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Two-timescale stochastic Langevin propagation for classical and quantum optomechanics
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Interesting experimental signatures of quantum cavity optomechanics arise because the quantum back-action
induces correlations between incident quantum shot noise and the cavity field. While the quantum linear
theory of optomechanics (QLT) has provided vital understanding across many experimental platforms, in
certain new setups it may be insufficient: analysis in the time domain may be needed, but QLT obtains
only spectra in frequency space; and nonlinear behavior may be present. Direct solution of the stochastic
equations of motion in time is an alternative, but unfortunately standard methods do not preserve the important
optomechanical correlations. We introduce two-timescale stochastic Langevin (T2SL) propagation as an efficient
and straightforward method to obtain time traces with the correct correlations. We show that T2SL, in contrast
to standard stochastic simulations, can efficiently simulate correlation phenomena such as ponderomotive
squeezing and reproduces accurately cavity sideband structures on the scale of the applied quantum noise
and even complex features entirely submerged below the quantum shot noise imprecision floor. We investigate
nonlinear regimes and find that, where comparison is possible, the method agrees with analytical results obtained
with master equations at low temperatures and in perturbative regimes.
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I. INTRODUCTION

The field of optomechanics offers a rich arena for inves-
tigation of quantum effects, at mesoscopic or macroscopic
scales, on a wide range of experimental platforms including
cantilevers, microtoroids, membranes, and photonic crystals
[1–3]. Cavity optomechanics allows manipulation and readout
of the states of small mechanical oscillators via interaction
with a cavity optical mode which is intrinsically nonlinear.
The hugely successful quantum linear theory (QLT) of op-
tomechanics has been used to analyze major experimental
milestones; its ease of use and versatility means it is arguably
the most widely used analytical tool in cavity optomechanics.
But the importance of nonlinear regimes has also been recog-
nizsed [4–8], given possibilities for nonclassical state prepa-
ration and quantum nondemolition (QND) measurements. In
certain cases, analysis of nonlinearities via perturbative or
quantum master equation approaches may be used; but this is
not always the case as nonlinearities in recent experiments can
be large [9,10], or quantum optomechanical effects are seen at
higher temperatures [11,12] where the state space is too large.

We have shown previously that nonlinearities are impor-
tant in recent experiments involving levitated nanoparticles
which exhibit strong nonlinear position coupling to light,
with couplings of g ∝ cos2 kx̂ [13,14]; other optically trapped
setups exhibit Gaussian position couplings [15,16]. Further,
the dynamics can evolve in time from strongly nonlinear
to linear regimes [14], so temporal analysis is useful. New
methods of processing and filtering of the optomechani-
cal experimental time trace (prior to Fourier transforming)
have been demonstrated experimentally [17,18], which further
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motivates analysis in the time domain. However, QLT does not
allow nonlinearity; nor does it yield temporal behaviors as it
directly yields power spectral densities (PSDs) in frequency
space.

Attention is thus turning to explicit solutions of the under-
lying nonlinear classical or semiclassical stochastic equations
of motion, and these have proved extremely successful for
simulation of experiments in cavities [14,19] or other optically
trapped setups [18,20], for temporal cooling dynamics as well
as asymptotic, steady-state regimes.

Solution of the stochastic equations of motion is in princi-
ple straightforward and may be implemented with standard
methods and widely available tools [21]. What is not so
widely appreciated is that the normal propagation methods
fail to preserve the vital important correlations between in-
coming quantum shot noise ain and the calculated intracavity
field a(t ), mediated by the backaction. For fully thermal
optomechanical regimes this is not a problem, but otherwise
including these correlations correctly is essential. The impre-
cision quantum-noise–back-action correlations underlie two
central signatures of quantum optomechanics: ponderomotive
squeezing of the optical field and Raman sideband asymmetry
[22–29]. The optimal balance between incoming imprecision
noise and the back-action component yields the standard
quantum limit (SQL) of force and displacement sensing;
squeezing is being investigated as a means to overcome this.

The failure of the standard solutions to preserve noise cor-
relations is not because the Langevin equations replace quan-
tum operators by classical complex functions â(t ) → a(t ).
These correlations remain relevant even in nonquantum
regimes, where their effects are termed noise squashing rather
than noise squeezing [30].

The problem is that while the measured signal obtains the
output signal âout (t ) incorporating correctly all correlations,
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the calculated signal must rebuild them from an input-output
relation such as âout (t ) = âin − √

κâ(t ) for a single-sided
cavity. Preserving correlations between the Markovian shot
noise [〈âin(t )â†

in(t ′)〉 = δ(t − t ′)] and the intracavity dynam-
ics necessitates the complete history of the noise.

In other words, for a measured signal of length T , the
experimental time trace is sampled on a not too small time
step �t , so the dimension N = T/�t allows for Fourier
transforming, filtering, or another further analysis. In contrast,
for the corresponding theoretical spectrum of span T , the
Wiener increments (stochastic noise) are applied on the com-
putational time step δt � �t , so any trace with the full noise
history is so long Nδt = T/δt 	 N that even a simple fast
Fourier transform (FFT), let alone more complicated temporal
analyses (e.g., [17]), become impractical; one may attempt to
sample them: this maintains thermal features but would erase
the correlation information.

