to evaluate the

GuideArch approach. GuideArch, a fuzzy logic-based framework, explores architectural

solution space in order to aid informed decisions in the presence of uncertainty. Esfahani

et al. optimised the design of an Emergency Response System by considering seven

system properties, such as development time, battery usage, response time, cost, ramp

uptime and reliability.

Letier et al.[166] also used the Emergency Response System in evaluating the Multi-

Objective Decision Analyser (MODA) –a statistical decision analysis technique and

Pareto-based multi-objective optimisation to early requirements and architecture de-

sign decisions. Letier et al. optimised the design of an Emergency Response System by

considering the same system properties as Esfahani et al.[84]. They defined the opti-

misation objectives as maximising the project utility and minimising the project failure

risk.

The radar model presented for the SAS model in previous pages is similar to the

equations and parameter values in the GuideArch and MODA models.

With respect to the decision analysis approach, radar’s analysis approach differs from

GuideArch, but similar to that of MODA. GuideArch shortlists its optimal solutions

by comparing candidate architectures using fuzzy logic values that are not falsifiable or

cannot be validated empirically. Like radar, MODA uses exhaustive search to short-

list the Pareto optimal solutions and computes expected value of perfect and imperfect

information. Both MODA and radar shortlisted solutions (using exhaustive search)

that have the same alternative options per decision. Their shortlisted solutions agree on

the selected options for four decisions, such as “Location finding”, “Report Syncing”,

Map Access” and “Database”. The remaining decisions agree on at least one alterna-

tive option. In terms of the analysis runtimes, radar significantly outperforms MODA:

radar took less than 2 minutes to analyse the SAS model while MODA took 5 minutes

and required manual coding and significant optimisation of the simulation function in

R (without optimisation, the simulation of the whole search-space would have taken 7

hours). We also observed similar values for the EVTPI: radar and MODA estimate
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Figure 7.4: Pareto front of the the emergency response system model analysis.

the EVTPI as 0.04 and 0.05, respectively. These results help to validate the correct-

ness of our automated decision analysis technique and show the superiority of radar’s

automated approach over the manual approach used in MODA.
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7.2.3 Building Security Policy Decision System

7.2.3.1 Problem Statement

Building security policies allows organisations to restrict access to confidential informa-

tion only to authorised personnel, i.e. employees of the organisation. Our modelling

and analysis of this problem is motivated by and based on previous studies of improving

security policy decisions with models [51] and modelling and simulating systems security

policy [50].

The organisation is concerned about its employees habit of sharing documents through

a globally shared drive. Storing files on the shared drive facilitates the employees work

but increases the risk and extent of insiders leaks. The organisation is considering rec-

ommending its employees to share documents through emails or portable media devices

instead of using the shared drive.

The organisation is also concerned by theft of documents stored on portable media

devices (e.g. USB, CD). The model considers only theft of such devices inside the

organisation premises. To prevent thieves from entering the building, its entrance is

equipped with automated gates where employees have to swipe their access card to

enter the building. Because of tailgating risks, the organisation is considering adding a

security guard to reinforce security at the building entrance.

The building security policy model decisions are thus:

• the document sharing policy decision in which the organisation recommends that

employees use “email” or “external media” or the use of “shared drive”. In our

model, we refer to “shared drive” as Neutral.

• the building entry security decision that can be “not-guarded”, in which case the

organisation does not deploy a security person at the entrance of the company and

“guarded” in which a security person is deployed at the entrance.

These decisions impacts the cost incurred by the organisation when confidential informa-

tion are leaked. The organisation wants to minimise the costs of disclosure and minimise

the chances of disclosure with very high costs (above £1m)
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7.2.3.2 RADAR Model

Modelling the Optimisation Objectives

The primary decision objectives are related to the uncertain costs associated to the

disclosure of confidential documents:

Objective Min ExpectedCostOfDisclosures = EV(CostOfDisclosures);

Objective Min RiskOfCatastrophicDisclosures = Pr(CostOfDisclosure > 106);

Modelling Costs of Disclosures

Our model assumes that there are three categories of confidential documents, i.e. high,

medium, and low confidentiality, with different costs to the organisation, if they are

leaked. Our model assumes that the cost of document disclosure is a function of number

of leaked confidential documents and the cost of the leaked documents:

CostOfDisclosures =

NbrHighConfidentialityLeaks × CostHighConfidentialityLeak

+ NbrMediumConfidentialityLeaks × CostMediumConfidentialityLeak

+ NbrLowConfidentialityLeaks × CostLowConfidentialityLeak;

The number of leaked confidential documents, for each category of confidential docu-

ments, is the product of the number of leaked documents multiplied by the ratio of

confidential documents leaked:

NbrHighConfidentialityLeaks = NbrLeakedDoc × RatioHighConfientialityDocs;

NbrMediumConfidentialityLeaks =

NbrLeakedDoc × RatioMediumConfientialityDocs;

NbrLowConfidentialityLeaks = NbrLeakedDoc × RatioLowConfientialityDocs;

Each document confidentiality category has some uncertainty about the ratio of confi-

dential documents leaked and uncertainty in cost of disclosure:
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RatioHighConfidentialityDocs = uniform(0.5%, 2%);

RatioMediumConfidentialityDocs =uniform(4%, 10%);

RatioLowConfidentialityDocs = uniform(30%, 60%);

CostHighConfidentialityLeak = normalCI(0.5 ∗ 106, 5 ∗ 106);

CostMediumConfidentialityLeak = normalCI(104, 5 ∗ 104);

CostLowConfidentialityLeak = normalCI(102, 104);

Modelling Documents Leaks

Documents can be leaked by insiders or stolen by outsiders who managed to gain access

to the building.

NbrLeakedDoc = NbrDocsLeakedByInsiders × NbrDocsStolenByOutsiders;

Modelling Insiders’ Leaks

The number of documents leaked by an insider is a function of the probability of an

insider leak, ProbabilityInsidersLeak , the number of documents on shared drive, Nbr-

DocsOnSharedDrive and the SharedDriveLeakRange, which is the portion of documents

on the shared drive that are leaked by insider when a leaks occurs:

NbrDocsLeakedByInsiders = ProbabilityInsidersLeak × NbrDocsOnSharedDrive

× SharedDriveLeakRange;

ProbabilityInsidersLeak = deterministic(10−3);

SharedDriveLeakRange = triangular(10%, 50%, 100%);

Modelling Attackers’ Intrusions

The attackers’ intrusion model attempts to predict the number of documents stolen by

outsiders over a year based on whether or not the building security gates are guarded

or not. The number of documents stolen over a year depends on the number of intru-

sions during the year and the number of documents stolen during each intrusion, which
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depends on the number of external media in use and the number of documents stored

in each media.

NbrDocsStolenByOutsiders =

NbrOfficeIntrustions × NbrDocsStolenPerIntrusion;

NbrOfficeIntrusions = decision(”Building entry security”) {

”not guarded” : triangular(0, 3, 6);

”guarded” : triangular(0, 1, 2);

}

NbrDocsStolenPerIntrusion =

NbrExternalMediaStolenPerIntrusion × NbrDocsPerExternalMedia

NbrExternalMediaStolenPerIntrusion =

NbrExternalMediaInUse × PercentageMediaStolenPerInstrusion

PercentageMediaStolenPerInstrusion = triangular(0, 1%, 10%);

Modelling Documents Sharing

The number of documents on the shared drive and on external media depends on the

organisations document sharing policy. Data about the number of documents on shared

drive and on external media come from Table 1 in [50].

NbrDocsOnSharedDrive = decision(”Document Sharing Policy”){

”Neutral”: deterministic(143);

”Recommend Email”: deterministic(44);

”Recommend External Media”: deterministic(91);

}

NbrDocsOnExternalMedia = decision(”Document Sharing Policy”){

”Neutral”: deterministic(0);

”Recommend Email”: deterministic(0);

”Recommend External Media”: deterministic(52);

}

NbrExternalMediaInUse = NbrDocsOnExternalMedia / NbrDocsPerMedia;

NbrDocsPerMedia = triangular(0, 5, 10) ;

To help visualise the model structure, radar generates the AND/OR refinement graph

and decision dependency graphs from the building security model equations. Fig. 7.5
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shows the partial AND/OR refinement graphs for the building security model starting

from the model variable CostOfDisclosure. Fig. 7.6 shows the decisions decision graph.
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Figure 7.5: AND/OR refinement graph for the model variable CostOfDisclosure of the building security model.
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Figure 7.6: Decision dependency graph for the building security decision model.

7.2.3.3 Analysis Results

The radar analysis of the Building Security Policy Decision Model (BSPDM) is pre-

sented in Table 7.6, which shows the results of the optimisation and information value

analysis on the model.

The first part of Table 7.6 is the optimisation analysis results, which show that the two

shortlisted solutions (those that are Pareto optimal) include “recommend email” for the

document sharing policy decision. This means that, in our model, the objective value

of the option share documents by email outperforms both the “neutral” and “external

media” in both objectives. But when the “recommend email” option is selected, the

shortlist includes both the “guard” and “not guarded” options of the building entry se-

curity decision; each combination representing a different tradeoffs between minimising

the expected cost of disclose, ExpectedCostOfDisclosures and minising the risk of catas-

trophic disclosure, RiskOfCatastrophicDisclosures. To visualise such tradeoffs, radar

generates the graph in Fig. 7.7, plotting the objective values for the shortlised solutions

(shown in red) and all other non shortlisted ones (shown in green).

The second part of Table 7.6 is the information value analysis results, which shows

that the EVTPI for this problem is 0 and EVPPI for all the model parameters are 0.

This means that in this model, there is no parameter worth investigating further before

deciding between the shortlisted solutions to be selected for implementation. Reducing

uncertainty about any of the parameters would bring no value to the decision.

7.2.3.4 Comparison To Previous Analysis Approaches

Caulfield et al. used the Building Security Policy System in their work on improving

security policy decisions with models [49] and modelling and simulating security policy
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Figure 7.7: Pareto front of the the building security policy model analysis.

system design choices [48].

Caulfield et al. [48] developed a modelling methodology and framework for predicting

the impact and effectiveness of alternative security policy choices on an organisation’s
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Optimisation Analysis

Objective: Max ExpectedCostOfDisclosures
Objective: Min RiskOfCatastrophicDisclosures
SolutionSpace 6
Minimal SolutionSet 6
Shortlisted 2
Nbr. Variables 23
Nbr. Parameters 11
Nbr. Decisions 2
Runtime(s) 0
ID Building entry security Document Sharing Policy ExpectedCostOfDisclosures RiskOfCatastrophicDisclosures Optimal

1 not guarded Recommend Email 904 0 Yes
2 guarded Recommend Email 904 0 Yes
3 guarded Recommend External Media 1052645 0.2985 No
4 not guarded Recommend External Media 3181382 0.6464 No
5 not guarded Neutral 2937 0 No
6 guarded Neutral 2937 0 No

Information Value Analysis

Objective: Max ENB
EVTPI: 0

Parameter EVPPI

RatioHighConfidentialityDocs 0
RatioMediumConfidentialityDocs 0
RatioLowConfidentialityDocs 0
CostHighConfidentialityLeak 0
CostMediumConfidentialityLeak 0
CostLowConfidentialityLeak 0
SharedDriveLeakRange 0
NbrOfficeIntrusions[not guarded] 0
NbrOfficeIntrusions[guarded] 0
PercentageMediaStolenPerInstrusion 0
NbrDocsPerMedia 0

Table 7.6: Optimisation analysis and information value analysis results for the build-
ing security policy analysis model

operations. They used approaches from mathematical modelling and simulation, in-

formation security and economics to model and analyse security decision models. The

models developed in [48] considers three different areas of an organisation’s security:

tailgating behaviour of staffs and intruders at the entrance to the building; confidential

documents sharing between employees within the office, when the usual, secure sharing

method is unavailable; and loss of employees devices, possibly containing confidential

information. In their approach, the decision about which alternative system design to

select is evaluated through simulation (104 executions) using a utility function defined

below as:
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Utility =
∑
a∈A

wa ∗ fa ∗ (va − ~va) (7.1)

where A is a set of attributes stakeholders care about, e.g, the number of documents

added to the global share and the number of documents found by intruders inside the

office; wa represents weights assigned to attributes denoting importance to the user; va

and ~va are the actual and target values of attribute a; and fa captures how stakeholders’

care about the difference in between the actual and target values for attribute a.

The radar model presented for the building security policy system model differs from

that presented by Caulfield et al. [48], but uses similar model parameter values. Their

model uses pre-defined, fixed model equations to assign abstract values to stakeholder

attributes in the decision model. Our models focus on elaborating domain specific deci-

sion problems within the organisation security context. However, the solutions suggested

by radar’s are similar to that obtained in Caulfield et al. [48]: both approaches suggest

the organisation recommend to their employees to use the “email” policy irrespective of

whether the organisation deploys a guard or not.

7.2.4 Multi-Objective Next Release Problem

7.2.4.1 Problem Statement

The requirement subset selection problem addresses the question of “what features to

build in the next release of a software system”. This type of problem is commonly

referred to as the Next Release Problem (NRP). Generally, the NRP consists in selecting

among N requirements, a subset of requirements to be implemented in the next release

of a product [30, 283, 285]. The problem has a solution space of 2N solutions, where N

is the total number of candidate requirements.

Bagnal et al. formulated a mathematical model for the NRP [30]. Zhang et al. [283] re-

formulated this problem to a Multi-Objective optimisation problem with two objectives

—maximising value and minimising cost. In Zhang’s NRP model, a set of requirements,

R = {r1, r2, ......, rn}, with respective costs, C = { cost1, cost2, ......, costn} are requested

to be added to an (existing) software product in order to satisfy a set of stakeholders
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(customers), S = {s1, s2, ...., sm}. These stakeholders have individual degree of impor-

tance to the company denoted by a Weight, W = {w1, w2, ..., wm}, where wi ∈ [0, 1] and∑m
i=1wi= 1. In this model, the author assumed that requirements are independent and

that a customer places different level of importance to each requirement. Each stake-

holder s ∈ S assigns a value denoted by value(rj , si) to a requirement rj(1 ≤ j ≤ n),

where value(rj , si) > 0 if stakeholder i desires implementation of the requirement j and

0 otherwise. The value derived by a company for a given set of requirements can be

represented using the matrix below:

V alue =



v1,1 v1,2 · · · v1,i · · · v1,n

v2,1 v2,2 · · · v2,i · · · v2,n
...

...
...

. . .
...

...

vj,1 vj,2 · · · vj,i · · · vj,n
...

...
...

...
. . .

...

vm,1 vm,2 vm,3 . . . vm,n


(7.2)

The overall value or importance for a given requirement rj(1 ≤ j ≤ n) is regarded as

the Score and is defined below [283]:

Scorej =

m∑
i=1

wi.value(rj , si) (7.3)

The cost vector for the set of requirements rj(1 ≤ j ≤ n) is given as

Cost = {cost1, cost2, ......, costn} (7.4)

In Zhang’s model, the optimistaion objectives are:

Maximise
n∑

j=1

scorej .xj (7.5)

Minimise
n∑

j=1

costj .xj (7.6)
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where xj is the decision vector ~x = {x1, x2, ..., xn} ∈ {0,1} that determines if a require-

ment is selected or not.

A key factor that also impacts requirements subset selection activity is the inter-dependency

relationship between requirements. Such relationships might be that some requirements

are coupled, i.e., they have to be implemented simultaneously. In other cases, a re-

quirement requires another requirement to be fulfilled before it can be implemented. To

address this concern, NRP variants extend the problem by including dependency con-

straints between requirements [285]. These constraint relationships, for example, include

AND, OR and precedence constraint relationships.

We illustrate the application of radar on the NRP of a commercial Release Planning

Tool with 25 requirements [142] as shown Table 7.1. The appendix section presents

another application of release planning, i.e., we apply release planning method to plan

future releases of a Word Processor that has 50 requirements.

7.2.4.2 RADAR Model

In the commercial Release Planning Tool [142], the stakeholders are interested in max-

imising the value derived from implementing the requirements and minimising imple-

mentation costs which includes the design cost, development cost, the cost accrued from

external tool development, and the cost due to software testing. The requirements have

dependency (requires and coupling) relationships between them. The datasets used in

developing our model is provided in [142] and contains information about the require-

ments cost estimates, requirements dependencies, available budget and expected revenue

and value.

Modelling Optimisation Objectives

The optimisation objectives for the release planner are given below:
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Objective Max ExpectedNetBenefit = EV(NB);

Objective Min ProjectRisk = Pr(ProjectFailure);

Objective Max ExpectedFrequencyOfUse = EV(FrequencyOfUse);

Objective Min ExpectedDissatisfaction = EV(Dissatisfaction);

Objective Min ExpectedRequirementVolatility = EV(Volatility);

In the above expression, the first objective is a maximisation of the expected net benefit

(ExpectedNetBenefit) from selecting a subset of requirements, and the second objective

is a minimisation of the project risk (ProjectRisk). The third objective maximises the

Frequency of Use i.e. we are interested in requirements that have been implemented

before or used frequently. The fourth objective is a minimisation of stakeholders dissat-

isfaction. The fifth objective states that the we want to minimise requirements changes

after the basic set have been agreed.

The net benefit of implementing any subset of requirements is defined below:

NB = Value - Cost;

The Value derived from the subset of requirements implemented is estimated considering

uncertainty in the perceived values of each requirements by the stakeholders.

We model the Value as below:
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Value = decision-subset(+) (”Next Release”){

”Hierarchical dependencies” : normalCI(200,400);

”Grouping of features” : normalCI(100,200);

”Pre-assignments” : normalCI(300,600);

”Feature dependencies” : normalCI(600,700);

”Feasibility analysis” : normalCI(200,500);

”Flexible number of releases” : normalCI(200,400);

”Flexible number and type of criteria” : normalCI(200,600);

”Fexible number and type of resources” : normalCI(100,900);

”Type 1 Stakekholder consensus driven planning” : normalCI(100,200);

”Type 2 Financially driven planning” : normalCI(800,900);

”Ranking of features based on different criteria” : normalCI(200,400);

”Similarity analysis” : normalCI(200,900);

”Dual charts using ranking and disagreement analysis”: normalCI(200,400);

”Comparison of priorities between stakeholders”: normalCI(100,300);

”Import manual plan” : normalCI(400,500);

”Import of project data” : triangular(400,500,900);

”Re-import of updated project data” : triangular(200, 400, 800);

”Export of plans and project data” : normalCI(200,900);

”Export of generated analysis charts” : triangular(200, 400, 600);

”Trade-off analysis” : normalCI(300,900);

”Estimated stakeholder satisfaction analysis” : normalCI(200,900);

”Consensus analysis between alternative plans” : normalCI(100,500);

”Structure of alternative plans” : normalCI(200,300);

”Quality evaluation of alternative plans” : normalCI(100,400);

”Resource evaluation of alternative plans” : normalCI(100,900);

}

We define the Project Failure below:
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ProjectFailure = 1 − ( (1 − RiskExceedingBackEndDevCost) ×

(1 − RiskExceedingFrontEndDevCost) ×

(1 − RiskExceedingTestingCost) ×

(1 − RiskExceedingProjectManagementCost) ×

(1 − RiskExceedingRequirementAnalysisCost);

We model the risk of exceeding back-end development budget as:

RiskExceedingBackEndDevCost = BackEndDevCost > BackedDevBudget;

BackedDevBudget = deterministic(2000);

The risk of exceeding front-end development budget is modelled as:

RiskExceedingFrontEndDevCost = FrontEndDevCost > FrontEndDevBudget;

FrontEndDevBudget = deterministic(1104);

We model the risk of exceeding testing budget as:

RiskExceedingTestingCost = TestingCost > TestingBudget;

TestingBudget = deterministic(2160);

The risk of exceeding project management budget is modelled as:

RiskExceedingProjectManagementCost = ProjectManagementCost > ProjectManagementBud-

get;

ProjectManagementBudget = deterministic(1060);

We model the risk of exceeding the Quality Assurance budget as:



Chapter 7. Evaluating RADAR’s Applicablity and Usefulness 170

RiskExceedingQACost = QACost > QABudget;

QABudget = deterministic(1680);

The risk of exceeding requirements elicitation budget is modelled as:

RiskExceedingRequirementAnalysisCost = RequirementAnalysisCost > RequirementAnalysis-

Budget;

RequirementAnalysisBudget = deterministic(600);

The frequency of use for each requirement is modelled below:
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FrequencyOfUse = decision-subset(+) (”Next Release”){

”Hierarchical dependencies” : normalCI(1,9);

”Grouping of features” : normalCI(1,7);

”Pre-assignments” : normalCI(1,9);

”Feature dependencies” : normalCI(1,6);

”Feasibility analysis” : normalCI(4,7);

”Flexible number of releases” : normalCI(1,9);

”Flexible number and type of criteria” : normalCI(1,9);

”Fexible number and type of resources” : normalCI(1,9);

”Type 1 Stakekholder consensus driven planning” : normalCI(1,9);

”Type 2 Financially driven planning” : normalCI(1,9);

”Ranking of features based on different criteria” : normalCI(1,9);

”Similarity analysis” : normalCI(1,3);

”Dual charts using ranking and disagreement analysis” : normalCI(1,6);

”Comparison of priorities between stakeholders” : triangular(1,1,9);

”Import manual plan” : normalCI(1,9);

”Import of project data” : normalCI(1,7);

”Re-import of updated project data” : normalCI(1,6);

”Export of plans and project data” : triangular(1,1,4);

”Export of generated analysis charts” : normalCI(1,7);

”Trade-off analysis” : normalCI(2,8);

”Estimated stakeholder satisfaction analysis” : normalCI(1,6);

”Consensus analysis between alternative plans” : normalCI(1,9);

”Structure of alternative plans” : normalCI(1,9);

”Quality evaluation of alternative plans” : normalCI(3,9);

”Resource evaluation of alternative plans” : normalCI(1,6);

}

We model stakeholders’ dissatisfaction as below:
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Dissatisfaction = decision-subset(+) (”Next Release”){

”Hierarchical dependencies” : normalCI(1,9);

”Grouping of features” : normalCI(1,8);

”Pre-assignments” : normalCI(1,9);

”Feature dependencies” : normalCI(1,5);

”Feasibility analysis” : normalCI(1, 4);

”Flexible number of releases” : normalCI(1,9);

”Flexible number and type of criteria” : normalCI(1,9);

”Fexible number and type of resources” : normalCI(1,9);

”Type 1 Stakekholder consensus driven planning” : normalCI(1,2);

”Type 2 Financially driven planning” : normalCI(1,9);

”Ranking of features based on different criteria” : normalCI(1,5);

”Similarity analysis” : normalCI(1,7);

”Dual charts using ranking and disagreement analysis” : normalCI(1,5);

”Comparison of priorities between stakeholders” : normalCI(1,6);

”Import manual plan” : normalCI(1,7);

”Import of project data” : normalCI(1,9);

”Re-import of updated project data” : normalCI(1,9);

”Export of plans and project data” : triangular(1,1,6);

”Export of generated analysis charts” :normalCI(1,9);

”Trade-off analysis” : normalCI(1,9);

”Estimated stakeholder satisfaction analysis” : normalCI(1,4);

”Consensus analysis between alternative plans” : normalCI(1,6);

”Structure of alternative plans” : normalCI(1,7);

”Quality evaluation of alternative plans” : normalCI(1,9);

”Resource evaluation of alternative plans” : triangular(1,7,9);

}

The requirements volatility is modelled below:
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Volatility = decision-subset(+) (”Next Release”){

”Hierarchical dependencies” : normalCI(1,4);

”Grouping of features” : normalCI(3,8);

”Pre-assignments” : normalCI(7,9);

”Feature dependencies” : normalCI(5,7);

”Feasibility analysis” : normalCI(5,6);

”Flexible number of releases” : normalCI(6,8);

”Flexible number and type of criteria” : normalCI(3,7);

”Fexible number and type of resources” : normalCI(7,8);

”Type 1 Stakekholder consensus driven planning” : normalCI(8,9);

”Type 2 Financially driven planning” : normalCI(6,8);

”Ranking of features based on different criteria” : normalCI(7,9);

”Similarity analysis” : normalCI(4,6);

”Dual charts using ranking and disagreement analysis” : normalCI(4,7);

”Comparison of priorities between stakeholders” : normalCI(4,7);

”Import manual plan” : normalCI(3,8);

”Import of project data” : triangular(2,6,7);

”Re-import of updated project data” : normalCI(1,9);

”Export of plans and project data” : triangular(1,1,6);

”Export of generated analysis charts” : normalCI(6,7);

”Trade-off analysis” : normalCI(7, 8);

”Estimated stakeholder satisfaction analysis” : normalCI(4,5);

”Consensus analysis between alternative plans” : normalCI(7,8);

”Structure of alternative plans” : normalCI(6,8);

”Quality evaluation of alternative plans” : normalCI(8,9);

”Resource evaluation of alternative plans” : normalCI(7,8);

}

The cost of requirements is given as:
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Cost = BackEndDevCost

+ FrontEndDevCost

+ TestingCost

+ ProjectManagementCost

+ QACost

+ RequirementAnalysisCost;

We model the Back-end development cost as :
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BackEndDevCost = decision-subset(+) (”Next Release”){

”Hierarchical dependencies” : triangular(100, 150, 200);

”Grouping of features” : triangular(350, 400, 450);

”Pre-assignments” : triangular(50, 75, 100);

”Feature dependencies” : triangular(400, 450, 500);

”Feasibility analysis” : triangular(350, 400, 450);

”Flexible number of releases” : triangular(350, 400, 450);

”Flexible number and type of criteria” : triangular(550, 575, 600);

”Fexible number and type of resources” : triangular(400, 450, 500);

”Type 1 Stakekholder consensus driven planning” : triangular(80, 100, 120);

”Type 2 Financially driven planning” : triangular(150, 200, 250);

”Ranking of features based on different criteria” : triangular(350, 400, 450);

”Similarity analysis” : triangular(100, 150, 200);

”Dual charts using ranking and disagreement analysis” : triangular(50, 75, 100);

”Comparison of priorities between stakeholders” : triangular(40, 50, 60);

”Import manual plan” : triangular(50, 60, 80);

”Import of project data” : triangular(50, 75, 100);

”Re-import of updated project data” : deterministic(0);

”Export of plans and project data” :triangular(200, 250, 300);

”Export of generated analysis charts” : triangular(150, 200, 250);

”Trade-off analysis” : triangular(40, 50, 60);

”Estimated stakeholder satisfaction analysis” : triangular(80, 100, 120);

”Consensus analysis between alternative plans” : triangular(80, 100, 120);

”Structure of alternative plans” : deterministic(0);

”Quality evaluation of alternative plans” : triangular(150, 200, 250);

”Resource evaluation of alternative plans” : triangular(80, 100, 120);

}

The front end development cost is given as:



Chapter 7. Evaluating RADAR’s Applicablity and Usefulness 176

FrontEndDevCost = (+) (”Next Release”){

”Hierarchical dependencies” : triangular(150, 200, 250);

”Grouping of features” : triangular(250, 300, 350);

”Pre-assignments” : triangular(100, 120, 140);

”Feature dependencies” : triangular(300, 350, 400);

”Feasibility analysis” : triangular(160, 180, 200);

”Flexible number of releases” : triangular(100, 120, 140);

”Flexible number and type of criteria” : triangular(400, 420, 450);

”Fexible number and type of resources” : triangular(10, 30, 50);

”Type 1 Stakekholder consensus driven planning” : triangular(10, 30, 50);

”Type 2 Financially driven planning” : triangular(30, 40, 50);

”Ranking of features based on different criteria” : triangular(40, 50, 60);

”Similarity analysis” : triangular(30, 40, 50);

”Dual charts using ranking and disagreement analysis” : triangular(160, 180, 200);

”Comparison of priorities between stakeholders” : triangular(10, 30, 50);

”Import manual plan” : triangular(5, 10, 15);

”Import of project data” : triangular(50, 75, 100);

”Re-import of updated project data” : deterministic(0);

”Export of plans and project data” :triangular(80, 100, 120);

”Export of generated analysis charts” : triangular(80, 100, 120) ;

”Trade-off analysis” : triangular(40, 60, 80);

