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Abstract 

Where medical interventions are licensed based on only uncontrolled study data (for example a 

single-arm trial), a common approach for estimating the incremental benefit is to compare the 

treatment to a ‘historical control’; data collected from patients who did not receive the intervention. 

We illustrate with motivating examples two methods for the creation of historical controls where 

disease progression and overall survival are typically the key clinically meaningful endpoints. The 

first method utilises information routinely collected in a clinical trial programme: patients’ time to 

disease progression on their previous line of treatment against which outcomes can be compared. 

The second uses published clinical outcomes for the prior line of treatment which can be 

extrapolated to estimate outcomes at the next line. As examples we use two pharmaceuticals 

licensed on the basis of uncontrolled clinical studies - idelalisib for double-refractory follicular 

lymphoma and ofatumumab for double-refractory chronic lymphocytic leukemia. Although subject 

to limitations that should be considered on a case-by-case basis, the methods may be appropriate 

when trying to quantify the clinical benefit of treatment based on limited and uncontrolled trial 

data. As a result, the methods can be used to inform health technology adoption decisions. 

  



1. Introduction 

Novel medical interventions, especially pharmaceuticals, are usually studied in randomised 

controlled trials of the intervention against the most appropriate comparator. Where this is not the 

case, indirect evidence must be used to estimate the relative effectiveness of treatments. Methods 

for estimating comparative efficacy include Bucher indirect comparisons (1) and network meta-

analysis (2), such methods however require a network of evidence with a common comparator. 

Where such a comparator is not available, comparisons with trials in similar populations that did not 

receive the intervention have been suggested, termed ‘historical controls’ (3). 

Whilst historical controls have limitations regarding their applicability, they allow comparisons to be 

made where otherwise they could not be performed. Recent work in the area has involved the 

development of matching methods to reduce the bias in comparisons due to difference in patient 

populations (4,5), and the creation of controls from ‘big data’ where there exists no published 

information on an untreated cohort of patients (6). It is in this latter area where our work sits; the 

creation of controls where there are no published examples available. 

The objective of this work was to present methods through which estimates of comparative 

effectiveness could be made in the absence of randomised controlled trial or historical comparator 

data from an external data source in a similar patient group and examined line of treatment. Our 

interest is primarily in the point estimates and uncertainty surrounding survival, though the methods 

would allow the estimation of other estimands (such as hazard ratios or p-values). 

We highlight two practical approaches to the estimation of historical data to be used as controls in 

the estimation of comparative efficacy. The first approach utilises data taken from the pivotal 

regulatory trial patients’ previous line of treatment and is particularly useful in conditions where 

patients experience multiple lines of treatment with disease management as the main objective, and 

when current care is well represented by available care for prior treatment. The second approach 

uses published literature on the previous line of treatment, in particular post-progression survival 



(PPS) data, to estimate expected survival at the current treatment line. This approach is particularly 

useful when the type of current care is well represented by what patients would have received upon 

last disease progression i.e. where no new intervention has become available, as is often the case in 

end-stage cancers.  

Motivating examples are presented for both methods to demonstrate the approaches and to 

evaluate the merit of the results produced. A companion R file is also made available to illustrate 

how the approaches can be applied using simulated data. 

2. Historical control as outcomes from within-study previous treatment  

2.1. General approach 

In many cases treatments are used to manage a disease, with well-managed disease likely to lead to 

reduced risk of mortality, improved quality of life, or ideally both. Typically however, patients will 

eventually relapse and may benefit from further treatment – often based on a different mechanism 

of action. Such diseases include autoimmune diseases such as rheumatoid arthritis, human 

immunodeficiency virus, and as well as various cancers. 

Where this pattern of treatments is followed through treatment lines, comparison with data for the 

pivotal trial patients’ previous line of treatment may be informative. Assuming such treatments have 

been selected as they are believed to be efficacious, should the novel treatment provide disease 

management for at least as long, this may be a strong indicator of efficacy. In diseases where 

relapses are typically shorter with each disease progression (perhaps owing to accumulated toxicity 

from consecutive treatments, or development of more treatment-resistant disease) achieving an 

equal disease management period may even be a higher bar for indicating efficacy. 

