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Abstract 

Background: Subthalamic Deep Brain Stimulation (STN-DBS) is an established 

treatment for late stage Parkinson’s disease (PD). Speech intelligibility (SI) and verbal 

fluency (VF) have been shown to deteriorate following chronic STN-DBS. It has been 

suggested that speech might respond favourably to low frequency stimulation (LFS).   

Objective: We examined how speech intelligibility, perceptual speech characteristics, 

phonemic and semantic VF and processes underlying it (clustering and switching) respond to 

LFS of 60 and 80Hz in comparison to high frequency stimulation (HFS) (110, 130 and 200 

Hz).  

Methods: In this double-blind study, 15 STN-DBS PD patients (mean age 65, 

SD=5.8, 14 right handed, three females), were assessed at five stimulation frequencies: 60Hz, 

80Hz, 110Hz, 130Hz and 200Hz.  In addition to the clinical neurological assessment of 

speech, VF and SI were assessed.  

Results: Speech intelligibility and in particular articulation, respiration, phonation 

and prosody improved with LFS (all p<0.05). Phonemic VF switching improved with LFS 

(p=0.005) but this did not translate to an improved phonemic VF score. A trend for improved 

semantic VF was found. A negative correlation was found between perceptual characteristics 

of speech and duration of chronic stimulation (all p<0.05).  

Conclusions: These findings highlight the need for meticulous programming of 

frequency to maximise speech intelligibility in chronic STN-DBS. The findings further 

implicate stimulation frequency in changes to specific processes underlying VF, namely 

phonemic switching and demonstrate the potential to address such deficits through advanced 

adjustment of stimulation parameters.  
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List of abbreviations:  

DAB – Darley, Aronson and Brown scale 

DD – Disease duration 

DBS – Deep Brain Stimulation 

FOG – Freezing of gait 

HFS – High frequency stimulation 

LFS – Low frequency stimulation 

LFPs – Local field potentials  

MON - Monologue  

MONDAB – Monologue assessed by DAB scale 

PD – Parkinson’s disease  

PVF – Phonemic verbal fluency 

SI – Speech intelligibility 

SIT – Speech Intelligibility Test  

SITDAB – SIT sentences assessed by DAB scale 

STN – Subthalamic Nucleus 

SVF – Semantic verbal fluency  

TSI – Time since implantation 

TEED – Total electrical energy delivered 

UPDRS-III – Unified Parkinson’s Disease Rating Scale part III  

VF – Verbal fluency 



 

Introduction 

Deep brain stimulation of the subthalamic nucleus (STN-DBS) is an established 

treatment for late stage Parkinson’s disease (PD). Axial signs such as postural instability, 

freezing of gait (FOG) and dysarthria are less responsive and can even be adversely affected 

by STN-DBS[1, 2]. Clinical and surgical factors are known to affect speech presentation post 

STN-DBS, including longer disease duration [3], too medially placed left hemisphere active 

electrodes [3, 4], current spread laterally (to the corticospinal tract) or medially (to medial 

zona incerta or other, in proximity to STN, medially placed structures) [5], and time since 

implantation (TSI) [6].  In addition, speech can also be affected by changes of the stimulation 

parameters, such as amplitude of stimulation, which can considerably deteriorate speech [4]. 

Different strategies have been applied in order to alleviate speech deterioration after STN-

DBS, such as the use of reduced stimulation frequency, interleaving mode or bipolar 

stimulation [7-9]. 

 PD patients often perform poorly on tests designed to capture executive dysfunction 

such as tests of verbal fluency (VF) [10]. Additionally, the presence of VF deficits is thought 

to be predictive of dementia [11]. Neuropsychological studies [12-15] and meta-analyses 

have established that semantic verbal fluency (SVF) and phonemic verbal fluency (PVF) [16, 

17] deteriorate following STN-DBS. Neither disease progression [18] nor reduction in 

dopaminergic medication  are thought to be responsible, thus implicating surgery [12-15, 19-

21], location of electrodes [21], high frequency stimulation (HFS) [22] or their combination 

[18] to be responsible for the fluency deterioration in these patients. There is also evidence 

that STN-DBS alters switching (the ability to disengage from a prior subcategory to a new 

one) [23], but not cluster size (the generation of words falling within subcategories) [23-25]. 

Again, low frequency stimulation might be helpful in improving VF after STN-DBS [22, 26]  



 

 The main aim of this study was to examine how articulation, respiration, phonation, 

resonance, prosody and rate respond to LFS (60Hz, 80Hz) in comparison to 110Hz, 130Hz 

and 200Hz and how this contributes to overall speech intelligibility. A further aim was to 

establish the effect of LFS and HFS on PVF and SVF and whether cluster size and switching 

are altered by stimulation frequency. The influence of clinical factors known to be 

instrumental in speech outcome such as disease duration (DD) and TSI was also examined. 

 

Patients and Methods 

The study included 15 English-speaking PD patients (14 right-handed, three females) 

diagnosed according to the Queen Square Brain Bank criteria [27]. All patients had been 

treated with bilateral STN-DBS for at least three years, had been reviewed by a neurologist, 

and identified as experiencing speech difficulties. Surgery had been performed as previously 

described [28] with patients asleep in general anaesthesia. Mean age at the time of surgery 

was 65, SD=5.8 years, mean disease duration prior to surgery was 10.6, SD=3.8 years and 

mean disease duration at the time of study was 18.5, SD=3.7 years. Mean duration of STN 

stimulation at time of study was 6 years, SD=3.5. All patients experienced axial problems 

(hypophonia ± dysarthria alone or in conjunction with gait, balance and/or postural 

difficulties). Patients had mixed speech presentation, ranging from mild to severe 

disturbance. The study was approved by the National Hospital for Neurology and 

Neurosurgery and the UCL Institute of Neurology joint research Ethics committee. Informed 

consent was obtained from all participants.  Patients were assessed following overnight 

withdrawal of dopaminergic medication. 

