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Computational High-throughput Screening of Polymeric 
Photocatalysts: Exploring the Effect of Composition, Sequence 

Isomerism and Conformational Degrees of Freedom 

Isabelle Heath-Apostolopoulos, Liam Wilbraham, Martijn A. Zwijnenburg

Department of Chemistry, University College London, 20 Gordon Street, London 
WC1H 0AJ U.K.

Email: m.zwijnenburg@ucl.ac.uk

We discuss a low-cost computational workflow for the high-throughput screening of 
polymeric photocatalysts and demonstrate its utility by applying it to a number of 
challenging problems that would be difficult to tackle otherwise. Specifically we 
show how having access to a low-cost method allows one to screen a vast chemical 
space, as well as to probe the effects of conformational degrees of freedom and 
sequence isomerism. Finally, we discuss both the opportunities of computational 
screening in the search for polymer photocatalysts, as well as the biggest challenges.
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Introduction

Starting with the original work from Fujishima and Honda on the photoelectrolysis of 
water1 using a TiO2 photoanode, hydrogen evolution and water splitting 
photocatalysis generally involves the use of an inorganic semiconductor as a 
photoelectrode or photocatalyst. In the 1980s, other Japanese researchers2,3 
demonstrated that conjugated polymers could drive the evolution of hydrogen from 
aqueous solutions containing various sacrificial electron donors. Carbon nitride was 
the first polymeric material reported to evolve both hydrogen and oxygen under 
illumination in the presence of a sacrificial electron/hole donor4 and was later shown 
to perform overall watersplitting.5–7 Recently, conjugated polymer photoanodes were 
also shown to be able to oxidise water as part of a photoelectrochemical cell.8 

While a much less mature technology than use of inorganic semiconductors, organic 
polymer photocatalysts offer some very attractive features. In contrast to their 
inorganic counterparts, polymeric photocatalysts are generally based on the most 
abundant of elements, C, H, N, S, O; though some polymers are, for the moment, 
synthezised using less abundant metal catalysts. By way of co-polymerisation, the 
chemical space of possible polymers is also very large and, as a result, polymer 
properties are easily and systematically tuneable.9 A large number of polymers have 
now been reported to act as photocatalysts, including linear polymers9–14 quasi-
amorphous polymer networks,12,15–25 e.g. conjugated microporous polymers (CMPs), 
and crystalline polymer networks, e.g. crystalline organic frameworks (COFs).26–29 
However, as yet only a minuscule fraction of the relevant chemical space has been 
explored. As an illustration, ~600 distinct monomers for Suzuki or Stille coupling are 
readily commercially available, a number which could give rise to ~600 linear homo-
polymers, 360,000 ordered binary co-polymers, 70,000,000 ordered ternary co-
polymers etc. In contrast, probably only on the order of fifty linear polymers have as 
yet been studied as polymer photocatalysts in the open literature.

As the chemical space of potential polymers is orders of magnitude too large to 
explore by experiment alone, we have developed computational approaches to predict 
promising polymers to study in the lab, as well as to rationalise observed activities of 
synthesized polymers. Our original approach30 was based on density functional theory 
(DFT) calculations and allowed us to predict, amongst other things: the electron 
affinity (EA) of a polymer, which controls the thermodynamic driving force for 
proton reduction; a polymer’s ionisation potential (IP), which controls the 
thermodynamic driving force for water or sacrificial electron donor oxidation (see 
Figure 2); as well as a polymer’s optical gap, which controls the wavelength below 
which light is absorbed. The polymer is modelled as a single-polymer strand 
embedded in a dielectric continuum that models the environment of the polymer, 
which, for polymers near the polymer-water interface, is dominated by water. We 
successfully used this approach to rationalise variation in activities for a significant 
number of polymers, 9,10,14,18,24,29,31 including e.g. the effect of co-polymerisation,9 and 
successfully validated it against experimental IP/EA data from the literature.32 
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Figure 1. Schematic of overall high-throughput approach. Starting from 2D representations of 
monomers (SMILES), 3D polymer models are constructed and undergo a stochastic conformer search. 
Optoelectronic properties are calculated semi-empirically using the xTB family of methods, which are 
calibrated to DFT results using a previously-determined linear model. The resulting high-throughput 
method is used in this work to sample compositional, sequence and conformational degrees of freedom 
within organic co-polymers (shown schematically using coloured pentagons, bottom).