In the present work we propose and test the two-timescale
stochastic Langevin method (T2SL), a temporal propagation
technique that reproduces these correlations. The first step
is to separate deterministic and stochastic components of
the propagation. The simple premise is that a bath applying
much stronger (but far fewer) kicks of variance ∼�t 	 δt

has an equivalent effect. Hence we intersperse deterministic
propagation with noise from a (still Gaussian) distribution of
higher variance. We can then judiciously pair the N noise
contributions to obtain cavity output fields with the correct
correlations.

Comparisons with QLT in linear regimes show the method
is accurate and robust enough to easily obtain sideband struc-
tures down to the scale of the applied quantum shot noise;
in fact it reproduces nontrivial dynamical features completely
“submerged” in the quantum shot noise floor and correspond-
ing to near-ground-state occupancy. Such features would be
considered “beyond the SQL” and would, in experiments, be
reported as significant signatures of quantum optomechanics.
It is known that such quantum squeezing can be described
by linear theory even semiclassically [31]. However, to date,
a correlated explicit stochastic demonstration of sidebands
“beyond” the SQL has not been demonstrated. It requires
only modest, single-desktop computational effort. We then
investigate nonlinear regimes and compare with quantum
perturbative methods where possible.

In Sec. II we briefly introduce standard optomechanical
equations, mainly to define notation, so readers familiar with
cavity optomechanics and QLT can move past this section. In
Sec. III we introduce T2SL. In Sec. IV we test the accuracy of
the correlated T2SL in a broad range of scenarios to reproduce
squeezing, including displacement sidebands weak enough
to be below the shot noise floor. Thus the significant and
surprising finding here is that the quantum limit of weak shot
noise is easily achievable (i.e., that the weaker the sideband,
the more challenging is the stochastic averaging required to
calculate it). We compare with the results of temporal filtering.
Such filtering is of course not possible in QLT. We apply
T2SL to the nonlinear regime. To test the method we compare
with perturbative nonlinear results obtained in [6] but use it
to investigate squeezing in the presence of stronger nonlinear
coupling, at higher phonon occupancies. Finally in Sec. V
we discuss how the method may complement and augment

QLT in the context of quantum optomechanics, and we
conclude.

II. CAVITY OPTOMECHANICS

The simplest optomechanical systems couple a mechanical
oscillator to another oscillator corresponding to the optical
mode of a cavity, and the essential physics is well described
by the Hamiltonian

Ĥ = h̄�â†â +
[

p̂2

2m
+ 1

2
mω2

Mx̂2

]
+ Ĥint + Ĥdiss. (1)

In the first term, â (â†), represent annihilation (creation) oper-
ators of the optical field mode, which is coupled to a mechan-
ical oscillator with displacement operator x̂ = xzpf (b̂ + b̂†),
where b̂ (b̂†) represent the annihilation (creation) operators of
the mechanical mode and xzpf = √

h̄/2mωM . Below we set
h̄ = 1.

Ĥint represents the light matter interaction while Ĥdiss

represent dissipative processes; for the well-known linear
coupling case, Ĥint = G0â

†âx̂ where G0 is the one-photon
coupling strength. To date a linearized analysis considering
small fluctuations about the mean, â → ᾱ + â(t ) with effec-
tive coupling Ĥint = g1(â† + â)x̂ where g1 ≡ G0ᾱ, has pro-
vided a successful bridge between theory and experiment in
numerous optomechanics studies. Nonlinear dynamics arising
from position squared coupling Hint = g2(â† + â)x̂2 can also
arise. Unfortunately, nonlinearity (whether optical or position
squared) has proved difficult to investigate experimentally
as it was not previously possible to achieve strong enough
coupling strengths; however, new experiments have demon-
strated larger or extremely high nonlinear couplings [10,32].
In addition, at higher temperatures, experiments with levitated
particles also show x2 dynamics [14].

It is straightforward to generalize the dynamics to higher
numbers of optical and mechanical modes which are di-
rectly or indirectly coupled in the equations of motion and
are subjected to corresponding noise baths (e.g., photon
shot noise for the optical modes, or incoming phonons
for the mechanical modes). We can represent these cou-
pled optical and mechanical modes by a vector X(t ) =
(â1 â

†
1 â2 â

†
2 · · · b̂1 b̂

†
1 · · ·)T

, where the âj for
j = 1, 2, . . . are different optical modes, for instance for
readout, cooling, or control. Similarly the b̂i represents the
mechanical modes (either distinct mechanical oscillators or
different degrees of freedom of a single oscillator). The
evolution of this N -dimensional vector, for any instance of
linearized optomechanics, is given by the form

Ẋ = A(t )X +
√

�ζ (t ), (2)

where A(t ) is an N × N dimensioned drift matrix,
which in general (say in modulated optomechanics)
can depend explicitly on time, while

√
� = diag

(
√

κ
√

κ · · · √
γ

√
γ · · ·) represents a diagonal

matrix of damping coefficients while ζ (t ) = âin,1(t )
â
†
in,1(t ) · · · b̂in,1(t ) b̂

†
in,1(t ) · · · T represents the (usually

Gaussian) noise baths acting on each mode. The j th element
of the vector is (AX)(j ) = 1

i
[X(j ), Ĥ ] − 1

2 (�X)(j ).
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For the simplest case of one optical mode and one mechan-
ical oscillator, the individual equation for the readout (meter)
intracavity field (we take â1 ≡ â below) becomes simply

