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Abstract 

Esophageal engineering aims to create replacement solutions by generating hollow organs 

using a combination of cells, scaffolds and regeneration-stimulating factors. Currently, the 

fate of cells on tissue-engineered grafts is generally determined retrospectively by 

histological analyses. Unfortunately, quality-controlled cell seeding protocols for 

application in human patients are not standard practice. As such, the field requires simple, 

fast and reliable techniques for non-invasive, highly specific cell tracking. Here, we show 

that bioluminescence imaging is a suitable method to track human mesoangioblast 

seeding of an esophageal tubular construct at every stage of the pre-clinical 

bioengineering pipeline. In particular, validation of bioluminescence imaging as 

longitudinal quantitative assessment of cell density, proliferation, seeding efficiency, 

bioreactor culture and cell survival upon implantation in vivo was performed against 

standard methods in 2D cultures and in 3D decellularized esophageal scaffolds. The 

technique is simple, non-invasive and provides information on mesangioblast distribution 

over entire scaffolds. Bioluminescence is an invaluable tool in the development of complex 

bioartificial organs and can assist in the development of standardized cell seeding 

protocols, with the ability to track cells from bioreactor through to implantation. 

Key Words: tissue engineering, transplantation, tissue scaffolds, bioluminescence 

Impact Statement 

Methodologies for incorporation of cells into tissue-engineered grafts, particularly at the 

later pre-clinical stages, are suboptimal and non-validated, and monitoring cell fate within 

scaffolds cultured in bioreactors and in vivo is challenging. In this study, we demonstrate 

how bioluminescence imaging can overcome these difficulties and allow quantitative cell-

tracking at multiple stages of the bioengineering pre-clinical pipeline. Our robust 

bioluminescence-based approach allowed reproducible longitudinal monitoring of 

mesoangioblast localization and survival in 2D/3D tissue culture, in organ-scale bioreactors 

and in vivo. Our findings will encourage the use of bioluminescence imaging in tissue 

engineering studies, improving the overall quality of cell-scaffold interaction research. 
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1. Introduction 

Esophageal tissue engineering aims to create a suitable replacement by following the 

principle of engrafting cells onto a tubular scaffold, creating a functional tissue or organ 

[1]. A common aim in tissue engineering endeavors is the development of robust, 

controlled protocols for cell seeding and 3D culture [2, 3]. While technology to seed cells 

onto scaffolds in controlled environments, or bioreactors, has developed rapidly, methods 

to monitor the fate of seeded cells has not kept pace [4, 5]. As such, tracking the 

engraftment, survival and proliferation of cells in esophageal constructs from organ-scale 

bioreactor studies through to in vivo implantation represents a challenge for the field, 

where validation is necessary for clinical translation [6, 7]. 

The mainstay methods to image and/or quantify cells on tissue-engineered esophageal 

scaffolds include scanning electron microscopy, metabolic activity assays, DNA 

quantification assays, flow cytometry, confocal microscopy and histochemistry. These 

techniques enable quantification and phenotypic analysis of seeded cells at a fixed time-

point but are limited by the requirement for termination of the experiment for analysis. 

Although technical replicates can be analyzed in parallel, longitudinal tracking of the same 

graft is not feasible. Moreover, these techniques limit analyses to small segments of grafts 

and cannot provide insight into the overall distribution of cells over the whole scaffold. 

Bioluminescence imaging (BLI) has been used to perform real-time analysis of disease 

burden, track exogenous cells and to determine the effectiveness of drugs, for example in 

cancer studies [8-10]. Cells are transfected with firefly luciferase, which catalyzes the 

oxidation of its substrate Luciferin - added to culture media at the time of imaging - to 

oxyluciferin, resulting in the release of energy in the form of light [11]. A highly sensitive, 

cooled charged coupled device (CCD) camera allows non-invasive imaging of the luciferase 

signal. A number of characteristics of this system have enabled its utility in bioengineering 

studies [12, 13]. Firstly, only living, transduced cells can emit light because the luciferase 

reaction is ATP-dependent [14]. Secondly, entire scaffolds can be analyzed simultaneously. 