Study design and evaluations 



 

This was a double-blinded study, as neither the patient nor the rater (TG) were aware 

of the stimulation parameters. Patients were assessed during a single morning session. A 

neurologist (DG/RK) changed stimulation settings. Five stimulation frequencies were tested 

and randomly assigned to conditions 1-5 for each patient; 60Hz, 80Hz, 110Hz, 130Hz and 

200Hz. An interval of at least 20 minutes elapsed between changing of stimulation settings 

and repeat of testing. This interval was chosen based on previous studies [29-31] and also for 

practical reasons – sufficient time for effects of previous settings to elapse while not so long 

that it would be unfeasible to test patients in five different conditions.    With frequency 

adjustments, voltage was increased or decreased and the pulse width held constant to 

maintain constant total electrical energy delivered (TEED) while also ensuring a tolerable 

stimulation level without the onset of (non-speech) side effect [32], according to the formula:  

TEED =
V 2 ´ PW ´ f

I
 

where V is the voltage, PW is the pulse width, f is the frequency and I is the impedance. 

However, if an intolerable (non-speech) side effect appeared with the calculated voltage of 

stimulation to maintain the same TEED, the next lower voltage, at which no (non-speech) 

side effect emerged, was used to stimulate at that frequency. The baseline stimulating 

parameters of all patients are presented in Table 1. The motor condition of the patients was 

assessed by the use of Unified Parkinson’s Disease Rating Scale part III (UPDRS-III) [33].   

The speech evaluation comprised of a reading and speaking task. For the reading task 

the Assessment of Intelligibility for Dysarthric Speech [34] was used, the computerised 

version of this test is termed the Speech Intelligibility Test (SIT). The SIT is a widely used 

standardized assessment of speech intelligibility. Patients are required to read 11 sentences of 

varying length from 5-15 words, totalling 110 words. Sentences are produced randomly from 

a pool of master sentences. An intelligibility score (SIT%) is derived from the number of 



 

correct words transcribed following two exposures to the sentences by a native English 

speaker (TG). For speaking, patients were asked to produce a 60-second monologue (MON) 

on a topic of their choice. 

The Darley, Aronson and Brown scale (DAB) (Darley, et al. [35] is the most widely 

used classification system of dysarthric speech and comprises 35 speech dimensions. 

Plowman-Prine, et al. [36] grouped the 35 speech dimensions under six speech clusters; 

articulation, respiration, phonation, resonance, prosody and rate. Each speech cluster is rated 

on a scale of 0-7 with a maximum score of 42 indicative of normal speech, whilst a score 

closer to 0 denotes pathological speech [36]. The SIT sentences (SITDAB) and 60-second 

monologue (MONDAB) were rated perceptually in this way. Perceptual analysis was 

performed independently for all patients with the same equipment to minimise any possible 

variability across tasks. The Computerised Speech Lab (CSL, Kay Pentax, 4150) was used to 

record all speech samples. Acoustic recordings were obtained using a Shure SM 48 dynamic 

microphone, with a 15cm mouth to microphone distance, at a 22 kHz sampling rate in a 

sound treated room [37]. The 15cm mouth-to-microphone distance was checked periodically 

throughout the assessments. In addition, the neurologist rated the speech during MONDAB 

and SITDAB evaluation according to item 18 of UPDRS-III [33].  

At each frequency, patients were administered 3 PVF tasks and 1 SVF task. Protocol 

was as set out by Troyer [38]. To minimize practice effects the following letters and 

categories were used in the PVF and SVF tasks respectively: letters “FAS”, “BHR”, “CTL”, 

“PDW”, “NEK”, then Animals, Boy’s names, Furniture, Fruit and Vegetables, Drinks. In 

each condition, participants were given 60s to verbally generate words beginning with 

specific letters or belonging to specific categories. Participants had to follow specific rules, 

namely, that the words could not be names of people, places, or numbers and could not be 

repeated sequences (e.g., take, takes, taking, etc.). All words produced were recorded for 



 

further analysis.  The total number of correct words generated as well as measures of cluster 

size and switching were obtained using the procedures outlined by Troyer [38]. The overall 

duration of testing at each frequency lasted between 15 and 20 minutes.  

Data analysis 

Statistical analysis was performed with SPSS 22.0.0 (IBM Corp., Armonk, NY). The 

Shapiro-Wilk test was used to test for normality. A one-way within subjects repeated 

measures ANOVA with the single factor of frequency was carried out for each speech 

measure and for the individual perceptual measures of speech. The factor frequency had 5 

levels (60, 80, 110, 130 and 200 Hz). Mauchly’s test was used to test for sphericity; 

Greenhouse-Geisser correction was used if sphericity was not assumed. Paired t-tests were 

used for post-hoc comparison. Bonferroni correction was used to control for multiple 

comparisons. Pearson product-moment was used for correlation analysis. SITDAB and 

MONDAB perceptual characteristics for different frequencies were correlated to TSI and 

DD. The significance level was set at two-sided p-value of <0.05.  

 

Results 

Clinical data 

 STN-DBS significantly improved motor symptoms (mean UPDRS-III OFF 

medication before operation 48.7, SD=17.4, and OFF medication ON stimulation after 

operation 33.7, SD=9.3, t(15)=3.025, p=0.009).  

In addition, change of DBS frequency significantly altered the UPDRS speech score 

(item 18) as assessed during MONDAB, F(4,52)=6.615, p<0.0001. The speech UPDRS score 

was the lowest for 60 Hz, F(1,13)=13.542, p=0.003, and 80 Hz F(1,13)=16.059, p=0.001. 



 

The difference between UPDRS scores at 110 and 130 Hz compared to 200 Hz was not 

significant (p=0.336 and p=0.500 respectively) (Figure 1A).  

Similarly, stimulation frequency significantly changed the UPDRS-III speech score as 

assessed during SITDAB, F(4,52)=5.239, p=0.001. The speech UPDRS-III score was the 

lowest for 60 Hz, F(1,13)=10.947, p=0.006. There was no difference in UPDRS speech 

scores between 80, 110, 130 Hz and 200 Hz (all p values >0.05) (Figure 1A).  