˙̂a =
(
i� − κ

2

)
â + igα(b̂ + b̂†) + √

κâin. (3)

Solution of Eq. (2) yields the intracavity dynamics. Com-
parison with experiment requires the further step of obtaining
the output mode âout = âin − √

κâ(t ) between the impreci-
sion noises âin incident on the cavity and the intracavity field
â(t ). In addition, measurement of the output field by balanced
homodyne or heterodyne detection involves the amplification
of the signal by beating with an external reference oscillator.
For phase θ one measures Xθ = â(t )e−i(�T +θ ) + â†(t )ei(�t+θ )

where the heterodyne frequency is � and where � = 0 for
homodyne detection. This corresponds to detection of a fixed
optical quadrature (homodyne detection) or a rotating quadra-
ture (heterodyne detection). The power spectral density (PSD)
is SXθXθ

(ω) = 〈|Xθ (ω)|2〉.
For QLT, the PSD is obtained by transforming Eq. (2) into

Fourier space and the averaging of the noise (denoted by the
〈 〉) by substituting noise correlators. The PSD can also be
expressed in terms of the cavity field components:

SXθXθ
(ω) = Sââ† (ω) + Sâ†â (ω) + Sâ†â† (ω)e2iθ + Sââ (ω)e−2iθ ,

hence the PSD is the sum of an incoherent part and correla-
tions Scorr = Sâ†â† (ω)e2iθ + Sââ (ω)e−2iθ (in effect the result
of correlations established via the mechanical oscillator be-
tween the quadratures of the optical fields).

While the standard linear regime of optomechanics is well
understood, new types of dynamics arising from modulation
of experimental parameters still motivate the development
of new approaches to calculation of the spectra [14,19,33]
within the ambit of QLT, which involves a fully quantum
solution. However the time trace is not obtained from a QLT
solution, which yields only steady state spectral functions.
The measured power spectral density (PSD) in contrast is
obtained by a Fourier transform (FT) of the experimental time
trace, with suitable ensemble averaging.

The corresponding semiclassical equations may be solved
in the time domain. Their form is equivalent to Eq. (2),
but replacing operators with their expectation values, thus
â → 〈a〉 and b̂ → 〈b〉. This approximation is discussed in
optomechanics textbooks (e.g., Chap. 2 of [3]) and is valid
when quantum fluctuations are small, thus for reasonably
high photon and phonon occupancies. The former is the
case in the majority of cavity optomechanics experiments
where the cavity photon number 	1. Numerical tests with
QLT show excellent agreement for phonon occupancies down
to nm ∼ 10.

Generalizsing the solution of stochastic equations of mo-
tion for the nonlinear case represents a straightforward modi-
fication even for multiple interacting modes:

Ẋ = A(X, t ) +
√

�ζ (t ). (4)

In this case, QLT is not valid, but semiclassical solutions in
the time domain are possible. The classical equations may be
solved by standard packages such as XMDS [21,34].

However, the explicit stochastic propagation of either
Eq. (2) or Eq. (4) does not show the nontrivial correlations

established in the output mode âout = âin − √
κâ(t ) between

the imprecision noises âin incident on the cavity and the
intracavity field â(t ) arising from back-action, mediated by
the mechanical motion which motivates the T2SL method
presented below.

III. T2SL

Numerical propagation of Eq. (4) proceeds via an incre-
ment:

X(t + δt ) − X(t ) ≡ dX(t ) = F (A, ζ (t )). (5)

In general, this is constructed via an increment F which
can depend on both deterministic as well as stochastic noise
terms. Here we start by adopting rather a propagation method
which employs independent increments for the deterministic
and stochastic terms, such as the stochastic Runge-Kutta
algorithm [35]. For the optomechanics problems where the
stochastic components are weighted by a simple constant ma-
trix, convergence is robust, so we may write for our increment
dX(t ) = R(A)δt + dW(δt ), where R(A)δt denotes, e.g., (de-
terministic) Runge-Kutta propagation for a time interval δt ,
and dW(δt ) represents Gaussian noise baths of zero mean and
of variance

√
δt for the optical and mechanical modes.

However, the problem still remains that to simulate an
experimental trace of duration T the number of propagation
steps NT = T/δt 	 107 is extremely large, so preserving
the correlations generated by the full history of all these
Markovian kicks would still be unfeasible. Hence for T2SL
we introduce a much larger time step �t for the noise kicks.

The first stage is deterministic propagation for an
interval �t :

X(t + �t−) =
∫ t+�t−

t

A(X, t )dt, (6)

where the integral indicates propagation of the coupled equa-
tion of motion by some convenient numerical algorithm (tak-
ing many small time computational time steps δ) and where
t + �t− denotes the instant just before the noise “kick.”

This is followed by application of the Gaussian noise
increments:

X(t + �t ) = X(t + �t−) + dW(�t ). (7)

The correlators of the noise bath (Appendix C) are unchanged.
This is then repeated, to generate a time series {X(tj =
j�t )} for j = 1, 2, . . . , NK from a series of random kicks
dW(j )(�t ), where NK = T/�t � T/δt for a signal of length
T .