To estimate the benefit of the new treatment, data on the pivotal trial patients’ previous treatment 

can be harnessed, if available. The difference between the projected disease management period 

with the novel intervention and the disease management period on the previous line of treatment 



(used as a historical control) can then inform estimates of the benefit of the treatment. We illustrate 

this with reference to a motivating example in Sections 2.2 and 2.3. 

2.2. Motivating example 

Follicular lymphoma (FL) is a cancer of the lymphatic system where white blood cells multiply 

unchecked and collect in the lymph nodes; if untreated, patients are at risk of infection, abnormal 

blood counts, and have an elevated risk of death (7). Although the disease is treatable, patients will 

eventually become refractory to treatment, with each line of therapy typically achieving a shorter 

remission than the last (8). 

Idelalisib (Zydelig®, Gilead) was licensed by the European Medicines Agency (EMA) and Food and 

Drug Administration (FDA) in 2014 for the treatment of double-refractory FL on the basis of Study 

101-09 (9). The study enrolled 125 patients, 72 of whom had FL and on whom the license was based. 

These FL patients had an overall response rate of 54% and demonstrated median progression-free 

survival (PFS) of 11 months (95% Confidence Interval, CI: 8.1 – 13.6). It did not contain a control arm, 

and no external historical data was available on untreated patients to estimate comparative 

effectiveness. 

2.3. Application of the approach to the motivating example 

In this Section, we describe implementation of the general approach to estimate the absolute and 

relative survival associated with idelalisib, using Study 101-09 data.  

To estimate the counterfactual outcomes, i.e. what would have happened without the availability of 

idelalisib, disease-progression data on the previous line of treatment were used, as collected in 

Study 101-09 (9). These data were then compared to time-to-progression (TTP) data for idelalisib in 

Study 101-09 (10). TTP is used in preference to PFS as a better definition of what was collected at the 

prior line – any patients who died pre-progression would never have entered Study 101-09 to 

receive idelalisib. Two assumptions were implicit in this approach – firstly that the risk of death 



when pre-progression is the same across treatment lines (and negligible). Although a strong 

assumption in some applications, this was stated to be the case for this indication by the 

manufacturer (10). A second assumption was that the benefit of treatment is in delaying disease 

progression, with PPS equal between idelalisib and standard care – an assumption deemed 

appropriate in the context of FL where disease management is the primary endpoint of interest. 

As patient level data (PLD) are not generally available to independent researchers, data were 

synthesized from publications (a company performing the analysis would be able to draw directly on 

the trial data). Data on FL patients treated with idelalisib in study 10-09 are presented in Salles et al. 

(11), including PFS for treatment with idelalisib and ‘PFS’ for the prior line of treatment. These data 

were digitised using the method of Guyot et al. (12). The algorithm requires Kaplan-Meier plots to be 

digitised using software, with reported censoring and numbers at risk used to then estimate the 

patient level data on which the plot was based. Where reported, numbers at risk are also used to 

space censoring and event times when these are unknown. The method has shown no systematic 

error and a high degree of reproducibility (12). 

As data were reported for idelalisib PFS by response rate, it was possible to digitize these Kaplan-

Meier curves individually giving greater accuracy for composite survival curve (which otherwise is 

limited by the resolution of published data). The data for prior line PFS presented is  in reality better 

described as prior-line TTP (all events were progressions – patients who died pre-progression would 

not go on to the next line of treatment), idelalisib TTP was then calculated from the published PFS 

curves for idelalisib – this meant attempting to identify any PFS events that were deaths (and not 

progression), and using them as censors in the recreated Kaplan-Meier data. To do this, the overall 

survival curve from Salles et al. was digitized, and event dates were compared. In total, we 

estimated 5 survival events to have occurred prior to disease progression, though it should be noted 

it is not possible to be certain that these were pre-progression deaths, and not deaths that occurred 

in post-progression patients around the same time as a different patient progressed. 



Parametric curves were then fitted to the data, using a Weibull model which presented the best 

visual fit and statistical fit to the observed data by Akaike information criterion (AIC) and Bayesian 

Information Criterion (BIC) statistics. This model was also selected by the manufacturer in their 

Scottish Medicines Consortium (SMC) submission (10). Summary statistics for the digitized survival 

data closely approximated the summary statistics reported by the manufacturer, with the recreated 

prior line of therapy having a median of 5.4 months TTP (compared to a reported 5.1 months), and 

recreated idelalisib data a median TTP of 11.1 months, close to of the reported 11.0 months (13). 