 

Speech Intelligibility 

SIT Score (%): There was an overall significant effect of DBS frequency on SIT%, 

F(4,52)=2.700, p=0.040. The post-hoc analysis, however, did not yield any significant 

differences between the five frequencies, with only a trend towards significance observed 

comparing the 60 Hz and the 200 Hz scores, F(1,13)=4.262, p=0.059. 

Overall SITDAB score: There was a significant effect of frequency on the overall 

SITDAB score, F(4,52)=5.069, p=0.002. The overall SITDAB score was the highest for 60 

Hz reflecting closer to normal speech at LFS and conversely the score was lowest for 200 Hz, 

(60 Hz vs. 200 Hz comparison) F(1,13)=6.545, p=0.024 (Figure 1B) reflecting less 

intelligible speech. There was no difference in the overall score either between the 110 and 

the 200 Hz F(1,13)=1.708, p=0.214, or between the 130 and 200 Hz F(1,13)=0, p>0.05 The 

difference between 60 and 80 Hz was also not significant, F(1,13)=1.087, p=0.295. 

Overall MONDAB score: There was a significant effect of frequency on overall 

MONDAB score, F(4,52)=4.222, p=0.005. The overall MONDAB score was highest for 60 

Hz, and lowest for 200Hz, (60 Hz vs. 200 Hz comparison) F(1,13)=7.694, p=0.016. There 



 

was no significant difference between MONDAB scores at intermediate frequencies (all p 

values>0.05). 

Individual SITDAB and MONDAB scores: The results for the individual SITDAB and 

MONDAB scores are presented in Table 2. For SITDAB, there were significant differences 

in the Group comparisons for Articulation, Phonation, Prosody and Rate. The articulation, 

F(1,13)=10.426, p=0.007, phonation, F(1,13)=7.759, p=0.015 and prosody scores, 

F(1,13)=5.026, p=0.043 were all significantly different in the ANOVA with the highest 

scores for 60 Hz compared to 200 Hz. There were no significant differences in SITDAB 

articulation, phonation and prosody scores between other frequencies. The rate score was the 

highest for 60 Hz and the lowest for 200 Hz, although the difference only approached trend 

levels of significance F(1,13)=3.427, p=0.085.  

 For MONDAB, there were significant effects of frequency on articulation, respiration, 

phonation and prosody.. The post hoc comparison of 60 Hz vs. 200 Hz confirmed significant 

differences for articulation, F(1,12)=14.190, p=0.003, respiration, F(1,12)=9.561, p=0.009, 

phonation, F(1,12)=5.333, p=0.040, and prosody scores, F(1,12)=5.660, p=0.035, all with 

higher values for 60 Hz and lowest for 200 Hz. There was a significant difference in 

phonation score between 80 and 200Hz  F(1,12)=5.672, p=0.035. 

 

Correlation analysis   

 There was a negative correlation of TSI with Articulation for both MONDAB and 

SITDAB for all frequencies (60, 80, 110, 130 and 200 Hz, all p values<0.05) (Table 3). TSI 

negatively correlated with Phonation MONDAB for 60, 80 and 130 Hz and Phonation 

SITDAB for 60 and 130 Hz (all p values<0.05), as well as with Prosody SITDAB for all 



 

frequencies and Prosody MONDAB for 60, 80 and 130 Hz (all p values<0.05). There was a 

negative correlation between TSI and Rate MONDAB 130 Hz, and Rate SINDAB 80 and 

130 Hz (p<0.05). No perceptual characteristics for either MONDAB or SITDAB significantly 

correlated with disease duration. 

 

Verbal fluency  

Phonemic verbal fluency: There was, a significant effect of frequency for the 

switching score F(4,52)=2.798, p=0.035, which was highest for 60 Hz and gradually declined 

for higher frequencies (60hz vs. 200hz comparison) F(1,13)=11.410, p=0.005 (Table 4).  

Semantic verbal fluency: The effect of DBS frequency approached significance for the 

total number of correct words generated again with highest scores for the lowest frequency 

(60hz vs. 200hz comparison) F(4,52)=2.316, p=0.069 (Table 4). 

 

Discussion 

To our knowledge, this is the first double blind study to systematically evaluate the 

effect of different frequencies of stimulation on speech intelligibility and verbal fluency. 

Speech intelligibility was improved at LFS in comparison to HFS; this is accounted for by 

improvements seen in articulation, phonation, respiration and prosody. PVF switching was 

improved with LFS compared to HFS, but neither the number of words generated in PVF or 

SVF nor the measure of cluster size for either fluency task was significantly altered by 

frequency.   

 



 

Speech intelligibility 

As was predicted for the speech intelligibility score (SIT%), a significant frequency 

effect was found for the overall perceptual score of the SIT sentences (SITDAB) and the 

overall perceptual score of the 60-second monologue (MONDAB). These improvements are 

best understood in respect of the frequency effect for the perceptual speech measures of 

articulation, phonation, respiration and prosody that were observed.  

Our findings are consistent with Tornqvist, et al. [39] who found that divergence from 

normal articulation was less with a lower frequency setting (70 Hz) compared to the higher 

settings (130 and 185 Hz). Studies have proposed that STN-DBS results in a reduced vowel 

space in speech subsequent to restricted articulatory range [40]. This is attributed to spasticity 

resulting from current spread to neighbouring fibres [5, 40]. Sidtis, et al. [41] proposed that 

STN-DBS alters the internal mapping of the articulators and the afferent feedback regarding 

their state and in doing so disrupts the co-ordination of articulatory, laryngeal and respiratory 

components. Studies using acoustic and aerodynamic measures demonstrate improved co-

ordination of phonation and respiration with LFS [42]. While it is generally accepted that 

disturbance to speech results from current spread to neighbouring fibres instrumental to the 

control of speech, it remains to be seen why LFS alleviates this disturbance. Blumenfeld, et 

al. [43] demonstrated that in contrast to HFS at 130Hz which attenuates STN alpha/beta band 

neural synchrony, LFS of 60Hz was found to amplify resting state neural synchrony. 