In the optomechanical systems of interest we have, for the
j th noise kicks at time tj , a vector

dW(j ) = (
dW

(j )
1 dW

(j )
2 · · · dW

(j )
k · · ·)T

= (√
κ (np + 1/2)ζ (j )

p · · · √
γ (nm + 1/2)ζ (j )

m · · ·)T
,

(8)

of dimension l = 1, 2, . . . , 2nmod, where nmod is the number
of independent modes (photon and mechanical, so 2nmod = N

corresponds to the dimension of the drift matrix in Eq. (2),
and where the corresponding ζ

(j )
p,m (photon and mechanical)
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are 2nmod Gaussian random numbers drawn from distribu-
tions of variance

√
�t . Here, np and nm are the occupan-

cies of the optical and thermal phonon baths respectively.
np = 0 corresponds to photon quantum shot noise. We note

that X(t ) = (· · · a(t ) a†(t ) · · · b(t ) b†(t )))
T

in-
cludes all modes.

We focus on the probe beam/readout mode a(t ), which
we take to be the lth element of X(t ). The corresponding
component in Eq. (7) which propagates the intracavity field of
this mode is a(t = j�t ) = a(t = j�t−) + dW

(j )
l . The above

is standard stochastic numerics, other than the fact that the
noise time step (and its variance) is much larger, �t 	 δt .
Numerical comparisons show that the intracavity field is
insensitive to this modification and excellent agreement with
QLT is still obtained in linear regimes.

The key step in T2SL is the propagation of the output field.
We consider the input-output form for a single-sided cavity,
âout = âin − √

κâ(t ), but our method is easily adapted to other
cases. This includes the case of nonideal detection and losses
in the optical system, modeled as a single loss port in a recent
experimental study [26]. We propose the following stochastic
increments for the correlated output field:

aout (tj = j�t ) = CdW
(j )
l − √

κ
[
a(j�t−) + dW

(j )
l

]
, (9)

where C is a constant. The second term (in square brackets) is
simply the update to the intracavity field, while the first term
is the imprecision noise. We choose the normalization C such
that the time series {CdW

(j )
l (tj )} gives a flat noise spectrum of

height np + 1/2 (and specifically height = 1/2 for quantum
shot noise for which np = 0). Here we took C = 1/(

√
κ�t )

but this can be adjusted for alternative implementations, e.g.,
depending on the FFT normalizations. The main point is to
set C such that if aout (tj ) = CdW

(j )
l , the required white noise

floor level is obtained, and to ensure that the same noise
kick dW

(j )
l is used in both terms in Eq. (9). Clearly the term

a(t = j�t−) contains the past history of kicks 1, 2, . . . , j −
1 which drive the dynamics and back-action. It carries all the
narrowband features that interfere with the imprecision floor.

However, we show below that this pairing of kicks in
Eq. (9) preserves the important correlations and so obtains
spectral features of both classical and even certain important
regimes of quantum optomechanics.

IV. APPLICATIONS OF T2SL

We now test and consider applications of T2SL to a variety
of regimes, including comparisons with spectra in quantum
regimes.

A. Linear: Quantum optical squeezing

The resultant explicit stochastic numerics are in excellent
agreement with results obtained from analytical quantum
noise spectra in linearized regimes. Figure 1(a) compares the
stochastic model and QLT analytical spectra corresponding
to recent experiments [26] on ponderomotive squeezing. The
comparison shows these regimes of phonon occupancies of
tens of quanta are easily calculated stochastically with modest

averaging of a few hundred trajectories, taking minutes of
CPU time on a desktop.

B. Linear: Modulated quantum optomechanics

Figure 1(b) presents a more much more challenging test of
T2SL: a regime modeling a levitated nanoparticle in a hybrid
optical cavity Paul trap in the quantum back-action limit. The
trapping potential introduces a temporal modulation which
introduces nonstationary components in the PSD calculations
and makes even the QLT much more complicated. The QLT
theory was developed in [19,33] but therein was only com-
pared with stochastics in thermal regimes. Further details are
in Appendix A.

Here we are able to compare the modulated QLT
with T2SL calculations. In back-action dominated regimes,
squeezing can lead to complicated sideband behavior com-
pletely immersed below the quantum imprecision floor. These
very small structures, on the order of a single quantum and
comparable to the noise, are more challenging to obtain.
Nevertheless with about 1000 trajectory averaging, a modest
calculation yields near exact agreement.

C. Temporal filtering of correlated signals

Figure 2 exemplifies the advantages of enabling direct
manipulation of temporal traces prior to the FFTs which yield
PSDs or other types of spectra. QLT does not allow this as
experimental comparison is only possible in frequency space,
yet such methods are proving useful in experiments [16,17]. In
particular [17] demonstrated a temporal technique to restore
homodyne-like features arising from correlations which are
eliminated in heterodyne detection. In [17] a time filter was
applied to the experimental time trace; then an FFT enabled
comparison with the appropriate QLT generated components.

Here we show that we can apply the filter directly to the
calculated T2SL trace. This means that filtering protocols can
be perfected and tested easily without the need for experi-
ments in squeezing regimes which are laborious and difficult.
It would be interesting to apply T2SL to other proposals such
as synodyne detection [36,37], which involves two heterodyne
reference signals, possibly in combination with filtering. It
may also be applied to recover nonstationary components in
such spectra or modulated optomechanics.