The digitized data and survival curve fits are shown in Figure 1 for both idelalisib treated patients 

and the prior line of treatment. 

Figure 1: Estimated time to progression for idelalisib in FL compared to prior treatment time to progression including fitted 

Weibull curves 

 

The area between the fitted survival curves gives an indication of the likely time to progression gain 

of idelalisib over the prior line of treatment. To estimate this difference between the extrapolated 

curves, 100,000 samples were taken from the fitted curve parameters, accounting for both the 

variance in parameter estimates, and covariance between parameter estimates. These were then 



used to estimate the mean gain in TTP (estimated at a mean of 7.5 months), and shown as a density 

plot in Figure 2. The approach of sampling from parametric survival curves is standard in 

probabilistic sensitivity analysis (14–16), and allows for the uncertainty in estimates to be 

represented – similar to bootstrapping, however sampling from the fitted distributions as opposed 

to the raw data. The results of the analysis are then shown in a density plot of the predicted mean 

survival gain i.e. difference between the area under the two sampled curves, which we would argue 

is more informative than a simple confidence interval or interquartile range, though these can easily 

be calculated or extracted.  

Figure 2: Density plot of estimated time to progression benefit of idelalisib compared to outcomes seen with the prior line of 

therapy 

 

Overall, the results in Figures 1 and 2 suggest idelalisib offers an increase in time to progression. This 

is likely a conservative estimate of the benefit of treatment, as the analysis assumes that 

retreatment with drugs that have failed would yield the same time to disease progression as at the 

previous line; in their SMC submission Gilead assumed time to progression at the next line of 

treatment would be 10% shorter for retreatment (10).  



2.4. Assumptions and limitations associated with the approach 

Where Section 2.3 illustrated the applicability of the approach, this Section considers its viability and 

limitations in practice. The viability of this approach depends on the data available to the analyst. If a 

pharmaceutical company wishes to compare to a historical control of this type, they will have access 

to the PLD from their regulatory trial programme. In this case, comparison to previous treatment 

outcomes could be a useful and viable option with advantages over comparisons to aggregate data 

from trials not under their ownership (such as published historical controls). Documentation of 

clinical outcomes for prior therapy would be key, with the level of detail collected and robustness of 

data collection both vital. Key variables of interest may include the setting previous treatment was 

provided in, the treatments provided, and the dosage received - not all of which may be routinely 

available for prior therapy. If PLD are not available to the analyst, the creation of pseudo-PLD can be 

used, as shown in our illustrative example, though this does add a layer of uncertainty to the results. 

Where viable, the merits of the approach described should be assessed on a case-by-case basis with 

consideration of the implicit assumptions involved. These include that the main aim of treatment is 

disease management, and that the TTP gains would translate to equivalent overall survival gains by 

delaying disease progression. Should prior therapy influence the subsequent line survival (either 

positively or negatively), the inference drawn from this approach could be misleading (though a 

similar approach with different PPS assumptions could be tested). Another implicit assumption in 

the approach presented is that survival risk is treatment independent i.e. patients have equal risk of 

death regardless of the treatment managing their disease. This assumption could be violated if 

different treatments have different life-threatening adverse event profiles, but could be relaxed 

easily within a similar framework. 

 

3. Historical control as post-progression survival at the prior line of therapy from published 

evidence 



3.1. General approach 

When a treatment or intervention to extend survival is studied without a control arm (either active 

or placebo), often external uncontrolled datasets are used to inform the counterfactual outcomes; 

to estimate how long patients would have survived if they had received standard care rather than 

the intervention. Whilst there are issues with such comparisons (17–19), they often represent the 

most appropriate use of the best available clinical effectiveness evidence, however such historical 

controls are not always available. 

Separate to the general approach in Section 2, where treatments are delivered in a defined pathway 

we propose that estimates can be made of the counterfactual survival time by estimating the time 

between disease progression and overall survival (OS) in external datasets of the previous line of 

treatment. The PPS for these patients may accurately reflect the period of time when a patient 

would have been eligible for the novel intervention (had it been available). 