However, even DFT calculations are too slow to systematically explore chemical 
space. To address this issue, we recently developed an approach33 based on 
semiempirical tight-binding calculations using the (GFN/IPEA/sTDA)-xTB 
methods,34–36 which, after a calibration procedure, gives results that are comparable 
with DFT at a fraction of the computational cost. 

Here we use a series of examples to illustrate the power of our new semiempirical 
approach. These include not only a small-scale example of the screening of a co-
polymer chemical space for photocatalysts but also screens for the effect on the (co-) 
polymer properties of i) different arrangements of monomeric units along theco-
polymer chain, sequence isomerism, and ii) conformerism. In a similar vein to 
composition, the large number of possible structures resulting from the different 
possible arrangements of monomeric units in co-polymers and conformation of long 
polymer chains renders DFT-based methodologies intractable and the sampling of 
such degrees of freedom is only possible, at this time, using the kind of semi-
empirical approach discussed here. 

Methodology & Computational Workflow

As outlined in Figure 1, the workflow involves multiple steps. Starting from a 
simplified molecular-input line-entry system (SMILES)37 representation of each 
monomer unit, polymer structures were assembled using the Supramolecular Toolkit 
(stk),38,39 a python library, which takes base functionality from RDKit.40 We restrict 
polymer chain length in all cases to oligomers containing 12 aromatic rings along the 
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Figure 2. Examples of IP and EA values calculated for selected polymers. For comparison, values 
reported were obtained either via DFT (B3LYP) or the semi-empirical tight-binding approach used in 
this work as part of the high-thoughput screening workflow (IPEA-xTB). For the ideal photocatalyst, 
the IP and EA values should straddle the water oxidation and hydrogen reduction potentials, 
respectively, which are reported here at pH = 7, such as for poly(pyridine) (left). B3LYP data taken 
from reference 9 and 14. 

polymer backbone. We have shown previously that oligomer models of this length 
provide approximately converged properties with respect to oligomer length.30

Conformers for the different oligomer models are generated using a stochastic rather 
than systematic approach, sampling the conformational space of the polymer 
randomly using the Experimental-Torsion Distance Geometry with additional basic 
knowledge (ETKDG) method.41 Where a single, low-energy conformer is desired, we 
typically generate 500 conformers per polymer, which undergo a subsequent 
optimisation and energy ranking procedure using the Merck Molecular Force Field 
(MMFF)42 as implemented in RDKit. Where multiple conformers are required, we 
sample 500 conformers randomly, without energy ranking at the MMFF level. In 
either case the resulting conformers are subsequently re-optimised using GFN-xTB.34 
For IP/EA calculations, we use an extension of the parent GFN-xTB method, IPEA-
xTB,36 a differently-parameterised variant of GFN-xTB for the calculation of IP and 
EA values. For optical gaps, we use the simplified Tamm-Dancoff approach 
(sTDA)35,43 applied to orbitals and orbital eigenvalues obtained through xTB (sTDA-
xTB).35 All GFN-xTB calculations were performed using the xtb code,44 while the 
sTDA results were obtained using the stda45 code. Non-sTDA calculations used the 
generalised Born surface area solvation model, with the default parameters for water 
distributed with the xtb code. In our previous work,33 we demonstrated that (TD-
)DFT- and (GFN/sTDA)-xTB-derived IP, EA and optical gap values are very 
strongly, linearly correlated, with very low residual sum of squares values. As a 
result, we use the simple linear models fitted there to translate the xTB results such 
that they are maximally comparable to those obtained using our previous (TD-)DFT 
based approach. 
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A simple python script,46 exploiting combinatorics, was used to generate all possible 
co-polymer sequences at varying co-monomer ratios. For each of the three monomer 

Figure 3. Effect of conformation on IP, EA and optical gap values for selected homo- and co-
polymers. In each case, 500 conformers were randomly generated, and their geometries optimised and 
properties calculated using (GFN/IPEA/sTDA)-xTB. Coloured chemical structures indicate data shown 
in the same colour. 

compositions explored (phenylene-thiophene, phenylene-pyridine & pyridine-
thiophene), we generate all possible co-polymer sequences for oligomer length of 12 
monomer units and 5 different monomer ratios (e.g. phenylene:thiophene in ratios of 
1:3, 1:2, 1:1, 2:1 and 3:1).