D. Nonlinear: Quantum optical squeezing

It is then straightforward to extend the method to systems
with nonlinearities, both optical and position squared; in fact
any other type of nonlinearity can thus be simulated and
the method may also be applied to other general situations
including dissipatively coupled systems. In Fig. 3 PSDs show-
ing both squeezing as well as the effects on nonlinearity are
shown. In Fig. 3(a) the x̂2 nonlinearity appears in the form
of mechanical sidebands at both ω = 0 and ω = 2ωM . The
central ω = 0 detected peak is far stronger; this is a straight-
forward effect of the cavity filtering since the calculations
corresponded to sideband-resolved regimes with ωM � κ/2
so the 2ωM is strongly suppressed; but it indicates the advan-
tages of detecting weak nonlinearities using the (not so well
studied) central DC peak, using careful balanced detection.
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FIG. 1. (a) T2SL reproduces accurately quantum ponderomotive squeezing effects. Comparison with analytical expressions of quantum
linearized theory of optomechanics (QLT) is excellent. The presence of correlations Scorr (ω) between optical field quadratures dependent
on the homodyne phase angle result in PSD values below the quantum noise floor. Parameters and results are similar to experimentally
observed behavior in quantum squeezing regimes seen in [26], using both a damping and readout optical beams. Left panels illustrate cuts
through the color map. The shot noise floor ≡ 1. The color map is in a logarithmic scale where white lines denote the shot noise floor and
dark blue indicates noise below the shot noise floor. (b) T2SL, surprisingly, perfectly reproduces sideband structures on the scale of the
quantum shot noise kicks. The figure illustrates an example with complex sideband structure completely below the quantum shot noise floor.
In levitated experiments with hybrid electro-optical traps both the optomechanical coupling g1(t ) = 2g1 sin ωdt and the mechanical frequency
ωM (t ) = ωM + 2ω2 cos (2ωdt ) are subject to slow modulations ωd � ωM , resulting in split-sideband peaks, split by 2ωd at ±ω = ωM ± ωd .
The QLT for this case was developed in [19,33]: with increasing ω2/ωd , the ωM + ωd peak is suppressed, then reappears. In squeezing regimes,
this second peak is fully submerged below the quantum noise floor: the phase change around the suppression point is well described by T2SL;
shot noise ≡ 1 so features in the right panels are all below this. Parameters are listed in Appendix D.

FIG. 2. Illustration of the use of filtering in the time domain.
T2SL provides a correlated time trace, thus allowing temporal pro-
cessing of the calculated heterodyne or homodyne signal, unlike
quantum linearized theory of optomechanics (QLT) which directly
returns spectra in the frequency domain. Ths figure illustrates the
temporal filtering technique termed r-heterodyne, developed and
experimentally tested in [17], which extracts homodyne features
from a heterodyne-detected spectrum using a temporal filter function.
A comparison between the filtered T2SL time trace and the predicted
spectrum Sââ† (� + ω) + Sâ† â (� − ω) + Sâ† â† (ω)e2iθ + Sââ (ω)e−2iθ

shows excellent agreement, showing the usefulness of T2SL cor-
related time traces for allowing the development of new temporal
filtering and signal processing methods. Parameters are the same as
in Fig. 1(a).

The clearest advantage is that the effects of squeezing are
strong near ω = 0 and, for a system with g1 ∼ g2, the SQL
can be overcome at the mechanical frequency itself, unlike
the case for pure linear coupling. All the simulations in Fig. 3
average over 500–1000 stochastic realizations.

E. Nonlinear: Comparison with quantum perturbative methods

In Fig. 4 we compare T2SL for a pure nonlinear (position
squared) coupling near zero temperature with analytical ex-
pressions obtained perturbatively in [6]. This was the most
challenging case numerically as the coupling is extremely
weak and involves an extreme quantum regime of low phonon
occupancy. It required tens of thousands of realizations. Al-
though not the most appropriate regime for T2SL, it indicates
that position-squared nonlinearities are also adequately cap-
tured by T2SL.

V. DISCUSSION: T2SL FOR QUANTUM OPTOMECHANICS

We have shown that T2SL accurately reproduces quan-
tum ponderomtive squeezing regimes. However, we note
that it does not obtain Raman sideband asymmetries,
another key experimental signature of the quantum op-
tomechanical regime which can arise from the quantum
back-action [38,39].
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FIG. 3. T2SL for nonlinear quantum optomechanics. T2SL is used in a regime combining linear and position-squared nonlinearity using the
parameters of Ref. [26], where the frequency of the mechanical oscillator is ωM/2π = 1.53 MHz. (a) A set of homodyne PSDs (for θ = 0.05π

in the left panels; as a function of θ in the right panels) for a system with optomechanical interaction Hint = g1(â† + â)x̂ + g2(â† + â)x̂2 with
parameter similar to Fig. 1(a) apart from the additional nonlinear g2 term. The top panel, for g2 = 0, shows a comparison with QLT. It shows
the interaction of ponderomotive squeezing with nonlinearity with increasing g2. Note that the central nonlinear peak (left panels) for weaker
nonlinearity g2 � 10−2g1 can be fully submerged below the quantum shot noise floor, indicated by red line. (b) Corresponding color maps
where black maps the region below quantum shot noise for different values of nonlinear position-squared coupling. Remaining parameters are
the same as in Fig. 1(a).