As clinical trials rarely follow all patients to PFS and OS completion (known as administrative 

censoring), we propose to estimate the difference between the two times (PFS and OS), using 

parametric curve fits to observed data (20). Using fitted survival curves, the time-to-event curve for 

PPS can be estimated - including estimating the unobserved portion. 

3.2. Motivating example 

Ofatumumab (Arzerra®, Novartis) was first licensed on the basis of the uncontrolled Hx-CD20-406 

study in patients with chronic lymphocytic leukaemia (CLL) refractory to both fludarabine and 

alemtuzumab (21). In this study ofatumumab demonstrated an overall response rate (defined as the 

percentage of complete responders and partial responders) of 57% and progression free survival of 

5.7 months, however there was no way to estimate the survival gain against standard of care. No 

historical control for patients receiving standard care was available in this patient population, 

making estimation of comparative effectiveness difficult. 



Due to the lack of historical data at the same treatment line to use as an external control, the 

company performed a comparison against non-responders to estimate the survival gain of the 

product for use with health technology appraisal agencies for reimbursement submissions (22) – no 

comparative estimates were provided in regulatory submissions. 

However, to be eligible for ofatumumab, patients must have been refractory to the previous line of 

treatment, alemtuzumab (MabCampath®, Genzyme). The pivotal study for alemtuzumab (the 

CAM211 study) enrolled 93 patients who had failed fludarabine therapy (23). Alemtuzumab was 

demonstrated to have a median disease-free survival (DFS) of 4.0 (95% CI 3.2 – 4.7) months, and a 

median OS of 15.9 (95% CI 11.8 – Not reached) months. These data, though from a prior line of 

therapy, have merit for understanding of the survival benefit associated with ofatumumab in CLL. 

3.3. Application of the approach to the motivating example 

In this Section, we describe implementation of the general approach to estimate the survival gain 

associated with ofatumumab for CLL using uncontrolled Hx-CD20-406 study data and comparator 

data from the CAM211 study.  

In order to estimate the survival post disease progression on alemtuzumab treated patients in 

CAM211, PLD were recreated by digitizing the published survival curves then applying the method of 

Guyot et al. (12). Using the recreated PLD we fitted parametric curves using the process of Latimer 

to select the best fitting curves (20). The approach of Latimer gives an algorithm for selecting the 

preferred curve fits using the cumulative hazard function to select the appropriate set of parametric 

distributions, and then the Akaike Information Criterion (AIC), Bayesian Information Criterion (BIC), 

clinical plausibility and visual inspection to select the most appropriate curve for the data. 

Using the Latimer approach to curve fitting, we selected log-normal curve as the best fitting 

according to visual inspection as well as AIC and BIC (not shown) for both DFS and OS. The resulting 

digitized data and best fitting survival curves are shown in Figure 3 – the difference between the 



curves being the time alive after treatment failure, and the time in which a patient would be eligible 

for ofatumumab. 

Figure 3: Recreated patient level data for CAM211 study including log-normal curve fits 

 

Using best fitting curves, 100,000 samples were taken and used to calculate the difference between 

DFS and OS (i.e. time spent alive after disease progression, PPS – when patients would be eligible for 

the next line of treatment) for the patients treated at this prior line. Across the samples taken the 

time alive after disease progression was projected to have a median of 12.3 months and mean of 

13.0 months, though with a long tail. The same process was followed for the ofatumumab survival 

curve, where a Weibull curve was found to be the best fitting to the OS KM data, with estimated 

median survival of 14.6 months, and mean survival of 14.8 months (replicating published reanalysis 

of company data (24)). The digitised survival data for ofatumumab, fitted Weibull curve to the 

ofatumumab data, and time alive after disease progression (historical survival) are shown in Figure 

4. 