Furthermore the effect of 60Hz on neural synchrony could not be attributed to lower total 

power delivered as the effects were counter to those produced by equivalent DBS settings at 

130Hz and therefore the effects of 60Hz were likely frequency specific. The authors 

suggested this was support for the theory that different frequencies have different effects on 

underlying neural circuitry. Moreau, et al. [42] also found improvements in dysarthria and 

FOG with LFS. They proposed that prolonged HFS could induce chronic side effects due to 



 

the involvement of mesencephalic locomotor area, cerebellar tracts and in particular the 

fasciculus cerebellothalamicus resulting in paradoxical inhibition of these areas which are 

involved in the regulation of orofacial movements during speech. As expected there was a 

negative correlation between articulation (for all frequencies), phonation, prosody and rate 

(mainly for lower frequencies) and TSI, such that as time has progressed, these speech 

features have deteriorated. This effect was not frequency specific (e.g. correlations of 

articulation for all frequencies to TSI was significant), meaning that stimulation at different 

frequencies did not completely remove the net detrimental effect of chronic DBS. Moreover, 

disease duration was not significantly correlated to any of the perceptual characteristics for 

different frequencies, further confirming that the chronic effects of DBS on deterioration of 

the speech, are distinct from natural disease progression. Fasano, et al. [6] also found TSI to 

be instrumental in speech deterioration. Regarding the possible mechanisms behind the effect 

of TSI on worsening of speech abilities, Tripoliti and Limousin [44] proposed that the 

delayed onset of speech difficulties following STN-DBS was due to the involvement of the 

cerebellothalamic tracts and pallidothalamic tracts when the active electrode was positioned 

medial to the STN in the proximity of these tracts.  

 

Verbal fluency 

Our findings provide tentative evidence that stimulation contributes to changes in VF 

and that frequency has a role to play. Phonemic switching was found to improve with LFS 

relative to HFS but this did not translate into an overall improvement in the number of words 

generated during the PVF test. A trend towards improved SVF at LFS was found. Frequency 

had no effect on cluster size for either PVF or SVF.  Wojtecki, et al. [22] found SVF and PVF 

to be better at  LFS (10Hz) and worst at HFS (130Hz). They attributed this to activation of 

neural pathways projecting to the inferior frontal cortex providing evidence of frequency 



 

dependent tuning of cognitive circuits interconnected with the STN, where DBS of the STN 

at 10 Hz might have an inhibitory effect on the motor circuit and yet a facilitatory effect on 

the cognitive circuit. Fagundes, et al. [26] also found that, PVF, but not SVF responded 

favourably to LFS, proposing that due to frontocortical impairment in PD, a frequency effect 

would manifest to a greater extent in tasks that make demands on frontocortical functions 

such as PVF. 

Vonberg, et al. [25] found stimulation increased the number of switches and a trend 

towards reduced switch times, however, this did not increase the number of words produced. 

They drew a distinction between the executive process of switching and the lexico-semantic 

process of clustering during VF and as such proposed that STN-DBS could influence the 

procedural/executive aspect of VF as opposed to the lexical.  In doing so they proposed that 

STN-DBS modulation of the basal ganglia was occurring that permitted disengagement from 

prevailing cognitive states through suppression of excessive beta-oscillations thought to be 

associated with symptoms of static motor behavior such as rigidity and bradykinesia. 

Improved switching as a consequence of stimulation could result from an enhanced 

‘antistatic’ mental drive that facilitates disengagement from a prevailing lexical concept 

(cluster) towards a new one [25]. In the first study of its type, Anzak, et al. [45] recorded 

Local field potentials (LFPs) from externalized electrodes in the STN bilaterally while 

patients performed PVF, SVF or control word repetition tasks.  They found that compared to 

the control tasks, which controlled for motor output, word generation during the VF tasks was 

associated with a significant increase in gamma band activity in the LFPs recorded from the 

STN.  Of particular interest to the present results is their finding that gamma changes 

recorded from contacts lying in the left hemisphere (dominant in verbal fluency) correlated 

with the average number of correct responses generated (r = 0.81 p = 0.015) and measures of 

‘switching’ (r = 0.79 p = 0.020).  These gamma band specific power changes observed during 



 

task performance are consistent with involvement of the subthalamic nucleus in switching 

during verbal fluency. Wojtecki, et al. [46] combined  LFPs in the STN through externalised 

DBS electrodes with EEG scalp recordings during a phonemic verbal generation task and 

demonstrated enhanced coherence between the STN and frontal cortex in lower frequency 

bands (alpa-theta Hz). It was proposed that improved VF during LFS was a result of 

enhancement of alpha-theta oscillatory network activity.  

 

Limitations of the study and future research 

A limitation of the present study was the omission of repeat whole UPDRS-III in each 

condition; this would have enabled assessment of whether improvements in speech 

intelligibility achieved with LFS were to the detriment of benefits to other (axial) motor 

symptoms, especially swallowing. Recent studies have shown that low frequency (60 Hz) 

stimulation has a good effect on reducing aspiration frequency, perceived swallowing 

difficulty, freezing of gait severity, bradykinesia and overall axial and motor symptoms, 

although the overall effect decreases over time [47, 48]. This would be challenging however 

in view of patient fatigue. In addition, the main objective of the present study was to 

specifically explore the effect of changing frequencies on speech.  Another limitation of the 

study might be the relatively short time between changing of frequencies (20 minutes). 

According to the available data, switching the DBS off leads to a progressive deterioration of 

symptoms such that tremor worsens in a couple of minutes, followed by worsening of 

bradykinesia and rigidity and then axial symptoms. However, the rate of improvement of 

symptoms after switching DBS on again seems to be much faster, especially the improvement 

of axial symptoms [29]. A longer time period in-between frequency change might have been   

physiologically plausible; however, considering the fact that the patients were off medication, 



 

a prolongation of the “wait” period would have been too unpleasant for the patients. In 

addition, we have clearly seen changes of the speech characteristics with the change of 

frequencies. A previous pilot study [49] has established that articulation can further 

deteriorate with the addition of medication to stimulation. In the present study patients were 

off medication in all conditions. This might have affected the results of the study at the end of 

the visit. However, frequencies were randomly assigned across patients thus this possibility 

should not represent a systematic bias. In a future study we plan to establish whether specific 

speech parameters are affected with the addition of medication and whether this was as 

marked with LFS. In addition, it would be interesting to explore the duration of the beneficial 

effect of LFS on speech.  