”Estimated stakeholder satisfaction analysis” : triangular(80, 100, 120);

”Consensus analysis between alternative plans” : triangular(30, 40, 50);

”Structure of alternative plans” : triangular(50, 60, 70);

”Quality evaluation of alternative plans” : triangular(50, 70, 90);

”Resource evaluation of alternative plans” : triangular(80, 90, 100);

}

We model the testing cost as:
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TestingCost = decision-subset(+) (”Next Release”){

”Hierarchical dependencies” : triangular(100, 120, 150);

”Grouping of features” : triangular(120, 150, 200);

”Pre-assignments” : triangular(8, 10, 12);

”Feature dependencies” : triangular(350, 375, 400);

”Feasibility analysis” : triangular(250, 300, 350);

”Flexible number of releases” : triangular(80, 100, 120);

”Flexible number and type of criteria” : triangular(380, 400, 450);

”Fexible number and type of resources” : triangular(80, 100, 120);

”Type 1 Stakekholder consensus driven planning” : triangular(380, 400, 450);

”Type 2 Financially driven planning” : triangular(380, 400, 450);

”Ranking of features based on different criteria” : triangular(80, 100, 120);

”Similarity analysis” : triangular(380, 400, 450);

”Dual charts using ranking and disagreement analysis” : triangular(200, 225, 250);

”Comparison of priorities between stakeholders” : triangular(200, 250, 300);

”Import manual plan” : triangular(100, 120, 140);

”Import of project data” : triangular(250, 300, 350);

”Re-import of updated project data” : triangular(80, 100, 250);

”Export of plans and project data” :triangular(350, 400, 450);

”Export of generated analysis charts” : triangular(200, 250, 300) ;

”Trade-off analysis” : triangular(250, 300, 350);

”Estimated stakeholder satisfaction analysis” : triangular(100, 150, 200);

”Consensus analysis between alternative plans” : triangular(200, 250, 300);

”Structure of alternative plans” : triangular(80, 100, 120);

”Quality evaluation of alternative plans” : triangular(100, 150, 200);

”Resource evaluation of alternative plans” : triangular(250, 300, 350);

}

The project management cost is given as:
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ProjectManagementCost = decision-subset(+) (”Next Release”){

”Hierarchical dependencies” : deterministic(0);

”Grouping of features” : triangular(120, 150, 200);

”Pre-assignments” : deterministic(0);

”Feature dependencies” : triangular(100, 125, 150);

”Feasibility analysis” : triangular(40, 50, 60);

”Flexible number of releases” : deterministic(0);

”Flexible number and type of criteria” : triangular(150, 200, 250);

”Fexible number and type of resources” : triangular(40, 50, 70);

”Type 1 Stakekholder consensus driven planning” : triangular(80, 100, 150);

”Type 2 Financially driven planning” : triangular(100, 150, 200);

”Ranking of features based on different criteria” : triangular(80, 100, 120);

”Similarity analysis” : triangular(100, 125, 150);

”Dual charts using ranking and disagreement analysis” : triangular(200, 225, 250);

”Comparison of priorities between stakeholders” : triangular(100, 140, 150);

”Import manual plan” : triangular(100, 120, 140);

”Import of project data” : triangular(110, 120, 150);

”Re-import of updated project data” : triangular(120, 150, 200);

”Export of plans and project data” :triangular(300, 400, 500);

”Export of generated analysis charts” : triangular(200, 250, 300) ;

”Trade-off analysis” : triangular(200, 250, 300);

”Estimated stakeholder satisfaction analysis” : triangular(80, 100, 120);

”Consensus analysis between alternative plans” : triangular( 90, 100, 110);

”Structure of alternative plans” : triangular(200, 250, 300);

”Quality evaluation of alternative plans” : deterministic(0);

”Resource evaluation of alternative plans” : triangular(150, 200, 250);

}

We model the Quality Assurance Cost as:
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QACost = decision-subset(+) (”Next Release”){

”Hierarchical dependencies” : triangular(150, 200, 250);

”Grouping of features” : triangular(150, 200, 250);

”Pre-assignments” : triangular(50, 75, 100);

”Feature dependencies” : triangular(450, 500, 550);

”Feasibility analysis” : triangular(350, 400, 450);

”Flexible number of releases” : triangular(150, 200, 250);

”Flexible number and type of criteria” : triangular(200, 250, 300);

”Fexible number and type of resources” : triangular(350, 400, 450);

”Type 1 Stakekholder consensus driven planning” : triangular(30, 40, 50);

”Type 2 Financially driven planning” : triangular(30, 50, 70);

”Ranking of features based on different criteria” : triangular(30, 40, 50);

”Similarity analysis” : triangular(300, 400, 450);

”Dual charts using ranking and disagreement analysis” : triangular(250, 300, 350);

”Comparison of priorities between stakeholders” : triangular(100, 200, 250);

”Import manual plan” : triangular(100, 190, 200);

”Import of project data” : triangular(400, 450, 500);

”Re-import of updated project data” : triangular(80, 100,120);

”Export of plans and project data” :triangular(300, 400, 500);

”Export of generated analysis charts” : triangular(200, 250, 300) ;

”Trade-off analysis” : triangular(200, 250, 300);

”Estimated stakeholder satisfaction analysis” : triangular(200, 300, 320);

”Consensus analysis between alternative plans” : triangular( 190, 200, 210);

”Structure of alternative plans” : triangular(100, 150, 200);

”Quality evaluation of alternative plans” : triangular(80, 100, 150);

”Resource evaluation of alternative plans” : triangular(150, 200, 250);

}

The requirements analysis cost is given as:
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RequirementAnalysisCost = decision-subset(+) (”Next Release”){

”Hierarchical dependencies” : triangular(40, 60, 80);

”Grouping of features” : triangular(120, 150, 200);

”Pre-assignments” : triangular(10, 20, 50);

”Feature dependencies” : triangular(150, 200, 250);

”Feasibility analysis” : triangular(100, 150, 200);

”Flexible number of releases” : triangular(5, 10, 15);

”Flexible number and type of criteria” : triangular(150, 200, 250);

”Fexible number and type of resources” : triangular(1,5, 10);

”Type 1 Stakekholder consensus driven planning” : triangular(50, 100, 150);

”Type 2 Financially driven planning” : triangular(30, 50, 70);

”Ranking of features based on different criteria” : triangular(10, 20, 30);

”Similarity analysis” : triangular(100, 150, 200);

”Dual charts combining using and disagreement analysis” : triangular(50, 60, 70);

”Comparison of priorities between stakeholders” : triangular(50, 60, 70);

”Import manual plan” : triangular(30, 40, 50);

”Import of project data” : triangular(30, 50, 70);

”Re-import of updated project data” : triangular(40, 50, 60);

”Export of plans and project data” :triangular(20, 50, 60);

”Export of generated analysis charts” : triangular(80, 100, 120) ;

”Trade-off analysis” : triangular(50, 100, 150);

”Estimated stakeholder satisfaction analysis” : triangular(10, 25, 30);

”Consensus analysis between alternative plans” : deterministic(0);

”Structure of alternative plans” : triangular(40, 50, 60);

”Quality evaluation of alternative plans” : triangular(40, 50, 60);

”Resource evaluation of alternative plans” : triangular(40, 50, 60);

}

We model the constraints relationships between requirements below:
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Constraint ”Next Release” : ”Pre-assignments” couples”Next Release” : ”Feature dependen-

cies”;

Constraint ”Next Release” : ”Pre-assignments” couples”Next Release” : ”Feasibility analysis;

Constraint ”Next Release” : ”Feature dependencies” couples”Next Release” : ”Feasibility

analysis;

Constraint ”Next Release” : ”Flexible number and type of criteria” couples”Next Release”:

”Trade-off analysis;

Constraint ”Next Release” : ”Dual charts combining ranking and disagreement analysis”

requires”Next Release” : ”Ranking of features based on different criteria;

Constraint ”Next Release” : ”Import manual plan” requires”Next Release” : ”Import of

project data;

Constraint ”Next Release” : ”Re-import of updated project data” requires”Next Release” :

”Import of project data;

Constraint ”Next Release” : ”Export of plans and project data” requires”Next Release” :

”Import of project data;

Constraint ”Next Release” : ”Export of generated analysis charts” requires”Next Release” :

”Import of project data;

Constraint ”Next Release” : ”Export of generated analysis charts” requires”Next Release” :

”Trade-off analysis;

Constraint ”Next Release” : ”Export of generated analysis charts” requires”Next Release” :

”Estimated stakeholder satisfaction analysis;

Constraint ”Next Release” : ”Export of generated analysis charts” requires”Next Release” :

”Consensus analysis between alternative plans;

Constraint ”Next Release” : ”Export of generated analysis charts” requires”Next Release” :

”Structure of alternative plans;

Constraint ”Next Release” : ”Export of generated analysis charts” requires”Next Release” :

”Quality evaluation of alternative plans;

Constraint ”Next Release” : ”Export of generated analysis charts” requires”Next Release” :

”Resource evaluation of alternative plans;
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7.2.4.3 Analysis Result

Optimisation Analysis

The radar analysis of the radar models developed for the Commercial Release Plan-

ning tools is presented Table 7.7. The problem was analysed using a multi-objective

evolutionary algorithm, i.e., NSGAII, since exhaustive strategy was infeasible. NSGAII

was run using the 1+λ optimisation approach [130] and algorithmic parameters simi-

lar to the settings used in [285]: population size of 100, crossover probability of 0.9,

mutation probability of 0.1 and maximum number of fitness evaluation of 50000.

The results in Table 7.7 show that four solutions were shortlisted out of a total of

225 solutions. None of the shortlisted solutions suggests including all features in the

next release, but they suggest 5 common features, such as: Hierarchical dependencies,

Ranking of features based on different criteria, Dual charts combining ranking and dis-

agreement analysis, Import of project data, Quality evaluation of alternative plans.

Once these 5 solutions are selected, the shortlist includes all possible combinations of

other features; each combination representing a trade-off between maximising Expected-

NetBenefit, minimising ProjectRisk, maximising ExpectedFrequencyOfUse, minimising

ExpectedDissatisfaction and minimising ExpectedRequirementVolatility.

Information Value Analysis

The EVTPI is £6.14m and EVPPI for all model parameters is approximately equal to

zero. This means that none of the model parameters is worth further data collection or

analysis.
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Optimisation Analysis

Objective: Max ExpectedNetBenefit
Objective: Min ProjectRisk
Objective: Max ExpectedFrequencyOfUse
Objective: Min ExpectedDissatisfaction
Objective: Min ExpectedRequirementVolatility
Solution Space: 225

Optimisation Approach: 1+λ
Algorithm Name: NSGAII
Population Size: 100
Crossover Probability: 0.9
Mutation Probability: 0.1
Nbr. Fitness Evaluations: 50000
Shortlisted: 4
Nbr. Decisions: 1
Nbr. Variables: 25
Runtime(s) : 38

Solution 1 Solution 2 Solution 3 Solution 4

Hierarchical dependencies Hierarchical dependencies Hierarchical dependencies Hierarchical dependencies
Flexible number of releases Flexible number of releases Fexible number and type of resources Flexible number and type of criteria
Type 1 Stakekholder consensus driven planning Type 1 Stakekholder consensus driven planning Type 1 Stakekholder consensus driven planning Trade-off analysis
Type 2 Financially driven planning Type 2 Financially driven planning Type 2 Financially driven planning Similarity analysis
Ranking of features based on different criteria Ranking of features based on different criteria Dual charts combining ranking and disagreement analysis Dual charts combining ranking and disagreement analysis

Features in the Next Release Dual charts combining ranking and disagreement analysis Dual charts combining ranking and disagreement analysis Export of plans and project data Consensus analysis between alternative plans
Comparison of priorities between groups of stakeholders Comparison of priorities between groups of stakeholders Ranking of features based on different criteria Ranking of features based on different criteria
Import manual plan Import manual plan Import manual plan
Import of project data Import of project data Import of project data Import of project data
Structure of alternative plans Structure of alternative plans Structure of alternative plans Quality evaluation of alternative plans
Export of plans and project data Pre-assignments Pre-assignments
Estimated stakeholder satisfaction analysis Feature dependencies Feature dependencies
Re-import of updated project data Grouping of features Grouping of features
Quality evaluation of alternative plans Quality evaluation of alternative plans Quality evaluation of alternative plans
Resource evaluation of alternative plans Feasibility analysis Feasibility analysis

ExpectedNetBenefit 5652 8607 8123 6231
ProjectRisk 1 1 1 1

ExpectedFrequencyOfUse 45 63 70 64
ExpectedDissatisfaction 42 54 59 60

ExpectedRequirementVolatility 60 87 95 90

Table 7.7: Optimisation Analysis and Information Value analysis results of requirements subset selection problem for the Release Planning tool.
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7.2.4.4 Comparison To Previous Analysis Approaches

Several analysis of the NRP have been proposed in the literature [30, 283, 285]. Many

of these analyses have been described in Chapter 2.3.2.

The Release planning system has been previously used in the literature to study the

next release problem. Kareem et al [142] used the system as a case study in evaluat-

ing a proposed theme-based release planning method that supports delivering software

releases that contain features that are related in the value they deliver to stakeholders.

Pitangueira et al. [202] also used the same system to evaluate their risk-aware multi-

objective next release problem (MONRP) approach that reformulates the MONRP with

an extra objective that caters for stakeholders dissatisfaction risk.

Like many other NRP models, the models developed by Kareem et al [142] and Pi-

tangueira et al. [202] for the release planning system used generic decision objectives

and pre-established model equations (e.g. typically weighted sums) to specify “cost”

and “value” scores to alternative solutions. The model developed by Kareem et al.

ignored uncertainty in model parameters and does not analyse uncertainty. However,

Pitangueira et al. modelled uncertainty as the variance in the stakeholders estimates of

requirements attributes (costs and values).

With respect to the optimisation analysis, like radar, Kareem et al. used the multi-

objective optimisation algorithm (NSGAII) to shortlist Pareto optimal solutions. Pi-

tangueira et al. used both approximate and exact multi-objective optimisation algo-

rithm: the authors used NSGAII to generate the initial set of Pareto optimal solutions

and then used SMT solver (Z3 [68] and Yice [77]) to shortlist exact Pareto optimal by

transforming the problem to an SMT problem and encoding candidate requirements as

Boolean variables and solving the model using an SMT solver. Using NSGAII with

crossover probability of 0.9, mutation probability of 0.1 and number of generation as

500, radar optimisation analysis and the optimisation approach used in Kareem et al.

shortlisted 4 solutions out of 225. The reason for the same number of solutions could be

that they both used NSGAII implementation in JMetal. While the analysis approach

used in Pitangueira et al. also used NSGGII, the authors did not report the number

of solutions shortlisted by NSGAII, but Yices and Z3 shortlisted 146 and 143 exact

solutions, respectively.
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In terms of information value analysis, radar includes such analysis to estimate the

financial value of reducing uncertainty in the model. Such analysis is not available in

the approaches proposed by Kareem et al. and Pitangueira et al.

7.2.5 Public Bike Sharing System

7.2.5.1 Problem Statement

The public bike sharing system is deployed in many metropolitan cities, such as London,

to increase travellers’ transit options, reduce energy utilisation, improve the quality of

life by reducing air and noise pollution, and minimise traffic congestion within the city.

Chapter 3.2 described in details the different components of the bike sharing system.

Some of these decisions are the bikes security strategy to use in securing the bikes; bike

manufacturer brand to deploy; the type of bike docking station to use; decision about

alternative ways by which users can register to use the system; decision about user access

to the system; decision about rewarding users to return bikes to inconvenient locations;

decision about the method to get status updates from the system.

7.2.5.2 RADAR Model

Modelling the Optimisation Objectives

Two key concerns of the bike sharing system are to maximise the net benefit of intro-

ducing the system to the city and to minimise the project risk.

Objective Max ExpectedNetBenefit = EV(NB);

Objective Min Risk = Pr(NB < 0);

The net benefit (NB) is defined as the difference between Benefit and Cost.

NB = Benefit − Cost;
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Cost = CostOfBikes

+ CostOfSecuringBicycles

+ CostOfDockStations

+ CostOfSystemAccessMgt

+ CostSystemRegistrationMgt

+ CostOfOtherComponents;

The Cost is composed of the costs of implementing the system, which include the cost

of securing the bike, cost of bikes, cost of a dock station, and the cost of other sub-

systems such as the registration component and the system access management. In

Section 3.4.2, we have presented a partial decision model developed for the bike sharing

system with focus on elaborating the different costs components of the system and the

constraint relationships between the options of decisions. This section elaborates on the

first objective optimisation objectives: System NetBenefit.

We model the system Benefit as:

Benefit = BenefitOfSecuringBicycles

+ BenefitOfDockStations

+ BenefitOfSystemAccessMgt

+ BenefitOfSystemRegistrationMgt

+ BenefitOfNonMandatorySystemComponents;
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BenefitOfSecuringBicycles = decision-subset(+)(”Securing Bicycles”){

”Localisation feature” : BenefitOfBikeLocalisation;

”Anti-theft feature” : triangular(2,5,10);

}

BenefitOfBikeLocalisation = decision-subset(+)(”Tracking Mechanism”){

”GPS feature” : triangular(5,10, 15);

”RFID feature” : triangular(20, 22, 25);

}

BenefitOfDockStations = decision(”Dock Station”){

”Permanently Fixed” : triangular(15,17, 19);

”Temporarily Fixed ” : triangular(20,22,25);

”Flexible ” : triangular(24,27,30);

}

BenefitOfSystemAccessMgt = decision-subset(+)(”System Access Mgt”){

”Smart card” : triangular(20,25, 30);

”Smart Phone” : triangular(15, 17,20);

”Key Card” : triangular(29, 30,35);

}

BenefitOfSystemRegistrationMgt = decision-subset(+)(”System Registration Mgt”){

”Kisok Reg” : BenefitOfKioskReg;

”Dock Station Reg” : triangular(18, 20,22);

”Web Reg” : triangular(27, 30,33);

}

BenefitOfKioskReg = decision-subset(+)(”Kisok Registration”){

”Touch Screen” : triangular(2, 5, 7);

”Key card reader” : triangular(8, 10,12);

”Credit Card” : triangular(10, 12,15);

”Card Dispenser” : triangular(12, 15, 18);

}

BenefitOfNonMandatorySystemComp = decision-subset(+)(”NonMandatorySystemComp”){

”System Status Info” : BenefitOfHavingSysStatusInfo;

”Bike Maintenance” : triangular(12,15, 20);

”Bike Redistribution” : BenefitOfBikeRedistribution;

}
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System Status

BenefitOfHavingSysStatusInfo

BenefitOfHavingSysStatusInfo[Real Time Web Info]BenefitOfHavingSysStatusInfo[Real Time Mobile App Info]

NonMandatorySystemComp

BenefitOfNonMandatorySystemComponents

BenefitOfNonMandatorySystemComponents[Bike Maintenance]

RedistributionWithoutReward

Reward Users

BenefitForRewardingUsers

BenefitForRewardingUsers[Without reward] BenefitForRewardingUsers[With Reward]

BenefitOfBikeRedistribution

Figure 7.8: Partial AND/OR refinement graph for the model variable BenefitOfNon-
ManadatorySystemComponents of the bike sharing model.

BenefitOfHavingSysStatusInfo = decision-subset(+)(”System Status”){

”Real Time Web Info” : triangular(5, 10, 10);

”Real Time Mobile App Info” : triangular(15, 20, 30);

}

BenefitOfBikeRedistribution = RedistributionWithoutReward + BenefitForRewardingUsers;

RedistributionWithoutReward = triangular(10,15, 20);

BenefitForRewardingUsers = decision(”Reward Users”){

”Without reward” : deterministic(0);

”With Reward” : triangular(25, 28, 30);

}

To help visualise the model structure, radar generates the AND/OR refinement graph

and decision dependency graphs from the bike sharing model equations. Fig.7.8 shows

the partial AND/OR refinement graphs for the bike sharing model starting from the

model variable BenefitOfNonManadatorySystemComponents. Fig.3.4 in Chapter 3 shows

a partial model decision dependency graph for the bike sharing model.
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Figure 7.9: Pareto front for the bike sharing system problem.

7.2.5.3 Analysis Results

The radar analysis of the bike sharing model is presented in Fig. 7.8, which shows the

results of the optimisation and information value analysis on the model.

The first part of Fig.7.8 is the optimisation analysis result. radar shortlisted 35 solu-

tions out of 15×220 possible alternatives using a multi-objective evolutionary algorithm,

i.e., NSGAII, since exhaustive strategy was infeasible. NSGAII was run using the 1+λ
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optimisation approach [130] described in Chapter 5.1.4 and used algorithmic parameters

similar to the settings used in [285] : population size of 100, crossover probability of 0.9,

mutation probability of 0.1 and maximum number of fitness evaluation of 50000. All

shortlisted solutions include the “A-Bike” option. With this option selected, the short-

listed solutions include different possible combinations of the bike security decision,

tracking mechanism decision, system registration decision and other non mandatory

system component (e.g., Bike maintenance, system status information and bike redis-

tribution). Each combination represents a trade-off between maximising the expected

net benefit and minimising risk. radar generates the graph in Fig.7.9, plotting the

objective values for the shortlisted solutions (shown squares at the top of the graph)

and all other non shortlisted ones (shown as circles).

The second part of Fig.7.9 is the information value analysis results, which show that

the EVTPI for this problem is £0.81m. and EVPPI for the unit cost (UnitCost) of

A-Bike brand to be £0.03m, and the EVPPI of the number of bikes to deploy (NbrBicy-

clesToDeploy) to be £0.70m. This means that reducing uncertainty about the number

of bikes to deploy has a higher value than reducing uncertainty about the cost of the

A-Bike brand
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Optimisation Analysis

Objective: Max ExpectedNetBenefit
Objective: Min Risk
Solution Space: 20 ×1020

Optimisation Approach: 1+λ
Algorithm Name: NSGAII
Population Size: 100
Crossover Probability: 0.9
Mutation Probability: 0.1
Nbr. Fitness Evaluations: 50000
Shortlisted: 36
Nbr. Decisions: 10
Nbr. Variables: 36
Runtime(s) : 11

ID Securing Bicycles Tracking Mechanism Dock Station System Registration Mgt Kisok Reg NonMandatorySystemComp System Status Reward Users Manufacturer Brand ExpectedNetBenefit Risk

1 Localisation feature;Anti-theft feature GPS feature;RFID feature Flexible Kisok Reg Touch Screen;Card Dispenser System Status Info — Without reward A-Bike 9.97 0.01
2 Localisation feature;Anti-theft feature GPS feature;RFID feature Temporarily Fixed Kisok Reg Touch Screen;Card Dispenser System Status Info — Without reward A-Bike 10.3 0.03
3 Localisation feature;Anti-theft feature RFID feature Flexible Kisok Reg Touch Screen;Card Dispenser System Status Info — Without reward A-Bike 7.47 0
4 Localisation feature;Anti-theft feature RFID feature Temporarily Fixed Kisok Reg Touch Screen;Card Dispenser System Status Info — Without reward A-Bike 7.79 0
5 Localisation feature;Anti-theft feature RFID feature Flexible Kisok Reg Credit Card System Status Info — Without reward A-Bike 7.47 0
6 Localisation feature;Anti-theft feature RFID feature Temporarily Fixed Kisok Reg Key card reader;Card Dispenser — Real Time Web Info;Real Time Mobile App Info Without reward A-Bike 7.79 0
7 Localisation feature;Anti-theft feature GPS feature;RFID feature Flexible Kisok Reg Touch Screen;Credit Card System Status Info — Without reward A-Bike 9.97 0.01
8 Localisation feature;Anti-theft feature GPS feature;RFID feature Temporarily Fixed Kisok Reg Credit Card System Status Info — Without reward A-Bike 10.3 0.03
9 Localisation feature;Anti-theft feature RFID feature Flexible Kisok Reg Key card reader;Credit Card — — Without reward A-Bike 7.47 0

10 Localisation feature;Anti-theft feature RFID feature Flexible Kisok Reg Key card reader;Card Dispenser System Status Info — Without reward A-Bike 7.47 0
11 Localisation feature RFID feature Temporarily Fixed Kisok Reg Credit Card System Status Info — Without reward A-Bike 5.13 0
12 Localisation feature;Anti-theft feature RFID feature Temporarily Fixed Kisok Reg Key card reader;Card Dispenser — Real Time Web Info;Real Time Mobile App Info With Reward A-Bike 7.79 0
13 Localisation feature;Anti-theft feature GPS feature;RFID feature Flexible Kisok Reg Credit Card System Status Info — Without reward A-Bike 9.97 0.01
14 Localisation feature RFID feature Temporarily Fixed Kisok Reg Credit Card — Real Time Web Info;Real Time Mobile App Info Without reward A-Bike 5.13 0
15 Localisation feature;Anti-theft feature GPS feature;RFID feature Flexible Kisok Reg Key card reader;Credit Card — — Without reward A-Bike 9.97 0.01
16 Localisation feature;Anti-theft feature GPS feature;RFID feature Flexible Kisok Reg Key card reader;Card Dispenser — Real Time Web Info;Real Time Mobile App Info With Reward A-Bike 9.97 0.01
17 Localisation feature;Anti-theft feature RFID feature Temporarily Fixed Kisok Reg Credit Card System Status Info — Without reward A-Bike 7.79 0
18 Localisation feature;Anti-theft feature RFID feature Flexible Kisok Reg Key card reader;Card Dispenser — Real Time Web Info;Real Time Mobile App Info Without reward A-Bike 7.47 0
19 Localisation feature;Anti-theft feature RFID feature Temporarily Fixed Kisok Reg Key card reader;Card Dispenser System Status Info — Without reward A-Bike 7.79 0
20 Localisation feature;Anti-theft feature GPS feature;RFID feature Flexible Kisok Reg Key card reader;Card Dispenser — — Without reward A-Bike 9.97 0.01
21 Localisation feature;Anti-theft feature RFID feature Flexible Kisok Reg Key card reader;Credit Card — Real Time Web Info;Real Time Mobile App Info With Reward A-Bike 7.47 0
22 Localisation feature;Anti-theft feature RFID feature Temporarily Fixed Kisok Reg Key card reader;Credit Card — — Without reward A-Bike 7.79 0
23 Localisation feature;Anti-theft feature RFID feature Temporarily Fixed Kisok Reg Key card reader;Card Dispenser — — Without reward A-Bike 7.79 0
24 Localisation feature;Anti-theft feature RFID feature Temporarily Fixed Kisok Reg Touch Screen;Card Dispenser — Real Time Web Info;Real Time Mobile App Info With Reward A-Bike 7.79 0
25 Localisation feature RFID feature Temporarily Fixed Kisok Reg Credit Card — — Without reward A-Bike 5.13 0
26 Localisation feature;Anti-theft feature RFID feature Flexible Kisok Reg Touch Screen;Card Dispenser System Status Info — With Reward A-Bike 7.47 0
27 Localisation feature;Anti-theft feature RFID feature Flexible Kisok Reg Key card reader System Status Info — Without reward A-Bike 7.47 0
28 Localisation feature;Anti-theft feature GPS feature;RFID feature Temporarily Fixed Kisok Reg Touch Screen;Card Dispenser System Status Info — With Reward A-Bike 10.3 0.03
29 Localisation feature;Anti-theft feature GPS feature;RFID feature Temporarily Fixed Kisok Reg Credit Card System Status Info — With Reward A-Bike 10.3 0.03
30 Localisation feature RFID feature Temporarily Fixed Kisok Reg Touch Screen;Card Dispenser System Status Info — Without reward A-Bike 5.13 0
31 Localisation feature;Anti-theft feature GPS feature;RFID feature Flexible Kisok Reg Credit Card — Real Time Web Info;Real Time Mobile App Info Without reward A-Bike 9.97 0.01
32 Localisation feature;Anti-theft feature GPS feature;RFID feature Flexible Kisok Reg Key card reader;Card Dispenser — Real Time Web Info;Real Time Mobile App Info Without reward A-Bike 9.97 0.01
33 Localisation feature;Anti-theft feature RFID feature Temporarily Fixed Kisok Reg Key card reader;Card Dispenser — — With Reward A-Bike 7.79 0
34 Localisation feature;Anti-theft feature GPS feature;RFID feature Temporarily Fixed Kisok Reg Key card reader;Card Dispenser — Real Time Web Info;Real Time Mobile App Info Without reward A-Bike 10.3 0.03
35 Localisation feature;Anti-theft feature RFID feature Flexible Kisok Reg Touch Screen;Card Dispenser — Real Time Web Info;Real Time Mobile App Info With Reward A-Bike 7.47 0

Table 7.8: Optimisation Analysis results for the public bike sharing model
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7.2.5.4 Comparison To Previous Analysis Approaches

Previous modelling and analyses of the public bike sharing system (BSS) have focused

generally on developing feature models that capture variability and commonality of the

different configurations of the system.