Results and discussion

Conformational degrees of freedom

To investigate the sensitivity of the calculated properties to polymer conformation, we 
calculate IP, EA and optical gap values for 500 randomly generated conformers of 
four homo-polymers and three co-polymers. Each conformer is optimised using GFN-
xTB, with the IP/EA and optical gap values calculated using IPEA-xTB and sTDA-
xTB, respectively. Figure 3 shows the calculated properties for each conformer of 
each polymer on the x-axis and the calculated Boltzmann factor relative to the lowest 
energy conformer on the y-axis. None of the properties calculated are found to be 
very sensitive to the polymer conformation. In line with previous work by us33 and 
others47 for polymers in the context of organic photovoltaics, the maximum variation 
of a given property with respect to conformation is generally of the order of 0.1 (e)V. 
Moreover, the variation for low-energy conformers (Boltzmann factors close to one) 
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is even smaller. While we observe only a weak dependence of IP, EA and optical gap 
values on polymer conformation, it is possible (and, in some cases, likely) that certain 

Figure 4. Distributions of properties (IP, EA and optical gap) of disordered a) phenylene-thiophene, b) 
phenylene-pyridine and c) pyridine-thiophene co-polymers vary with differing co-monomer ratios. For 
each ratio, the properties of all possible monomer sequences have been calculated, using a fixed 
oligomer length of 12 monomer units in total.

other properties pertinent to photocatalytic water splitting (e.g. charge transport, 
hydrophilicity, absorption intensity) will show a stronger dependence.
From a computational high-throughput screening perspective, the observed low 
sensitivity to the sampling of conformational degrees of freedom implies that the 
effect of not finding the true lowest energy conformer on the predicted 
thermodynamic driving force for proton reduction and water oxidation, as well as on 
the on-set of light absorption, is only very minor. Hence a minimal conformer search 
will generally suffice when screening for polymeric photocatalysts. The same weak 
dependence of IP, EA and optical gap values probably also means that in contrast to 
chain length and order/disorder in the case of random co-polymers (see below) 
conformational degrees of freedom do not result in large batch-to-batch variations.
Sequence isomerism and (dis)order 

Co-polymers of a fixed overall composition can have a number of distinct sequence 
isomers, structures with the same overall composition but differing in how the co-
monomers are distributed along the polymer chain, e.g. the alternating (AB)n and 
block AnBn isomers. Depending on the synthesis chemistry, either one well-defined 
sequence isomer or a random mixture is produced experimentally. Being able to 
predict the properties of one sequence-isomer relative to all others and/or those of a 
random-mixture is obviously attractive but computationally demanding because of the 
large number of possible sequence isomers. The calculations, discussed below in 
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more detail, on all the sequence isomers of five different compositions of three 
potential co-polymer photocatalysts required on the order of 3500 single calculations, 

Figure 5.  a) Schematic of how the ‘Degree of segregation’ (D) is measured: the number of equivalent 
neighbouring monomer units within a given sequence isomer minus 1, divided by the total number of 
monomer units minus 2. This metric spans values between 0 (fully alternating) and 1 (fully segregated 
into a block of monomer A and a block of monomer B). b) Illustration of how the ‘degree of 
segregation’ of co-monomers influences the overall co-polymer properties (IP, EA and optical gap) for 
1:1 co-polymers. 

where a ‘single’ calculation involves the structural embedding, conformer search, 
structure optimisation and calculation of IP, EA and optical gap for each isomer. 
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Hence without an efficient high-throughput procedure, like the one discussed here, 
this would be a computationally intractable task.