It is useful here to divide optomechanical quantum signa-
tures which arise from correlations between the quantum shot
noise and the intracavity field into two classes: (i) those that
are sensitive to the commutation relation 〈[âin(t ), â†

in(t ′)]〉 =

FIG. 4. T2SL for nonlinear quantum optomechanics. T2SL may
be employed in regimes of extremely low thermal occupancies nth �
1 of the mechanical oscillator. Here we have pure position-squared
nonlinearity (linear coupling g1 = 0) and optomechanical interaction
Hint = g2(â + â†)x̂2 and bath temperatures TB = 0, so it is possible
to compare with analytical perturbative results [6] (black line). The
figure shows the PSD of the cavity output and compares with Eq. (7)
of [6] for two values of detuning. Remaining parameters are listed in
Appendix D.

δ(t − t ′) (this includes Raman sideband asymmetry) and (ii)
those that are insensitive and yield the same calculated spectra
if one assumes 〈âin(t )â†

in(t ′)〉 = 〈â†
in(t )âin(t ′)〉 = 1/2δ(t − t ′)

(these include ponderomotive squeezing and quantum optical
correlations such as those obtained by homodyne detection
or cross-correlation spectra). One might argue that only the
former are “real” quantum optomechanical signatures while
the latter are classical phenomena. However, the insensitivity
is rather a result of the symmetrization of the detected spectra;
hence ponderomotive squeezing is an important signature of
quantum optomechanics.

Regardless of such classification, optical quantum squeez-
ing is at the heart of current schemes to achieve and over-
come the SQL in optomechanical displacement sensing. Al-
though there is currently much interest in the relation between
asymmetry in the mechanical sideband spectrum vis-à-vis
the cavity output spectrum [38,39] for different detection
scenarios, here there is no such ambiguity: the mechanical
spectrum is always symmetric for these Langevin simulations
of quantum squeezing. Nevertheless, the total sideband area
remains correct so the calculations are still useful for sensing
of displacement and forces as well as thermometry. Hence
T2SL offers a quite straightforward approach to investigate
these important regimes for both quantum noise squeezing
and classical noise squashing.

VI. CONCLUSION

We show that by means of a purely classical calcula-
tion using T2SL, one can accurately reproduce optomechan-
ical spectra below the standard quantum limit (SQL) in
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narrowband measurements where the homodyne measure-
ment falls below the shot noise imprecision floor. We have
investigated regimes with simultaneous linear and nonlinear
couplings. Even in linear regimes, T2SL complements QLT
since the method generates traces in the time domain. It
can also be employed in complex linear regimes (multimode
optomechanics, modulated optomechanics) as an independent
check of QLT. The advantage is that T2SL can then be
employed to explore regimes beyond the scope of the usual
linear analysis and temporal filtering.
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APPENDIX A: OPTOMECHANICAL
LANGEVIN EQUATIONS

The dynamics of a general, n-mode optomechanical sys-
tem is described by 2n coupled equations of motion which,
in matrix form, can be expressed as Ẋ = A(t )X + √

�ζ (t ).

For the simplest case where X = (â â† b̂ b̂†)
T
,

where â, b̂ are optical and mechanical modes, the lin-
earized, coupled Langevin equations in time are explicitly
given by

⎛
⎜⎜⎝

˙̂a(t )
˙̂a†(t )
˙̂b(t )
˙̂b†(t )

⎞
⎟⎟⎠ =

⎛
⎜⎝

i�(t ) − κ (t )/2 0 ig(t ) ig(t )
0 −i�(t ) − κ (t )/2 −ig(t ) −ig(t )

ig(t ) ig(t ) −iωM (t ) − γ (t )/2 0
−ig(t ) −ig(t ) 0 iωM (t ) − γ (t )/2

⎞
⎟⎠

⎛
⎜⎜⎝

â(t )
â†(t )
b̂(t )
b̂†(t )

⎞
⎟⎟⎠ +

⎛
⎜⎜⎜⎝

√
κâin(t )√
κâ

†
in(t )√

γ b̂in(t )
√

γ b̂
†
in(t )

⎞
⎟⎟⎟⎠,

(A1)

where in general the cavity detuning �, mechanical frequency
ωM, optomechanical coupling g, and the damping rates κ and
γ can be time dependent. Otherwise, the analytical solution of
Eq. (A1) is straightforward in frequency space. The position
x = (b̂ + b̂†)/

√
2 and optical amplitude quadrature y = (â +

â†)/
√

2 are

x(ω) = igμ(ω)y(ω) + √
γ X̂th(ω), (A2)

y(ω) = igη(ω)x(ω) + √
κŶin(ω), (A3)

where the input noises are

X̂th(ω) = χM (ω)b̂in(ω) + χ∗
M (−ω)b̂†in(ω), (A4)

Ŷin(ω) = χO (ω)âin(ω) + χ∗
O (−ω)â†

in(ω), (A5)

and where the mechanical and optical susceptibilities are

μ(ω) = χM (ω) − χ∗
M (−ω), (A6)

η(ω) = χO (ω) − χ∗
O (−ω), (A7)

with

χM (ω) = [−i(ω − ωM ) + γ /2]−1, (A8)

χO (ω) = [−i(ω + �) + κ/2]−1. (A9)

Note that simultaneously solving Eqs. (A2) and (A3) leads to
closed form solutions, which is not the case when we consider
time-dependent couplings, such as in a doubly modulated
optomechanical system.