 

 

Conclusion  

The present double blind study has demonstrated that certain characteristics of speech, 

namely articulation, phonation, respiration, and prosody are sensitive to HFS and contribute 

to decreased intelligibility. These difficulties have been found to deteriorate as TSI increases. 

We found that with LFS, HFS-induced pathological speech presentation is partially 

reversible, resulting in improved speech intelligibility. The study further demonstrates that 

stimulation and in particular, frequency of stimulation influences specific VF processes, 

namely switching during PVF. Both speech intelligibility and VF should be considered 

during routine parameter adjustments and frequency of the stimulating current is a viable 

parameter to adjust/alter to address issues in these domains. 

 

 



 

Acknowledgements: The Unit of Functional Neurosurgery is supported by the Parkinson Appeal 

UK, and the Monument Trust with support from the National Institute of Health Research University 

College London Hospitals  Biomedical Research Centre and the Edmond J Safra Philanthropic 

Foundation.  

Conflicts of Interest: MH has received honoraria and / or travel expenses from Medtronic, St Jude, 

and Boston Scientific for speaking at meetings. TF has received honoraria for speaking at meeting 

sponsored by BIAL, Britannia, and Profile Pharma. He has served on Advisory boards for Abbott, 

Oxford Biomedica, and Celgene, and received grant support from Michael J Fox Foundation, Cure 

Parkinson’s Trust, John Black Charitable Foundation and European Union FP7. 

 

References 

[1] Deuschl G, Herzog J, Kleiner-Fisman G, Kubu C, Lozano AM, Lyons KE, Rodriguez-Oroz 
MC, Tamma F, Troster AI, Vitek JL, Volkmann J, Voon V (2006) Deep brain stimulation: 
postoperative issues. Mov Disord 21 Suppl 14, S219-237. 

[2] Weaver FM, Follett K, Stern M, Hur K, Harris C, Marks WJ, Jr., Rothlind J, Sagher O, Reda 
D, Moy CS, Pahwa R, Burchiel K, Hogarth P, Lai EC, Duda JE, Holloway K, Samii A, Horn 
S, Bronstein J, Stoner G, Heemskerk J, Huang GD, Group CSPS (2009) Bilateral deep brain 
stimulation vs best medical therapy for patients with advanced Parkinson disease: a 
randomized controlled trial. JAMA 301, 63-73. 

[3] Tripoliti E, Limousin P, Foltynie T, Candelario J, Aviles-Olmos I, Hariz MI, Zrinzo L (2014) 
Predictive factors of speech intelligibility following subthalamic nucleus stimulation in 
consecutive patients with Parkinson's disease. Mov Disord 29, 532-538. 

[4] Aström M, Tripoliti E, Hariz MI, Zrinzo LU, Martinez-Torres I, Limousin P, Wardell K 
(2010) Patient-specific model-based investigation of speech intelligibility and movement 
during deep brain stimulation. Stereotact Funct Neurosurg 88, 224-233. 

[5] Mahlknecht P, Akram H, Georgiev D, Tripoliti E, Candelario J, Zacharia A, Zrinzo L, Hyam 
J, Hariz M, Foltynie T, Rothwell JC, Limousin P (2017) Pyramidal tract activation due to 
subthalamic deep brain stimulation in Parkinson's disease. . Movement Disorders 32, 1174-
1182. 

[6] Fasano A, Romito LM, Daniele A, Piano C, Zinno M, Bentivoglio AR, Albanese A (2010) 
Motor and cognitive outcome in patients with Parkinson's disease 8 years after subthalamic 
implants. Brain 133, 2664-2676. 

[7] Picillo M, Lozano AM, Kou N, Puppi Munhoz R, Fasano A (2016) Programming Deep Brain 
Stimulation for Parkinson's Disease: The Toronto Western Hospital Algorithms. Brain Stimul 
9, 425-437. 

[8] Sidiropoulos C, Walsh R, Meaney C, Poon YY, Fallis M, Moro E (2013) Low-frequency 
subthalamic nucleus deep brain stimulation for axial symptoms in advanced Parkinson's 
disease. J Neurol 260, 2306-2311. 



 

[9] Zibetti M, Moro E, Krishna V, Sammartino F, Picillo M, Munhoz RP, Lozano AM, Fasano A 
(2016) Low-frequency Subthalamic Stimulation in Parkinson's Disease: Long-term Outcome 
and Predictors. Brain Stimul 9, 774-779. 

[10] Henry JD, Crawford JR, Phillips LH (2004) Verbal fluency performance in dementia of the 
Alzheimer's type: a meta-analysis. Neuropsychologia 42, 1212-1222. 

[11] Levy G, Marder K (2003) Prevalence, Incidence, and Risk Factors for Dementia in 
Parkinson’s Disease In Mental and Behavioral Dysfunction in Movement Disorders., Bédard 
MA, Agid Y, Chouinard S, Fahn S, Korczyn AD, Lespérance P, eds. Humana Press, Totowa, 
NJ. 

[12] Morrison CE, Borod JC, Perrine K, Beric A, Brin MF, Rezai A, Kelly P, Sterio D, Germano I, 
Weisz D, Olanow CW (2004) Neuropsychological functioning following bilateral 
subthalamic nucleus stimulation in Parkinson's disease. Arch Clin Neuropsychol 19, 165-181. 

[13] Pillon B, Ardouin C, Damier P, Krack P, Houeto JL, Klinger H, Bonnet AM, Pollak P, 
Benabid AL, Y. A (2000) Neuropsychological changes between "off" and "on" STN or GPi 
stimulation in Parkinson's disease. Neurology 55, 411-418. 