Figure 4 shows how distributions of properties of sequence isomers of phenylene-
thiophene, phenylene-pyridine and pyridine-thiophene co-polymers vary with the co-
polymer composition. For each co-monomer ratio, the properties of all 
combinatorially possible sequence isomers have been calculated, using a fixed 
oligomer length of 12 monomer units in total. Focussing in the first instance on the 
mean values of each of the properties (the white central dots in the centre of each of 
the violins in figure 4), we observe in the case of phenylene-thiophene co-polymers 
that, in line with our more limited sampling in previous work,9 increasing the 
thiophene content is predicted to result in progressively shallower IP, deeper EA (see 
Fig. 2) and lower optical gap values. For phenylene-pyridine co-polymers, increasing 
the pyridine content results in both deeper IP and deeper EA values, while optical gap 
values decrease as the fraction of pyridine is increased. When we apply the same 
analysis to co-polymers of pyridine and thiophene, we predict that, with increasing 
pyridine content, the IP values become deeper while the EA values remain largely 
unchanged and the optical gap increases. It should be noted that the change in the 
mean of a property distribution with composition can be strongly non-linear. For 
example, the change in the predicted mean optical gap when going from 
poly(phenylene) or poly(pyridine) to a co-polymer containing 25% thiophene is much 
larger than that predicted for going from a thiophene co-polymer containing 25% 
phenylene or pyridine to poly(thiophene).

Not surprisingly, the extent to which the mean IP, EA or optical gap values of the co-
polymers change with compositions appears to be linked to the difference in a given 
property between the corresponding homopolymers. When the difference is large the 
change in the mean value of that property with compositions is also large for the 
corresponding co-polymer, see e.g. the change in optical gap value with composition 
for the phenylene-thiophene and pyridine-thiophene co-polymers. Conversely, when 
the difference in homopolymer properties is small the variation in the mean value of 
that property is also small, see e.g. the change with composition for the mean IP 
values of phenylene-pyridine and mean EA values of pyridine-thiophene co-
polymers. More surprisingly, the difference in homopolymer properties also appears 
to control the overall variation in a given property for the different sequence isomers. 
For example, for phenylene-thiophene co-polymers, optical gap values can vary as 
much as 0.8 eV between different sequence isomers. In contrast, the small difference 
between the IP values of poly(phenylene) and poly(pyridine) leads to a variation of 
less than 0.1 V between sequence isomers of the corresponding co-polymer. 

Figure 5 shows how the ‘degree of segregation’ of co-monomers influences the 
overall co-polymer properties. Here we measure the ‘degree of segregation’ by 
considering the number of equivalent neighbouring monomeric units for a given 
sequence isomer. Specifically, this leads to a descriptor which lies between 0 (no 
identical neighbours, fully alternating) and 1 (only 2 monomers have a neighbour 
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which is non-identical, fully segregated into a block of monomer A and a block of 
monomer B). For each property (IP, EA, and optical gap) we see that, when fully 
segregated, the properties of the co-polymer are most similar to those of the 
corresponding homopolymer with either the deepest IP, shallowest EA or lowest 
optical gap. Focussing in on the phenylene-thiophene system, finally, for which there 
is experimental data for (pseudo-)random 1:1 co-polymers available in the literature9, 
the fact that the perfectly alternating structure is predicted to have a larger optical gap 
than the mean value of the predicted optical gap distribution for this composition is in 
line with the fact that experimentally the (pseudo-)random materials have a smaller 
optical gap than their alternating counterpart.

In the context of photocatalytic water splitting, Figures 4 and 5 make clear how the 
exact co-monomer sequence can influence the relevant properties of a co-polymer. 
Further, it illustrates how control over co-monomer sequence and hence the sequence 
isomer produced can be strongly beneficial, especially in terms of the optical gap, 
even if it cannot always be achieved experimentally. 