Ter et al. [249] identified the main components, features, commonalities and variability

of the system by text mining a series of documents from the literature [177], that detail

the public bike sharing system. Based on the features identified, the authors developed

the bike sharing feature models using different tools: SPLOT [175] (which allows editing,

debugging, analysing, configuring, sharing, and downloading feature models in simple

XML feature model formats); FeatureIDE [145] –a similar tool, but allows generation of

feature models in the graphical Feature Oriented Domain Analysis (FODA) syntax as

well as Java or C++ codes; and Clafer [18] –a modelling language that supports feature

and domain modelling, configuration and verification. ClaferMOO [192] extends Clafer

with a feature to enable exact multi-objective optimisation.

The bike sharing model developed in SPLOT, FeatureIDE and Clafer/ClaferMOO de-

scribe the variability and commonality of features of the bike sharing system. The

Clafer/ClaferMOO model allows specification of optimisation objectives (maximising

the customer satisfaction, minimise cost, maximise security and maximise capacity) in

the model and generates Alloy model that contains attributed feature model and solved

using Alloy solvers [139, 178]. Since Clafer/ClaferMOO requires model transformations.

This may lead to model synchronisation complexity and a risk of model inconsistencies.

The bike sharing models developed in previous work used weighted sums of feature

attribute values (cost, defect count, performance etc). They do not allow the elaboration

of domain-specific decision models that radar supports through AND/OR refinements

of model variables. Also, existing feature modelling tools and frameworks do not allow

one to explicitly capture uncertainty in domain quantities and cannot handle Boolean

expressions, such as logical OR and logical AND, that radar handles. Finally, they

generally lack techniques for analysing uncertainty and informing decision makers about

the financial value of reducing uncertainty in a decision model.

As a comparison to the radar optimisation results, ClaferMOO shortlisted 249 solu-

tions using exact multi-objective optimisation whereas radar shortlisted 36 solutions
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through evolutionary multi-objective optimisation algorithm (NSGAII). Unlike Clafer-

MOO, radar estimates EVTPI and EVPPI about model parameters to determine which

aspects of the model requires further analysis.

7.3 Conclusions From Our Experiments

7.3.1 Applicability

By successfully applying our modelling language and decision analysis technique to a

wide range of requirements and architecture decisions, we have shown that:

• Claim 1: The radar modelling language is expressive enough to model real-world

requirements and architecture decision problems;

• Claim 2: The radar optimisation technique can be applied to real-world require-

ments and architecture decision problems.

With respect to Claim 1, radar gives requirements engineers and software architects the

ability to elaborate domain specific requirements and architecture decision problems. For

example, in the bike sharing model presented in Section 7.2.5, we elaborated the total

cost of bikes to depend on other domain quantities such as the number of additional

bikes to deploy; the number of bikes currently deployed, and the unit cost of a bike.

Such fine-grained elaboration of model equations are necessary to capture stakeholders’

real objectives and ultimately ensuring decision-makers make the right decisions. One

limitation, however, is that the current implementation of radar does not cater for

mathematical functions such as AVERAGE, MAX, MIN and SQRT. As a consequence,

radar is not currently applicable to the requirements and architecture decision problems

that require these mathematical functions. For example in the LAS model presented in

Appendix A, radar was not able to model the Euclidean distance between an ambulance

and the incident location using an Euclidean function between two points. This is a

limitation to addresses in future work to increase radar’s expressiveness.
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7.3.2 Usefulness

We have illustrated radar’s modelling capability and its automated decision analysis

technique on problems described in Table 7.1. This section highlights radar’s usefulness

in supporting requirements and architecture decisions under uncertainty. Our discussion

of usefulness is, at this stage, speculative.

radar provides decision-makers with useful information about the trade-offs between

alternatives. It gives information about what objective values can be attained with

different design alternatives. For example, in the fraud detection example of Section

7.2.1, Fig. 7.2 helps decision-makers to understand the trade-off between maximising

the fraud detection benefit and minimising the investigation load. The figure shows

four shortlisted alternatives (shown squares at the top of the graph) and all other non

shortlisted ones (shown as circles). Similarly, in the emergency response system exam-

ple described in Section 7.2.2, radar generates Fig 7.4 to show the trade-off between

maximising expected net benefit and minimising the project risk. In the bike sharing

example presented in Section 7.2.5, Fig 7.9 helps to understand the trade-off between

maximising the expected net benefit and minimising risk.

radar also identifies the different decision-options combinations that represent the

trade-off between stakeholders’ objectives. For example, in the fraud detection opti-

misation result presented in Table 7.2, radar shortlists four solutions each with differ-

ent decision-option combinations: s1 = {(blocking policy, block first), (processing

type, {continuous}), (fraud detection method, {rule-based}); s2 = {(blocking

policy, block first), (processing type, {continuous}), (fraud detection method,

{classifier}), (alert threshold, {medium}); s3 = {(blocking policy, block first),

(processing type, {continuous}), (fraud detection method, {classifier}), (alert

threshold, {high}); s4 = {(blocking policy, block first), (processing type, {continuous}),

(fraud detection method, {classifier}), (alert threshold, {low}).

radar helps to identify the decisions that are better than the others in a given de-

cision model. For example, the results presented in Table 7.2 for the fraud detection

system shows that all shortlisted solutions include the “block first” policy and “con-

tinuous” processing type. This suggests to decision-makers that a decision with “block

first” policy and “continuous” processing type options is better than one without these

options. Similarly, for the emergency response system presented in Table 7.4, radar
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suggests to decision-makers that a decision with “radio triangulation”, “OpenIntent”,

“Implicit”, “XMPP (Open Fire)”, “Preloaded (ESRI)” is better than a decision without

these options.

radar provides useful information about what parameter uncertainty may deserve ad-

ditional data collection and analysis before making their decision and what parameter

uncertainty does not matter to their decision. For example, radar’s information value

analysis results of the fraud detection example in Table 7.2 shows that the EVTPI for

the fraud detection problem is 220 and EVPPI for AverageFraudValue is 122. All other

parameters have EVPPI below 2. This means that in this model, the average fraud

value is the only parameter worth further investigation before making the final decision.

Reducing uncertainty about other parameters would bring no value to the decision.

Consider also Table 7.6 which shows the EVTPI and EVPPI for all model parameters

of the building security policy model to be zero. In this case, radar suggests to the

stakeholders that their parameter estimates are accurate and that there is no need for

additional data collection or analysis before making their decision.

Finally, radar provides useful graphical representations to visualise the decision models

through AND/OR refinements graphs commonly used in goal-oriented requirements en-

gineering. It also presents the decision dependency graphs which shows model decisions,

their corresponding options and the relationships between decisions and options. These

graphs help to communicate and validate traceability links between strategic stakeholder

goals and technical software characteristics [264]. They can also be used to review the

model structure with other non technical stakeholders. For example, in the fraud detec-

tion model, radar generates the AND/OR graph shown in Fig 7.1. The graph starts

from a model variable Benefit and AND-refined into BaseLineFinancialLoss and Finan-

cialLosss until reaching leaf variables that are parameter estimations. Figure 7.5 shows a

similar refinement graph for the building security policy model presented in Section 7.2.3.

The CostOfDisclosure is AND-refined into NbrHighConfidentialLeaks, CostOfHighCon-

fidentialLeaks, NbrMediumConfidentialLeaks, CostOfMediumConfidentialLeaks, Nbr-

LowConfidentialLeaks and CostOfLowConfidentialLeaks. Each sub-variable are refined

until reaching the leaf variables.
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7.3.3 Threats To Validity

7.3.3.1 The model validity threats

In our approach, the correctness of the analysis results is relative to the validity of the

decision model. If the model’s equations are not valid, the predicted objective values for

the different solutions might be wrong. In the twelve examples, although some equations

and parameters estimation are based on observed data, we have mostly validated our

models by checking that our equations ‘make sense’ rather than testing them empirically.

We cannot therefore guarantee their validity.

One should observe that when making decisions about systems that have yet to be built,

it will in general not be possible to validate all equations empirically because some of the

equations will refer to phenomena that cannot be observed yet. It will only be possible

to validate these equations empirically once the system is in use. This is an inherent

difficulty of requirements and architecture decision problems.

With respect to the problem of model validation, our approach needs to be compared

with the state-of-the-art in requirements and architecture decision making that, by re-

lying on fixed, predefined, and unfalsifiable equations, ignore the issue of model validity.

By contrast, radar models can be criticised, reviewed, and modified to improve their

validity.

7.3.3.2 The cost of modelling threats

Another possible problem of our method is that the cost of elaborating the decision

models might outweigh its benefits. Our objective in designing radar was to reduce

the difficulty and cost of modelling compared to existing approaches that require the

model to be developed in a general purpose programming language. We have, however,

not yet tested how easily people will be able to use our language and tool.

With respect to cost-effectiveness, a potential benefit of our approach is that it enables

an iterative modelling and analysis approach where information value analysis might be

used to decide what parts of an initially simple model (such as the refactoring model

in Chapter 3.4) should be refined to improve decisions. This will reduce modelling cost

by helping modellers develop fine-grained models only where needed and leave other
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parts of the problem modelled at a coarse level of granularity. We intend to develop and

evaluate such iterative approach in future work.

7.4 Summary

We have applied radar’s modelling language and decision analysis technique on twelve

real-world requirements and architecture decision problems from different application

domains. We have also compared the radar’s analysis results with other requirements

and architecture decision analysis technique to emphasise the benefits of using radar

over the state-of-the-art decision analysis techniques. These benefits include: (i) the

ability to use simple mathematical equations to elaborate domain specific decision mod-

els that capture stakeholders’ concerns. (ii) The automated decision analysis technique

that radar provides with the ability to determine which model parameters need further

investigation before making the final decision. (iii) The graphical representation of deci-

sion models (AND/OR graphs and decision dependency graphs) to give decision-makers

insights into the relationships between high-level objectives and low-level technical de-

tails of a model. The following chapter studies the performance of radar’s optimisation

algorithms.
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Information Value Analysis

Objective: Max ExpectedNetBenefit
EVTPI: 0.81

Parameter EVPPI

BenefitOfSecuringBicycles[Anti-theft feature] 0.7
BenefitOfBikeLocalisation[GPS feature] 0.7
BenefitOfBikeLocalisation[RFID feature] 0.7
BenefitOfDockStations[Permanently Fixed] 0.7
BenefitOfDockStations[Temporarily Fixed] 0.7
BenefitOfDockStations[Flexible] 0.7
BenefitOfSystemAccessMgt[Smart card] 0.7
BenefitOfSystemAccessMgt[Smart Phone] 0.7
BenefitOfSystemAccessMgt[Key Card] 0.7
BenefitOfSystemRegistrationMgt[Dock Station Reg] 0.7
BenefitOfSystemRegistrationMgt[Web Reg] 0.7
BenefitOfKioskReg[Touch Screen] 0.7
BenefitOfKioskReg[Key card reader] 0.7
BenefitOfKioskReg[Credit Card] 0.7
BenefitOfKioskReg[Card Dispenser] 0.7
BenefitOfNonMandatorySystemComp[Bike Maintenance] 0
BenefitOfHavingSysStatusInfo[Real Time Web Info] 0
BenefitOfHavingSysStatusInfo[Real Time Mobile App Info] 0
RedistributionWithoutReward 0
BenefitForRewardingUsers[With Reward] 0
NbrBikesToDeploy 0.7
UnitCost[A-Bike] 0.03
UnitCost[Cortina Cycles] 0.03
UnitCost[Derby Cycle] 0.03
UnitCost[Bianchi] 0.03
UnitCost[Catrike] 0.03
CostOfSecuringBicycles[Anti-theft feature] 0.03
CostOfBikeLocalisation[GPS feature] 0.03
CostOfBikeLocalisation[RFID feature] 0.03
CostOfDockStations[Permanently Fixed] 0.7
CostOfDockStations[Temporarily Fixed] 0.7
CostOfDockStations[Flexible] 0.7
CostOfSystemAccessMgt[Smart card] 0.7
CostOfSystemAccessMgt[Smart Phone] 0.7
CostOfSystemAccessMgt[Key Card] 0.7
CostSystemRegistrationMgt[Dock Station Reg] 0.7
CostSystemRegistrationMgt[Web Reg] 0.7
CostOfKioskReg[Touch Screen] 0.7
CostOfKioskReg[Key card reader] 0.7
CostOfKioskReg[Credit Card] 0.7
CostOfKioskReg[Card Dispenser] 0.7
CostOfNonMandatorySystemComponents[Bike Maintenance] 0.7
CostOfHavingSysStatusInfo[Real Time Web Info] 0.7
CostOfHavingSysStatusInfo[Real Time Mobile App Info] 0.7
RedistributionCostWithoutReward 0.03

Table 7.9: Information Value Analysis results for the Bike Sharing model
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RADAR Performance Evaluation

This chapter presents an empirical evaluation that aims to examine the scalability of

radar’s exhaustive strategy and the performance of radar’s evolutionary search-based

algorithms.

8.1 Research Questions

Following standard experimental methodology [80] described in section 8.3, we evaluate

radar’s optimisation algorithms by answering the following research questions:

RQ1 (Scalability): What is the scalability of radar’s exhaustive strategy?

Adding inclusive OR decisions to a decision model significantly increases the size of the

solution space, and therefore may make the use of exhaustive strategy infeasible. This

research question provides insight on the scalability of radar’s exhaustive strategy

during simulation and optimisation of a problem design space. We measure radar’s

running time and memory consumption on large radar synthetic models. We perform

experiments to answer the following sub-research questions:

• RQ1.1: What is the scalability of radar’s exhaustive search strategy with respect

to the number of simulations?

• RQ1.2: What is the scalability of radar’s exhaustive search strategy with respect

to the size of the design space?

199
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• RQ1.3: What is the scalability of radar’s exhaustive search strategy with respect

to the number of objectives?

• RQ1.4: What is the time spent and memory consumed by each analysis step?

RQ2 (Performance Analysis): What is the performance of radar’s alter-

native search-based evolutionary algorithms? Since many elitist evolutionary

multi-objective algorithms (EMOAs), such as NSGAII, SPEAII, IBEA, differ in how

they evolve solutions between generations and in how they estimate dominance value

between two solutions, we perform experiments to answer the following research ques-

tions:

1. RQ2.1: What is the execution time of radar’s optimisation analysis using dif-

ferent evolutionary multi-objective algorithms?

2. RQ2.2: What is the quality of solutions shortlisted by radar using different

evolutionary multi-objective algorithms?

8.2 RADAR Models Analysed

We have analysed the radar tool on both real world requirements and architecture

decision models and synthetic radar models. Using synthetic models helps to examine

the scalability of radar’s exhaustive strategy.

8.2.1 Real Models

Our experiments used real-world requirements and architecture decision problems pre-

sented in Chapter 7 and summarised in Table 7.1: decisions about features to implement

for the next release of a commercial release planning system and a word processor system

[142]; design decisions of a system to coordinate the deployment of emergency response

teams [85, 166]; architecture decisions for the NASA satellite processing system designed

to collect and process satellite images [151, 179]; decisions about selecting an optimal

set of features in a product family the public Bike Sharing System [177, 250]; a PHP-

based framework for web content management [228]; an e-commerce System 67 [176];
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Core Model Constructs Value Ranges Step Size

Objectives [2-5] 1
Decisions [10-20] 1
Options Per Decision [3-10] 1
Min of Variables [100-1000] 100

Table 8.1: Ranges of values used to generate radar synthetic models.

Amazon Web Service (AWS) elastic compute cloud [98]; Berkeley Relational Database

Management System [238]. These problems have design space size between 103 and 240.

8.2.2 Synthetic Models

We have implemented a synthetic model generator that generates random syntactically

valid radar models with any given number of objectives, decisions, number of options

per decisions and minimum number of model variables. The model generator can pro-

duce radar models with or without decision dependencies. It constructs a synthetic

radar model following radar’s syntax: a model’s objective is declared as either a

maximisation or a minimisation problem, whose definition could be an expectation or

a probability defined over a random variable. For each objective, the random variable

that defines it is refined into three child variables which are related by randomly cho-

sen arithmetic operators (e.g. “+”, “–”, “/” and “*”). The three child variables are

typically of the form ANDRefinement, ParameterEstimation and OrRefinement, respec-

tively. Following the same format, each child variable is further refined and related

to three variables until both the specified number of decisions and minimum number of

model variables have been attained. For synthetic models without decision dependencies,

each expression corresponding to the individual option of an OrRefinement is always a

parameter estimation. However, for models with decision dependencies, each expression

corresponding to the individual option of an OrRefinement could be an ANDRefinement,

ParameterEstimation or OrRefinement. The number of decision dependencies specified

determines the number of times an OrRefinement variable is linked to the option of

another.

The model generator and all models generated for the experiments below are available

from the tool’s website (https://ucl-badass.github.io/radar/).

https://ucl-badass.github.io/radar/
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8.3 Experimental Methodology

We answer RQ1 by applying radar on randomly generated radar models using dif-

ferent combinations of radar’s core model constructs, i.e., the number of objectives,

number of decisions, options per decision, AND/OR variables and parameter estima-

tions. We measure radar’s running time and memory consumption. Table 8.1 shows

the range of values for each model constructs used to generate the synthetic models.

The number of objectives is between 2 and 5; the number of decisions ranges from 10 to

20, inclusive; the number of options per decision is between 3 and 10; and the minimum

number of model variables is between 100 and 1000. All model construct values are

increased by a unit step size, except the minimum number of model variables which is

increased in steps of 100.

For RQ2, we experiment on the real-world requirements and architecture problems

presented in Table 8.3 using four Evolutionary Multi-objective Optimisation Algorithms

(EMOAs), such as NSGAII [69], SPEAII [289], MoCell [184] and IBEA [288], the two

optimisation approaches radar employs in handling constraints, i.e., (λ+1) and 1+λ,

and compare results against random search. We chose the four EMOAs because they

have already been implemented in JMetal5 [185] and have been used extensively in many

multi-objective software engineering research problems [88, 126, 130, 157, 229, 230, 235,

285].

For each studied stochastic multi-objective optimisation algorithm, we follow recom-

mended practices [27, 269] and assess the quality of solutions shortlisted by measuring

widely used metrics, such as hypervolume and coverage [100, 130, 204, 235], to provide

information about the convergence and diversity of solutions in the Pareto front ap-

proximation. To investigate the number of valid solutions (i.e., solutions that satisfy the

constraints declared in a radar model) shortlisted in the Pareto front approximation, we

measured another metric called validity ratio [130]. However, since the optimal Pareto

front cannot always be known, we follow the standard practice of using a reference front

that combines the best solutions produced by all EMOAs studied.

• Hypervolume (HV). The hypervolume of a set of solutions can intuitively be

understood as a measure of how far the boundary created by a set of solutions is

from some reference point corresponding to the objective function values for the
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worst possible solution (for example, in a maximisation problem, a solution with

zero values for all objective functions). Higher values of HV indicate better Pareto

front approximations.

• Coverage (Cov). This is the ratio between the size of Pareto front approximation

in the exact Pareto optimal solutions to the total number of exact Pareto optimal

solutions. It measures how close the approximate Pareto front is to the exact

Pareto front in the solution space. Higher values of coverage depict better Pareto

front approximations.

• Validity Ratio (VR). This is the ratio of the number of solutions in the Pareto

front approximation, that satisfy the model constraint relationship, on average for

the independent runs that have at least one valid solution. We compute this metric

only for problems that have constraints. Higher values of VR implies efficacy of

an EMOA in finding valid solutions in the Pareto front approximations.

To compare these metrics across the five algorithms, we conduct a post-hoc analysis with

two-way comparison that includes statistical differences and effect sizes. For statistical

differences, we use the non-parametric Man-Whitney U-test, at 5% significance level,

to report the p-values i.e. the probabaility that two EMOAs give different values. For

effect sizes, we apply the Vargha-Delaney A-measure [251] to give the probability that

a particular EMOA outperforms another.

8.4 Experimental Settings

All our experiments were run on a computer with a four-core 2.6 GHz processor and

7GB RAM. For the multi-objective optimisation algorithm parameter settings such as

population size, crossover and mutation probabilities, we used single point crossover

and bit flip mutation. For the default parameter settings, we used similar parameter

levels in [285], which is a crossover probability of 0.8, mutation probability to be the

inverse of the total number of options in a decision model, and a population size of 100.

All algorithms terminate after 50,000 fitness function evaluations. We compute fitness

values through 104 simulations of a particular radar solution to obtain simulation values

for the objective functions. Because stochastic multi-objective evolutionary algorithms
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include randomness, following guidelines in [27, 269], we have run each experiment 30

independent times on each radar model.

8.5 Results and Analysis

8.5.1 Scalability of RADAR Exhaustive Strategy

RQ1.1: What is radar’s Scalability with respect to the number of simula-

tions? To evaluate how radar run-time and memory usage increases as the number

of simulation, N , increases, we have generated a synthetic model whose characteristics

are similar to that of the emergency response system, i.e. it contains 2 objectives, 10

decisions, 3 options per decisions, and no decision dependencies. We have then measured

the running times and memory consumption of analysing this model when doubling N

10 times from 104 to 512 × 104. The results are shown in Figure 8.1 and indicate that

the running time and memory usage increase linearly with N .

RQ1.2: What is radar’s scalability with respect to design space size? To

evaluate how radar run-time and memory usage increases when the design space size

increases, we have generated synthetic models with decision dependencies by incremen-

tally and separately increasing the number of decisions and options per decisions until

the resulting models could no longer be analysed in less than an hour. The synthetic

models generated have 2 objectives and at least 100 model variables. Figure 8.2 shows

the result of this experiment. radar was able to evaluate in less than one hour models

with a design space of up to 153,751 solutions. The model with the largest design space

included 11 decisions with 7 options and was analysed in 35 hours. The figure also shows

that on our synthetic models the run-time and memory usage increase roughly linearly

with the size of the design space.

RQ1.3: What is radar’s scalability with respect to the number of objectives?

To evaluate how radar run-time and memory usage increases when the number of

objectives increases, we have generated synthetic models with 10 decisions, 3 options

per decisions, and incrementally increased the number of objectives from 2 to 5 until the

resulting models could no longer be analysed in less than an hour. The synthetic models

generated do not have decision dependencies. Figure 8.3 shows that on our synthetic
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Figure 8.1: Total run-time (left) and memory usage (right) measured for doubling
the number of simulations, N , from 104 to 512× 104.
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Figure 8.2: Total run-time (left) and memory usage (right) measured for 180 radar
models with different design space size.
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Figure 8.3: Total run-time (left) and memory usage (right) measured for 2,3,4 and 5
objectives.

models the run-time and memory usage increase roughly linearly with the number of

objectives.

RQ1.4: What is the time spent and memory consumed by each analysis step?

For each synthetic model generated in the experiment to answer RQ1.4, we measured

the fraction of time spent and memory used in each of the four analysis step: generating
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Algorithm Step Average % Total Time Average % Memory Usage

Generating the design space 0 0
Simulating all solutions in the design space 100 96
Shortlisting the Pareto-optimal solutions 0 1
Computing expected information value over the shortlisted solutions 0 3

Table 8.2: Average fraction of time for each analysis step over all synthetic models
[43].

Model System Description Objectives #Decisions #Options #Variables #Constraints Solution space
(#XOR/#OR) Ranges

MSM
Requirements subset selection for
the future release of a Microsoft
Word Processor [142]

Max Net Benefit
Min Risk

0/1 50 251 39 250

RPM

Requirements subset selection for
the future release of a commercial
decision support tool
for release planning [142]

Max Project Benefit
Max Frequency Of Use
Min Risk
Min Stakeholder Dissatisfaction
Min Requirements Volatilty

0/1 25 267 15 225

SAS

Software architecture evaluation
of an emergency response system
to coordinate teams in emergency
situations [85, 166]

Max Net Benefit
Min Risk

10/0 2-4 254 0 6912

ECS

Software architecture evaluation of
a satellite Image Processor for
collecting and managing
satellite data [151, 179]

Max Project Utility
Min Cost

10/0 2 86 0 210

BDM
Optimal feature selection
of the Berkeley Relational Database
Management System [238]

Max Net Benefit
Min Resource Utilisation

1/2 2-6 27 0 29

BSS
Optimal feature selection of
a public Bike Sharing System [177, 250]

Max Net Benefit
Min Loss Probability

2/8 2-5 74 4 15× 220

AWM
Amazon Web Service
Elastic Compute Cloud
optimal configuration [98]

Max Feature Richness
Max Instance ECU
Max EC2 Cores
Max Instance RAM
Max SSD Backed
Min CostHour
Min CostMonth

12/2 2-5 68 0 405× 210

WPM
Optimal feature selection
of a Web Portal System [176]

Max Feature Richness
Max Feature Reuse
Min Defect Count
Min Cost

6/7 2-5 135 21 3× 226

DPM
Optimal feature selection
in Drupal— a PHP-based framework for
web content management [228]

Max Net Benefit
Min Risk

4/6 2-24 27 0 240

Table 8.3: RQ2: Real-world requirements and architecture decision problems

the design space, simulating the design space, shortlisting the Pareto-optimal solutions,

and computing expected information value. Table 8.2 shows the average fraction of time

for each analysis step over all synthetic models. The table shows that the simulation of

all solutions takes the largest portion of time (100%) and memory consumption (96%).

In summary, our results show that: the run time and memory consumption of the

radar analysis steps are linearly proportional to the number of simulations (N), the

design space size and the number of objectives; the simulation of the design space takes

the highest average proportion of the run time (100%) and memory usage (96%); the

design space of models without decision dependencies increases exponentially with the

number of decisions and options. As a rule-of-thumb, radar’s exhaustive search strategy

would struggle solving problems with more than 10 independent decisions with around

3 options per decisions.
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Figure 8.4: (λ+ 1) optimisation approach.

8.5.2 Performance Analysis of RADAR Search-Based Approaches

Figures 8.4 and 8.5 show the runtimes between the (λ+1) and 1+λ approaches and for all

model-algorithm pairs. Table 8.4 shows the mean value of hypervolume (HV), coverage

(COV) and validity ratio (VR) quality indicators for each problem-algorithm pair. In

Table 8.4, the best and second best values of the quality indicators for each model-

algorithm pair are shaded dark grey and light grey, respectively. We report validity

ratio for problems with constraints only.

RQ2.1. Time taken by radar’s optimisation analysis using different EMOAs?

The mean run-time results in Figure 8.4 and Figure 8.5 show that all algorithms finished

under 2 minutes. Between the (λ+ 1) and 1 +λ approaches and for all model-algorithm

pairs, IBEA is the slowest. This is because IBEA carries out extra computation when

computing dominance value between two candidate solutions. IBEA considers optimi-

sation objectives (which captures user’s preferences) in assigning weights to candidate

solutions based on the quality indicator (hypervolume). When comparing the other al-

gorithms, the run-time varies, with the exception that random search was the fastest.

Therefore, we conclude that radar with EMOAs scales well in analysing models that

are infeasible to solve using the exhaustive strategy of radar.

RQ2.2. Quality of solutions shortlisted by radar using different EMOAs?
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Figure 8.5: 1 + λ optimisation approach.

The results presented in Table 8.4 show that between the (λ+1) and 1+λ approaches and

for all model-algorithm pairs, SPEA2 and MOCell outperformed NSGAII and IBEA in

mean HV and Cov except in model WPM where IBEA produced superior results than

the other EMOAs. Between SPEA2 and MOCell, there is no clear winner. Between

NSGAII and IBEA, the former mostly outperformed the latter in mean Cov and mean

HV. For BDM model, all EMOAs produced HV of 0. Further investigation revealed that

the number of solutions with unique objective values in the Pareto front approximations

is very small (at most three) for each EMOA. The low HV means that the Pareto front

approximation are not able to cover a significant part of the objective space.