Finally, the procedure is non-invasive, permitting real-time longitudinal monitoring of 

living cells in tissue culture, in ex vivo bioreactors and in vivo at multiple time-points [15]. 
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Mesoangioblasts are mesoderm-derived precursor cells, associated with small vessels and 

capillaries, and appear as a promising source of smooth muscle cells [16]. In particular, we 

recently reported the use of human mesoangioblasts for the reconstruction of an 

esophageal muscularis externa, making these cells an attractive tool for the bioengineering 

of other visceral organs as well [17]. One of the main challenges in the engineering of 

successful 3D organs is the optimization of robust methodologies. As part of our 

established culture system, here we validate tracking of primary hMABs in decellularized 

tubular esophageal scaffold at multiple levels of the pre-clinical tissue engineering 

workflow. We used transduced primary hMABs - derived from skeletal muscle - with a 

lentivirus carrying luciferase and the fluorescent protein ZsGreen, and compared BLI to 

established techniques for monitoring cells in 2D cultures such as MTT, which measures 

cellular metabolic activity, and CyQUANT, which measures the DNA content of cells. We 

further investigate cell seeding efficiency, proliferation and migration in scaffolds in both 

static and dynamic 3D cell culture conditions generated using a bioreactor described in our 

recent study in which we developed a multi-strata tubular esophageal substitute [17]. 

Finally, we demonstrate that BLI allowed the tracking of cell engraftment, survival and 

proliferation in vivo using a subcutaneous heterotopic xenograft model. 

2. Materials and Methods 

2.1. Stromal Cell Isolation and Culture 

Human mesoangioblasts (hMABs) were isolated from skeletal muscle biopsies from 

pediatric patients, with informed consent, during operations at Great Ormond Street 

Hospital, London, in accordance with ethical approval by the NHS Research Ethics 

Committee (REC Ref: 11/LO/1522). The Committee was constituted in accordance with the 

Governance Arrangements for Research Ethics Committees and complied fully with the 

Standard Operating Procedures for Research Ethics Committees in the UK. Cells were 

isolated according to previously published protocol [18]. Briefly, biopsies were dissected 

into small pieces (~2 mm3), removing possible adipose tissue and seeded on petri dishes 

coated with Matrigel (growth factor reduced, BD Biosciences) diluted 1:100. Muscle 

fragments were covered with proliferation medium [Megacell medium (Sigma), 5% fetal 
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bovine serum (FBS, Gibco), 1% non-essential amino acids (Gibco), 1% L-Glutamine (Gibco), 

1% Penicillin-Streptomycin (Gibco), 0.1 mM beta-mercaptoethanol and 5 ng/ml bFGF 

(Sigma Aldrich)] and incubated at 37°C, 5% O2 and 5% CO2. Cells were collected through 

trypsinization and passaged at 60-70% confluence for up to 10 passages. 

2.2. Lentivirus Preparation  

2.2.1. Lentivirus Production 

The lentiviral transfer vector pHIV-LUC-ZsGreen (Supplementary Fig. 1) was a gift from Dr. 

Bryan Welm (Department of Surgery, University of Utah, purchased through Addgene Inc. 

MA, USA, plasmid #39196) and was used to generate a lentivirus coding for ZsGreen 

florescent protein and firefly luciferase separated by an internal ribosome entry site (IRES), 

thereby enabling the two proteins to be translated from a single mRNA initiated by EF1-

alpha promoter. Along with this third generation lentivirus, we used the packaging 

plasmids pRSV-Rev (Addgene plasmid #12253) and pMDLg/pRRE (Addgene plasmid 

#12251) as well as the VSV-G envelope plasmid pMD2.G. (Addgene plasmid #12259). 