Overall composition

As an illustration of how our xTB semiempirical approach may be applied to 
exhaustively screen co-polymer compositions, a library of 10 simple monomer units 
is combined combinatorially to construct a library of 55 co-polymers (see Figure 6). 
The monomer pool contains examples with significantly varying electronic properties, 
ranging from particularly electron-poor (e.g. pyridine, diazine) to electron rich 
monomers (thiophene, pyrrole). Focussing in on co-polymers containing either 
thiophene or pyrrole (Figure 6b), we observe that the incorporation of such electron-
rich monomers is predicted to lead to co-polymers with inherently shallow IP and EA 
values. At the same time, the optical gap values of such materials are low compared to 
those of the total co-polymer population screened. While this latter property is 
conducive to water splitting applications – resulting in a greater rate of photon 
absorption – shallow IP values mean that the thermodynamic driving force for the 
oxidation of water and, to a lesser extent, sacrificial electron donors such as 
triethylamine, is largely absent. Conversely, co-polymers containing electron-poor 
monomeric units (pyridine, diazine, see Figure 6d) are predicted to generally have 
deep(er) IPs – an attractive property for water oxidation – while retaining the 
necessary thermodynamic driving force for proton reduction. On the other hand, as a 
result of these significantly more positive IP potentials, many of these co-polymers 
also show the widest optical gaps of the overall co-polymer population. Essentially, 
these two extremes highlight the central challenge of optimising activity9,48 and high-
throughput screening for water splitting photocatalysts – balancing the trade-off 
between adequate light absorption and thermodynamic reduction and oxidation 
driving forces. In this context, the high-throughput method described here provides a 
means of screening very large numbers of co-polymers – even beyond simple binary 
compositions – in a search for a material with an ideal balance between driving force 
and light absorption. 
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Perspective

As demonstrated above using an xTB-based semi-empirical screening approach one 
can rapidly screen thousands to tens of thousands of (co-)polymers with an accuracy 
that is comparable to that which could be obtained using DFT. As such one can 
consider orders of magnitude more polymers than it is possible to screen 

Figure 6. a) Binary co-polymer screening results obtained by exhaustive combination of a small library 
of simple monomers. b) Results for a subset of co-polymers containing electron-rich monomers 
(thiophene, pyrrole). c) Results for a subset of co-polymers containing electron-poor monomers 
(pyridine, diazine). d) Monomer library used to produce points shown in a), of which points in b) and 
c) are subsets. Upward (downward) triangles indicate IP (EA) values.

experimentally, even using robotic synthesis and characterisation platforms. While 
not sufficient to sample even all possible binary co-polymers based on commercially 
available monomers, it does become possible, for example, to screen families of co-
polymers that share a common monomer, and suggest the best hundred or so for 
experimental follow-up work – something we are currently actively pursuing together 
with our experimental collaborators. Studying larger search spaces probably still 
requires a transition from semi-empirical methods to a machine learning approach. 
Semi-empirical methods are still useful here in terms of generating the large amount 
of data required for training such models.

The same considerations also apply when screening sequence isomers or conformers. 
As we have shown above, the former can be a useful tool to understand what could be 
achieved experimentally if one could control the exact polymer sequence. It can also 
be useful to understand the properties of true random co-polymers, especially if it 
could be combined with some weighting for how likely a particular sequence isomer 
is to form, e.g. by applying Boltzmann weighting using the GFN-xTB total energies. 
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Perhaps the biggest challenge will be to go beyond considering only IP, EA and 
optical gap values to also include, for example, transport properties, in the screening 
of overall composition space or sequence isomerism. While there is no fundamental 
constraint on doing so, and this indeed has been attempted before for hole transport in 
the context of polymers for organic photovoltaics,49 only intramolecular contributions 
to transport, which do not depend on knowing the intermolecular structure of 
materials, can be rapidly screened for. Related to this, if transport is indeed relevant it 
probably makes most sense to compare predictions for materials with experimentally 
similar particle sizes and hence similar path lengths for transport. Something that is 
probably difficult to realise in practice. Similar considerations also apply for other 
experimental variables, such as the concentration of intentionally-added metal co-
catalyst and/or leftover noble metal content from polymer synthesis routes. 

Conclusions

Besides successfully demonstrating the utility of our low-cost computational 
workflow for screening polymer photocatalysts, we also demonstrated that 
conformational degrees of freedom have little influence on optoelectronic properties 
of polymers that are pertinent to their photocatalytic activity. The ionisation potential 
and electron affinity of a polymer, which control the thermodynamic driving force for 
proton reduction and water oxidation, respectively, as well as the polymer’s optical 
gap are predicted to typically change by less than 0.1 (e)V in between low-energy 
conformers. We have also shown that sequence isomerism in (binary) co-polymers 
can lead to large variations in these properties between different sequence isomers. 
This is helpful in understanding the properties of random co-polymers relative to their 
ordered counterparts, as well as suggests that synthetic control of the polymer 
sequence beyond simple alternating co-polymers might be beneficial in optimising a 
polymer’s photocatalytic activity. Finally, we found that, in line what we knew from 
more limited previous work, introducing electron-rich co-monomers is predicted to 
consistently result in co-polymers with small optical gaps but low or negligible 
thermodynamic driving force for water oxidation, while introducing electron-poor co-
monomers is predicted to have the opposite effect. 