Figure 4: Digitized survival data and Weibull curve fit to Ofatumumab overall survival data, plotted against survival post 

disease progression from the CAM211 study 



 

To estimate the survival gain of ofatumumab, the estimated time alive after disease progression was 

subtracted from the projected ofatumumab survival time for each of the 100,000 samples. As a part 

of the ofatumumab clinical study however, an exclusion criterion was that patients were not to have 

received any CLL treatment in the previous 4 weeks (21), with patients having had their disease 

progress a mean of 3.6 months prior to beginning ofatumumab treatment (25). Two further 

estimates are therefore presented in the density plot of the estimated survival gain for ofatumumab 

– firstly if 28 days (exclusion criteria for the trial), or 3.6 months (mean observed time) of time had 

elapsed before patients received treatment (Figure 5).  

Figure 5: Density plot of estimated survival benefit of ofatumumab using assumptions of immediate treatment with 

ofatumumab, 28-day delay, and 56-day delay 



 

The resulting analysis shows that in a comparison against survival from disease progression, 

ofatumumab is estimated to provide a mean survival benefit of 2.0 months, with a 70% probability 

of survival being improved compared to the care patients received prior to the licensing of 

ofatumumab. If the likely delay in receiving the next line of therapy was 28 days, we estimate 

ofatumumab is estimated to improve survival by a mean of 2.2 months (with 71% probability of 

improving survival). With a delay of 3.6 months before ofatumumab treatment initiation, this 

survival gain is estimated at 2.8 months, with an 73% probability of improving survival. This final 

estimate is likely the most realistic in the context of publicly available information. 

3.4. Assumptions and limitations associated with the approach 

As with the approach considered in Section 2, there are several assumptions inherent in the 

approach explored in this Section, most notably the suitability of the data from the external, prior-

line study. If the study for the previous line of treatment was conducted in a jurisdiction with 

different treatment options to that of the new treatment, then the post-disease-free survival results 

from this study are unlikely to be generalisable. A further limiting factor is that the trial data for the 



previous line are unlikely to be available to the company who developed the subsequent 

intervention. The company may therefore only be able to access information that is in the public 

domain, which may not include for example details on patient demographics, subgroups, or the care 

they received – all of which increase the level of uncertainty. 

In terms of the comparability of patient populations, whilst there may be differences in patient 

characteristics across different datasets these may be able to be adjusted for using methods such as 

matching adjusted indirect comparison. Such adjustment is more complicated than in standard cross 

trial comparisons, as data on patient characteristics are not routinely collected (or reported) at 

disease progression. For example, the trial of ofatumumab required patients to have ECOG score of 

0 or 1 on study entry (as did the alemtuzumab study) - if some patients had deteriorated by the time 

of progression with alemtuzumab, this may in turn bias the results as they would have been 

ineligible for entry to the ofatumumab study. There may be situations where such PLD are available 

which would allow for further analysis, though this would need data to be made available by the 

original study authors, or an older study conducted by the same company. 

A further limitation of the approach is determining the point at which patients would be likely to 

receive treatment, particularly in conditions where patients do not move immediately to a new 

therapy. In the motivating example the trial protocol specified a minimum of 28 days since prior 

therapy (which is loosely linked to disease progression), with a mean of 3.6 months from disease 

progression until patients received ofatumumab. Ensuring time since previous treatment is collected 

in studies where this approach may be needed may reduce some of this uncertainty, which may 

need to be formally incorporated in to a probabilistic model. 

4. Discussion 

4.1. Merit of the approaches 

The two methods presented may allow an additional estimate of the benefit of a novel intervention 

in specific scenarios. Such analysis may be useful supplement to a more traditional controlled 



comparison (where the control is either internal to the trial, or via a more traditional historical 

control), or serve as a comparison where no other data are available. Such comparisons are of 

relevance to regulators who in both motivating examples had difficulty in quantifying the benefit of 

the products. The approaches are likely also of interest to payers who have difficulty in estimating 

the value for money of products similar to those used as examples, and may also be of interest to 

clinicians who need to understand the comparative effectiveness of different products to make 

treatment recommendations. 

Whilst the approaches proposed help to characterise the uncertainty in comparisons where neither 

direct nor indirect evidence is available, their validity will need to be assessed in each case prior to 

the methods being applied. The trials used in the analysis and disease course must be carefully 

scrutinized for appropriateness, and the structural uncertainty understood. Ultimately, estimates 

based on epidemiological and statistical analysis cannot substitute for randomised controlled trials, 

and will always be subject to a degree of unquantifiable uncertainty. 