[14] Witt K, Granert O, Daniels C, Volkmann J, Falk D, van Eimeren T, Deuschl G (2013) 
Relation of lead trajectory and electrode position to neuropsychological outcomes of 
subthalamic neurostimulation in Parkinson's disease: results from a randomized trial. Brain 
136, 2109-2119. 

[15] Okun MS, Fernandez HH, Wu SS, Kirsch-Darrow L, Bowers D, Bova F, Suelter M, Jacobson 
CEt, Wang X, Gordon CW, Jr., Zeilman P, Romrell J, Martin P, Ward H, Rodriguez RL, 
Foote KD (2009) Cognition and mood in Parkinson's disease in subthalamic nucleus versus 
globus pallidus interna deep brain stimulation: the COMPARE trial. Ann Neurol 65, 586-595. 

[16] Parsons TD, Rogers SA, Braaten AJ, Woods SP, Troster AI (2006) Cognitive sequelae of 
subthalamic nucleus deep brain stimulation in Parkinson's disease: a meta-analysis. Lancet 
Neurol 5, 578-588. 

[17] Wyman-Chick KA (2016) Verbal Fluency in Parkinson's Patients with and without Bilateral 
Deep Brain Stimulation of the Subthalamic Nucleus: A Meta-analysis. J Int Neuropsychol Soc 
22, 478-485. 

[18] Højlund A, Petersen MV, Sridharan KS, Ostergaard K (2017) Worsening of Verbal Fluency 
After Deep Brain Stimulation in Parkinson's Disease: A Focused Review. Comput Struct 
Biotechnol J 15, 68-74. 

[19] Halpern CH, Rick JH, Danish SF, Grossman M, Baltuch GH (2009) Cognition following 
bilateral deep brain stimulation surgery of the subthalamic nucleus for Parkinson's disease. Int 
J Geriatr Psychiatry 24, 443-451. 

[20] Lefaucheur R, Derrey S, Martinaud O, Wallon D, Chastan N, Gérardin E, Hannequin D, 
Maltête D (2012) Early verbal fluency decline after STN implantation: is it a cognitive 
microlesion effect? J Neurol Sci 321, 96-99. 

[21] Mikos A, Bowers D, Noecker AM, McIntyre CC, Won M, Chaturvedi A, Foote KD, Okun 
MS (2011) Patient-specific analysis of the relationship between the volume of tissue activated 
during DBS and verbal fluency. Neuroimage 54, S238-246. 

[22] Wojtecki L, Timmermann L, Jorgens S, Sudmeyer M, Maarouf M, Treuer H, Gross J, Lehrke 
R, Koulousakis A, Voges J, Sturm V, Schnitzler A (2006) Frequency-dependent reciprocal 
modulation of verbal fluency and motor functions in subthalamic deep brain stimulation. Arch 
Neurol 63, 1273-1276. 

[23] Troyer AK, Moscovitch M, Winocur G (1997) Clustering and switching as two components 
of verbal fluency: evidence from younger and older healthy adults. Neuropsychology 11, 138-
146. 

[24] De Gaspari D, Siri C, Di Gioia M, Antonini A, Isella V, Pizzolato A, Landi A, Vergani F, 
Gaini SM, Appollonio IM, Pezzoli G (2006) Clinical correlates and cognitive underpinnings 
of verbal fluency impairment after chronic subthalamic stimulation in Parkinson's disease. 
Parkinsonism Relat Disord 12, 289-295. 

[25] Vonberg I, Ehlen F, Fromm O, Kuhn AA, Klostermann F (2016) Deep Brain Stimulation of 
the Subthalamic Nucleus Improves Lexical Switching in Parkinsons Disease Patients. PLoS 
One 11, e0161404. 



 

[26] Fagundes VC, Rieder CR, da Cruz AN, Beber BC, Portuguez MW (2016) Deep Brain 
Stimulation Frequency of the Subthalamic Nucleus Affects Phonemic and Action Fluency in 
Parkinson's Disease. Parkinsons Dis 2016, 6760243. 

[27] Hughes AJ, Daniel SE, Kilford L, Lees AJ (1992) Accuracy of clinical diagnosis of idiopathic 
Parkinson's disease: a clinico-pathological study of 100 cases. J Neurol Neurosurg Psychiatry 
55, 181-184. 

[28] Foltynie T, Zrinzo L, Martinez-Torres I, Tripoliti E, Petersen E, Holl E, Aviles-Olmos I, 
Jahanshahi M, Hariz M, Limousin P (2011) MRI-guided STN DBS in Parkinson's disease 
without microelectrode recording: efficacy and safety. J Neurol Neurosurg Psychiatry 82, 
358-363. 

[29] Temperli P, Ghika J, Villemure JG, Burkhard PR, Bogousslavsky J, Vingerhoets FJ (2003) 
How do parkinsonian signs return after discontinuation of subthalamic DBS? Neuology 60, 
78-81. 

[30] Keresztenyi Z, Valkovic P, Eggert T, Steude U, Hermsdorfer J, Laczko J, Botzel K (2007) 
The time course of the return of upper limb bradykinesia after cessation of subthalamic 
stimulation in Parkinson's disease. Parkinsonism Relat Disord 13, 438-442. 

[31] Cooper SE, Driesslein KG, Noecker AM, McIntyre CC, Machado AM, Butson CR (2014) 
Anatomical targets associated with abrupt versus gradual washout of subthalamic deep brain 
stimulation effects on bradykinesia. PLoS One 9, e99663. 

[32] Koss AM, Alterman RL, Tagliati M, Shils JL (2005) Calculating total electrical energy 
delivered by deep brain stimulation systems. Ann Neurol 58, 168; author reply 168-169. 

[33] Fahn S ER, Members of the updrs Development Committee. (1987) Unified Parkinson's 
Disease Rating Scale In Recent Developments in Parkinson’s Disease, Fahn S, Marsden CD, 
Calne DB, Goldstein M, eds. Macmillan Health Care Information, Florham Park, NJ, pp. 