Briefly, lentiviral vectors were produced by co-transfecting 293T cells with the above 

plasmids [19]. On day 1, 293T cells were plated in T175 flasks. On day 2, transfection was 

performed with cells at 70-80% confluence using a jetPEI (Polyplus Transfection, U.S.A.) 

according to manufacturer’s instructions. After 4 hours of incubation at 37°C, the medium 

(complete DMEM, i.e. containing 10% FBS and penicillin/streptomycin; Gibco, U.K.) was 

exchanged with fresh medium. On day 4 the medium was collected and replaced with 

fresh medium which was also collected after a further 24 hours. Virus-containing medium 

was purified by centrifugation at 2500 rpm (4°C) and filtered through a 0.45 μm 

membrane. Medium was ultracentrifuged at 18,000 rpm for 2 hours at 4°C (SW28 rotor, 

Optima LE80K Ultracentrifuge, Beckham, High Wycombe, UK).  The viral pellet was re-

suspended in 100 μl pre-cooled serum-free DMEM (Gibco, U.K.), aliquoted and the virus 

was stored at -80°C until use. Viral titres were calculated by transduction efficacy in 

HEK293T cells. Cells were expanded in complete DMEM and seeded at 5 x 104 cells per 

well in a 24-well plate. A dilution series (1:5) from 20 μl/ml virus to 0.0032 μl/ml virus was 

created in a total volume of 500 μl per well. Cells were cultured overnight and changed for 
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fresh medium the following day. Transduction efficacy was determined by flow cytometric 

analysis of the proportion of cells expressing the fluorescent protein ZsGreen 72 hours 

after transfection. Viral titres were calculated from the volume of virus required to 

transduce cells between 10-20% efficacy according to the following formula [20-22]: 

2.2.2. Lentiviral transduction of stromal cells and FACS sorting. 

hMABs were transduced with the lentivirus as described above but scaled to T25 flasks and 

tested at a variety of multiplicity of infections (MOI). Virus used at stock concentration was 

added in a dilutional series of 20ul, 10ul, 5ul, 1ul per T25 flask. Transduction efficacy was 

determined by FACS as a percentage of cells transduced (positive for ZsGreen). In order to 

obtain a pure population of transduced cells, cells were FACS sorted following expansion of 

cells for one passage. Briefly, cells were trypsinized, centrifuged and 1 x 106 cells were re-

suspended in 500 µl of FACS buffer and sorted using a FACSAria (BD Biosciences). Sorted 

cells were expanded for a further passage and checked by flow cytometry to ensure a pure 

population of transduced cells had been maintained and could be used for downstream 

experiments (Luc-ZsGreen+ hMABs).  

2.3. Decellularized Scaffold Preparation 

Animal procedures were in accordance with ethical approval and UK Home Office Project 

License PPL 70/7622 and 70/7478. 200-300 g Sprague Dawley male rats were used for 

esophageal scaffolds. Donor tissue was harvested and trimmed and underwent wash steps 

in PBS. Esophagi were decellularized with two cycles of detergent-enzymatic treatment 

(DET) according to established protocols [23, 24]. Solutions were delivered dynamically 

through the esophageal lumen at 1 ml/min using a variable speed roller pump (iPump). 

Decellularized esophagi were sterilized by gamma irradiation with 1.8 kGy [17].  

2.4. Cell seeding in tubular decellularized scaffolds 

Luc-ZsGreen+ hMABs were re-suspended in a solution of sterile PBS, 0.1 ng/ml fibronectin 

(Sigma) and 0.5 ng/ml collagen I (Sigma), in order to obtain a final concentration of 1 x 106 

Viral titre (iu/ml) = Number of cells seeded x percentage of florescent positive cells

l f ( l)
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or 1.5 x 106 cells/10 µl. Cells were kept on ice prior to seeding. The cell suspension was 

injected within the muscle wall of decellularized esophagi in multiple sites along three 

distinct longitudinal lines. One injection every 3-4 mm was performed using insulin 

syringes (MyJector) mounting 27G needles. The volume of cell suspensions was calculated 

to deliver 1 x 106 or 1.5 x 106 cells for every 5 mm scaffold length. Multiple microinjections 

were performed using a stereomicroscope located under a laminar flow cabinet. A 

nasogastric tube (6Fr, Enteral) was introduced within the lumen of tubular scaffolds in 

order to keep it under constant tension and to improve the ease of injections. The 

intrusion of the plastic tube caused removal of the esophageal mucosal layer. Finally, cell-

seeded scaffolds were gently covered with proliferation medium and placed at 37°C. 

Samples for dynamic culture were first incubated for 6 hours in static culture to allow cell 

adherence to the esophageal matrix before being moved to the bioreactor.  