Doubly modulated optomechanics

We consider the slow modulations

g(t ) = 2ḡ sin ωdt, (A10)

ωM (t ) = ω̄M + 2ω2 cos 2ωdt, (A11)

where ωd � ωM . Such a doubly modulated model explains
the split-sideband spectra from hybrid electro-optical trap
experiments [33]. Substituting Eqs. (A10) and (A11) in
Eq. (A1), while keeping other parameters constant, we obtain
in frequency space

x(ω) = ḡμ(ω)[y(ω + ωd ) − y(ω − ωd )]

+√
γ X̂th(ω) − iω2G(ω), (A12)

y(ω) = ḡη(ω)[x(ω + ωd ) − x(ω − ωd )]

+√
κŶin(ω). (A13)

We see in Eq. (A13) that the main effect of a modulated
g(t ) is to couple the optical field to the shifted position
operator, while a modulated ωM (t ) introduces a correction
term G(ω) = χM(ω)[b̂(ω + 2ωd ) + b̂(ω − 2ωd )] − H.c.
Ultimately, the G(ω) corrections conspire such that
the cross-correlation terms of the shifted spectrum
〈|x(ω + ωd ) − x(ω − ωd )|〉2 result in destructive interference
at ωM + ωd when ω2 ≈ √

2ωd . In the quantum regime, this
leads to subshot noise dynamics observed in Fig. 1(b) of the
main paper. It is straightforward to generalize to the case
where there are two optical modes: one for control, one for
readout (probe beam) [19].
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APPENDIX B: POWER SPECTRAL DENSITY
AND THE WIENER-KHINCHIN THEOREM

The power spectral density (PSD) gives the distribution
of power over frequency of a continuous, noisy signal. In
optomechanical experiments, the area under the PSD curve
of the probe signal is proportional to the temperature of the
mechanical oscillator, thus making the PSD a main quantity
of interest. The Wiener-Khinchin theorem guarantees that the
PSD can be calculated by taking the Fourier transform of the
autocorrelation function:

lim
T →∞

〈ũ(ω)[ṽ(ω)]†〉 = Suv† (ω), (B1)

where ũ(ω) = 1√
T

∫ T

0 dt eiωt û(t ) and [ṽ(ω)]† = 1√
T∫ T

0 dt e−iωt [v̂(t )]† are the gated Fourier transforms of any
two operators, and

Suv† (ω) =
∫ +∞

−∞
dt

∫ +∞

−∞
dτ eiωτ 〈û(t + τ )[v̂(t )]†〉

=
∫ +∞

−∞
dτ eiωτ 〈û(τ )[v̂(0)]†〉, (B2)

where we assumed in the second line a stationary signal, i.e.,
we can simply set t = 0.

R-heterodyne detection of correlations

For cavity experiments the measureable quantity is in fact
not the intracavity field but the cavity output:

âout(ω) = âin(ω) + √
κâ(ω), (B3)

where â(ω) consists of the cavity-filtered shot noise, thermal
noise from the mechanical mode, and the back-action noise
due to optical measurement of the mechanical motion. The in-
terference between the incoming noise âin(ω) and the cavity-
filtered shot noise together form the imprecision noise floor at
half a quanta, on which the thermal noise of the mechanical
oscillator sits. The imprecision noise is constant throughout
the full bandwidth but destructive interference with the op-
tical back-action noise can bring down the noise below the
Heisenberg limit, leading to ponderomotive squeezing.

The choice of detection method is crucial in revealing
this mechanically mediated optical squeezing. Heterodyne
detection combines the bright field of a beam, called the local
oscillator (LO), with the cavity output so as to be sensitive
only to the linear order of the cavity output:

Yhet (t ) = âout (t )e−i(θ+�t ) + â
†
out (t )ei(θ+�t ), (B4)

where θ is the LO phase, and � is its frequency. Setting � = 0
gives the homodyne signal:

Yhom(t ) = âout (t )e−iθ + â
†
out (t )eiθ . (B5)

Tuning θ allows us to measure different quadratures of the
cavity output, with θ = 0 (θ = π/2) probing the amplitude
(phase) quadrature.

Meanwhile, using Eq. (B1), we derive the heterodyne and
homodyne PSDs:

SYhet (ω) = Sââ† (ω + �) + Sâ†â (ω − �), (B6)

SYhom (ω) = Sââ† (ω) + Sâ†â (ω) + e−2iθ Sââ (ω) + e2iθ Sâ†â† (ω).

(B7)

We see that Eq. (B6) does not converge to Eq. (B7) in the
same way that Eq. (B4) converges to Eq. (B5) when we
take the limit � → 0. The terms Sââ (ω) and Sâ†â† (ω) where
ponderomotive squeezing originates are lost.

This loss of correlations can be traced back in the time
domain, when we calculate the autocorrelation function of a
nonstationary signal such as Yhet (t ). Substituting Eq. (B4) in
Eq. (B2), we obtain

SYhet (ω) = Sââ† (ω + �) + Sâ†â (ω − �)

+
∫ +∞

−∞
dt Scorr(ω, t ), (B8)

where Scorr(ω, t ) = Sââ (ω)e2i(θ+�t ) + Sâ†â† (ω)e−2i(θ+�t ). The
correlations acquire a time dependence that gets averaged out
due to the continuous nature of the measurement. The point of
r-heterodyning is to convolute the heterodyne signal with an
appropriate filter function so that Scorr(ω, t ) may be recovered,
thereby exposing optical squeezing.