1 53-51 63. 
[34] Yorkston KM, Beukelman DR (1984) Assessment of Intelligibility of Dysarthric Speech., CC 

Publications, Tigard Oregon. 
[35] Darley FL, Aronson AE, Brown JR (1969) Clusters of deviant speech dimensions in the 

dysarthrias. J Speech Hear Res 12, 462-496. 
[36] Plowman-Prine EK, Okun MS, Sapienza CM, Shrivastav R, Fernandez HH, Foote KD, Ellis 

C, Rodriguez AD, Burkhead LM, Rosenbek JC (2009) Perceptual characteristics of 
Parkinsonian speech: a comparison of the pharmacological effects of levodopa across speech 
and non-speech motor systems. NeuroRehabilitation 24, 131-144. 

[37] Tripoliti E, Zrinzo L, Martinez-Torres I, Tisch S, Frost E, Borrell E, Hariz MI, Limousin P 
(2008) Effects of contact location and voltage amplitude on speech and movement in bilateral 
subthalamic nucleus deep brain stimulation. Mov Disord 23, 2377-2383. 

[38] Troyer AK (2000) Normative data for clustering and switching on verbal fluency tasks. J Clin 
Exp Neuropsychol 22, 370-378. 

[39] Tornqvist AL, Schalen L, Rehncrona S (2005) Effects of different electrical parameter 
settings on the intelligibility of speech in patients with Parkinson's disease treated with 
subthalamic deep brain stimulation. Mov Disord 20, 416-423. 

[40] Dromey C, Bjarnason S (2011) A preliminary report on disordered speech with deep brain 
stimulation in individuals with Parkinson's disease. Parkinsons Dis 2011, 796205. 

[41] Sidtis JJ, Alken AG, Tagliati M, Alterman R, D. V-L-S (2016) Subthalamic Stimulation 
Reduces Vowel Space at the Initiation of Sustained Production: Implications for Articulatory 
Motor Control in Parkinson's Disease. J Parkinsons Dis 6, 361-370. 

[42] Moreau C, Pennel-Ployart O, Pinto S, Plachez A, Annic A, Viallet F, Destee A, Defebvre L 
(2011) Modulation of dysarthropneumophonia by low-frequency STN DBS in advanced 
Parkinson's disease. Mov Disord 26, 659-663. 

[43] Blumenfeld Z, Velisar A, Miller Koop M, Hill BC, Shreve LA, Quinn EJ, Kilbane C, Yu H, 
Henderson JM, Bronte-Stewart H (2015) Sixty Herz Neurostimulation Amplifies Subthalamic 
Neural Synchrony in Parkinson’s Disease. PLoS ONE 10, e0121067. 

[44] Tripoliti E, Limousin P (2010) Electrical Stimulation of deep brain structures and speech. In 
Speech Motor Control: In normal and Disordered Speech, Maassen B, Pascal HHM, Van 
Lieshout P, eds. Oxford University Press, Oxford. 



 

[45] Anzak A, Gaynor L, Beigi M, Limousin P, Hariz M, Zrinzo L, Foltynie T, Brown P, 
Jahanshahi M (2011) A gamma band specific role of the subthalamic nucleus in switching 
during verbal fluency tasks in Parkinson's disease. Exp Neurol 232, 136-142. 

[46] Wojtecki L, Elben S, Vesper J, Schnitzler A (2017) The rhythm of the executive gate of 
speech: subthalamic low-frequency oscillations increase during verbal generation. Eur J 
Neurosci 45, 1200-1211. 

[47] Xie T, Bloom L, Padmanaban M, Bertacchi B, Kang W, MacCracken E, Dachman A, Vigil J, 
Satzer D, Zadikoff C, Markopoulou K, Warnke P, Kang UJ (2018) Long-term effect of low 
frequency stimulation of STN on dysphagia, freezing of gait and other motor symptoms in 
PD. J Neurol Neurosurg Psychiatry. 

[48] Xie T, Padmanaban M, Bloom L, MacCracken E, Bertacchi B, Dachman A, Warnke P (2017) 
Effect of low versus high frequency stimulation on freezing of gait and other axial symptoms 
in Parkinson patients with bilateral STN DBS: a mini-review. Transl Neurodegener 6, 13. 

[49] Hartinger M, Tripoliti E, Hardcastle WJ, Limousin P (2011) Effects of medication and 
subthalamic nucleus deep brain stimulation on tongue movements in speakers with 
Parkinson's disease using electropalatography: a pilot study. Clin Linguist Phon 25, 210-230. 

 

 

 

 

 

 

 

 

Figure 1A. Item 18 assessing Speech from the Unified Parkinson’s disease rating Scale–part 

III for different frequencies (60, 80, 110, 130 and 200 Hz) are presented. Error bars represent 

standard errors of the mean.  



 

 

 

 

 

 

 

 

 

 

Figure 1B.  Total Darley, Aronson and Brown rating of SIT sentences (SITDAB) and Darley, 

Aronson and Brown rating of minute monologue (MONDAB) scores for different DBS 

frequencies (60, 80, 110, 130 and 200 Hz,) are presented. Error bars represent standard errors 

of the mean.  



 

 

 

 

 

 

 

 

 

 

 

 

 

Table 1. Baseline stimulation parameters of the patients included in the study.   

(f = frequency of stimulation, AC = active contact, PW = pulse width, μs = microseconds, V = volt).  

 

  f (Hz) Left STN AC Right STN AC PW (μs) Voltage Left STN (V) Voltage Right STN (V) 



 

P1 80 2- 6- 60 2.80 2.80 

P2 80 1-2- 4- 60 5.00 4.40 

P3 130 1-2- 4-5- 60 4.50 4.50 

P4 80 0-1- 8-9- 60 2.30 3.00 

P5 80 1- 5- 60 3.60 3.40 

P6 80 1- 5- 60 4.50 4.00 

P7 80 1-2- 6-7- 60 4.20 4.00 

P8 80 1- 5- 60 4.30 2.70 

P9 130 2- 3- 60 0.70 2.95 

P10 80 1-2- 10- 60 3.65 4.25 

P11 130 1- 9- 60 1.90 1.95 

P12 130 1- 9- 60 3.10 2.20 

P13 130 1- 9- 60 2.40 2.20 

P14 80 2- 5- 60 3.60 3.70 

P15 80 1- 5- 60 4.00 3.00 

 

 

 

 

 

 

 

 

 

Table 2. SITDAB and MOTDAB mean scores ± standard deviation for different stimulation 

frequencies (60, 80, 110, 130, 200 Hz) and p-values (after Bonferonni correction for multiple 

comparisons) for different aspects of speech intelligibility. Significant results are written in bold. 