The post-hoc analysis of two way comparison between alternative radar algorithms is

presented in Table 8.5. This analysis shows statistical evidence to support these find-

ings. Specifically, we carried out a total of 360 unique tests (9 problems, 5 algorithms, 2

metrics, 2 optimisation approaches) in which 324 tests (90%) showed statistical signifi-

cance (p-value < 0.05) in the difference between alternative radar EMOAs, with 72%

of the tests having large effect size (A-measure ≥ 0.8).

From the results in Table 8.4 and Table 8.5, we conclude that between the (λ+ 1) and

1 + λ approaches and for all model-algorithm pairs, SPEA2 and MOCell produced the

best Pareto front approximation in terms of proximity to the reference (true) Pareto

front and the spread of solutions in the Pareto front.
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SPEA2 MOCell NSGAII IBEA Random
Model (λ + 1) 1 + λ (λ + 1) 1 + λ (λ + 1) 1 + λ (λ + 1) 1 + λ (λ + 1) 1 + λ

C
o
v

MSM 0.1240 0.0378 0.1490 0.0111 0.0089 0.0111 0.0063 0.0156 0.0000 0.0000
RPM 0.0078 0.0250 0.0124 0.0181 0.0076 0.0008 0.0076 0.0056 0.0738 0.0047
SAS 1.0000 1.0000 1.0000 1.0000 0.8610 0.8520 0.0111 0.0143 0.2750 0.2830
ECS 1.0000 1.0000 1.0000 1.0000 0.8210 0.7900 0.0864 0.0778 0.7440 0.7200
AWM 1.0000 1.0000 1.0000 1.0000 0.7440 0.7560 0.0646 0.0729 0.4420 0.5060
BDM 0.9330 1.0000 1.0000 0.9670 0.7670 0.7000 0.1330 0.1670 0.7670 0.8830
BSS 1.0000 1.0000 0.9670 0.9440 0.7670 0.9670 0.5000 0.5560 0.0000 0.0000
DPM 0.0105 0.0210 0.0114 0.0534 0.0064 0.0017 0.0113 0.0132 0.0041 0.0000
WPM 0.0098 0.0138 0.0255 0.0270 0.0303 0.0072 0.0586 0.0661 0.0073 0.0008

H
V

MSM 0.4820 0.0120 0.4920 0.0305 0.3620 0.0249 0.3490 0.0186 0.2860 0.0010
RPM 0.1400 0.1740 0.1590 0.1670 0.1430 0.0331 0.1380 0.0803 0.1710 0.0968
SAS 0.4400 0.5900 0.4400 0.5900 0.4260 0.5840 0.0972 0.1520 0.3070 0.4640
ECS 0.7200 0.7200 0.7200 0.7200 0.7160 0.7140 0.6380 0.6430 0.7080 0.7120
AWM 0.0163 0.0163 0.0163 0.0163 0.0154 0.0153 0.0089 0.0010 0.0154 0.0147
BDM 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
BSS 0.3870 0.2450 0.3740 0.2370 0.3100 0.2450 0.2870 0.2110 0.0000 0.0000
DPM 0.3700 0.3610 0.3490 0.3430 0.3240 0.2030 0.3800 0.3050 0.3050 0.1530
WPM 0.2120 0.2220 0.2010 0.2130 0.2090 0.1550 0.2370 0.2310 0.1860 0.1720

V
R

(
%

) MSM 0.17 0 2 0 0.20 0 0.17 0 0 0
RPM 6.33 100 5.94 100 5.87 100 63.60 100 6.72 100
BSS 100 100 98.30 100 98.30 100 100 100 98.30 100
DPM 19.10 100 16.80 100 15.50 100 82.20 100 6.65 100
WPM 41.30 100 33.10 100 40.70 100 100 100 26.20 100

Table 8.4: Mean coverage, mean hypervolume and validation ratio between (λ + 1)
and 1 + λ for all model-algorithm pairs (30 runs). The best and second best values of
the metrics for each model-algorithm pair are shaded dark grey and light grey, respec-
tively. MSM (Microsoft Word Processor model), RPM (Release Planning tool model),
SAS (Situation Awareness System model), ECS (NASA Satellite processing system
model), AWM (Amazon Web Service model), BDM (Building Security model), BSS
(Bike sharing model), DPM (Drupal PHP System model), WPM (E-commerce Web

portal system). We report validity ratio for problems with constraints only.

With respect to the number of valid solutions shortlisted in the Pareto front approxi-

mation, the mean VR presented in Table 8.4 shows that all algorithms returned at least

one valid solutions in each model for both (λ + 1) and 1 + λ optimisation approaches.

The only exception is observed in MSM model where the mean VR for each EMOAs is

0 for the 1 +λ approach. This means using the 1 +λ approach, none of the EMOAs was

able to generate optimal solution that satisfy model constraints with 50000 evaluations

of the problem solution space (250). We also observed in general that between (λ + 1)

and 1 + λ optimisation approaches, all the EMOAs produced very high mean VR (≈

100%) with the 1 + λ approach than (λ+ 1) approach. Of these EMOAs, IBEA has the

best mean VR with the (λ + 1). This is because IBEA incorporates decision-maker’s

objectives in the Pareto dominance criteria.

Therefore, we conclude that independent of the EMOA used during radar analysis, the

1 +λ approach is more effective than the (λ+ 1) approach in shortlisting valid solutions

in the Pareto front approximation. This is because the 1 + λ optimisation approach

prioritises solutions with fewer constraint violations when estimating dominance value

between two candidate solutions. And when more valid solutions are generated, they

are likely maintained across different generations thereby serving as a seed to generate

further valid solutions. This finding is consistent with those obtained in [130] for 1 + λ

approach.
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(λ+ 1) optimisation approach 1 + λ optimisation approach

Indicator SPEA2 NSGAII MOCell IBEA Random SPEA2 NSGAII MOCell IBEA Random

S
P

E
A

2 Cov
MSM, SAS,
ECS, BSS,
DPM, AWM

MSM, SAS,
ECS, BDM,
BSS, AWM

MSM, SAS,
ECS, BDM,
BSS, WPM,
DPM, AWM

MSM, RPM,
SAS, ECS,
BDM, BSS,
WPM, DPM,
AWM

MSM, RPM,
BSS

MSM, RPM,
SAS, ECS,
BDM, BSS,
DPM, AWM

MSM, RPM,
SAS, ECS,
BDM, BSS,
WPM, DPM,
AWM

HV

MSM, SAS,
ECS, BSS,
WPM, DPM,
AWM

WPM, DPM
MSM, SAS,
ECS, BSS,
AWM

MSM, SAS,
ECS, BSS,
WPM, DPM,
AWM

RPM, SAS,
ECS, BSS,
WPM, DPM,
AWM

BSS, WPM
RPM, SAS,
ECS, BSS,
DPM, AWM

MSM, RPM,
SAS, ECS,
BSS, WPM,
DPM, AWM

N
S

G
A

II Cov WPM WPM

SAS, ECS,
BDM, BSS,
WPM, DPM,
AWM

MSM, SAS,
BSS, WPM,
DPM, AWM

SAS, ECS,
BDM, BSS,
AWM

MSM, SAS,
BSS, WPM,
DPM, AWM

HV WPM
MSM, SAS,
ECS, WPM,
AWM

MSM, SAS,
ECS, BSS,
WPM, DPM,
AWM

SAS, ECS,
BDM, BSS,
AWM

MSM, SAS,
BSS, WPM,
DPM, AWM

M
O

C
e
ll Cov RPM, WPM

MSM, RPM,
SAS, ECS,
BDM, BSS,
DPM, AWM

MSM, RPM,
SAS, ECS,
BDM, BSS,
WPM, AWM

MSM, SAS,
ECS, BSS,
WPM, DPM,
AWM

WPM, DPM

RPM, SAS,
ECS, BDM,
BSS, WPM,
DPM, AWM

RPM, SAS,
ECS, BDM,
BSS, DPM,
AWM

MSM, RPM,
SAS, ECS,
BSS, WPM,
DPM, AWM

HV RPM

MSM, RPM,
SAS, ECS,
BSS, DPM,
AWM

MSM, RPM,
SAS, ECS,
BSS, AWM

MSM, SAS,
ECS, BSS,
WPM, DPM,
AWM

RPM, SAS,
ECS, WPM,
DPM, AWM

RPM, SAS,
ECS, BSS,
DPM, AWM

MSM, RPM,
SAS, ECS,
BSS, WPM,
DPM, AWM

IB
E

A Cov WPM, DPM DPM
MSM, BSS,
WPM, DPM

WPM
RPM, WPM,
DPM

WPM
MSM, BSS,
WPM, DPM

HV WPM, DPM WPM, DPM
MSM, WPM,
DPM

WPM
RPM, WPM,
DPM

WPM
MSM, BSS,
WPM, DPM

R
a
n

d
o
m Cov RPM RPM RPM

RPM, SAS,
ECS, BDM,
AWM

RPM
SAS, ECS,
BDM, AWM

HV RPM RPM RPM
RPM, SAS,
ECS, AWM

RPM
SAS, ECS,
AWM

Table 8.5: Post-hoc analysis results of pairwise comparison of model-algorithm pair. Each cell in the table are models for which algorithms in the
rows are significantly ( p < 0.05) better than those in the columns.
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8.6 Threats to Validity

8.6.1 Internal validity threats

This concerns the biases in the reported empirical results due to the random nature

of Evolutionary Multi-objective Optimisation Algorithms (EMOAs). We handled this

threat by following guidelines in [27]. We run all studied EMOAs (i.e. NSGAII, SPEAII,

MoCell and IBEA) on our subject models 30 times. We also checked for differences in

statistical significance and effect sizes in the achieved results using Man-Whitney U-test

and Vargha-Delaney A-measure [251], respectively. In our experiments, we have not

set random seeds that would have ensured that running each EMOAs multiple times

on a model generate exactly the same Pareto-optimal solutions. Instead, running each

EMOAs 30 times on each model enable us to study the variability of Pareto-optimal

solutions due to the algorithms’ randomness. For practical use of the tool, modellers

can set a specific random seed to eliminate such variability if they wish.

Another possible threat to internal validity is in the choice of algorithmic parameter

settings, which could have affected the results obtained. Our evaluation uses well known

default algorithmic parameters for EMOAs previously used in many multi-objective

optimisation problems in software engineering [193, 235, 285]. One could also criticise

the validity of the metrics we have used to compare our EMOAs. In particular, we have

focused on hypervolume, coverage, and validity ratio used in previous similar studies

[128, 130, 193], but have ignored other measures of solutions diversity, such as Spread

and generational distance [290].

8.6.2 External validity threat

This concerns the limitations of generalising from our results about the applicability and

usefulness of radar in modelling all requirements and architecture decision problems.

We reduced this threat by performing our evaluations on 9 subject models which are

based on real world systems used in the literature [85, 98, 142, 151, 166, 176, 177, 179,

228, 238, 250]. These problems are characterised with different complexities, such as

different number of objectives, different number of decisions, different number of op-

tions per decision, different number of constraints between options of decisions, different



Chapter 8. RADAR Performance Evaluation 214

number of model variables, and different sizes of the solution space. Nonetheless, our

results may not generalise to all requirements and architectural decision problems as

more validations still need to be carried out in the future.

8.7 Summary

This chapter presented an evaluation of radar’s performance analysis. We have con-

ducted an empirical study to assess the performance of radar’s exhaustive strategy and

its alternative search-based multi-objective evolutionary algorithms.

We conducted an empirical scalability analysis of the radar’s exhaustive strategy on

synthetic radar models, and measured radar’s execution time and memory consumed

with respect to increasing number of simulations; number of objectives and the design

space. The results of the study (see section 8.5.1) show the design space size limits

radars exhaustive simulation, thereby limiting the class of problems radar’s exhaus-

tive strategy can analyse.

We also conducted an empirical study to assess the execution time and quality of so-

lutions generated by radar’s evolutionary multi-objective algorithms, such as NSGAII

[69], SPEAII [289], MoCell [184] and IBEA [288] (see section 8.5.2). Our results show

that: (i) these algorithms scale well with real-world requirements and architecture de-

cision problems of different complexities (see figures 8.4 and 8.5); (ii) independent of

the evolutionary multi-obejective algorithm used with radar, the 1 + λ approach is

better than the (λ + 1) approach; and (iii) between the (λ + 1) and 1 + λ constraint

handling approaches and between the algorithms, SPEA2 and MOCell produced the

best Pareto front approximation in terms of convergence and diversity across different

decision models (see tables 8.4 and 8.5).
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Conclusion and Future Work

In software engineering, requirements engineering and software architecture are key

phases of engineering software intensive systems. They involve making critical deci-

sions that have an impact on the software project cost, schedule and the ability of the

system to deliver business values and satisfy stakeholders goals.

Determining the optimal requirements and architectural decisions becomes complex

when decision-makers have to deal with multiple conflicting objectives including, for

example, minimising cost, maximising value, and minimising risks; uncertainty about

the impact of decision choices on objectives and a huge space of alternative solutions

which are difficult to explore manually.

Several requirements and architectural decision support methods have been proposed.

Examples include: qualitative goal-oriented decision models (e.g. the NFR [180], i* [277]

frameworks); methods that use abstract non-verifiable scores and pre-established, fixed,

non-falsifiable model equations (e.g. the EVOLVE release planning method [216], the

Cost-Benefit Architecture Method (CBAM) [149, 179] and other search-based methods

for requirements selection and optimisation [201]); and the approaches that use quan-

titative problem specific decision models (e.g. the quantitative extensions to NFR/i*

[3, 199], KAOS [126, 165] and the Bayesian decision analysis in software engineering

[166]). The main limitations of these approaches has been the difficulty to elaborate

domain-specific decision models and/or the lack of integrated tool support for auto-

mated decision analysis under uncertainty.

215
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In this thesis, we have presented a new modelling language and automated decision anal-

ysis method, implemented in a tool called radar, to mitigate the limitations of existing

approaches. The modelling language facilitates the elaboration and analysis of domain-

specific requirements engineering and software architecture decision problems under un-

certainty. It enables decision-makers to model design time decisions at different level of

complexities: (i) decisions characterised by single option selection similar to mutually

exclusive option selection (XOR-nodes) of feature diagrams used in software product

lines. (ii) decisions characterised by three different constraints (excludes, requires and

coupling) relationships between options of decisions and multiple options selection sim-

ilar to non-mutually exclusive options selections (OR-nodes) of feature diagrams. The

proposed automated decision analysis technique involves analysing uncertainty (epis-

temic) through Monte-Carlo simulations, shortlisting Pareto-optimal solutions through

multi-objective optimisation, and computing expected value of information that can be

used to decide whether to seek more information or perform a more detailed analysis

before making a decision.

The thesis also presented an evaluation of the applicability, usefulness and performance

of radar. Our evaluation results show that radar’s modelling language and analysis

technique is applicable on a range of real-world requirements and architecture decision

problems (see Table 7.1 for the requirements and architecture decision problems with

design space size between 6 and 250), and that in few seconds, radar can analyse deci-

sion problems characterised by large design space using highly performant optimisation

method through the use of evolutionary search-based algorithms instead of exhaustive

search. radar is useful in providing feedback to decision-makers about which deci-

sions give the best trade-offs between conflicting stakeholder goals and which aspects

of a decision model need further analysis or additional information before making a

decision. radar also improves decision analysis in Software Product Line as it allows

domain-specific equations which existing SPL tools lack.

9.1 Future Work

We highlight potential future research directions following the research presented in this

thesis as follows:



Chapter 9. Conclusion and Future Work 217

9.1.1 Language and Analysis Extensions

The empirical evaluations presented in chapters 7 and 8 show that radar’s modelling

language is expressive enough to model real-world requirements and architecture de-

cisions under uncertainty, and the automated decision analysis technique scales well

in analysing these problems. An area of possible improvement is to augment the tool

with mathematical functions such as MAX, MIN, AVERAGE and SQRT to further in-

crease the tool’s applicability. Extending the language with the capability of modelling

state-based operations of software systems is a feasible future work. To achieve this,

we propose using techniques from goal-oriented requirements engineering that use linear

temporal logic operators to define the possible states of a system both in the past and

future bounded by time [65, 162].

With respect to radar’s decision analysis, an area of improvement is to augment

radar’s current constraint handling approach. Future work would be to explore other

approaches, such as defining evolution functions (i.e., repair operators) to avoid gener-

ating invalid solutions [285], and combining constraint solving approaches with search-

based optimisation techniques [128].

9.1.2 Iterative Decision Analysis Approach using Information Value

Analysis

The thesis has shown how radar’s analysis technique evaluates the expected value

of perfect information (EVTPI) in order to determine the financial value of reducing

uncertainty in a decision model. Computing EVTPI helps to identify parts of a decision

model that needs additional data collection or further analysis through requirements

elicitation, prototyping and modelling. If the estimated financial value of seeking more

information significantly exceeds the effort required, then a new modelling and analysis

cycle is triggered. In this thesis, we have not demonstrated such iterative method on a

real-world problem. Future work is required to develop and evaluate an iterative decision

analysis method that uses information value analysis to support informed requirements

and architecture decisions.
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9.1.3 Runtime Adaptation of Executing System

radar has been developed to support requirements and architecture decision at design-

time. Such decisions, however, often have to be revised at run-time as more options

become available or as uncertainty about some of the decision model parameters is re-

duced through observation of the running system. radar may provide the basis for such

run-time adaptation, for example by embedding radar models in the running system

through requirements reflection [35, 231]. Techniques for reassessing stakeholders’ pref-

erences at run-time may also be used to update radar models parameters that encode

such preferences [34, 124].

9.1.4 Handing Other Forms of Uncertainty

Of the different forms of uncertainty (epistemic, alaetory and linguistic), this thesis

have mainly considered epistemic uncertainty, i.e., lack of total knowledge about how a

proposed system will operate or incomplete knowledge about the actual consequences

of alternative decision choices on stakeholders’ goals [166]. We have solved this form of

uncertainty only at design time by computing the expected gain in some objective values

(e.g. net benefit) of interest given total or partial information about some estimated

model parameters. In the future, we propose to extend our solutions beyond design time

to include system runtime where uncertainty may either reduce significantly or otherwise.

In addition, we intend to tackle other forms of uncertainty, i.e., alaotory uncertainty

which arise from random physical phenomenon within the context of a system or its

executing environment.

9.1.5 Automated Model Validation and Calibration

In Chapter 7, we have exemplified radar on a set of real world examples. While some

of the model equations developed for these examples are based on observed data, the

correctness of radar’s automated analysis presented relies on having a valid decision

models. Throughout the thesis, we have only checked that these decision models de-

veloped for each example system are plausible and are sufficient to represent real-world

system properties that stakeholders would be interested in based on experience. radar’s
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approach, however, exposes a gap in requirements and architecture decision making re-

search: there is currently lack of automated techniques for validating requirements and

architecture decision models against observed data, and for automatically calibrating

and inferring decision models from observed data. Therefore, to answer the question of

validity of radar models, future work is required to implement techniques for validating

and calibrating radar models against run time data of software systems. Techniques

from data mining [114] and Bayesian inference could be used and adapted [274, 275].

9.1.6 Tool Evaluation in Organisation Context

An important future work would be to further evaluate the tool’s language and decision

analysis approach on large industrial case studies within an organisational setting. This

will help in answering the questions about the simplicity, conciseness and clarity of

the language constructs; whether the language constructs are sufficient to express the

problems it addresses; whether the elaboration of a domain-specific requirements and

architecture decision models are not excessively human resource-expensive; whether it

is reasonably easy for modellers to learn the language; and finally validate the benefits

of the radar’s approach against the state of the art.

———————————————————————————



Appendix A

Modelling and Analysing The

London Ambulance System

Problem Statement

The London Ambulance System (LAS) deploys ambulances to an incident location as

quickly as possible [90, 126]. It is also used to provide pre-arranged services such as

transporting and finding hospital beds for patients. In 1992, the UK Government im-

posed performance standards for accident and emergency calls, which states that “an

ambulance must arrive at the scene within 14 minutes of the reported incidents”. This

standard necessitated the need for the first automated version of the LAS [126, 162].

Suppose, for example, a designer wants to perform a cost-benefit analysis of deciding

whether to automate all or parts of the LAS. With the current system, the goal of 14

minutes response time is seldom achieved [90]. However, automating all or parts of the

system will reduce the time it takes the crew to intervene at an incident. But, the cost

and benefit of this automation are highly uncertain.

The design decisions of the London Ambulance System include [41, 126]:

• The incident form encoding method with the option to use a paper-based method to

encode details about the calls reporting an incident or use a computer-based encod-

ing, or automated encoding using call location mechanism, or a mix of computer-

based encoding with automated call location.
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• The ambulance location method with the option to use a radio and paper-based

method to locate an idle ambulance, or an automated vehicle location method.

• The ambulance allocation method for dispatching the nearest ambulances to an

incident location. Alternative options includes the use of a paper-based allocation

method, an interactive allocation method, or a fully automated allocation method.

• The mobilization communication method that enables the ambulance crew to com-

municate directly with the ambulance station where incidents are reported. Al-

ternative options includes the use of a radio, or mobile data terminals (MDT)

system.

• The number of deployed ambulances within the city. Assume there are currently

100 ambulances, but this could be increased up to 200 or more ambulances.

RADAR Model

Modelling the Optimisation Objectives

Two key concerns of London Ambulance System are to minimise the response time for

an ambulance to intervene an incident and to minimise costs, which include the cost

of encoding an incident, cost of mobilising ambulances to incident locations, cost of

locating and allocating ambulances.

Objective Max ExpectedNetBenefit = EV(Benefit);

Objective Min Risk = Pr(ResponseT ime > 14 ∗ 60);

The first stakeholders’ concern of minimising ambulance response time is equivalent to

maximising the net benefits of automating the ambulance management system.

We model the second stakeholders’ concern as minimising the risk defined here as the

probability that the ambulance response time exceeds 14 minutes (14×60 in seconds) of

the reported incident. The 14 minutes is a United Kingdom Government standard [126].
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Modelling Benefit

Benefit = Revenue - Cost;

Revenue = normalCI(100000, 200000);

The Benefit is defined as the difference between the Revenue and Cost. The Revenue fol-

lows a normal distribution with 90% confidence interval between £100000 and £200000.

Modelling Response Time

The ambulance RepsonseTime is the sum of the time taken to mobilise the ambulance,

the travel time of the ambulance and possibly the delay an ambulance faced during

travel.

ResponseTime = AmbulanceMobilisationTime

+ MobilisedAmbulanceTravelTime

+ MobilisedAmbulanceDelay;

The AmbulanceMobilisationTime is the sum of the incident call taking time, ambulance

allocation time and the mobilisation communication time:

AmbulanceMobilisationTime = IncidentCallTakingTime

+ AmbulanceAllocationTime

+ MobilisationCommunicationTime;

IncidentCallTakingTime = decision(“Incident Form Encoding Method”){

“Current Paper-Based”:exponential(60);

“Computer Based”:exponential(40);

“Automated Call Location”:exponential(45);

“Computer-Based and Automated Call Location”:exponential(30);

}
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The IncidentCallTakingTime depends on the “incident form encoding method” used. If

the current paper-based method is used, then the call taking time follows an exponential

distribution with a mean of 60 seconds; If the computer-based method is used, then the

call taking time has an exponential distribution with mean time of 40 seconds; if the

automated call location method is selected, then the call taking time has exponential

distribution with a mean value of 45 seconds; and if the computer-based and automated

call location method is used, then the call taking time follows an exponential distribution

with a mean time of 30 seconds.

AmbulanceAllocationTime = decision(“Ambulance Allocation Method”){

“Current Paper-Based”:exponential(60);

“Interactive Allocation”:exponential(20);

“Fully Automated Allocation”:exponential(5);

}

The AmbulanceAllocationTime depends on the “ambulance allocation method”. If the

current paper-based method is used, then the ambulance allocation time follows an

exponential distribution with a mean of 60 seconds; If the interactive allocation method

is used, then the allocation time has an exponential distribution with mean time of 20

seconds; if the allocation is fully automated, then the allocation time has exponential

distribution with a mean value of 5 seconds.

MobilisationCommunicationTime = decision(“Mobilisation Communication Method”){

“Current Radio-Based”:triangular(45, 60, 90);

“MDT-System A”:triangular(20, 30, 40);

“MDT-System B”:triangular(10, 15, 20);

}

The MobilisationCommunicationTime depends on the “mobilisation communication method”.

If the current radio-based method is used, then the mobilisation communication time

follows a triangular distribution with a lower and upper bounds of 45 and 90 seconds

respectively, and a most likely time of 60 seconds; If a mobile data terminal system of

a specific model type A is used, then the allocation time has a triangular distribution

with a lower and upper bounds of 20 and 40 seconds respectively, and a most likely
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time of 30 seconds; if a different mobile data terminal system of another model type B

is used, then the mobilisation communication time has a triangular distribution with a

lower and upper bounds of 10 and 20 seconds respectively, and a most likely time of 15

seconds.

MobilisedAmbulanceTravelTime = MobilisedAmbulanceDistance / MobilisedAmbulanceAver-

ageSpeed;

The MobilisationAmbulanceTravelTime is the ratio of the distance the mobilised ambu-

lance has to travel to the average mobilised ambulance speed.

MobilisedAmbulanceDistance = MobilisedAmbulanceDistanceFromLocation

+ MobilisedAmbulanceLocationErrorMargin;

The mobilised ambulance distance is the sum of the mobilised ambulance distance from

the incident location and an error margin when locating the ambulance.

Since ambulances can be at different location, we assume the mobilised ambulance to

be within some distance from the incident location. Hence we assume the mobilised

ambulance distance from location follows a normal distribution with confidence interval

between 10000km and 100000km.

MobilisedAmbulanceDistanceFromLocation = normalCI(10000,100000);

MobilisedAmbulanceLocationErrorMargin = decision(“Ambulance Localisation Method”){

“Current Radio and Paper-Based”:normal(60, 120);

“Automated Vehicle Localisation A”:normal(45, 60);

“Automated Vehicle Localisation B”:normal(20, 60);

}

MobilisedAmbulanceAverageSpreed = triangular(30, 50, 70);

MobilisedAmbulanceDelay = normalCI(0, 120);

The mobilisation ambulance location error margin depends on the ambulance localisa-

tion method; if the current radio and paper-based method is used, then the error margin
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follows a normal distribution with a mean of 60km and standard deviation of 120km;

if the automated vehicle localisation method of model type A is used, then error mar-

gin has a normal distribution with a mean and standard deviation of 45km and 60km

respectively; if a different automated vehicle localisation of model type B is used, then

the error margin has a normal distribution with a mean and standard deviation of 20km

and 60km respectively.

Modelling Costs

The cost is the sum of the ambulance mobilisation cost and the cost of ambulances:

Cost = AmbulanceMobilisationCost + CostOfAmbulance;

CostOfAmbulance =

(NbrAmbulances - CurrentNbrOfAmbulance) * UnitCost + AnnualMaintenanceCost;

CurrentNbrOfAmbulance = deterministic(100);

UnitCost = triangular(5000, 7000, 10000);

The number of ambulances depends on the whether additional ambulance are deployed.