Acknowledgements

We thank Catherine Aitchison, Yang Bai, Dr. Enrico Berardo, Prof. Andrew I. 
Cooper, Dr. Kim Jelfs, Christian Meier Dr. Reiner Sebastian Sprick and Lucas 
Turcani for useful discussion. The UK Engineering and Physical Sciences Research 
Council (EPSRC) is acknowledged for funding (EP/N004884/1). I.H.A. thanks 
University College London for a PhD. stipend.

References

1 K. Fujishima, A. and Honda, A. Fujishima and K. Honda, Nature, 1972, 238, 
37.

2 S. Yanagida, A. Kabumoto, K. Mizumoto, C. Pac and K. Yoshino, J. Chem. 
Soc. Chem. Commun., 1985, 474–475.

Page 11 of 14 Faraday Discussions

Fa
ra

da
y

D
is

cu
ss

io
ns

A
cc

ep
te

d
M

an
us

cr
ip

t

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 1

3 
D

ec
em

be
r 

20
18

. D
ow

nl
oa

de
d 

on
 2

/6
/2

01
9 

9:
14

:2
3 

PM
. 

 T
hi

s 
ar

tic
le

 is
 li

ce
ns

ed
 u

nd
er

 a
 C

re
at

iv
e 

C
om

m
on

s 
A

ttr
ib

ut
io

n 
3.

0 
U

np
or

te
d 

L
ic

en
ce

.

View Article Online

DOI: 10.1039/C8FD00171E

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://dx.doi.org/10.1039/c8fd00171e


3 T. Shibata, A. Kabumoto, T. Shiragami, O. Ishitani, C. Pac and S. Yanagida, J. 
Phys. Chem., 1990, 94, 2068–2076.

4 X. Wang, K. Maeda, A. Thomas, K. Takanabe, G. Xin, J. M. Carlsson, K. 
Domen and M. Antonietti, Nat. Mater., 2009, 8, 76–80.

5 Y. Sui, J. Liu, Y. Zhang, X. Tian and W. Chen, Nanoscale, 2013, 5, 9150–
9155.

6 J. Liu, Y. Liu, N. Liu, Y. Han, X. Zhang, H. Huang, Y. Lifshitz, S.-T. Lee, J. 
Zhong and Z. Kang, Science (80-. )., 2015, 347, 970–974.

7 L. Lin, C. Wang, W. Ren, H. Ou, Y. Zhang and X. Wang, Chem. Sci., 2017, 8, 
5506–5511.

8 P. Bornoz, M. S. Prévot, X. Yu, N. Guijarro and K. Sivula, J. Am. Chem. Soc., 
2015, 137, 15338–15341.

9 R. S. Sprick, C. M. Aitchison, E. Berardo, L. Turcani, L. Wilbraham, B. M. 
Alston, K. E. Jelfs, M. A. Zwijnenburg and A. I. Cooper, J. Mater. Chem. A, 
2018, 6, 11994–12003.

10 R. S. Sprick, B. Bonillo, R. Clowes, P. Guiglion, N. J. Brownbill, B. J. Slater, 
F. Blanc, M. A. Zwijnenburg, D. J. Adams and A. I. Cooper, Angew. Chemie - 
Int. Ed., 2016, 55, 1792–1796.

11 D. J. Woods, R. S. Sprick, C. L. Smith, A. J. Cowan and A. I. Cooper, Adv. 
Energy Mater., 2017, 7, 1–6.

12 C. Yang, B. C. Ma, L. Zhang, S. Lin, S. Ghasimi, K. Landfester, K. A. I. Zhang 
and X. Wang, Angew. Chemie - Int. Ed., 2016, 55, 9202–9206.

13 X. Zong, X. Miao, S. Hua, L. An, X. Gao, W. Jiang, D. Qu, Z. Zhou, X. Liu 
and Z. Sun, Appl. Catal. B Environ., 2017, 211, 98–105.