 

 60 Hz 80 Hz 110 Hz 130 Hz 200 Hz p 



 

SITDAB 

Articulation 5.53±1.06 5.42±1.05 4.73±1.53 4.13±1.73 4.29±1.81 .005 

Respiration 5.67±1.18 5.60±1.12 5.07±1.49 4.93±1.39 4.86±1.66 .066 

Resonance  6.33±0.81 6.27±0.96 6.00±1.13 5.80±1.42 5.71±1.89 .349 

Phonation 5.40±1.12 5.03±1.20 4.80±1.47 4.33±1.49 2.29±1.54 .002 

Prosody 5.67±0.97 5.40±1.06 5.20±1.42 4.80±1.66 4.86±1.83 .035 

Rate 6.40±0.74 6.33±0.72 5.87±1.30 5.60±1.68 5.64±1.87 .039 

MONDAB 

Articulation 5.67±1.04 5.43±1.39 4.80±1.94 4.13±1.85 4.29±1.85 .001 

Respiration 5.60±0.98 5.29±1.07 4.93±1.94 4.67±1.79 4.50±1.61 .028 

Resonance 6.47±0.74 6.50±0.76 5.73±1.94 5.80±1.61 5.79±1.93 .109 

Phonation 5.20±1.15 5.00±0.96 4.53±1.66 4.40±1.35 4.29±1.64 .017 

Prosody 5.60±0.74 5.43±1.09 5.13±1.87 4.87±1.55 4.93±1.69 .037 

Rate 6.13±0.73 6.14±0.95 5.53±2.03 5.60±1.59 5.64±1.86 .242 

 

 

 

 

 

 

 

 

 

Table 3. Pearsons correlation coefficients (r) of Time Since Implantation (TSI) to Artic (articulation), 

Resp (respiration), Reson (resonance), Phon (phonology), Prosod (prosody) and Rate (rate) for 60, 80, 

110, 130 and 200 Hz for Darley, Aronson and Brown rating of minute monologue (MONDAB) and 

Darley, Aronson and Brown rating of SIT sentences (SITDAB). Statistically significant results 

(p≤ .05) are marked in bold. 

 

 



 

MONDAB 

TS

I Artic60 Artic80 Artic110 Artic130 Artic200 

Resp6

0 

Resp8

0 

Resp11

0 

Resp13

0 

Resp20

0 

r 

TS

I 1 -0.482 -0.484 -0.495 -0.609 -0.57 -0.213 -0.19 -0.321 -0.42 -0.434 

Sig. (1-

tailed)   . .048 .047 .043 .014 .021 .242 .267 .143 .076 .069 

SITDAB                         

r 

TS

I 1 -0.509 -0.537 -0.595 -0.666 -0.548 -0.149 -0.169 -0.332 -0.403 -0.171 

Sig. (1-

tailed)   . .032 .024 .012 .005 .021 .306 .282 .123 .077 .280 

MONDAB   

TS

I 

Reson6

0 

Reson8

0 

Reson11

0 

Reson13

0 

Reson20

0 

Phon6

0 

Phon8

0 

Phon11

0 

Phon13

0 

Phon20

0 

r 

TS

I 1 -0.169 -0.108 -0.36 -0.324 -0.368 -0.556 -0.615 -0.237 -0.501 -0.274 

Sig. (1-

tailed)   . .291 .363 .114 .14 .108 .024 .013 .218 .041 .182 

SITDAB                         

r 

TS

I 1 -0.157 0.025 -0.364 -0.291 -0.287 -0.484 -0.434 -0.264 -0.482 -0.07 

Sig. (1-

tailed)   . .296 .467 0.100 .156 .160 

      

.040 .061 .181 .040 .405 

MONDAB   

TS

I 

Prosod

60 

Prosod

80 

Prosod1

10 

Prosod1

30 

Prosod2

00 

Rate6

0 

Rate8

0 

Rate11

0 

Rate13

0 

Rate20

0 

r 

TS

I 1 -0.628 -0.704 -0.43 -0.487 -0.441 -0.380 -0.452 -0.45 -0.476 -0.42 

Sig. (1-

tailed)   . .011 .004 .071 .046 .066 0.100 .061 .061 .050 .077 

SITDAB                         

r 

TS

I 1 -0.702 -0.613 -0.514 -0.513 -0.546 -0.327 -0.409 -0.506 -0.517 -0.255 

Sig. (1-

tailed)   . .003 .010 .030 .030 .022 .127 .073 .032 .029 .189 

 

Table 4. Phonemic and semantic fluency total number, cluster size, and switching score mean values 

± standard deviations and p-values (after Bonferonni correction for multiple comparisons) for 

different frequencies (60, 80, 110, 130, 200 Hz) are presented. Significant results are presented in 

bold. 

 

 60 Hz 80 Hz 110 Hz 130 Hz 200 Hz p 



 

Phonemic fluency 

Total 

number 

33.40±14.58 

 

30.33±13.08 33.00±15.09 34.67±15.54 28.07±13.14 .171 

Cluster 

size 

1.40±0.57 1.40±0.42 1.67±0.92 1.56±0.81 1.77±0.77 .842 

Switching 

score 

26.13±9.79 22.27±7.58 21.93±8.71 19.07±9.66 17.43±8.38 .005 

Semantic fluency 

Total 

number 

11.40±6.23 12.33±4.42 14.07±6.34 11.20±5.96 11.36±5.05 .069 

Cluster 

size 

2.02±1.17 1.79±0.99 1.85±1.36 1.69±1.86 1.65±1.14 .989 

Switching 

score 

4.53±3.52 6.27±3.92 8.00±6.02 5.33±3.89 6.14±3.76 .146 
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