APPENDIX C: HOMODYNE DETECTION OF
PONDEROMOTIVE SQUEEZING: INSENSITIVITY

TO NONCOMMUTATIVITY OF OPERATORS

In the main paper, we have classified quantum signatures
depending on whether or not they are sensitive to the quantum
noise correlators

〈âin(t ) â
†
in(0)〉 = δ(t ), 〈â†

in(t ) âin(0)〉 = 0,

〈b̂in(t ) b̂
†
in(0)〉 = (n̄ + 1)δ(t ), 〈b̂†in(t ) b̂in(0)〉 = n̄δ(t ),

(C1)

where the mean phonon number n̄ = [eh̄ωm/kBTb − 1]
−1

, and
Tb is temperature of the mechanical bath [40]. We show here
that the homodyne detection of ponderomotive squeezing is
insensitive to noncommutativity of operators, i.e., we can
classically simulate quantum squeezing by assuming instead
the noise correlators

〈〈âin(t ) â
†
in(0)〉 = 〈â†

in(t ) âin(0)〉 = 1
2δ(t ),

〈b̂in(t ) b̂
†
in(0)〉 = 〈b̂†in(t ) b̂in(0)〉 = (

n̄ + 1
2

)
δ(t ). (C2)
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Let us write Eq. (B3) as a function of the vacuum inputs of the optical and mechanical oscillators

âout (ω) = A1(ω)âin(ω) + A2(ω)â†
in + A3(ω)b̂in(ω) + A4(ω)b̂†in(ω), (C3)

where A1(ω), A2(ω), A3(ω), and A4(ω) are complex functions. Using the classical noise correlators we obtain

Sââ† (ω) = 1
2 |A1(ω)|2 + 1

2 |A2(ω)|2 + |A3(ω)|2(n̄ + 1
2

) + |A4(ω)|2(n̄ + 1
2

)
, (C4)

Sâ†â (ω) = 1
2 |A1(−ω)|2 + 1

2 |A2(−ω)|2 + |A3(−ω)|2(n̄ + 1
2

) + |A4(−ω)|2(n̄ + 1
2

)
, (C5)

Sââ (ω) = 1
2A1(ω)A2(−ω) + 1

2A1(−ω)A2(ω) + A3(ω)A4(−ω)
(
n̄ + 1

2

) + A3(−ω)A4(ω)
(
n̄ + 1

2

)
, (C6)

Sâ†â† (ω) = 1
2A∗

1(−ω)A∗
2(ω) + 1

2A∗
1(ω)A∗

2(−ω) + A∗
3(ω)A∗

4(−ω)
(
n̄ + 1

2

) + A∗
3(−ω)A∗

4(ω)
(
n̄ + 1

2

)
. (C7)

Meanwhile, using the quantum noise correlators (C1), we
have

Sââ† (ω) = |A1(ω)|2 + |A3(ω)|2(n̄ + 1) + |A4(ω)|2n̄, (C8)

Sâ†â (ω) = |A2(−ω)|2 + |A3(−ω)|2n̄ + |A4(−ω)|2(n̄ + 1),

(C9)

Sââ (ω) = A1(ω)A2(−ω) + A3(ω)A4(−ω)(n̄ + 1)

+A3(−ω)A4(ω)n̄, (C10)

Sâ†â† (ω) = A∗
1(ω)A∗

2(−ω) + A∗
3(ω)A∗

4(−ω)(n̄ + 1)

+A∗
3(−ω)A∗

4(ω)n̄. (C11)

Finally, in Eq. (B7), we substitute Eqs. (C4)–(C7),
then Eqs. (C8)–(C11), and symmetrize: S̄Yhom (ω) =
SYhom (ω)+SYhom (−ω)

2 .

APPENDIX D: PARAMETERS

Figure 1(a): Parameters correspond to the experiment in
[26]: mechanical frequency ωM/2π = 1.53 MHz, detuning
of the control and probe modes � = −ωM and �p/2π =
−21 kHz with g

(c)
1 /2π = 3.5 × 104 Hz for control beam

and g
(p)
1 /2π = 3.5 × 105 Hz for probe beam, cavity damping

κ/2π = 0.85 MHz, mechanical damping γ /2π = 0.22 Hz,
and bath temperature T = 4.6 K.

Figure 1(b): Parameters were taken from Refs. [19,33]:
ωM/2π = 50 kHz, � = −ωM , �p = 0, g

(c)
1 /2π = 5 kHz,

g
(p)
1 /2π = 50 kHz, ωd/2π = 1500 Hz, κ/2π = 100 kHz,

T = 300 K, and γ = 0 to isolate the quantum back-action
contribution.

Figures 2 and 3: Parameters are the same as in Fig. 1(a).
Figure 4: Parameters are similar to Ref. [6] (g(c)

1 = g
(p)
1 = 0):

ωM = 5κ , g2 = κ/2, γ = κ/10, and κ/2π = 0.85 MHz.
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