14 R. S. Sprick, L. Wilbraham, Y. Bai, P. Guiglion, A. Monti, R. Clowes, A. I. 
Cooper and M. A. Zwijnenburg, Chem. Mater., 2018, 30, 5733–5742.

15 Z. Zhang, J. Long, L. Yang, W. Chen, W. Dai, X. Fu and X. Wang, Chem. Sci., 
2011, 2, 1826–1830.

16 S. Chu, Y. Wang, Y. Guo, P. Zhou, H. Yu, L. Luo, F. Kong and Z. Zou, J. 
Mater. Chem., 2012, 22, 15519–15521.

17 Z. A. Lan, Y. Fang, Y. Zhang and X. Wang, Angew. Chemie - Int. Ed., 2018, 
57, 470–474.

18 R. S. Sprick, J. X. Jiang, B. Bonillo, S. Ren, T. Ratvijitvech, P. Guiglion, M. A. 
Zwijnenburg, D. J. Adams and A. I. Cooper, J. Am. Chem. Soc., 2015, 137, 
3265–3270.

19 J. Bi, W. Fang, L. Li, J. Wang, S. Liang, Y. He, M. Liu and L. Wu, Macromol. 
Rapid Commun., 2015, 36, 1799–1805.

20 K. Schwinghammer, S. Hug, M. B. Mesch, J. Senker and B. V. Lotsch, Energy 
Environ. Sci., 2015, 8, 3345–3353.

21 R. S. Sprick, B. Bonillo, M. Sachs, R. Clowes, J. R. Durrant, D. J. Adams and 
A. I. Cooper, Chem. Commun., 2016, 52, 10008–10011.

22 L. Li, W. Y. Lo, Z. Cai, N. Zhang and L. Yu, Macromolecules, 2016, 49, 

Page 12 of 14Faraday Discussions

Fa
ra

da
y

D
is

cu
ss

io
ns

A
cc

ep
te

d
M

an
us

cr
ip

t

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 1

3 
D

ec
em

be
r 

20
18

. D
ow

nl
oa

de
d 

on
 2

/6
/2

01
9 

9:
14

:2
3 

PM
. 

 T
hi

s 
ar

tic
le

 is
 li

ce
ns

ed
 u

nd
er

 a
 C

re
at

iv
e 

C
om

m
on

s 
A

ttr
ib

ut
io

n 
3.

0 
U

np
or

te
d 

L
ic

en
ce

.

View Article Online

DOI: 10.1039/C8FD00171E

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://dx.doi.org/10.1039/c8fd00171e


6903–6909.

23 L. Li, Z. Cai, Q. Wu, W. Y. Lo, N. Zhang, L. X. Chen and L. Yu, J. Am. Chem. 
Soc., 2016, 138, 7681–7686.

24 C. B. Meier, R. S. Sprick, A. Monti, P. Guiglion, J. S. M. Lee, M. A. 
Zwijnenburg and A. I. Cooper, Polym. (United Kingdom), 2017, 126, 283–290.

25 S. Kuecken, A. Acharjya, L. Zhi, M. Schwarze, R. Schomäcker and A. 
Thomas, Chem. Commun., 2017, 53, 5854–5857.

26 L. Stegbauer, K. Schwinghammer and B. V. Lotsch, Chem. Sci., 2014, 5, 
2789–2793.

27 V. S. Vyas, F. Haase, L. Stegbauer, G. Savasci, F. Podjaski, C. Ochsenfeld and 
B. V. Lotsch, Nat. Commun., 2015, 6, 1–9.

28 P. Pachfule, A. Acharjya, J. Roeser, T. Langenhahn, M. Schwarze, R. 
Schomäcker, A. Thomas and J. Schmidt, J. Am. Chem. Soc., 2018, 140, 1423–
1427.

29 X. Wang, L. Chen, S. Y. Chong, M. A. Little, Y. Wu, W.-H. Zhu, R. Clowes, 
Y. Yan, M. A. Zwijnenburg, R. Sebastian Sprick and A. I. Cooper, Nat. Chem., 
2018, 10, 1180-1189.