The number of ambulances currently deployed is 100.
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NbrAmbulances = decision(“Additional Ambulance”){

“Current 100 Amb” : deterministic(100);

“120 Amb” : deterministic(120);

“140 Amb” : deterministic(140);

“160 Amb” : deterministic(160);

“180 Amb” : deterministic(180);

“200 Amb” : deterministic(200);

}

AnnualMaintenanceCost = decision(“Additional Ambulance”){

“Current 100 Amb” :triangular (5000, 7000, 10000);

“120 Amb” : triangular(1000, 1500, 2000);

“140 Amb” : triangular(1500, 2000, 2500);

“160 Amb” : triangular(2000, 2500, 3000);

“180 Amb” : triangular(2500, 3000, 3500);

“200 Amb” : triangular(3000, 3500, 4000);

}

The ambulance mobilisation cost is the sum of the cost of incident form encoding and

the cost of locating an idle ambulance:

AmbulanceMobilisationCost = CostOfIncidentFormEncoding + CostOfLocatingAmbulance;

CostOfIncidentFormEncoding = decision (“Incident Form Encoding Method”){

“Current Paper-Based”:triangular(150,200,250);

“Computer Based”:triangular(100, 150, 200);

“Automated Call Location”:triangular(50,100,120);

“Computer-Based and Automated Call Location”:triangular(10, 50, 100);

}

CostOfLocatingAmbulance = decision(“Ambulance Localisation Method”){

“Current Radio and Paper-Based”: triangular(400, 500, 600);

“Automated Vehicle Location A”:triangular(300, 400, 500 );

“Automated Vehicle Location B”: triangular(200, 300, 400);

}
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radar generates the AND/OR refinement graph and decision dependency graphs from

the London ambulance model equations to aid visualisation of model structure. Fig.

A.1a shows the partial AND/OR refinement graphs for the London ambulance model

starting from the model variable AmbulanceMobilisationTime. Fig. A.1b shows the

decision graph for the model.

Analysis Results

The radar analysis of the LAS model is presented in Fig. A.5 which shows the results of

the optimisation analysis on the model. The results show that all shortlisted solutions in-

clude the paper-based option, radio-based option and the option to maintain the number

of ambulances at 100. This implies that, in our model, the paper-based option outper-

forms the interactive and fully automated options of the ambulance allocation method.

Similarly, the radio-based option outperforms the MDT-system of the ambulance mo-

bilisation method. But once these two options are selected, the shortlist includes all

possible combinations of incident encoding methods and ambulance allocation methods;

each combination representing a tradeoff between maximising ExpectedNetBenefit and

minimising Risk.

To visualise such tradeoffs, radar generates the graph in Fig. A.2 plotting the objective

values for the shortlisted solutions (shown squares at the top of the graph) and all other

non shortlisted ones (shown as circles).

For information value analysis, radar estimates the expected value of perfect informa-

tion. The estimated value of EVPI (for all model parameters) is approximately equal to

zero. This means that none of the model parameters is worth further data collection or

analysis.

Comparison To Previous Analysis

Previous modelling and analysis of the London Ambulance System (LAS) involves using

the quantitative extension of the KAOS framework [65, 266] to elaborate stakeholder

goals of achieving fast ambulance intervention within 14 minutes of every urgent call

reporting an incident.
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Figure A.2: Pareto front of the London ambulance model analysis.

Letier et al. [165] developed a quantitative technique that specifies partial degrees of goal

satisfaction, and quantifies the impact of alternatives on the extent of goal satisfaction

in terms of refinement equations, which are defined over random variables involved in

the system‘s functional goals. They computed their objective functions for higher-level

goals using estimated probability distribution functions from the leaf or low level quality

variables.

Heaven et al. [126] extended the quantitative goal refinement model presented by Letier

et al. [165] and developed a simulation and optimisation framework that evaluates the

impact of alternative system designs on high level goals and uses multi-objective genetic

algorithm (NSGA2) to shortlist the best alternative designs. They found the Pareto

optimal design options among the alternatives options, that optimises the achievement of

8 and 14 minutes response time of the London Ambulance System at a low cost. Heaven

et al. [126] developed a partial goal model for the LAS system with the decision points

of alternative design as shown in Figure A.3. Their top level goal Achieve[Ambulance

Intervention] is defined as shown below:



Modelling and Analysing The London Ambulance System 230

Goal Achieve[Ambulance Intervention]

Definition

For every urgent call reporting an incident, there should be an ambulance at the incident scene

within 14 minutes after receiving the first call.

Formal Definition (∀ i:Incident, c: UrgentCall)

Reporting(c,i) ⇒ ♦≤14minutes(∃a: Ambulance) Intervention(a,i).

Objective Functions

14MinResponseRate = MAX [P(ResponseTime ≤ 14 mins)]

Cost = MIN [AmbulanceCost]

Quality Variable

ResponseTime: Incident -> Time

def: the duration in seconds between the start of the first call reporting the incident and the

arrival of the first ambulance at the incident scene.

In the above definition, the objective function of the top goal Achieve[Ambulance In-

tervention] is defined with respect to its quality variable (incident response time) which

is recursively related to the quality variables of the sub-goals through refinement equa-

tions [126, 165]. For example, in Figure A.4, the quality variable ResponseTime of goal

Achieve[Ambulance Intervention] is related to the quality variables MobilisationTime,

MobilisationDistance, and AmbulanceDelay of goals Achieve[Ambulance Mobilisation]

and Achieve[Mobilised Ambulance Intervention] by the equation:

ResponseT ime = MobilisationT ime+MobilisationDistance+AmbulanceDelay

(A.1)

As a comparison to our approach, the LAS goal-oriented decision model (LASGM)

presented by Heaven et al. is similar to the radar model developed for LAS. However,

radar was not able to model the Euclidean distance between an ambulance and the

incident location using an Euclidean function between two points. In our model, we

have modelled such distances using probability distributions.

Unlike the radar analysis technique that has tool support, the simulation and optimi-

sation framework proposed by Heaven et al. lacks tool support for decision analysis and
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Figure A.3: Partial goal model for the LAS system showing decision points for alter-
native system designs.

Figure A.4: Quality variables for the LAS goal model.

requires manual encoding of the simulation models in a general programming language,

such as R and MATLAB. In their optimisation analysis of the LAS model, they used

multi-objective evolutionary algorithms (e.g. NSGAII) to shortlist Pareto optimal solu-

tions while our analysis technique used the exact multi-objective optimisation technique

to guarantee finding the true optimal solutions. In addition, our approach analysed

uncertainty in decision models using information value analysis which is not present in

their approach.
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Appendix B

Modelling and Analysing the

NASA ECS Satellite Processing

System

Problem Statement

The NASA’s Earth Observing System Data Information (EOSDIS) Core System (ECS)

is a large scale distributed data information system used in managing and distributing

huge volumes of climate related data in different forms around the world, 24 hours each

day. This system collects and manages more than 1000 gigabytes of data from several

satellites using various sensors [150, 179].

As reported by Kazman et al. [151], the ECS went through a maintenance phase and

a planning process of boosting its capabilities. However, the ECS project manager had

limited annual budget to maintain and enhance the functionality of the system. In a

bid to achieve this goal, prior analysis, using the ATAM methodology, was performed to

identify a set of architectural strategies, which represents the decisions in the model (as

shown in Table B.1), to be made in enhancing the system. The manager is faced with

selecting among the set of decisions that give maximum utility in the project and also

minimise the project cost.

233
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Architectural Strategies Alternative Options
Order Reassignment Current: not possible to reassign order

Allow Order Reassignment
Forced Order Completion Current: not possible to force order completion

Allow Forced Order Completion
Order Persistence Strategy Current: store when processed

Store as soon as received
Order Segmentation Current: orders are segmented

Orders are segmented
Hung Order Recovery Current: no order retry

Allow Order Retry
Failed Order Notification Current: no notification

User notified of failed order
Order Tracking Current: order level

Granule-level order tracking
Available User Information Current: no link to user info

Link to user information
Order Chunking Current: no order chunking

Order Chunking
Order Bundling No Order Bundling

Order Bundling

Table B.1: Overview of NASA ECS Architectural Strategies (decisions) and the cor-
responding options.

RADAR Model

Modelling the Optimisation Objectives

The primary decision objectives of the ECS model include two conflicting objectives:

maximise the expected utility and minimise the cost associated to each alternative ar-

chitectural strategies:

Objective Max ExpectedUtility = EV(Utility);

Objective Min Cost;
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Modelling the Utility

Utility = HungRequestsRatioWeight × HungRequestsRatioUtility +

LostRequestsRatioWeight × LostRequestsRatioUtility +

FailedOrderRatioWeight × FailedOrderRatioUtility +

HungOrdersRatioWeight × HungOrdersRatioUtility +

LostOrdersRatioWeight × LostOrdersRatioUtility +

HelpNeededByUsersWeight × HelpNeededByUsersUtility +

FailureInfoGivenToUsersWeight × FailureInfoGivenToUsersUtility +

LimitOnOrdersWeight × LimitOnOrdersUtility +

NotificationsFrequencyWeight × NotificationsFrequencyUtility +

PerformanceWeight × PerformanceUtility

HungRequestsRatioWeight = deterministic(10);

LostRequestsRatioWeight = deterministic(15);

FailedOrderRatioWeight = deterministic(15);

HungOrdersRatioWeight = deterministic(10);

LostOrdersRatioWeight = deterministic(15);

HelpNeededByUsersWeight = deterministic(10);

FailureInfoGivenToUsersWeight = deterministic(5);

LimitOnOrdersWeight = deterministic(5);

NotificationsFrequencyWeight = deterministic(10);

PerformanceWeight = deterministic(5);

Hung Request Ratio Utility

HungRequestRatioUtility = (HungRequestRatio - HungRequestRatioWorst)

/(HungRequestRatioBest - HungRequestRatioWorst);

HungRequestRatioBest = deterministic(0);

HungRequestRatioWorst = deterministic(10%);
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Lost Requests Ratio Utility

LostRequestsRatioUtility = (LostRequestsRatio - LostRequestsRatioWorst)

/(LostRequestsRatioBest - LostRequestsRatioWorst);

LostRequestsRatioBest = deterministic(0);

LostRequestsRatioWorst = deterministic(5%);

Failed Order Ratio Utility

FailedOrderRatioUtility = (FailedOrderRatio - FailedOrderRatioWorst)

/(FailedOrderRatioBest - FailedOrderRatioWorst)

FailedOrderRatioBest = deterministic(0);

FailedOrderRatioWorst = deterministic(10%);

Hung Orders Ratio Utility

HungOrdersRatioUtility = (HungOrdersRatio - HungOrdersRatioWorst)

/(HungOrdersRatioBest - HungOrdersRatioWorst);

HungOrdersRatioBest = deterministic(0);

HungOrdersRatioWorst = deterministic(10%);

Lost Orders Ratio Utility

LostOrdersRatioUtility = (LostOrdersRatio - LostOrdersRatioWorst)

/(LostOrdersRatioBest - LostOrdersRatioWorst);

LostOrdersRatioBest = deterministic(0);

LostOrdersRatioWorst = deterministic(10%);
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Help Needed By Users Utility

HelpNeededByUsersUtility = (HelpNeededByUsers - HelpNeededByUsersWorst)

/(HelpNeededByUsersBest - HelpNeededByUsersWorst);

HelpNeededByUsersBest = deterministic(0);

HelpNeededByUsersWorst = deterministic(50%);

Failure Info Given To Users Utility

FailureInfoGivenToUsersUtility = (FailureInfoGivenToUsers - FailureInfoGivenToUser-

sWorst)/(FailureInfoGivenToUsersBest - FailureInfoGivenToUsersWorst);

FailureInfoGivenToUsersBest = deterministic(100%);

FailureInfoGivenToUsersWorst = deterministic(10%);

Limit On Orders Utility

LimitOnOrdersUtility = (LimitOnOrders - LimitOnOrdersWorst)

/(LimitOnOrdersBest - LimitOnOrdersWorst);

LimitOnOrdersBest = deterministic(0%);

LimitOnOrdersWorst = deterministic(50%);

Notifications Frequency Utility

NotificationsFrequencyUtility = (NotificationsFrequency - NotificationsFrequencyWorst)

/(NotificationsFrequencyBest - NotificationsFrequencyWorst);

NotificationsFrequencyBest = deterministic(1);

NotificationsFrequencyWorst = deterministic(1/1000);
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Performance Utility

PerformanceUtility = (Performance - PerformanceWorst)

/(PerformanceBest - PerformanceWorst);

PerformanceBest = deterministic(90%);

PerformanceWorst = deterministic(50%);

Modelling Quality Attributes

Hung Request Ratio

HungRequestRatio = HungRequestRatioCurrent

× (1 - ReassignedHungRequestRatio)

× (1 - ForcedHungRequestRatio)

HungRequestRatioCurrent = deterministic(5%);

ReassignedHungRequestRatio = decision(”Order Reassignment”){

”Current: not possible to reassign order” : deterministic(0);

”Allow Order Reassignment”: deterministic(60%);

}

ForcedHungRequestRatio = decision(”Forced Order Completion”){

”Current: not possible to force order completion” : deterministic(0);

”Allow Forced Order Completion”:deterministic(40%);

}

Lost Request Ratio

LostRequestRatio = triangular(0, 0.5, 1);
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Failed Order Ratio

FailedOrderRatio = decision(”Order Persistence Strategy”){

”Current: store when processed” : deterministic(5%);

”Store as soon as received” : deterministic(2%);

}

Hung Orders Ratio

HungOrdersRatio = HungOrdersRatioCurrent ×

(1 - SkippedHungOrderRatio) ×

(1 - RetriedHungOrderRatio)

HungOrdersRatioCurrent = deterministic(10%);

SkippedHungOrderRatio = decision(”Order Segmentation”){

”Current: no order segmentation” : deterministic(0);

”Orders are segmented” : deterministic(60%);

}

RetriedHungOrderRatio = decision(”Hung Order Recovery”){

”Current: no order retry” : deterministic(0);

”Allow Order Retry” : deterministic(40%);

}

Lost Orders Ratio

LostOrdersRatio = decision(”Order Persistence Strategy”){

”Current: store when processed” : deterministic(1%);

”Store as soon as received” : deterministic(0%);

}
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Help Needed by Users

HelpNeededByUsers = LostOrdersRatio × HelpNeededPerLostOrder × HelpNeededForTrack-

ingGranularity

HelpNeededPerLostOrder = decision(”Failed Order Notification”){

”Current: no notification”:deterministic(25%);

”User notified of failed order”:deterministic(20%);

}

HelpNeededForTrackingGranularity = decision(Order Tracking){

”Current: order level” : deterministic(1);

”Granule-level order tracking” : deterministic(40%);

}

Failure Information

FailureInfoGivenToUsers = 1- RatioUsersNotGettingInfo

RatioUsersNotGettingInfo = RatioUsersNotGettingInfoCurrent ×

(1 - NotificationOrderEffect) ×

(1 - OrderTrackingGranularityEffect) ×

(1 - UserInformationEffect)

RatioUsersNotGettingInfoCurrent = deterministic(50%);

NotificationOrderEffect = decision(”Failed Order Notification”){

”Current: no notification”: deterministic(0);

”User notified of failed order”: deterministic(80%);

}

OrderTrackingGranularityEffect = decision(Order Tracking){

”Current: order level” : deterministic(0);

”Granule-level order tracking” : deterministic(90%);

}

UserInformationEffect = decision(”Available User Information”){

”Current: no link to user info” : deterministic(0);

”Link to user information” : deterministic(20%);

}
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Limit on Order

LimitOnOrders = decision(”Order Chunking”){

”Current: no oder chunking”: deterministic(30%);

”Order Chunking” : deterministic(15%);

}

Notification Frequency

NotificationFrequency = decision(”Order Bundling”){

”No Order Bundling” : deterministic(1);

”Order Bundling” : deterministic(0.01);

}

Performance

Performance = decision(”Order Bundling”){

”No Order Bundling” : deterministic(60%);

”Order Bundling” : deterministic(55%);

}

Modelling Cost

Cost = CostOrderReassignment +

CostForcedOrderCompletion +

CostOrderPersistenceStrategy +

CostOrderSegmentation +

CostHungOrderRecovery +

CostFailedOrderNotification +

CostOrderTracking +

CostAvailableUserInformation +
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CostOrderReassignment = decision(”Order Reassignment”){

”Current: not possible to reassign order” : deterministic(0);

”Allow Order Reassignment”: triangular(360, 400, 440);

}

CostForcedOrderCompletion = decision(”Forced Order Completion”){

”Current: not possible to force order completion” : deterministic(0);

”Allow Forced Order Completion”: triangular(180, 200, 220);

}

CostOrderPersistenceStrategy = decision(”Order Persistence Strategy”){

”Current: store when processed” : deterministic(0);

”Store as soon as received” : triangular(1200, 1200, 7150);

}

CostOrderSegmentation = decision(”Order Segmentation”){

”Current: no order segmentation” : deterministic(0);

”Orders are segmented” : triangular(180, 200, 220);

}

CostHungOrderRecovery = decision(”Hung Order Recovery”){

”Current: no order retry” : deterministic(0);

”Allow Order Retry” : triangular(180, 200, 220);

}

CostFailedOrderNotification = decision(”Failed Order Notification”){

”Current: no notification”: deterministic(0);

”User notified of failed order”: triangular(270, 300, 330);

}

CostOrderTracking = decision(Order Tracking){

”Current: order level” : deterministic(0);

”Granule-level order tracking” : triangular(900, 1000, 1650);

}

CostAvailableUserInformation = decision(”Available User Information”){

”Current: no link to user info” : deterministic(0);

”Link to user information” : triangular(90, 100, 440);

}

CostOrderChunking = decision(”Order Chunking”){

”Current: no oder chunking” : deterministic(0);

”Order Chunking” : triangular(360, 400, 440);

}

CostOrderBundling = decision(”Order Bundling”){

”No Order Bundling” : deterministic(0);

”Order Bundling” :triangular(360, 400, 440);

}
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To help visualise the model structure, radar generates the AND/OR refinement graph

and decision dependency graphs from the NASA ECS model equations. Fig. B.1a shows

the partial AND/OR refinement graphs for the building security model starting from

the model variable FailureInfoGivenToUsersUtility. Fig. B.1b shows a partial decision

graph for the model.

Analysis Results

The radar analysis of the NASA ECS Decision Model (ECSM) is presented in Fig.

B.3, which shows the results of the optimisation and information value analysis on the

model.

The first part of Fig. B.3 is the optimisation analysis results, which shows that all short-

listed solutions include the options “Order Chunking” , “Orders are segmented” and

“No order Bundling”. This means that, in our model, these three options, respectively,

outperform the options “Current: No Order Chunking”, “Current: No Order Segmen-

tation” and “No Order Bundling” on both objectives. But once these three options

are selected, the shortlist includes different combinations of Order Reassignment, Forced

Order Completion, Order Persistence Strategy, Hung Order recovery, Failed Order No-

tification, Order Tracking, Available User Information; each combination representing

a different tradeoffs between maximising ExpectedUtility and minimising the Cost. To

visualise such tradeoffs, radar generates the graph in Fig. B.2, plotting the objective

values for the shortlised solutions (i.e. shown squares at the top of the graph) and all

other non shortlisted ones (shown as circles).

The information value analysis results is presented in Table B.2, which shows that the

EVTPI for this problem is 0.04 and EVPPI for all the model parameters is 0. This

means that in this model, there is no parameter worth investigating further before

deciding between the shortlisted solutions to be selected for implementation. Reducing

uncertainty about any of the parameters would bring no value to the decision.
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Figure B.2: Pareto front of the NASA’s ECS model analysis.

Information Value Analysis

Objective: Max ENB
EVTPI: 0

Parameter EVPPI

LostRequestsRatio 0
CostOrderReassignment[Allow Order Reassignment] 0
CostForcedOrderCompletion[Allow Forced Order Completion] 0
CostOrderPersistenceStrategy[Store as soon as received] 0
CostOrderSegmentation[Orders are segmented] 0
CostHungOrderRecovery[Allow Order Retry] 0
CostFailedOrderNotification[User notified of failed order] 0
CostOrderTracking[Granule-level order tracking] 0
CostAvailableUserInformation[Link to user information] 0
CostOrderChunking[Order Chunking] 0
CostOrderBundling[Order Bundling] 0

Table B.2: Information Value Analysis for the NASA ECS System.

Comparison To Previous Analysis

Previous analysis involves the application of the Cost Benefit Analysis Method (CBAM)

[149, 179] to the ECS project. This analysis has been presented in the 2002 Software
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Engineering Institute (SEI) report. The analysis estimates individual impact of individ-

ual architectural strategies on the utility derived from the system, but does not consider

the combined impacts of architectural strategies on goals. In our approach, we model

the interactions between architectural strategies. i.e. the combined impact of architec-

tural strategies. In addition, our analysis technique allows the selection of more than

one architectural strategy and analyses uncertainty by computing the expected value of

total and partial perfect information.
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Appendix C

Modelling and Analysing Feature

Selection of Drupal (PHP

Framework)

The optimisation objectives are given below:

Objective Min ExpectedComplexity = EV(Complexity);

Objective Max ExpectedTestAssertions = EV(TestAssertions);

Objective Max ExpectedNumberOfInstallations = EV(TotalNumberOfInstallations);

Objective Min ExpectedNumberOfDeVelopers = EV (TotalNumberOfDevelopers);

248
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Modelling Complexity

Complexity = FeatureNodeComplexity

+ FeatureSystemComplexity

+ FeatureFilterComplexity

+ FeatureFieldComplexity

+ FeatureUserComplexity

+ OtherFeaturesComplexity;

FeatureNodeComplexity = ComplexityForFeatureNode+ FeatureNodeSubFeatureComplexity;

ComplexityForFeatureNode = deterministic(0.27);

FeatureNodeSubFeatureComplexity = decision-subset(+) (”Node”) {

“Blog” : deterministic(0.16);

“Forum” : deterministic(0.24);

}

FeatureSystemComplexity = deterministic(0.31);

FeatureFilterComplexity = deterministic(0.17);

FeatureFieldComplexity = ComplexityForFeatureField + FeatureTextComplexity + Feature-

FieldSQLStorageComplexity + FeatureOptionsComplexity;

ComplexityForFeatureField = deterministic(0.41);

FeatureTextComplexity= deterministic(0.29);

FeatureFieldSQLStorageComplexity = deterministic(0.3);

FeatureOptionsComplexity = decision(”Field Options”){

“Options” : deterministic(0.17);

“Without Options” : deterministic(0);

}
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FeatureUserComplexity = deterministic(0.26);

OtherFeaturesComplexity = decision-subset(+)(”Drupal Non-Mandatory Features”){

“Path” : deterministic(0.14);

“Image” : deterministic(0.29);

“Field UI” : deterministic(0.28);

“File” : deterministic(0.67);

“Comment” : deterministic(0.23);

“Views” : FeatureViewsComplexity + FeatureViewsUIComplexity ;

“Libraries API” : deterministic(0.55);

“IMCE” : deterministic(0.47);

“Ctools” : FeatureCToolsComplexity + CToolsSubFeaturesComplexity;

“Token”: deterministic(0.51);

“Taxonomy” : deterministic(0.23);

“Date” : FeatureDateComplexity + DateSubFeaturesComplexity;

“WebForm” : deterministic(0.51);

“Link” : deterministic(0.63);

“EntityAPI” : FeatureEntityAPIComplexity + EntityAPISubFeatureComplexity ;

“CKEditor” : deterministic(0.59);

“Captcha” : FeatureCaptchaComplexity + CaptchaSubFeatureComplexity;

“Features” : deterministic(0.56);

“Panels” : FeaturePanelsComplexity + PanelSubFeatureComplexity;

“Pathauto” : deterministic(0.23);

“JQuery” : deterministic(0.26);

“GoogleAnalytics” : deterministic(0.29);

“Rules” : FeatureRuleComplexity + RuleSubFeatureComplexity;

“BackUpMigration” : deterministic(0.37);

}
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FeatureViewsComplexity = deterministic(0.41);

FeatureViewsUIComplexity = decision(”Views UI SubFeature”){

“Views UI”: deterministic(0.37);

“Without UI”: deterministic(0);

}

FeatureCToolsComplexity = deterministic(0.52);

CToolsSubFeaturesComplexity = decision-subset(+)(”Ctool SubFeature”){

“Ctools access ruleset” : deterministic(0.19);

“Ctools custom content” : deterministic(0.3);

“Views content” : deterministic(0.46);

}

FeatureDateComplexity = deterministic(0.44);

DateSubFeaturesComplexity = decision-subset(+)(”Date SubFeature”){

“Date API” : deterministic(0.6);

“Date views” : deterministic(0.44);

“Date popups” : deterministic(0.36);

}

FeatureEntityAPIComplexity = deterministic(1);

EntityAPISubFeatureComplexity = decision(”Entity API SubFeatures”){

“Entity Tokens” : deterministic(1.09);

“Without Entity Tokens” : deterministic(0);

}
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FeatureCaptchaComplexity = deterministic(0.19);

CaptchaSubFeatureComplexity = decision(”Captcha SubFeature”){

“Image Captcha” : deterministic(0.28);

“Without Image Captcha” : deterministic(0);

}

FeaturePanelsComplexity =deterministic(0.35);

PanelSubFeatureComplexity = decision-subset(+)(”Panels SubFeatures”){

“Panel Nodes” : deterministic(0.35);

“Panels IPE” : deterministic(0.23);

}

FeatureRuleComplexity = deterministic(0.49);

RuleSubFeatureComplexity = decision-subset(+)(”Rules SubFeatures”){

“Rules Scheduler” : deterministic(0.15);

“Rules UI” : deterministic(0.39);

}

Modelling Test Assertions

TestAssertions = FeatureNodeTestAssertions + FeatureSystemTestAsser-

tions

+ FeatureFilterTestAssertions

+ FeatureFieldTestAssertions

+ FeatureUserTestAssertions

+ OtherFeaturesTestAssertions;
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FeatureNodeTestAssertions = TestAssertionsForFeatureNode+ FeatureNodeSubFeatureTes-

tAssertions;

TestAssertionsForFeatureNode = deterministic(1391);

FeatureNodeSubFeatureTestAssertions = decision-subset(+)(”Node”) {

“Blog” : deterministic(244);

“Forum” : deterministic(677);

}

FeatureSystemTestAssertions = deterministic(2138);

FeatureFilterTestAssertions = deterministic(958);

FeatureFieldTestAssertions = TestAssertionsForFeatureField + FeatureTextTestAssertions +

FeatureFieldSQLStorageTestAssertions + FeatureOptionsTestAssertions;

TestAssertionsForFeatureField = deterministic(870);

FeatureTextTestAssertions = deterministic(444);

FeatureFieldSQLStorageTestAssertions = deterministic(94);

FeatureOptionsTestAssertions = decision(”Field Options”){

“Options” : deterministic(227);

“Without Options” : deterministic(0);

}
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FeatureUserTestAssertions = deterministic(1335);

OtherFeaturesTestAssertions = decision-subset(+)(”Drupal Non-Mandatory Features”){

“Path” : deterministic(330);

“Image” : deterministic(667);

“Field UI” : deterministic(287);

“File” : deterministic(2293);

“Comment” : deterministic(3287);

“Views” : FeatureViewsTestAssertions + FeatureViewsUITestAssertions ;

“Libraries API” : deterministic(135);

“IMCE” : deterministic(0);

“Ctools” : FeatureCToolsTestAssertions + CToolsSubFeaturesTestAssertions;

“Token”: deterministic(347);

“Taxonomy” : deterministic(677);

“Date” : FeatureDateTestAssertions + DateSubFeaturesTestAssertions;

“WebForm” : deterministic(456);

“Link” : deterministic(1275);

“EntityAPI” : FeatureEntityAPITestAssertions + EntityAPISubFeatureTestAssertions ;

“CKEditor” : deterministic(0);

“Captcha” : FeatureCaptchaTestAssertions + CaptchaSubFeatureTestAssertions;

“Features” : deterministic(16);

“Panels” : FeaturePanelsTestAssertions + PanelSubFeatureTestAssertions;

“Pathauto” : deterministic(316);

“JQuery” : deterministic(0);

“GoogleAnalytics” : deterministic(200);

“Rules” : FeatureRuleTestAssertions + RuleSubFeatureTestAssertions;

“BackUpMigration” : deterministic(0);

}

FeatureViewsTestAssertions = deterministic(1089);

FeatureViewsUITestAssertions = decision(”Views UI SubFeature”){

“Views UI”: deterministic(538);

“Without UI”: deterministic(0);

}



Modelling and Analysing Feature Selection of Drupal (PHP Framework) 255

FeatureCToolsTestAssertions = deterministic(1);

CToolsSubFeaturesTestAssertions = decision-subset(+)(”Ctool SubFeature”){

“Ctools access ruleset” : deterministic(0);

“Ctools custom content” : deterministic(0);

“Views content” : deterministic(0);