Due to the uncertainty around results from both approaches, we recommend that when the 

approaches are used, careful justification is given to survival curve fitting, particularly the long-term 

plausibility which has the potential to drive the results. This is especially the case when projecting 

PPS times (approach 2), as this is using the data in the tail of the curve, where the underlying data 

are most scarce. 

The companion R file we provide should make the application of these methods more 

straightforward. In the file we simulate data, and then make comparisons using the approaches 

highlighted – showing the steps required. Loading patient data in place of the simulated data should 

greatly shorten the time required to understand and implement the methods. 

4.2. Implications 



The work performed has implications not only for the conduct of analysis, but also for data 

collection. The approach presented in Section 2 requires that data be collected within the pivotal 

trial regarding the previous line of treatment. Should full details not be available, the analyses that 

can be performed become more limited. Prior to commencing a study where such an approach 

would be required, sponsors should therefore carefully consider the data that need to be collected 

regarding prior treatment(s). 

The approach presented in Section 3 also requires data collection, but in a different way. Firstly, in 

literature searching, efforts should be made to identify data from the prior line of treatment as well 

as for data from more traditional historical controls. The available data (and desire to make studies 

comparable) may also shape the design of the subsequent study in terms of inclusion/exclusion 

criteria, or data collected. For example, even if a patient characteristic is not thought to be 

prognostic or relevant for the novel intervention, it may be prudent to collect such data so the 

similarity of patients between the planned study and historical control (or potential historical 

control) can be assessed. Companies with multiple assets in a given disease area may also wish to 

continue data collection beyond disease progression, with future comparisons in mind. 

In order to make the most compelling case possible for the use of an intervention, companies should 

therefore carefully consider their study design. Although they are unlikely to change the nature of 

their study from an uncontrolled/single arm trial to an RCT, they may still wish to consider additional 

data collection to enable estimates of comparative effectiveness to be made. 

4.3. Future research 

The approaches presented demonstrate how control arms may be synthesized in their absence, both 

methods however require validation of their predictive accuracy. We would suggest the ideal 

validation for the approaches would be to use the methods to estimate the outcomes of control 

arms for RCTs, and compare the predicted outcomes to those observed in the non-interventional 



arm of the RCT. Such an approach would ideally be performed to show the validity of the approach 

in a given disease, prior to the use of the method for decision making. 

A development that could be considered for each approach is a fully Bayesian model, with priors 

specified using expert opinion. This would likely reduce the distribution of predicted net benefit for 

each of the models as whilst some extreme values of survival for both arms are technically possible, 

they may be implausible (which would be reflected in the prior used). The major advantage of a 

Bayesian model however would be the ability to parameterise the additional assumptions required – 

for example how much shorter remission would be with each subsequent line of treatment in the 

TTP approach, or the elapsed time before treatment is commenced as in the OS minus PFS approach. 

Instead of sensitivity analyses, best estimates with an appropriate distribution could be included in 

the model. 

A second area where further research would be welcome is how multiple historical controls should 

be handled, when available. It is entirely conceivable that in the second approach presented (the use 

of PPS from the prior line) multiple trials may be available, each of which would yield a potential 

historical control. Alternatively, there may be published historical controls, as well as estimates 

made using the method(s) presented – it is not clear how such a data package should be synthesized 

or used in decision making. A recent focus of work has been that of dynamic ‘borrowing’ from 

historical trials (adequately down-weighted), to increase the sample size of contemporary control 

arms (26). Whilst in our examples no historical data exists (nor internal controls for data to be added 

to), similar methods with each source weighted according to its utility may be of use. 

4.4. Conclusions 

The work presented shows two non-standard approaches which analysts can use to construct 

estimates of comparative effectiveness in the absence of direct or indirect comparator evidence. 

These approaches give additional options for analysts in estimating comparative evidence, and 



whilst these do not substitute for the availability of controlled trials, they may help inform decision 

making. 

The implications of the work are that companies conducting uncontrolled studies, or studies in area 

where there is no network of evidence should consider how they intend to use data from studies 

(particularly uncontrolled studies) to produce estimates of comparative effectiveness. Although the 

study design is unlikely to change, exact data collected may need to be reviewed should either of 

these methods be required. 
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