30 P. Guiglion, C. Butchosa and M. A. Zwijnenburg, J. Mater. Chem. A, 2014, 2, 
11996–12004.

31 C. Butchosa, P. Guiglion and M. A. Zwijnenburg, J. Phys. Chem. C, 2014, 118, 
24833–24842.

32 P. Guiglion, A. Monti and M. A. Zwijnenburg, J. Phys. Chem. C, 2017, 121, 
1498–1506.

33 L. Wilbraham, E. Berardo, L. Turcani, K. Jelfs and M. Zwijnenburg, J. Chem. 
Inf. Mod. 2018, DOI: 10.1021/acs.jcim.8b00256.

34 S. Grimme, C. Bannwarth and P. Shushkov, J. Chem. Theory Comput., 2017, 
13, 1989–2009.

35 S. Grimme and C. Bannwarth, J. Chem. Phys., 2016, 145, 054103.

36 V. Ásgeirsson, C. A. Bauer and S. Grimme, Chem. Sci., 2017, 8, 4879–4895.

37 D. Weininger, J. Chem. Inf. Comput. Sci., 1988, 28, 31–36.

38 L. Turcani, E. Berardo and K. E. Jelfs, J. Comput. Chem., 2018, 39, 1931–
1942.

39 supramolecular-toolkit, https://github.com/supramolecular-toolkit/stk, 
(accessed 30 October 2018).

40 The RDKit Documentation, http://www.rdkit.org/docs/, (accessed 30 October 
2018).

41 S. Riniker and G. A. Landrum, J. Chem. Inf. Model., 2015, 55, 2562–2574.

42 T. A. Halgren, J. Comput. Chem., 1996, 17, 490–519.

43 C. Bannwarth and S. Grimme, Comput. Theor. Chem., 2014, 1040–1041, 45–
53.

44 xtb - An extended tight-binding semi-empirical program package, 

Page 13 of 14 Faraday Discussions

Fa
ra

da
y

D
is

cu
ss

io
ns

A
cc

ep
te

d
M

an
us

cr
ip

t

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 1

3 
D

ec
em

be
r 

20
18

. D
ow

nl
oa

de
d 

on
 2

/6
/2

01
9 

9:
14

:2
3 

PM
. 

 T
hi

s 
ar

tic
le

 is
 li

ce
ns

ed
 u

nd
er

 a
 C

re
at

iv
e 

C
om

m
on

s 
A

ttr
ib

ut
io

n 
3.

0 
U

np
or

te
d 

L
ic

en
ce

.

View Article Online

DOI: 10.1039/C8FD00171E

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://dx.doi.org/10.1039/c8fd00171e


https://www.chemie.uni-bonn.de/pctc/mulliken-center/software/xtb/xtb, 
(accessed 30 October 2018).

45 sTDA - A simplified Tamm-Dancoff density functional approach for electronic 
excitation spectra, https://www.chemie.uni-bonn.de/pctc/mulliken-
center/software/stda/stda, (accessed 30 October 2018).

46 sequence-generator, https://github.com/ZwijnenburgGroup/sequence-generator, 
(accessed 6 November 2018).

47 N. E. Jackson, B. M. Savoie, K. L. Kohlstedt, T. J. Marks, L. X. Chen and M. 
A. Ratner, Macromolecules, 2014, 47, 987–992.

48 P. Guiglion, C. Butchosa and M. A. Zwijnenburg, Macromol. Chem. Phys., 
2016, 217, 344–353.

49 N. M. O'Boyle, C. M. Campbell and G. R. Hutchison, J. Phys. Chem. C, 2011, 
115, 16200–16210.

Page 14 of 14Faraday Discussions

Fa
ra

da
y

D
is

cu
ss

io
ns

A
cc

ep
te

d
M

an
us

cr
ip

t

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 1

3 
D

ec
em

be
r 

20
18

. D
ow

nl
oa

de
d 

on
 2

/6
/2

01
9 

9:
14

:2
3 

PM
. 

 T
hi

s 
ar

tic
le

 is
 li

ce
ns

ed
 u

nd
er

 a
 C

re
at

iv
e 

C
om

m
on

s 
A

ttr
ib

ut
io

n 
3.

0 
U

np
or

te
d 

L
ic

en
ce

.

View Article Online

DOI: 10.1039/C8FD00171E

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://dx.doi.org/10.1039/c8fd00171e