}

FeatureDateTestAssertions = deterministic(1);

DateSubFeaturesTestAssertions = decision-subset(+)(”Date SubFeature”){

“Date API” : deterministic(106);

“Date views” : deterministic(0);

“Date popups” : deterministic(0);

}

FeatureEntityAPITestAssertions = deterministic(1);

EntityAPISubFeatureTestAssertions = decision(”Entity API SubFeatures”){

“Entity Tokens” : deterministic(6);

“Without Entity Tokens” : deterministic(0);

}
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FeatureCaptchaTestAssertions = deterministic(851);

CaptchaSubFeatureTestAssertions = decision(”Captcha SubFeature”){

“Image Captcha” : deterministic(1);

“Without Image Captcha” : deterministic(0);

}

FeaturePanelsTestAssertions =deterministic(0);

PanelSubFeatureTestAssertions = decision-subset(+)(”Panels SubFeatures”){

“Panel Nodes” : deterministic(0);

“Panels IPE” : deterministic(0);

}

FeatureRuleTestAssertions = deterministic(285);

RuleSubFeatureTestAssertions = decision-subset(+)(”Rules SubFeatures”){

“Rules Scheduler” : deterministic(7);

“Rules UI” : deterministic(0);

}

Modelling Total Number Of Installations

TotalNumberOfInstallations = FeatureNodeTotalNumberOfInstallations

+ FeatureSystemTotalNumberOfInstallations

+ FeatureFilterNumberOfInstallations

+ FeatureFieldNumberOfInstallations

+ FeatureUserNumberOfInstallations

+ OtherFeaturesNumberOfInstallations;
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FeatureNodeTotalNumberOfInstallations = TotalNumberOfInstallationsForFeatureNode+

FeatureNodeSubFeatureTotalNumberOfInstallations;

TotalNumberOfInstallationsForFeatureNode = deterministic(5259525);

FeatureNodeSubFeatureTotalNumberOfInstallations = decision-subset(+)(”Node”) {

“Blog” : deterministic(5259525);

“Forum” : deterministic(5259525);

}

FeatureSystemTotalNumberOfInstallations= deterministic(5259525);

FeatureFilterTotalNumberOfInstallations= deterministic(5259525);

FeatureFieldTotalNumberOfInstallations= TotalNumberOfInstallationsForFeatureField + Fea-

tureTextTotalNumberOfInstallations+ FeatureFieldSQLStorageTotalNumberOfInstallations+

FeatureOptionsTestAssertions;

TotalNumberOfInstallationsForFeatureField= deterministic(5259525);

FeatureTextTotalNumberOfInstallations= deterministic(5259525);

FeatureFieldSQLStorageTotalNumberOfInstallations= deterministic(5259525);

FeatureOptionsTotalNumberOfInstallations= decision(”Field Options”){

“Options” : deterministic(5259525);

“Without Options” : deterministic(0);

}

FeatureUserTotalNumberOfInstallations= deterministic(5259525);
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OtherFeaturesNumberOfInstallations = decision-subset(+)(”Drupal Non-Mandatory Fea-

tures”){

“Path” : deterministic(5259525);

“Image” : deterministic(5259525);

“Field UI” : deterministic(5259525);

“File” : deterministic(5259525);

“Comment” : deterministic(5259525);

“Views” : FeatureViewsTotalNumberOfInstallations+ FeatureViewsUITotalNumberOfIn-

stallations;

“Libraries API” : deterministic(516333);

“IMCE” : deterministic(392705);

“Ctools” : FeatureCToolsTotalNumberOfInstallations+ CToolsSubFeaturesTestAssertions;

“Token”: deterministic(715563);

“Taxonomy” : deterministic(677);

“Date” : FeatureDateTotalNumberOfInstallations+ DateSubFeaturesTestAssertions;

“WebForm” : deterministic(402163);

“Link” : deterministic(286892);

“EntityAPI” : FeatureEntityAPITotalNumberOfInstallations+ EntityAPISubFeatureTotal-

NumberOfInstallations;

“CKEditor” : deterministic(280919);

“Captcha” : FeatureCaptchaTotalNumberOfInstallations+ CaptchaSubFeatureTestAsser-

tions;

“Features” : deterministic(209653);

“Panels” : FeaturePanelsTotalNumberOfInstallations+ PanelSubFeatureTestAssertions;

“Pathauto” : deterministic(622478);

“JQuery” : deterministic(286556);

“GoogleAnalytics” : deterministic(348278);

“Rules” : FeatureRuleTotalNumberOfInstallations+ RuleSubFeatureTestAssertions;

“BackUpMigration” : deterministic(281797);

}

FeatureViewsTotalNumberOfInstallations= deterministic(1);

FeatureViewsUITotalNumberOfInstallations= decision(”Views UI SubFeature”){

“Views UI”: deterministic(802467);

“Without UI”: deterministic(0);

}
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FeatureCToolsTotalNumberOfInstallations= deterministic(1);

CToolsSubFeaturesTotalNumberOfInstallations= decision-subset(+)(”Ctool SubFeature”){

“Ctools access ruleset” : deterministic(747248);

“Ctools custom content” : deterministic(747248);

“Views content” : deterministic(747248);

}

FeatureDateTotalNumberOfInstallations= deterministic(412324);

DateSubFeaturesTotalNumberOfInstallations= decision-subset(+)(”Date SubFeature”){

“Date API” : deterministic(412324);

“Date views” : deterministic(412324);

“Date popups” : deterministic(412324);

}
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FeatureEntityAPITotalNumberOfInstallations= deterministic(407569);

EntityAPISubFeatureTotalNumberOfInstallations= decision(”Entity API SubFeatures”){

“Entity Tokens” : deterministic(407569);

“Without Entity Tokens” : deterministic(0);

}

FeatureCaptchaTotalNumberOfInstallations= deterministic(226295);

CaptchaSubFeatureTotalNumberOfInstallations= decision(”Captcha SubFeature”){

“Image Captcha” : deterministic(226295);

“Without Image Captcha” : deterministic(0);

}

FeaturePanelsTotalNumberOfInstallations=deterministic(206805);

PanelSubFeatureTotalNumberOfInstallations= decision-subset(+)(”Panels SubFeatures”){

“Panel Nodes” : deterministic(206805);

“Panels IPE” : deterministic(206805);

}

FeatureRuleTotalNumberOfInstallations= deterministic(238388);

RuleSubFeatureTotalNumberOfInstallations= decision-subset(+)(”Rules SubFeatures”){

“Rules Scheduler” : deterministic(238388);

“Rules UI” : deterministic(238388);

}

Modelling Total Number Of Developers

TotalNumberOfDevelopers = FeatureNodeTotalNumberOfDevelopers

+ FeatureSystemTotalNumberOfDevelopers

+ FeatureFilterNumberOfDevelopers

+ FeatureFieldNumberOfDevelopers

+ FeatureUserNumberOfDevelopers

+ OtherFeaturesNumberOfDevelopers;
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FeatureNodeTotalNumberOfDevelopers = TotalNumberOfDevelopersForFeatureNode+ Fea-

tureNodeSubFeatureTotalNumberOfDevelopers;

TotalNumberOfDevelopersForFeatureNode = deterministic(94);

FeatureNodeSubFeatureTotalNumberOfDevelopers = decision-subset(+)(”Node”) {

“Blog” : deterministic(94);

“Forum” : deterministic(94);

}

FeatureSystemTotalNumberOfDevelopers= deterministic(94);

FeatureFilterTotalNumberOfDevelopers= deterministic(94);

FeatureFieldTotalNumberOfDevelopers=TotalNumberOfDevelopersForFeatureField + Fea-

tureTextTotalNumberOfDevelopers+ FeatureFieldSQLStorageTotalNumberOfDevelopers+

FeatureOptionsTotalNumberOfDevelopers;

TotalNumberOfDevelopersForFeatureField= deterministic(94);

FeatureTextTotalNumberOfDevelopers= deterministic(94);

FeatureFieldSQLStorageTotalNumberOfDevelopers= deterministic(94);

FeatureOptionsTotalNumberOfDevelopers= decision(”Field Options”){

“Options” : deterministic(94);

“Without Options” : deterministic(0);

}
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FeatureUserTotalNumberOfDevelopers= deterministic(94);

OtherFeaturesNumberOfDevelopers = decision-subset(+)(”Drupal Non-Mandatory Fea-

tures”){

“Path” : deterministic(94);

“Image” : deterministic(94);

“Field UI” : deterministic(94);

“File” : deterministic(94);

“Comment” : deterministic(94);

“Views” : FeatureViewsTotalNumberOfDevelopers+ FeatureViewsUITotalNumberOfDevel-

opers;

“Libraries API” : deterministic(7);

“IMCE” : deterministic(13);

“Ctools” : FeatureCToolsTotalNumberOfDevelopers+ CToolsSubFeaturesTestAssertions;

“Token”: deterministic(31);

“Taxonomy” : deterministic(94);

“Date” : FeatureDateTotalNumberOfDevelopers+ DateSubFeaturesTestAssertions;

“WebForm” : deterministic(46);

“Link” : deterministic(31);

“EntityAPI” : FeatureEntityAPITotalNumberOfDevelopers+ EntityAPISubFeatureTotal-

NumberOfDevelopers;

“CKEditor” : deterministic(29);

“Captcha” : FeatureCaptchaTotalNumberOfDevelopers+ CaptchaSubFeatureTestAsser-

tions;

“Features” : deterministic(36);

“Panels” : FeaturePanelsTotalNumberOfDevelopers+ PanelSubFeatureTestAssertions;

“Pathauto” : deterministic(33);

“JQuery” : deterministic(17);

“GoogleAnalytics” : deterministic(21);

“Rules” : FeatureRuleTotalNumberOfDevelopers+ RuleSubFeatureTestAssertions;

“BackUpMigration” : deterministic(7);

}

FeatureViewsTotalNumberOfDevelopers= deterministic(178);

FeatureViewsUITotalNumberOfDevelopers= decision(”Views UI SubFeature”){

“Views UI”: deterministic(178);

“Without UI”: deterministic(0);

}
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FeatureCToolsTotalNumberOfDevelopers= deterministic(75);

CToolsSubFeaturesTotalNumberOfDevelopers= decision-subset(+)(”Ctool SubFeature”){

“Ctools access ruleset” : deterministic(75);

“Ctools custom content” : deterministic(75);

“Views content” : deterministic(75);

}

FeatureDateTotalNumberOfDevelopers= deterministic(42);

DateSubFeaturesTotalNumberOfDevelopers= decision-subset(+)(”Date SubFeature”){

“Date API” : deterministic(42);

“Date views” : deterministic(42);

“Date popups” : deterministic(42);

}

FeatureEntityAPITotalNumberOfDevelopers= deterministic(45);

EntityAPISubFeatureTotalNumberOfDevelopers= decision(”Entity API SubFeatures”){

“Entity Tokens” : deterministic(45);

“Without Entity Tokens” : deterministic(0);

}
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FeatureCaptchaTotalNumberOfDevelopers= deterministic(43);

CaptchaSubFeatureTotalNumberOfDevelopers= decision(”Captcha SubFeature”){

“Image Captcha” : deterministic(43);

“Without Image Captcha” : deterministic(0);

}

FeaturePanelsTotalNumberOfDevelopers=deterministic(43);

PanelSubFeatureTotalNumberOfDevelopers= decision-subset(+)(”Panels SubFeatures”){

“Panel Nodes” : deterministic(43);

“Panels IPE” : deterministic(43);

}

FeatureRuleTotalNumberOfDevelopers= deterministic(52);

RuleSubFeatureTotalNumberOfDevelopers= decision-subset(+)(”Rules SubFeatures”){

“Rules Scheduler” : deterministic(52);

“Rules UI” : deterministic(52);

}

Modelling Total Number of Changes

TotalNumberOfChanges = FeatureNodeTotalNumberOfChanges

+ FeatureSystemTotalNumberOfChanges

+ FeatureFilterNumberOfChanges

+ FeatureFieldNumberOfChanges

+ FeatureUserNumberOfChanges

+ OtherFeaturesNumberOfChanges;
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FeatureNodeTotalNumberOfChanges = TotalNumberOfChangesForFeatureNode+ FeatureN-

odeSubFeatureTotalNumberOfChanges;

TotalNumberOfChangesForFeatureNode = deterministic(9);

FeatureNodeSubFeatureTotalNumberOfChanges = decision-subset(+) (”Node”) {

“Blog” : deterministic(0);

“Forum” : deterministic(3);

}

FeatureSystemTotalNumberOfChanges= deterministic(19);

FeatureFilterTotalNumberOfChanges= deterministic(1);

FeatureFieldTotalNumberOfChanges= TotalNumberOfChangesForFeatureField + FeatureText-

TotalNumberOfChanges+ FeatureFieldSQLStorageTotalNumberOfChanges+ FeatureOption-

sTotalNumberOfChanges;

TotalNumberOfChangesForFeatureField= deterministic(6);

FeatureTextTotalNumberOfChanges= deterministic(0);

FeatureFieldSQLStorageTotalNumberOfChanges= deterministic(1);

FeatureOptionsTotalNumberOfChanges= decision(”Field Options”){

“Options” : deterministic(0);

“Without Options” : deterministic(0);

}

FeatureUserTotalNumberOfChanges= deterministic(7);
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OtherFeaturesNumberOfChanges = decision-subset(+)(”Drupal Non-Mandatory Features”){

“Path” : deterministic(0);

“Image” : deterministic(9);

“Field UI” : deterministic(4);

“File” : deterministic(1);

“Comment” : deterministic(2);

“Views” : FeatureViewsTotalNumberOfChanges+ FeatureViewsUITotalNumberOfChanges;

“Libraries API” : deterministic(7);

“IMCE” : deterministic(9);

“Ctools” : FeatureCToolsTotalNumberOfChanges+ CToolsSubFeaturesTestAssertions;

“Token”: deterministic(10);

“Taxonomy” : deterministic(2);

“Date” : FeatureDateTotalNumberOfChanges+ DateSubFeaturesTestAssertions;

“WebForm” : deterministic(46);

“Link” : deterministic(11);

“EntityAPI” : FeatureEntityAPITotalNumberOfChanges+ EntityAPISubFeatureTotal-

NumberOfChanges;

“CKEditor” : deterministic(40);

“Captcha” : FeatureCaptchaTotalNumberOfChanges+ CaptchaSubFeatureTestAssertions;

“Features” : deterministic(72);

“Panels” : FeaturePanelsTotalNumberOfChanges+ PanelSubFeatureTestAssertions;

“Pathauto” : deterministic(2);

“JQuery” : deterministic(1);

“GoogleAnalytics” : deterministic(14);

“Rules” : FeatureRuleTotalNumberOfChanges+ RuleSubFeatureTestAssertions;

“BackUpMigration” : deterministic(90);

}

FeatureViewsTotalNumberOfChanges= deterministic(27);

FeatureViewsUITotalNumberOfChanges= decision(”Views UI SubFeature”){

“Views UI”: deterministic(0);

“Without UI”: deterministic(0);

}
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FeatureCToolsTotalNumberOfChanges= deterministic(32);

CToolsSubFeaturesTotalNumberOfChanges= decision-subset(+)(”Ctool SubFeature”){

“Ctools access ruleset” : deterministic(0);

“Ctools custom content” : deterministic(1);

“Views content” : deterministic(5);

}

FeatureDateTotalNumberOfChanges= deterministic(9);

DateSubFeaturesTotalNumberOfChanges= decision-subset(+)(”Date SubFeature”){

“Date API” : deterministic(11);

“Date views” : deterministic(6);

“Date popups” : deterministic(4);

}

FeatureEntityAPITotalNumberOfChanges= deterministic(14);

EntityAPISubFeatureTotalNumberOfChanges= decision(”Entity API SubFeatures”){

“Entity Tokens” : deterministic(1);

“Without Entity Tokens” : deterministic(0);

}

FeatureCaptchaTotalNumberOfChanges= deterministic(15);

CaptchaSubFeatureTotalNumberOfChanges= decision(”Captcha SubFeature”){

“Image Captcha” : deterministic(0);

“Without Image Captcha” : deterministic(0);

}



Modelling and Analysing Feature Selection of Drupal (PHP Framework) 268

FeaturePanelsTotalNumberOfChanges=deterministic(34);

PanelSubFeatureTotalNumberOfChanges= decision-subset(+)(”Panels SubFeatures”){

“Panel Nodes” : deterministic(2);

“Panels IPE” : deterministic(20);

}

FeatureRuleTotalNumberOfChanges= deterministic(5);

RuleSubFeatureTotalNumberOfChanges= decision-subset(+)(”Rules SubFeatures”){

“Rules Scheduler” : deterministic(4);

“Rules UI” : deterministic(1);

}
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Modelling constraints

Constraint ”Node”: ”Forum” requires”Drupal Non-Mandatory Features” : ”Taxonomy”;

Constraint ”Node”: ”Forum” requires”Field Options” : ”Options”;

Constraint ”Node”: ”Forum” requires”Drupal Non-Mandatory Features” : ”Comment”;

Constraint ”Drupal Non-Mandatory Features”: ”Image” requires”Drupal Non-Mandatory

Features” : ”File”;

Constraint ”Drupal Non-Mandatory Features”: ”Views” requires”Drupal Non-Mandatory

Features” : ”Ctools”;

Constraint ”Views UI SubFeature”: ”Views UI” requires”Drupal Non-Mandatory Features”

: ”Ctools”;

Constraint ”Ctools”: ”Views content” requires”Drupal Non-Mandatory Features” : ”Views”;

Constraint ”Drupal Non-Mandatory Features”: ”Taxonomy” requires”Field Options” :

”Options”;

Constraint ”Date SubFeature”: ”Date views” requires”Drupal Non-Mandatory Features” :

”Ctools”;

Constraint ”Date SubFeature”: ”Date views” requires”Drupal Non-Mandatory Features” :

”Views”;

Constraint ”Drupal Non-Mandatory Features”: ”Panels” requires”Drupal Non-Mandatory

Features” : ”Ctools”;

Constraint ”Panels”: ”Panels IPE” requires”Drupal Non-Mandatory Features” : ”Ctools”;

Constraint ”Panels”: ”Panel Nodes” requires”Drupal Non-Mandatory Features” : ”Ctools”;

Constraint ”Drupal Non-Mandatory Features”: ”Pathauto” requires”Drupal Non-Mandatory

Features” : ”Token”;

Constraint ”Drupal Non-Mandatory Features”: ”Pathauto” requires”Drupal Non-Mandatory

Features” : ”Path”;

Constraint ”Drupal Non-Mandatory Features”: ”Rules” requires”Drupal Non-Mandatory

Features” : ”EntityAPI”;

Constraint ”Drupal Non-Mandatory Features”: ”Rules” requires”Entity API SubFeatures” :

”Entity Tokens”;
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Constraint ”Rules SubFeatures”: ”Rules Scheduler” requires”Drupal Non-Mandatory

Features” : ”EntityAPI”;

Constraint ”Rules SubFeatures”: ”Rules Scheduler” requires”Entity API SubFeatures” :

”Entity Tokens”;

Constraint ”Rules SubFeatures”: ”Rules UI” requires”Drupal Non-Mandatory Features” :

”EntityAPI”;

Constraint ”Rules SubFeatures”: ”Rules UI” requires”Entity API SubFeatures” : ”Entity

Tokens”;

Analysis Result

The radar analysis of Drupal (PHP framework) model is presented in Fig.C.1. The

problems was analysed using NSGAII using the 1+λ optimisation approach [130] and

algorithmic parameters similar to the settings used in [285]: population size of 100,

crossover probability of 0.9, mutation probability of 0.1 and maximum number of fit-

ness evaluation of 50000. The optimisation results shows radar shortlists 28 optimal

alternatives each representing different trade-offs between minimising code complexity;

maximising the number of test assertions; maximising the number of installations and

minimising the number of developers.
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Appendix D

Modelling and Analysing An

E-Commerce System

The optimisation objectives are given below:

Objective Min ExpectedCost = EV(Cost);

Objective Min ExpectedTotalDefect = EV(TotalDefects);

Objective Max TotalFeaturesUsedBefore = EV(FeaturesUsedBefore);

Objective Max TotalFeatureCount = EV(FeatureCount);

We model the Cost below:

Cost = CostOfFeatureWebServer + CostOfAchievingOtherServices;

CostOfFeatureWebServer = CostOfProtocolAndLogging +CostOfFeatureContent;

CostOfProtocolAndLogging = decision-subset(+)(”Protocol And Logging”){

”Logging”: CostOfFeatureLogging;

”Protocols”: CostOfFeatureProtocols;

}

272
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CostOfFeatureLogging = decision(”Feature Logging”){

”DB”: CostOfUsingDB;

”File”: CostOfUsingFile;

}

CostOfUsingDB = deterministic(10.308317459185346);

CostOfUsingFile = deterministic(5.901282664841281);

CostOfFeatureProtocols = decision-subset(+) (”Feature Protocol”){

”NTTP”: deterministic(13.682644828346174);

”FTP”: deterministic(13.008853827785588);

”HTTPS” : deterministic(10.048601003623034);

}

CostOfFeatureContent = CostOfFeatureStatic + CostOfFeatureActive;

CostOfFeatureStatic = deterministic(11.101621731632662);

CostOfFeatureActive = decision-subset(+) (”Active Features”){

”Active”: deterministic(12.247116996854373);

”ASP”: deterministic(8.620782055044714);

”PHP”: deterministic(10.641905327748809);

”JSP”: deterministic(12.95291397374664);

”CGI”: deterministic(12.141681946598066);

}

CostOfAchievingOtherServices = decision-subset(+)(”Other Services”){

”Additional Services”: CostOfFeatureAdditionalServices;

”Security”: CostOfFeatureSecurity;

”Persistence”: CostOfFeaturePersistence;

”Performance”: CostOfFeaturePerformance;

}

CostOfFeatureAdditionalServices = decision-subset(+)(”Feature Additional Services”){

”Additional Services”: deterministic(7.5092053767634654);

”Site Statistics”: CostOfFeatureSiteStatistics;

”Site Search”: CostOfFeatureSiteSearch;

”Ad Server”: CostOfFeatureAdServer;

}
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CostOfFeatureSiteStatistics = CostOfFeatureStatistics

+ CostOfFeatureBasicStat

+ CostOfFeatureAdvancedStat;

CostOfFeatureStatistics =deterministic(14.689398134577047);

CostOfFeatureBasicStat = deterministic(6.166499393904992);

CostOfFeatureAdvancedStat = decision(”Feature Advanced Stat”){

”Without Advanced Stat”: deterministic(0);

”With Advanced Stat”: deterministic(10.419039139443939);

}

CostOfFeatureSiteSearch = decision-subset(+)(”Feature Site Search”){

”Site Search”: CostOfSiteSearch;

”Images”: CostOfFeatureImages;

”Text”: CostOfFeatureText;

}

CostOfSiteSearch = deterministic(9.758947026333994);

CostOfFeatureImages = deterministic(8.148236814831348);

CostOfFeatureText = CostOfText + CostOfFeatureHTML + CostOfFeatureDynamic;

CostOfText = deterministic(13.465111749758071);

CostOfFeatureHTML = deterministic(10.95267855613079);

CostOfFeatureDynamic = decision(”Feature Dynamic”){

”Without Dynamic”: deterministic(0);

”With Dynamic”: deterministic(8.863099463028671);

}

CostOfFeatureAdServer = CostOfAdServer + CostOfFeatureReports

+ CostOfFeatureBanners

+ CostOfPopupsAndKeywordSupport;

CostOfAdServer = deterministic(7.7496457787452195);

CostOfFeatureReports = deterministic(6.4745651041969055);

CostOfFeatureBanners = CostOfBanners + CostOfFeatureImage + CostOfFeatureFlash;

CostOfBanners = deterministic(7.363245163135134);

CostOfFeatureImage = deterministic(13.428384485896377);
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CostOfFeatureFlash = decision(”Flash”){

”Without Flash”: deterministic(0);

”With Flash”: deterministic(5.452286607902222);

}

CostOfPopupsAndKeywordSupport = decision-subset(+)(”Popups And Keyword Support”){

”Popups”: CostOfFeaturePopups;

”Keyword Support”: CostOfFeatureKeywordSupport;

}

CostOfFeatureKeywordSupport =deterministic(6.100473520805334);

CostOfFeaturePopups = deterministic(11.397415959703473);

CostOfFeaturePersistence = CostOfPersistence + CostOfPersistenceSubFeatures;

CostOfPersistence = deterministic(10.474662762049276);

CostOfPersistenceSubFeatures = decision(”Persistence Mechanism”){

”XML”: deterministic(14.054171683911981);

”Database”: deterministic(6.7377605081216725);

}

CostOfFeatureSecurity = CostOfSecurity + CostOfSecuritySubFeatures;

CostOfSecurity = deterministic(5.013527622729248);

CostOfSecuritySubFeatures = decision-subset(+)(”Security Mechanism”){

”Data Storage”: deterministic( 9.556632783363145);

”Data Transfer”: deterministic(5.222981863350846);

”User Authentication”: deterministic(12.234241931520607);

}

CostOfFeaturePerformance = CostOfPerformance + CostOfPerformanceSubFeatures;

CostOfPerformance = deterministic(5.013527622729248);

CostOfPerformanceSubFeatures = decision(”Feature Performance”){

”Milli Sec”: deterministic(11.690308919683972);

”Seconds”: deterministic(9.08978755801254);

”Minutes”: deterministic(8.283453001056765);

}

We model the total feature defects below:
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TotalDefects = DefectCountOnFeatureWebServer + DefectCountOnAchievingOtherServices;

DefectCountOnFeatureWebServer = DefectCountOnProtocolAndLogging

+DefectCountOnFeatureContent;

DefectCountOnProtocolAndLogging = decision-subset(+)(”Protocol And Logging”){

”Logging”: DefectCountOnFeatureLogging;

”Protocols” : DefectCountOnFeatureProtocols;

}

DefectCountOnFeatureLogging = decision(”Feature Logging”){

”DB” : DefectCountOnUsingDB;

”File” : DefectCountOnUsingFile;

}

DefectCountOnUsingDB = deterministic(5);

DefectCountOnUsingFile = deterministic(0);

DefectCountOnFeatureProtocols = decision-subset(+) (”Feature Protocol”){

”NTTP” : deterministic(6);

”FTP” : deterministic(6);

”HTTPS” : deterministic(0);

}

DefectCountOnFeatureContent = DefectCountOnFeatureStatic + DefectCountOnFeatureAc-

tive;

DefectCountOnFeatureStatic = deterministic(3);

DefectCountOnFeatureActive = decision-subset(+) (”Active Features”){

”Active” : deterministic(0);

”ASP”: deterministic(0);

”PHP”: deterministic(3);

”JSP”: deterministic(6);

”CGI”: deterministic(5);

}

DefectCountOnAchievingOtherServices = decision-subset(+)(”Other Services”){

”Additional Services”: DefectCountOnFeatureAdditionalServices;

”Security” : DefectCountOnFeatureSecurity;

”Persistence” : DefectCountOnFeaturePersistence;

”Performance” : DefectCountOnFeaturePerformance;

}
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DefectCountOnFeatureAdditionalServices = decision-subset(+)(”Feature Additional Ser-

vices”){

”Additional Services” : deterministic(6);

”Site Statistics” : DefectCountOnFeatureSiteStatistics;

”Site Search” : DefectCountOnFeatureSiteSearch;

”Ad Server” : DefectCountOnFeatureAdServer;

} DefectCountOnFeatureSiteStatistics = DefectCountOnFeatureStatistics

+ DefectCountOnFeatureBasicStat

+ DefectCountOnFeatureAdvancedStat;

DefectCountOnFeatureStatistics =deterministic(0);

DefectCountOnFeatureBasicStat = deterministic(8);

DefectCountOnFeatureAdvancedStat = decision(”Feature Advanced Stat”){

”Without Advanced Stat” : deterministic(0);

”With Advanced Stat” : deterministic(5);

}

DefectCountOnFeatureSiteSearch = decision-subset(+)(”Feature Site Search”){

”Site Search” : DefectCountOnSiteSearch;

”Images” : DefectCountOnFeatureImages;

”Text” : DefectCountOnFeatureText;

}

DefectCountOnSiteSearch = deterministic(6);

DefectCountOnFeatureImages = deterministic(5);

DefectCountOnFeatureText = DefectCountOnText

+ DefectCountOnFeatureHTML

+ DefectCountOnFeatureDynamic;

DefectCountOnText = deterministic(6);

DefectCountOnFeatureHTML = deterministic(4);

DefectCountOnFeatureDynamic = decision(”Feature Dynamic”){

”Without Dynamic” : deterministic(0);

”With Dynamic” : deterministic(4);

}

DefectCountOnFeatureAdServer = DefectCountOnAdServer

+ DefectCountOnFeatureReports

+ DefectCountOnFeatureBanners

+ DefectCountOnPopupsAndKeywordSupport;
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DefectCountOnAdServer = deterministic(6);

DefectCountOnFeatureReports = deterministic(4);

DefectCountOnFeatureBanners = DefectCountOnBanners

+ DefectCountOnFeatureImage

+ DefectCountOnFeatureFlash;

DefectCountOnBanners = deterministic(2);

DefectCountOnFeatureImage = deterministic(4);

DefectCountOnFeatureFlash = decision(”Flash”){

”Without Flash” : deterministic(0);

”With Flash” : deterministic(5);

}

DefectCountOnPopupsAndKeywordSupport = decision-subset(+)(”Popups And Keyword

Support”){

”Popups” : DefectCountOnFeaturePopups;

”Keyword Support” : DefectCountOnFeatureKeywordSupport;

}

DefectCountOnFeatureKeywordSupport =deterministic(5);

DefectCountOnFeaturePopups = deterministic(0);

DefectCountOnFeaturePersistence = DefectCountOnPersistence + DefectCountOnPersistence-

SubFeatures;

DefectCountOnPersistence = deterministic(0);

DefectCountOnPersistenceSubFeatures = decision(”Persistence Mechanism”){

”XML” : deterministic(0);

”Database” : deterministic(5);

}

DefectCountOnFeatureSecurity = DefectCountOnSecurity + DefectCountOnSecuritySubFea-

tures;

DefectCountOnSecurity = deterministic(0);

DefectCountOnSecuritySubFeatures = decision-subset(+)(”Security Mechanism”){

”Data Storage” : deterministic( 3);

”Data Transfer” : deterministic(4);

”User Authentication” : deterministic(4);

}

DefectCountOnFeaturePerformance = DefectCountOnPerformance + DefectCountOnPerfor-

manceSubFeatures;

DefectCountOnPerformance = deterministic(0);

DefectCountOnPerformanceSubFeatures = decision(”Feature Performance”){

”Milli Sec” : deterministic(0);

”Seconds” : deterministic(6);

”Minutes” : deterministic(6);

}
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FeatureCount = FeatureWebServerCount + CountOfOtherServices;

FeatureWebServerCount = ProtocolAndLoggingCount +FeatureContentCount;

ProtocolAndLoggingCount = decision-subset(+)(”Protocol And Logging”){

”Logging”: FeatureLoggingCount;

”Protocols” : FeatureProtocolsCount;

}

FeatureLoggingCount = decision(”Feature Logging”){

”DB” : CountOfUsingDB;

”File” : CountOfUsingFile;

}

CountOfUsingDB = deterministic(1);

CountOfUsingFile = deterministic(1);

FeatureProtocolsCount = decision-subset(+) (”Feature Protocol”){

”NTTP” : deterministic(1);

”FTP” : deterministic(1);

”HTTPS” : deterministic(1);

}

FeatureContentCount = FeatureStaticCount + FeatureActiveCount;

FeatureStaticCount = deterministic(1);

FeatureActiveCount = decision-subset(+) (”Active Features”){

”Active” : deterministic(1);

”ASP”: deterministic(1);

”PHP”: deterministic(1);

”JSP”: deterministic(1);

”CGI”: deterministic(1);

}

CountOfOtherServices = decision-subset(+)(”Other Services”){

”Additional Services”: FeatureAdditionalServicesCount;

”Security” : FeatureSecurityCount;

”Persistence” : FeaturePersistenceCount;

”Performance” : FeaturePerformanceCount;

}
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FeatureAdditionalServicesCount = decision-subset(+)(”Feature Additional Services”){

”Additional Services” : deterministic(1);

”Site Statistics” : FeatureSiteStatisticsCount;

”Site Search” : FeatureSiteSearchCount;

”Ad Server” : FeatureAdServerCount;

}

FeatureSiteStatisticsCount = FeatureStatisticsCount + FeatureBasicStat-

Count + FeatureAdvancedStatCount;

FeatureStatisticsCount =deterministic(1);

FeatureBasicStatCount = deterministic(1);

FeatureAdvancedStatCount = decision(”Feature Advanced Stat”){

”Without Advanced Stat” : deterministic(1);

”With Advanced Stat” : deterministic(1);

}

FeatureSiteSearchCount = decision-subset(+)(”Feature Site Search”){

”Site Search” : SiteSearchCount;

”Images” : FeatureImagesCount;

”Text” : FeatureTextCount;

}

SiteSearchCount = deterministic(1);

FeatureImagesCount = deterministic(1);

FeatureTextCount = TextCount + FeatureHTMLCount + FeatureDynamicCount;

TextCount = deterministic(1);

FeatureHTMLCount = deterministic(1);

FeatureDynamicCount = decision(”Feature Dynamic”){

”Without Dynamic” : deterministic(1);

”With Dynamic” : deterministic(1);

}

We model the number of feature counts i.e., the number of features as below:
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FeatureAdServerCount = AdServerCount

+ FeatureReportsCount

+ FeatureBannersCount

+ PopupsAndKeywordSupportCount;

AdServerCount = deterministic(1);

FeatureReportsCount = deterministic(1);

FeatureBannersCount = BannersCount + FeatureImageCount + FeatureFlashCount;

BannersCount = deterministic(1);

FeatureImageCount = deterministic(1);

FeatureFlashCount = decision(”Flash”){

”Without Flash” : deterministic(1);

”With Flash” : deterministic(1);

}

PopupsAndKeywordSupportCount = decision-subset(+)(”Popups And Keyword Support”){

”Popups” : FeaturePopupsCount;

”Keyword Support” : FeatureKeywordSupportCount;

}

FeatureKeywordSupportCount =deterministic(1);

FeaturePopupsCount = deterministic(1);

FeaturePersistenceCount = PersistenceCount + PersistenceSubFeaturesCount;

PersistenceCount = deterministic(1);

PersistenceSubFeaturesCount = decision(”Persistence Mechanism”){

”XML” : deterministic(1);

”Database” : deterministic(1);

}

FeatureSecurityCount = SecurityCount + SecuritySubFeaturesCount;

SecurityCount = deterministic(1);

SecuritySubFeaturesCount = decision-subset(+)(”Security Mechanism”){

”Data Storage” : deterministic( 1);

”Data Transfer” : deterministic(1);

”User Authentication” : deterministic(1);

}

FeaturePerformanceCount = PerformanceCount + PerformanceSubFeaturesCount;

PerformanceCount = deterministic(1);

PerformanceSubFeaturesCount = decision(”Feature Performance”){

”Milli Sec” : deterministic(1);

”Seconds” : deterministic(1);

”Minutes” : deterministic(1);

}
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Since we want to maximise the number of features used before as they are likely more

stable big-free than a new features. Hence, we model whether a feature has been used

before as below:

FeaturesUsedBefore = FeatureWebServerUsedBefore + UsedBeforeOfOtherServices;

FeatureWebServerUsedBefore = ProtocolAndLoggingUsedBefore +FeatureContentUsedBefore;

ProtocolAndLoggingUsedBefore = decision-subset(+)(”Protocol And Logging”){

”Logging”: FeatureLoggingUsedBefore;

”Protocols” : FeatureProtocolsUsedBefore;

}

FeatureLoggingUsedBefore = decision(”Feature Logging”){

”DB” : DBUsedBefore;

”File” : FileUsedBefore;

}

DBUsedBefore = deterministic(1);

FileUsedBefore = deterministic(0);

FeatureProtocolsUsedBefore = decision-subset(+) (”Feature Protocol”){

”NTTP” : deterministic(1);

”FTP” : deterministic(1);

”HTTPS” : deterministic(0);

}

FeatureContentUsedBefore = FeatureStaticUsedBefore + FeatureActiveUsedBefore;

FeatureStaticUsedBefore = deterministic(1);

FeatureActiveUsedBefore = decision-subset(+) (”Active Features”){

”Active” : deterministic(0);

”ASP”: deterministic(0);

”PHP”: deterministic(1);

”JSP”: deterministic(1);

”CGI”: deterministic(1);

}

UsedBeforeOfOtherServices = decision-subset(+)(”Other Services”){

”Additional Services”: FeatureAdditionalServicesUsedBefore;

”Security” : FeatureSecurityUsedBefore;

”Persistence” : FeaturePersistenceUsedBefore;

”Performance” : FeaturePerformanceUsedBefore;

}
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FeatureAdditionalServicesUsedBefore = decision-subset(+)(”Feature Additional Services”){

”Additional Services” : deterministic(1);

”Site Statistics” : FeatureSiteStatisticsUsedBefore;

”Site Search” : FeatureSiteSearchUsedBefore;

”Ad Server” : FeatureAdServerUsedBefore;

}

FeatureSiteStatisticsUsedBefore = FeatureStatisticsUsedBefore + FeatureBasicStatUsedBefore

+ FeatureAdvancedStatUsedBefore;

FeatureStatisticsUsedBefore =deterministic(0);

FeatureBasicStatUsedBefore = deterministic(1);

FeatureAdvancedStatUsedBefore = decision(”Feature Advanced Stat”){

”Without Advanced Stat” : deterministic(0);

”With Advanced Stat” : deterministic(1);

}

FeatureSiteSearchUsedBefore = decision-subset(+)(”Feature Site Search”){

”Site Search” : SiteSearchUsedBefore;

”Images” : FeatureImagesUsedBefore;

”Text” : FeatureTextUsedBefore;

}

SiteSearchUsedBefore = deterministic(1);

FeatureImagesUsedBefore = deterministic(1);

FeatureTextUsedBefore = TextUsedBefore + FeatureHTMLUsedBefore + FeatureDynami-

cUsedBefore;

TextUsedBefore = deterministic(1);

FeatureHTMLUsedBefore = deterministic(1);

FeatureDynamicUsedBefore = decision(”Feature Dynamic”){

”Without Dynamic” : deterministic(0);

”With Dynamic” : deterministic(1);

}

FeatureAdServerUsedBefore = AdServerUsedBefore

+ FeatureReportsUsedBefore

+ FeatureBannersUsedBefore

+ PopupsAndKeywordSupportUsedBefore;
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AdServerUsedBefore = deterministic(1);

FeatureReportsUsedBefore = deterministic(1);

FeatureBannersUsedBefore = BannersUsedBefore

+ FeatureImageUsedBefore

+ FeatureFlashUsedBefore;

BannersUsedBefore = deterministic(1);

FeatureImageUsedBefore = deterministic(1);

FeatureFlashUsedBefore = decision(”Flash”){

”Without Flash” : deterministic(0);

”With Flash” : deterministic(1);

}

PopupsAndKeywordSupportUsedBefore = decision-subset(+)(”Popups And Keyword Sup-

port”){

”Popups” : FeaturePopupsUsedBefore;

”Keyword Support” : FeatureKeywordSupportUsedBefore;

}

FeatureKeywordSupportUsedBefore =deterministic(1);

FeaturePopupsUsedBefore = deterministic(0);

FeaturePersistenceUsedBefore = PersistenceUsedBefore + PersistenceSubFeaturesUsedBefore;

PersistenceUsedBefore = deterministic(0);

PersistenceSubFeaturesUsedBefore = decision(”Persistence Mechanism”){

”XML” : deterministic(0);

”Database” : deterministic(1);

}

FeatureSecurityUsedBefore = SecurityUsedBefore + SecuritySubFeaturesUsedBefore;

SecurityUsedBefore = deterministic(0);

SecuritySubFeaturesUsedBefore = decision-subset(+)(”Security Mechanism”){

”Data Storage” : deterministic( 1);

”Data Transfer” : deterministic(1);

”User Authentication” : deterministic(1);

}

FeaturePerformanceUsedBefore = PerformanceUsedBefore + PerformanceSubFeaturesUsedBe-

fore;

PerformanceUsedBefore = deterministic(0);

PerformanceSubFeaturesUsedBefore = decision(”Feature Performance”){

”Milli Sec” : deterministic(0);

”Seconds” : deterministic(1);

”Minutes” : deterministic(1);

}
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Constraint ”Security Mechanism” : ”Data Transfer” requires”Feature Protocol”: ”HTTPS”;

Constraint ”Feature Logging”: ”DB” requires”Persistence Mechanism” : ”Database”;

Constraint ”Feature Protocol”: ”HTTPS” excludes”Feature Performance” : ”Milli Sec”;

Constraint ”Feature Logging” : ”File” requires”Feature Protocol” : ”FTP”;

Constraint ”Popups And Keyword Support” : ”Keyword Support” requires”Feature Site

Search” : ”Text”;

Constraint ”Feature Dynamic” : ”With Dynamic” requires”Active Features”: ”Active”;

Analysis Result

The radar analysis of the Web Portal decision model is presented in Fig.D.1. The

problems was analysed using NSGAII using the 1+λ optimisation approach [130] and

algorithmic parameters similar to the settings used in [285]: population size of 100,

crossover probability of 0.9, mutation probability of 0.1 and maximum number of fitness

evaluation of 50000. The optimisation results shows radar shortlists 76 optimal alterna-

tives each representing different trade-offs between minimising the cost and maximising

total feature count and total feature used before; minimising total defect count.
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Appendix E

Modelling and Analysing

Configuration Decisions in AWS

Modelling Optimisation Objectives

The optimisation objectives is given below:

Objective Max ExpectedFeatureCountMonth = EV(FeatureCount);

Objective Min ExpectedCostMonth = EV(TotalCostMonth);

Objective Max ExpectedInstanceCores = EV(TotalInstanceCores );

Objective Max ExpectedInstanceECU = EV(TotalInstanceECU);

Objective Max ExpectedInstanceRAM = EV(TotalInstanceRAM);

Objective Min ExpectedCostHour = EV(TotalCostHour);

Objective Max ExpectedInstanceSSDBacked = EV(TotalInstanceSSDBacked);

In the above expression, the first objective is a maximisation of the features count to be

implemented; minimisation of the feature costs; maximisation of the number of cores;

maximisation of the RAM usage; minimisation of cost of implementing the features; and

maximisation of the number of SSD used.

We model the feature count as below:

287
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FeatureCount = FeatureOSCount

+ FeatureBlockStorageCount

+ FeatureInstanceCount

+ FeatureDedicationCount

+ FeatureLocationCount

+ FeaturePurchaseCount;

FeatureOSCount = decision(”OS”){

“Windows Based” : FeatureWindowBasedOSCount + FeatureWindowsBasedServerCount;

“Linux Based” : FeatureLinuxBasedOSCount ;

}

FeatureWindowBasedOSCount = deterministic(1);

FeatureWindowsBasedServerCount = FeatureWindowsServerCount + FeatureSQLServerCount;

FeatureWindowsServerCount = deterministic(1);

FeatureSQLServer =decision-subset(+)(”Feature SQL Server”){

“SQL Server” : FeatureSQLServerOptionCount;

}
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FeatureSQLServerOptionCount = decision(”SQL Server”){

“Web” : deterministic(1);

“Std” : deterministic(1);

}

FeatureLinuxBasedOSCount = decision(”Linux OS”){

“Suse” : deterministic(1);

“Amazon Linux” : deterministic(1);

“RedHat” : deterministic(1);

}

FeatureBlockStorageCount = decision-subset(+)(”Feature Block Storage”){

“Block Storage” : FeatureBlockStorageOptionCount;

}

FeatureBlockStorageOptionCount = decision(”Block Storage”){

“Std” : deterministic(1);

“SSD” : deterministic(1);

}

FeatureInstanceCount = decision(”Instance”){

“Memory Opt” : deterministic(1);

“General” : deterministic(1);

“Compute Opt” : deterministic(1);

“Storage Opt” : deterministic(1);

“GPU” : deterministic(1);

}
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FeatureDedicationCount = decision(”Dedication”){

“Public” : deterministic(1);

“Ded” : deterministic(1);

}

FeatureLocationCount = decision(”Location”){

“Sau Paulo”: deterministic(1);

“North America” : FeatureNorthAmericaCount;

“Asia Oceania” : FeatureAsiaOceaniaCount;

“IR” : deterministic(1);

} FeatureNorthAmericaCount = decision(”North America”){

“VA” : deterministic(1);

“CA” : deterministic(1);

“OR” : deterministic(1);

}

FeatureAsiaOceaniaCount = decision(”Asia Oceania”){

“Sin” : deterministic(1);

“JP” : deterministic(1);

“Aus” : deterministic(1);

}

FeaturePurchaseCount = decision(”Purchase”){

“On Demand” : deterministic(1);

“Reserved” : FeatureReservedCount;

}

FeatureReservedCount = ReservedFeatureCount + FeatureReservedSubFeatureCount;

FeatureReservedSubFeatureCount = FeatureYearCount + FeatureModeCount;

FeatureYearCount = decision(”Years”){

“1Year” : deterministic(1);

“3Years” : deterministic(1);

}

FeatureModeCount = decision(”Mode”){

“Light” : deterministic(1);

“Heavy” : deterministic(1);

“Med” : deterministic(1);

}

We model the monthly cost as:
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TotalCostMonth = FeatureOSCostMonth

+ FeatureBlockStorageCostMonth

+ FeatureDedicationCostMonth

+ FeatureLocationCostMonth

+ FeaturePurchaseCostMonth;

FeatureOSCostMonth = decision(”OS”){

“Windows Based” : FeatureWindowBasedOSCostMonth + FeatureWindowsBasedServer-

CostMonth;

“Linux Based” : FeatureLinuxBasedOSCostMonth ;

}

FeatureWindowBasedOSCostMonth =triangular(800, 1000, 1200);

FeatureWindowsBasedServerCostMonth = FeatureWindowsServerCostMonth + Fea-

tureSQLServerCostMonth; FeatureWindowsServerCostMonth = triangular(400,500,600);

FeatureSQLServerCostMonth =decision-subset(+)(”Feature SQL Server”){

“SQL Server” : FeatureSQLServerOptionCostMonth;

}

FeatureSQLServerOptionCostMonth = decision(”SQL Server”){

“Web” : triangular(1300, 1500, 1700);

“Std” : triangular(2000, 2500, 3000);

}

FeatureLinuxBasedOSCostMonth = decision(”Linux OS”){

“Suse” : triangular(1500, 2000, 2500);

“Amazon Linux” : triangular(2000, 2500, 3000);

“RedHat” : triangular(1000, 1500, 2000);

}

FeatureBlockStorageCostMonth = decision-subset(+)(”Feature Block Storage”){

“Block Storage” : FeatureBlockStorageOptionCostMonth;

}
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FeatureBlockStorageOptionCostMonth = decision(”Block Storage”){

“Std” : triangular(4500, 5000, 5500);

“SSD” : triangular(9000, 10000, 11000);

}

FeatureDedicationCostMonth = decision(”Dedication”){

“Public” : triangular(8000, 10000, 12000);

“Ded” : triangular(15000, 20000, 25000);

}

FeatureLocationCostMonth = decision(”Location”){

“Sau Paulo”: deterministic(100);

“North America” : FeatureNorthAmericaCostMonth;

“Asia Oceania” : FeatureAsiaOceaniaCostMonth;

“IR” : triangular(300, 500, 700);

}

FeatureNorthAmericaCostMonth = decision(”North America”){

“VA” : triangular(100, 150, 200);

“CA” : triangular(150, 180, 200);

“OR” : triangular(150, 200, 250);

}

FeatureAsiaOceaniaCostMonth = decision(”Asia Oceania”){

“Sin” : triangular(200, 250, 300);

“JP” : triangular(200, 270, 300);

“Aus” : triangular(100, 300, 500);

}
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FeaturePurchaseCostMonth = decision(”Purchase”){

“On Demand” : triangular(800, 1000, 1200);

“Reserved” : FeatureReservedCostMonth;

}

FeatureReservedCostMonth = ReservedFeatureCostMonth + FeatureReservedSubFeatureCost-

Month;

FeatureReservedSubFeatureCostMonth = FeatureYearCostMonth + FeatureModeCostMonth;

FeatureYearCostMonth = decision(”Years”){

“1Year” : triangular(800, 1000, 1200);

“3Years” : triangular(1000, 1500, 2000);

}

FeatureModeCostMonth = decision(”Mode”){

“Light” : triangular(1000, 1500, 2000);

“Heavy” : triangular(6000, 7000, 8000);

“Med” : triangular(3000, 3500, 4000);

}
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TotalInstanceCores = decision(”Instance”){

“Memory Opt” : deterministic(8);

“General” : deterministic(16);

“Compute Opt” : deterministic(8);

“Storage Opt” : deterministic(16);

“GPU” : deterministic(32);

}

TotalInstanceECU = decision(”Instance”){

“Memory Opt” : deterministic(12);

“General” : deterministic(36);

“Compute Opt” : deterministic(48);

“Storage Opt” : deterministic(60);

“GPU” : deterministic(108);

}

TotalInstanceRAM = decision(”Instance”){

“Memory Opt” : deterministic(32);

“General” : deterministic(160);

“Compute Opt” : deterministic(64);

“Storage Opt” : deterministic(128);

“GPU” : deterministic(250);

}

TotalCostHour = decision(”Instance”){

“Memory Opt” : deterministic(5);

“General” : deterministic(15);

“Compute Opt” : deterministic(10);

“Storage Opt” : deterministic(8);

“GPU” : deterministic(20);

}

TotalInstanceBacked = decision(”Instance”){

“Memory Opt” : deterministic(15);

“General” : deterministic(30);

“Compute Opt” : deterministic(60);

“Storage Opt” : deterministic(120);

“GPU” : deterministic(240);

}
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Analysis Result

The radar analysis of the AWS decision model is presented in Fig.E.1. The problems

was analysed using NSGAII using the 1+λ optimisation approach [130] and algorith-

mic parameters similar to the settings used in [285]: population size of 100, crossover

probability of 0.9, mutation probability of 0.1 and maximum number of fitness evalua-

tion of 50000. The optimisation results shows radar shortlists 68 optimal alternatives:

each including the “public” option of the Dedication decision and “sau paulo” option of

Location decision. But when these options are selected, the shortlist includes different

combinations of other options; each combination representing a different tradeoffs be-

tween maximising the expected feature count; minimising the cost per month and per

hour and maximising the number of instance cores, ECUS and SSD, RAMS.
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Appendix F

Modelling and Analysing Feature

Selection in Berkeley Relational

Database System

The Optimisation objectives are given below:

Objective Max ExpectedNetBenefit = EV(NB);

Objective Min ExpectedFeatureSize = EV(TotalFeatureSize);

We model the net benefit as:

NB = Revenue - TotalFeatureCost;

Revenue = normalCI(1000, 1200);

TotalFeatureCost = FeatureIndexesCost

+ NonMandatoryFeaturesCost;
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NonMandatoryFeaturesCost = decision-subset (+) (”Non Mandatory Feature”){

”Statistics” : triangular(200,250,300);

”Cryptography” : triangular(250, 300, 350);

”Replication” : triangular(150,200,250);

”Verification” : triangular(50,100,150);

”Diagnostic” : triangular (250,300,350);

”Sequence” : triangular(40,50,60);

}

FeatureIndexesCost = CostOfFeatureIndex + FeatureIndexesSubFeatureCost;

CostOfFeatureIndex = deterministic(10);

FeatureIndexesSubFeatureCost = FeatureBTreeCost + NonMandatoryIndexSubFeatureCosts;

FeatureBTreeCost = decision(”B-Tree”){

”B-Tree Fast” : triangular(45,50,55);

”B-Tree Small” : triangular(50,75,100);

}

NonMandatoryIndexSubFeatureCosts = decision-subset(+)(”Index Non Mandatory SubFea-

tures”){

”Hash” : triangular(100, 125,150);

”Queue” : triangular(40,50,60);

}

We model the feature size as:

TotalFeatureSize = FeatureIndexesSize

+ NonMandatoryFeaturesSIze;



Modelling and Analysing Feature Selection in Berkeley Relational Database System299

NonMandatoryFeaturesSIze = decision-subset(+) (”Non Mandatory Feature”){

”Statistics” : deterministic(285);

”Cryptography” : deterministic(19);

”Replication” : deterministic(89);

”Verification” : deterministic(50);

”Diagnostic” : deterministic(191);

”Sequence” : deterministic(50);

}

FeatureIndexesSIze = SIzeOfFeatureIndex + FeatureIndexesSubFeatureSIze;

SIzeOfFeatureIndex = deterministic(1);

FeatureIndexesSubFeatureSIze = FeatureBTreeSIze + NonMandatoryIndexSubFeatureSIzes;

FeatureBTreeSIze = decision (”B-Tree”){

”B-Tree Fast” : deterministic(1800);

”B-Tree Small” : deterministic(340);

}

NonMandatoryIndexSubFeatureSIzes = decision-subset(+)(”Index Non Mandatory SubFea-

tures”){

”Hash” : deterministic(113);

”Queue” : deterministic(58);

}

The radar analysis of the BerkeleyDB decision model is presented in Fig.F.1. The

problems was analysed using NSGAII using the 1+λ optimisation approach [130] and

algorithmic parameters similar to the settings used in [285]: population size of 100,

crossover probability of 0.9, mutation probability of 0.1 and maximum number of fit-

ness evaluation of 50000. The optimisation results shows radar shortlists two optimal

alternatives which is to select B-Tree Small or B-Tree Fast options.
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Appendix G

Modelling and Analysing the

Requirements Selection of

Microsoft Word Processor

Modelling the Optimisation Objectives

The optimisation objectives are given below:

Objective Max ENB = EV(NB);

Objective Min ProjectRisk = Pr(Failure);

In the above expression, the first objective is a maximisation of the expected net benefit

(ENB) from selecting a subset of requirements, and the second objective is a minimisa-

tion of the project risk.

This net benefit is the difference between the benefit of implementing the requirements

and the cost of the requirements. We define the NB below:

NB = Value - Cost;
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The Value derived from the subset of requirements implemented is estimated considering

uncertainty in the perceived values supplied by the stakeholders. We use probability

distributions to capture stakeholders’ value scores for each requirement.

We model the Value as below:

Value = decision-subset(+)(”Next Release”){

”NewFile”: normalCI(10,20);

”OpenFile” : normalCI(30,40);

”CloseFile” : normalCI(10,30);

”SaveFile” : normalCI(70,80);

”Save As Different File” : normalCI(5,10);

”SearchFile” : normalCI(30,50);

”ProtectFile” : normalCI(10,50);

”PrintPreview” : normalCI(5,10);

”Print File” : normalCI(50,80);

”Send To” : normalCI(10,80);

”Set Properties” : normalCI(10,20,70);

”Exit” : normalCI(30,90);

”Undo Task” : normalCI(50,60);

”Redo Task” : normalCI(20,60);

”Cut” : normalCI(60,70);

”Copy” : normalCI(60,70);

”Paste” : normalCI(30,60);

”Paste Special” : normalCI(20,40);

”Go To” : normalCI(10,20);

”Find” : normalCI(40,50);

”Replace” : normalCI(50,60);
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”Select All” : normalCI(10,90);

”Default” : normalCI(10,30);

”Print Layout” : normalCI(30,40);

”Web Layout” : normalCI(10,40);

”Zoom” : normalCI(10,50);

”Header Footer” : normalCI(30,90);

”Page Numbers” : normalCI(20,90);

”Date Time” : normalCI(50,90);

”Symbol” : normalCI (30,90);

”Bookmark” : normalCI(20,60);

”Hyper Link” : normalCI(20,90);

”Font” : normalCI(40,90);

”Paragraph” : normalCI(30,90);

”Bullets Numbering” : normalCI(30,90);

”Change Case” : normalCI(10,80);

”Background” : normalCI(10,20);

”Spell Check” : normalCI(60,90);

”Check Grammer” : normalCI(10,90);

”Speech” : normalCI(10,20);

”Mail Merge” : normalCI(10,70);

”Macro” : normalCI(10,60);

”Set Options” : normalCI(10,80);

”Insert Table” : normalCI(40,90);

”Delete Table” : normalCI(50,90);

”Table Format” : normalCI(50,90);

”Sort” : normalCI(30,90);

”Import Data” : normalCI(30,60);

”Help” : normalCI(20,90);

”Search” : normalCI(10,90);

}

In the above expression, each option represents a feature (requirements) to be imple-

mented. The total Value derived from these features is the sum of the assigned value
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corresponding to a selected requirement.

The total Cost (£) is a function of the requirements elicitation cost (ElicitationCost),

the design cost (DesignCost), the development cost (DevCost), the cost accrued from

external tool development (ExtToolDev), the cost due to software testing (CoTesting-

Cost).

Cost = ElicitationCost

+ DesignCost

+ DevCost

+ ExtToolDevCost

+ TestingCost;

Modelling Risk Of Exceeding Budget

ProjectFailure = 1 − ( (1 − RiskExceedingElicitationCost) ×

(1 − RiskExceedingDesignCost) ×

(1 − RiskExceedingDevCost) ×

(1 − RiskExceedingExtToolDevCost) ×

(1 − RiskExceedingTestingCost);

We model the risk of exceeding the elicitation cost as below:

RiskExceedingElicitationCost = ElicitationCost > ElicitationBudget;

ElicitationBudget = deterministic(150);

We model the risk of exceeding the design cost as below:

RiskExceedingDesignCost = DesignCost > DesignBudget;

DesignBudget = deterministic(150);

We model the risk of exceeding the development cost as below:
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RiskExceedingDevCost = DevCost > DevelopmentBudget;

DevelopmentBudget = deterministic(200);

The risk of exceeding external tool development cost is given as:

RiskExceedingExtToolDevCost = ExtToolDevCost > ExternalToolDevelopmentBudget;

ExternalToolDevelopmentBudget = deterministic(75);

The risk of exceeding testing cost is given below:

RiskExceedingTestingCost = TestingCost > TestingBudget;

TestingBudget = deterministic(150);

We model the Requirements Elicitation Cost as:
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ElicitationCost = decision-subset(+)(”Next Release”){

”NewFile”: triangular(14,15,16);

”OpenFile” : triangular(17,18, 19);

”CloseFile” : triangular(2,3, 4);

”SaveFile” : triangular(12,15,17);

”Save As Different File” : triangular(15, 16,17);

”SearchFile” : triangular(19, 20, 21);

”ProtectFile” : triangular(4,5,6);

”PrintPreview” : triangular(13,15, 17);

”Print File” : triangular(11, 12, 13);

”Send To” : triangular(9, 10, 11);

”Set Properties” : triangular(3,5,7);

”Exit” : triangular(2,3,4);

”Undo Task” : triangular(6,7,8);

”Redo Task” : triangular(4,6,8);

”Cut” : triangular(5,6,7);

”Copy” : triangular(3,5,7);

”Paste” : triangular(6,7, 8);

”Paste Special” : triangular(11,12,13);

”Go To” : triangular(6,7,9);
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”Find” : triangular(3,6,9);

”Replace” : triangular(3,5,7);

”Select All” : triangular(3,5,7);

”Default” : triangular(2,4,6);

”Print Layout” : triangular(2,4,6);

”Web Layout” : triangular(2,4,6);

”Zoom” : triangular(4,6,8);

”Header Footer” : triangular(1,2,4);

”Page Numbers” : triangular(1,2, 4);

”Date Time” : triangular(1,2, 4);

”Symbol” : triangular(1,2, 4);

”Bookmark” : deterministic(1);

”Hyper Link” : deterministic(1);

”Font” : triangular(1,3,5);

”Paragraph” : triangular(3,5,7);

”Bullets Numbering” : triangular(2,4,6);

”Change Case” : triangular(2,4,6);

”Background” : triangular(2,4,6);

”Spell Check” : triangular(6,8,10);

”Check Grammer” : triangular(7,9,11);

”Speech” : triangular(1,3,5);

”Mail Merge” : triangular(13,15,17);

”Macro” : triangular(10,12,14);

”Set Options” : triangular(1,3,5);

”Insert Table” : triangular(3,5,7);

”Delete Table” : triangular(2,4,6);

”Table Format” : triangular(5,7,9);

”Sort” : triangular(4,6,8);

”Import Data” : triangular(7,9,11);

”Help” : triangular(1,2,4);

”Search” : deterministic(1);

}
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The Design Cost is given as:

DesignCost = decision-subset(+)(”Next Release”){

”NewFile”: triangular(15,17,19);
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”OpenFile” : triangular(18, 20,22);

”CloseFile” : triangular(3, 5,7);

”SaveFile” : triangular(15,17,19);

”Save As Different File” : triangular(12, 14, 16);

”SearchFile” : triangular(16,18, 20);

”ProtectFile” : triangular(5,7,9);

”PrintPreview” : triangular(11,13,15);

”Print File” : triangular(8,10, 12);

”Send To” : triangular(7, 9, 11);

”Set Properties” : triangular(2,4,6);

”Exit” : triangular(1,2,4);

”Undo Task” : triangular(3,5,7);

”Redo Task” : triangular(4,7,8);

”Cut” : triangular(4,7,8);

”Copy” : triangular(1,3,5);

”Paste” : triangular(2,4, 6);

”Paste Special” : triangular (8,10,12);

”Go To” : triangular(3,5,7);

”Find” : triangular(4,5,7);

”Replace” : triangular(2,4,6);

”Select All” : triangular(2,4,6);

”Default” : triangular(1,3,5);

”Print Layout” : triangular(1,3,5);

”Web Layout” : triangular(1,3,5);

”Zoom” : triangular(4,7,8);

”Header Footer” : triangular(1,3,5);

”Page Numbers” : triangular(1,3, 5);

”Date Time” : triangular(1,3, 5);

”Symbol” : triangular(1,3, 5);

”Bookmark” : deterministic(1);

”Hyper Link” : deterministic(1);

”Font” : triangular(1,4,5);

”Paragraph” : triangular(3,5,7);

”Bullets Numbering” : triangular(2,5,6);

”Change Case” : triangular(2,5,6);

”Background” : triangular(2,5,6);

”Spell Check” : triangular(6,9,10);

”Check Grammer” : triangular(7,10,11);
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”Speech” : triangular(1,4,5);

”Mail Merge” : triangular(13,14,17);

”Macro” : triangular(10,13,14);

”Set Options” : triangular(1,4,5);

”Insert Table” : triangular(3,6,7);

”Delete Table” : triangular(2,5,6);

”Table Format” : triangular(5,6,9);

”Sort” : triangular(4,5,8);

”Import Data” : triangular(7,8,11);

”Help” : triangular(1,3,4);

”Search” : deterministic(2);

}

The Developement Cost is given as:

DevCost = decision-subset (+)(”Next Release”){

”NewFile”: triangular(19,22,25);

”OpenFile” : triangular(22,25,27);

”CloseFile” : deterministic (1);

”SaveFile” : triangular(17,18,19);

”Save As Different File” : triangular(17,18,19);

”SearchFile” : triangular(20,25, 27);

”ProtectFile” : triangular(2,4,6);

”PrintPreview” : triangular(11,13,15);

”Print File” : triangular(8,10, 12);

”Send To” : triangular(7, 8, 11);

”Set Properties” : triangular(4,6,8);

”Exit” : triangular(2,4,6);
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”Undo Task” : triangular(7,8,10);

”Redo Task” : triangular(7,8,10);

”Cut” : triangular(7,8,10);

”Copy” : triangular(1,4,5);

”Paste” : triangular(4, 6,8);

”Paste Special” : triangular(8,10,12);

”Go To” : triangular(3,6,7);

”Find” : triangular(4,5,7);

”Replace” : triangular(2,4,6);

”Select All” : triangular(2,4,6);

”Default” : triangular(1,3,5);

”Print Layout” : triangular(1,3,5);

”Web Layout” : triangular(1,3,5);

”Zoom” : triangular(4,5,8);

”Header Footer” : triangular(1,3,5);

”Page Numbers” : triangular(1,3, 5);

”Date Time” : triangular(1,3, 5);

”Symbol” : triangular(1,3, 5);

”Bookmark” : deterministic(2);

”Hyper Link” : deterministic(2);

”Font” : triangular(1,4,5);

”Paragraph” : triangular(3,6,7);

”Bullets Numbering” : triangular(2,5,6);

”Change Case” : triangular(2,5,6);

”Background” : triangular(2,5,6);

”Spell Check” : triangular(9,10,12);

”Check Grammer” : triangular(10,11,13);

”Speech” : triangular(5,6,8);

”Mail Merge” : triangular(10, 13,14);

”Macro” : triangular(8,10,13);

”Set Options” : triangular(1,2,5);

”Insert Table” : triangular(3,4,7);

”Delete Table” : triangular(2,3,6);

”Table Format” : triangular(5,6,9);

”Sort” : triangular(4,7,8);

”Import Data” : triangular(7,8,11);

”Help” : triangular(1,3,4);

”Search” : deterministic(2);

}
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We model the Testing Cost as:
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TestingCost = decision-subset(+)(”Next Release”){

”NewFile”: triangular(10,12,15);

”OpenFile” : triangular(12,13,17);

”CloseFile” : deterministic(2);

”SaveFile” : triangular(11,13,15);

”Save As Different File” : triangular(15, 17,18);

”SearchFile” : triangular(16,18, 20);

”ProtectFile” : triangular(2,3,6);

”PrintPreview” : triangular(9, 11,13);

”Print File” : triangular(8,10, 12);

”Send To” : triangular(7, 8, 11);

”Set Properties” : triangular(2, 4,6);

”Exit” : triangular(2,3,6);

”Undo Task” : triangular(3,5,10);

”Redo Task” : triangular(2,4,8);

”Cut” : triangular(3,4, 7);

”Copy” : triangular(1,3,5);

”Paste” : triangular(4, 6,8);

”Paste Special” : triangular(8,11,12);

”Go To” : triangular(3,5,7);

”Find” : triangular(2,3,7);

”Replace” : triangular(2,3,6);

”Select All” : triangular(2,3,6);

”Default” : triangular(1,2,5);

”Print Layout” : triangular (1,3,5);

”Web Layout” : triangular(1,3,5);

”Zoom” : triangular(4,7,8);

”Header Footer” : deterministic(1);

”Page Numbers” : deterministic(1);

”Date Time” : deterministic(1);

”Symbol” : deterministic(1);

”Bookmark” : deterministic(2);

”Hyper Link” : deterministic(1);
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”Font” : triangular(1,2,5);

”Paragraph” : triangular(3,6,7);

”Bullets Numbering” : triangular(2,5,6);

”Change Case” : triangular(2,5,6);

”Background” : triangular(2,5,6);

”Spell Check” : triangular(8,9,10);

”Check Grammer” : triangular(6,8, 10);

”Speech” : triangular (2,4, 5);

”Mail Merge” : triangular(10, 13,14);

”Macro” : triangular(8,11,13);

”Set Options” : triangular(1,4,5);

”Insert Table” : triangular(3,4,7);

”Delete Table” : triangular(2,3,6);

”Table Format” : triangular(5,6,9);

”Sort” : triangular(4,5,8);

”Import Data” : triangular(7,8,11);

”Help” : triangular(1,3,4);

”Search” : deterministic(2);

}

We model the constraint relationships between the requirements as below:

Constraint ”Next Release” : ”OpenFile” couples”Next Release” : ”SaveFile”;

Constraint ”Next Release” : ”Save As Different File” couples”Next Release” : ”SaveFile”;

Constraint ”Next Release” : ”Cut” couples”Next Release” : ”Paste”;

Constraint ”Next Release” : ”Cut” couples”Next Release” : ”Paste Special”;

Constraint ”Next Release” : ”Header Footer” couples”Next Release” : ”Page Numbers”;

Constraint ”Next Release” : ”Insert Table” couples”Next Release” : ”Table Format”;

Constraint ”Next Release” : ”Insert Table” couples”Next Release” : ”Delete Table”;

Constraint ”Next Release” : ”Help” couples”Next Release” : ”Search”;
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Constraint ”Next Release” : ”OpenFile” requires”Next Release” : ”NewFile”;

Constraint ”Next Release” : ”Save As Different File” requires”Next Release” : ”NewFile”;

Constraint ”Next Release” : ”SearchFile” requires”Next Release” : ”NewFile”;

Constraint ”Next Release” : ”ProtectFile” requires”Next Release” : ”NewFile”;

Constraint ”Next Release” : ”PrintPreview” requires”Next Release” : ”NewFile”;

Constraint ”Next Release” : ”Print File” requires”Next Release” : ”NewFile”;

Constraint ”Next Release” : ”Send To” requires”Next Release” : ”NewFile”;

Constraint ”Next Release” : ”Set Properties” requires”Next Release” : ”NewFile”;

Constraint ”Next Release” : ”Exit” requires”Next Release” : ”NewFile”;

Constraint ”Next Release” : ”Print Layout” requires”Next Release” : ”NewFile”;

Constraint ”Next Release” : ”Web Layout” requires”Next Release” : ”NewFile”;

Constraint ”Next Release” : ”Zoom” requires”Next Release” : ”NewFile”;

Constraint ”Next Release” : ”Header Footer” requires”Next Release” : ”NewFile”;

Constraint ”Next Release” : ”Spell Check” requires”Next Release” : ”NewFile”;
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Constraint ”Next Release” : ”Check Grammer” requires”Next Release” : ”NewFile”;

Constraint ”Next Release” : ”CloseFile” requires”Next Release” : ”OpenFile”;

Constraint ”Next Release” : ”SearchFile” requires”Next Release” : ”OpenFile”;

Constraint ”Next Release” : ”ProtectFile” requires”Next Release” : ”OpenFile”;

Constraint ”Next Release” : ”PrintPreview” requires”Next Release” : ”OpenFile”;

Constraint ”Next Release” : ”Print File” requires”Next Release” : ”OpenFile”;

Constraint ”Next Release” : ”Send To” requires”Next Release” : ”OpenFile”;

Constraint ”Next Release” : ”Set Properties” requires”Next Release” : ”OpenFile”;

Constraint ”Next Release” : ”Go To” requires”Next Release” : ”OpenFile”;

Constraint ”Next Release” : ”Find” requires”Next Release” : ”OpenFile”;

Constraint ”Next Release” : ”Print Layout” requires”Next Release” : ”OpenFile”;

Constraint ”Next Release” : ”Web Layout” requires”Next Release” : ”OpenFile”;

Constraint ”Next Release” : ”Zoom” requires”Next Release” : ”OpenFile”;

Constraint ”Next Release” : ”Header Footer” requires”Next Release” : ”OpenFile”;

Constraint ”Next Release” : ”Page Numbersr” requires”Next Release” : ”OpenFile”;

Constraint ”Next Release” : ”Date Time” requires”Next Release” : ”OpenFile”;

Constraint ”Next Release” : ”Symbol” requires”Next Release” : ”OpenFile”;

Constraint ”Next Release” : ”Exit” requires”Next Release” : ”CloseFile”;

Constraint ”Next Release” : ”Exit” requires”Next Release” : ”SaveFile”;
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Constraint ”Next Release” : ”Exit” requires”Next Release” : ”Save As Different File”;

Constraint ”Next Release” : ”Exit” requires”Next Release” : ”SearchFile”;

Constraint ”Next Release” : ”Exit” requires”Next Release” : ”ProtectFile”;

Constraint ”Next Release” : ”Exit” requires”Next Release” : ”PrintPreview”;

Constraint ”Next Release” : ”Exit” requires”Next Release” : ”Print File”;

Constraint ”Next Release” : ”Exit” requires”Next Release” : ”Send To”;

Constraint ”Next Release” : ”Send To” requires”Next Release” : ”ProtectFile”;

Constraint ”Next Release” : ”Redo Task” requires”Next Release” : ”Undo Task”;

Constraint ”Next Release” : ”Paste” requires”Next Release” : ”Go To”;

Constraint ”Next Release” : ”Replace” requires”Next Release” : ”Go To”;

Constraint ”Next Release” : ”Print File” requires”Next Release” : ”Print Layout”;

Constraint ”Next Release” : ”Print Layout” requires”Next Release” : ”Header Footer”;

Constraint ”Next Release” : ”Web Layout” requires”Next Release” : ”Header Footer”;

Constraint ”Next Release” : ”Bookmark” requires”Next Release” : ”Page Numbers”;

Constraint ”Next Release” : ”Hyper Link” requires”Next Release” : ”Page Numbers”;

Constraint ”Next Release” : ”Bookmark” requires”Next Release” : ”Date Time”;

Constraint ”Next Release” : ”Hyper Link” requires”Next Release” : ”Date Time”;

Constraint ”Next Release” : ”Paragraph” requires”Next Release” : ”Font”;
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Constraint ”Next Release” : ”Bullets Numbering” requires ”Next Release” : ”Font”;

Constraint ”Next Release” : ”Change Case” requires”Next Release” : ”Font”;

Constraint ”Next Release” : ”Background” requires”Next Release” : ”Font”;

Constraint ”Next Release” : ”Background” requires”Next Release” : ”Paragraph”;

Constraint ”Next Release” : ”Background” requires”Next Release” : ”Bullets Numbering”;

Constraint ”Next Release” : ”Background” requires”Next Release” : ”Change Case”;

Constraint ”Next Release” : ”Check Grammer” requires”Next Release” : ”Spell Check”;

Constraint ”Next Release” : ”Speech” requires”Next Release” : ”Check Grammer”;

Constraint ”Next Release” : ”Spell Check” requires”Next Release” : ”Set Options”;

Constraint ”Next Release” : ”Check Grammer” requires”Next Release” : ”Set Options”;

Constraint ”Next Release” : ”Speech” requires”Next Release” : ”Set Options”;

Constraint ”Next Release” : ”Mail Merge” requires”Next Release” : ”Set Options”;

Constraint ”Next Release” : ”Macro” requires”Next Release” : ”Set Options”;

Analysis Result

Optimisation Analysis

The radar analysis of the radar models developed for the Microsoft Word Processor

presented in Fig. G.1 show that a solution is found to be optimal out of a total of 250

solutions. The solution include the following features: NewFile, OpenFile, CloseFile,

SaveFile, Save As Different File, ProtectFile, PrintPreview, Set Properties, Cut, Paste,

Paste Special, Go To, Find, Select All, Zoom, Header Footer, Symbol, Font, Paragraph,

Bullets Numbering, Change Case, Spell Check, Check Grammar, Set Options, Insert

Table, Delete Table, Table Format and Sort.

The EVTPI is £6.14m and EVPPI for all model parameters is approximately equal to

zero. This means that none of the model parameters is worth further data collection or

analysis.
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Optimisation Analysis

Objective: Max ENB
Objective: Min ProjectRisk
Solution Space: 250

Optimisation Approach: 1+λ
Algorithm Name: NSGAII
Population Size: 100
Crossover Probability: 0.8
Mutation Probability: 0.1
Nbr. Fitness Evaluations: 50000
Shortlisted: 1
Nbr. Decisions: 1
Nbr. Variables: 29
Runtime(s) : 46

Feature in the Next Release

1 NewFile
2 OpenFile
3 CloseFile
4 SaveFile
5 Save As Different File
6 ProtectFile
7 PrintPreview
8 Set Properties
9 Cut
10 Paste
11 Paste Special
12 Go To
13 Find
14 Select All
15 Zoom
16 Header Footer
17 Symbol
18 Font
19 Paragraph
20 Bullets Numbering
21 Change Case
22 Spell Check
23 Check Grammer
24 Set Options
25 Insert Table
26 Delete Table
27 Table Format
28 Sort

ENB 409
ProjectRisk 0

Figure G.1: Optimisation Analysis and Information Value analysis results of require-
ments subset selection problem for the Microsoft Word Processor.
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[28] Aybüke Aurum and Claes Wohlin. The fundamental nature of requirements engi-

neering activities as a decision-making process. Information and Software Tech-

nology, 45(14):945–954, 2003.

[29] Muhammad Ali Babar, Liming Zhu, and Ross Jeffery. A framework for classifying

and comparing software architecture evaluation methods. In Software Engineering

Conference, 2004. Proceedings. 2004 Australian, pages 309–318. IEEE, 2004.

[30] Anthony J. Bagnall, Victor J. Rayward-Smith, and Ian M Whittley. The next

release problem. Information and software technology, 43(14):883–890, 2001.

[31] Paul Baker, Mark Harman, Kathleen Steinhofel, and Alexandros Skaliotis. Search

based approaches to component selection and prioritization for the next release

problem. In Software Maintenance, 2006. ICSM’06. 22nd IEEE International

Conference on, pages 176–185. IEEE, 2006.

[32] Len Bass. Software architecture in practice. Pearson Education India, 2007.

[33] Richard Ernest Bellman and Stuart E Dreyfus. Applied dynamic programming.

1962.

[34] Nelly Bencomo. Quantun: Quantification of uncertainty for the reassessment of

requirements. In Requirements Engineering Conference (RE), 2015 IEEE 23rd

International, pages 236–240. IEEE, 2015.

[35] Nelly Bencomo, Jon Whittle, Pete Sawyer, Anthony Finkelstein, and Emmanuel

Letier. Requirements reflection: requirements as runtime entities. In Software

Engineering, 2010 ACM/IEEE 32nd International Conference on, volume 2, pages

199–202. IEEE, 2010.

[36] Barry Boehm, Prasanta Bose, Ellis Horowitz, and Ming June Lee. Software re-

quirements negotiation and renegotiation aids: A theory-w based spiral approach.

In Software Engineering, 1995. ICSE 1995. 17th International Conference on,

pages 243–243. IEEE, 1995.



Bibliography 324

[37] Richard J Bolton and David J Hand. Statistical fraud detection: A review. Sta-

tistical science, pages 235–249, 2002.

[38] Ronald J Brachman and Hector J Levesque. Readings in knowledge representation.

Morgan Kaufmann Publishers Inc., 1985.

[39] Klaus Briess, Herbert Jahn, Eckehard Lorenz, Dieter Oertel, Wolfgang Skrbek,

and Boris Zhukov. Fire recognition potential of the bi-spectral infrared detection

(bird) satellite. International Journal of Remote Sensing, 24(4):865–872, 2003.

[40] Janis Bubenko, Colette Rolland, Pericles Loucopoulos, and Valeria DeAntonellis.

Facilitating fuzzy to formal requirements modelling. In Requirements Engineering,

1994., Proceedings of the First International Conference on, pages 154–157. IEEE,

1994.

[41] Saheed A Busari. Towards search-based modelling and analysis of requirements

and architecture decisions. In Proceedings of the 32nd IEEE/ACM International

Conference on Automated Software Engineering, pages 1026–1029. IEEE Press,

2017.

[42] Saheed A Busari and Emmanuel Letier. Radar: A lightweight tool for require-

ments and architecture decision analysis. In Proceedings of the 39th International

Conference on Software Engineering, pages 552–562. IEEE Press, 2017.

[43] Saheed A Busari and Emmanuel Letier. Scalability analysis of the radar decision

support tool. arXiv preprint arXiv:1702.02977, 2017.

[44] Antoine Cailliau and Axel van Lamsweerde. Handling knowledge uncertainty in

risk-based requirements engineering. In 2015 IEEE 23rd International Require-

ments Engineering Conference (RE), pages 106–115. IEEE, 2015.

[45] Murray Cantor. Calculating and improving roi in software and system programs.

Communications of the ACM, 54(9):121–130, 2011.

[46] Pär Carlshamre, Kristian Sandahl, Mikael Lindvall, Björn Regnell, and J Natt och

Dag. An industrial survey of requirements interdependencies in software product

release planning. In Requirements Engineering, 2001. Proceedings. Fifth IEEE

International Symposium on, pages 84–91. IEEE, 2001.



Bibliography 325

[47] Jaelson Castro, Manuel Kolp, and John Mylopoulos. Towards requirements-driven

information systems engineering: the tropos project. Information systems, 27(6):

365–389, 2002.

[48] Tristan Caulfield and David Pym. Improving security policy decisions with models.

IEEE Security & Privacy, 13(5):34–41, 2015.

[49] Tristan Caulfield and David Pym. Modelling and simulating systems security

policy. In SIMUTOOLS 2015-8th EAI International Conference on Simulation

Tools and Techniques. ICST, 2015.

[50] Tristan Caulfield and David Pym. Modelling and simulating systems security pol-

icy. In 8th International Conference on Simulation Tools and Techniques, pages

9–18. ICST (Institute for Computer Sciences, Social-Informatics and Telecommu-

nications Engineering), 2015.

[51] Tristan Caulfield and David Pym. Improving security policy decisions with models.

IEEE Security and Privacy Magazine, 13(5):34–41, 2015.

[52] Vaclav Cechticky, Alessandro Pasetti, O Rohlik, and Walter Schaufelberger. Xml-

based feature modelling. In International Conference on Software Reuse, pages

101–114. Springer, 2004.

[53] Chieng-Yi Chang. Dynamic programming as applied to feature subset selection

in a pattern recognition system. In Proceedings of the ACM annual conference-

Volume 1, pages 94–103. ACM, 1972.

[54] Adhitya Chittur. Model generation for an intrusion detection system using genetic

algorithms. High School Honors Thesis, Ossining High School. In cooperation with

Columbia Univ, 2001.

[55] Lawrence Chung, Daniel Gross, and Eric Yu. Architectural design to meet stake-

holder requirements. In Software architecture, pages 545–564. Springer, 1999.

[56] Lawrence Chung, Brian A Nixon, Eric Yu, and John Mylopoulos. Non-functional

requirements in software engineering, volume 5. Springer Science & Business Me-

dia, 2012.

[57] Lawrence Chung, Tom Hill, Owolabi Legunsen, Zhenzhou Sun, Adip Dsouza, and

Sam Supakkul. A goal-oriented simulation approach for obtaining good private



Bibliography 326

cloud-based system architectures. Journal of Systems and Software, 86(9):2242–

2262, 2013.

[58] John Clarke, Jose Javier Dolado, Mark Harman, Rob Hierons, Bryan Jones, Mary

Lumkin, Brian Mitchell, Spiros Mancoridis, Kearton Rees, Marc Roper, et al.

Reformulating software engineering as a search problem. IEE Proceedings-software,

150(3):161–175, 2003.

[59] Carlos A Coello Coello, Clarisse Dhaenens, and Laetitia Jourdan. Multi-objective

combinatorial optimization: Problematic and context. In Advances in multi-

objective nature inspired computing, pages 1–21. Springer, 2010.

[60] Vittorio Cortellessa, Fabrizio Marinelli, and Pasqualina Potena. Automated se-

lection of software components based on cost/reliability tradeoff. In Software

Architecture, pages 66–81. Springer, 2006.

[61] PRISM Cost and Reward. SysML Specification. http://www.

prismmodelchecker.org/manual/ThePRISMLanguage/CostsAndRewards, 2008.

[Online; accessed 28-October-2016].

[62] Joseph Czyzyk, Michael P Mesnier, and Jorge J Moré. The neos server. IEEE
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[153] Alexander Knüppel, Thomas Thüm, Stephan Mennicke, Jens Meinicke, and Ina

Schaefer. Is there a mismatch between real-world feature models and product-

line research? In Proceedings of the 2017 11th Joint Meeting on Foundations of

Software Engineering, pages 291–302. ACM, 2017.

[154] Warren L. G. Koontz, Patrenahalli M. Narendra, and Keinosuke Fukunaga. A

branch and bound clustering algorithm. IEEE Transactions on Computers, (9):

908–915, 1975.

[155] Sameer Kumar and Promma Phrommathed. Research methodology. Springer,

2005.

[156] Marta Kwiatkowska, Gethin Norman, and David Parker. Prism 4.0: Verification

of probabilistic real-time systems. In International Conference on Computer Aided

Verification (CAV 2011), pages 585–591. Springer Berlin Heidelberg, 2011.

[157] Kiran Lakhotia, Mark Harman, and Phil McMinn. A multi-objective approach to

search-based test data generation. In Proceedings of the 9th annual conference on

Genetic and evolutionary computation, pages 1098–1105. ACM, 2007.
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