2.5. Cell Tracking Techniques 

2.5.1. MTT colorimetric assay 

The Vybrant MTT colorimetric assay (Life Technologies, Thermo Fisher) was used to assess 

cell viability and proliferation in 2D cultures, to determine cell engraftment and 

localization in 3D cultures and was performed according to manufacturer’s instructions. 2D 

and 3D cultured cells were incubated with MTT diluted 1:10 in proliferative medium for 4 

hours at 37°C. In 2D cultures, the reaction product, formazan, was solubilized in 100 µl of 

SDS and its concentration was determined by optical density at 550 nm. In 3D cultures, 

scaffolds were washed with PBS and imaged with a stereomicroscope [17]. Formazan-

positive hMABs were visible within the scaffolds. 

2.5.2. CyQuant 

CyQuant cell proliferation assay was performed to detect density of cells plated in 96-well 

plates, followed by storage at -80°C. Frozen plates were thawed to room temperature 

before adding 200 µl of CyQuant GR dye/lysis buffer, prepared following the 

manufacturer’s instructions (Invitrogen). Plates were incubated in the dark for 5 minutes 

and fluorescence was measured at 485/535nm using a Tecan plate reader. 



Page 8 of 28 
 
 
 

8 

Ti
ss

ue
 E

ng
in

ee
rin

g 
No

n-
in

va
siv

e 
lo

ng
itu

di
na

l b
io

lu
m

in
es

ce
nc

e 
im

ag
in

g 
of

 h
um

an
 m

es
oa

ng
io

bl
as

ts
 in

 b
io

en
gi

ne
er

ed
 e

so
ph

ag
i (

DO
I: 

10
.1

08
9/

te
n.

TE
C.

20
18

.0
35

1)
 

Th
is 

pa
pe

r h
as

 b
ee

n 
pe

er
-re

vi
ew

ed
 a

nd
 a

cc
ep

te
d 

fo
r p

ub
lic

at
io

n,
 b

ut
 h

as
 y

et
 to

 u
nd

er
go

 co
py

ed
iti

ng
 a

nd
 p

ro
of

 co
rr

ec
tio

n.
 T

he
 fi

na
l p

ub
lis

he
d 

ve
rs

io
n 

m
ay

 d
iff

er
 fr

om
 th

is 
pr

oo
f. 

2.5.3. Bioluminescent Imaging  

Bioluminescence was detected using an IVIS Lumina Series III Pre-Clinical In Vivo Imaging 

System (IVIS; Caliper Life Sciences) and Living Image 3.2 software (Caliper Life Sciences) as 

previously described [10, 17, 20, 25]. Bioluminescence imaging was acquired as a measure 

of radiance. This is calculated from the number of photons emitted from the subject and 

recorded as the number of photons per second per cm2 per steradian (p/s/cm2/sr). All 

images were taken on either stage C or D, with the automated aperture setting, an 

automatic exposure time and using a small binning (resolution).  

2.5.3.1. Bioluminescent Imaging of Cell Plates 

Cells were imaged in 96-well plates to confirm luciferase expression and compare 

expression between populations of cells against standard pre-established protocols (MTT 

and CyQuant). Twenty minutes prior to imaging, culture medium was exchanged for 

medium containing 150 µg/ml D-Luciferin. An optimal time-point, after which BLI had 

stabilized following the addition of D-Luciferin medium, was determined. 

2.5.3.2. Bioluminescent Imaging of 3D Construct  

Twenty minutes prior to imaging, fresh medium containing 150 µg/ml D-Luciferin was 

supplied to seeded scaffolds plated into multi-well dishes.  

2.5.3.3. Bioluminescent Imaging in a Bioreactor 

Culture medium containing 150 µg/ml D-Luciferin was injected into the internal chamber 

of the bioreactor via the 3-way luer taps and imaged as described above. The bioreactor 

was placed on the stage and imaged using stage D for zoomed out images of the entire 

reactor and stage C for all other images and analyses.  

2.5.3.4. Bioluminescent Image Analysis 

Images were analyzed using Living Image 3.2 software (Caliper Life Sciences), generating 

pseudo-colored, scaled images overlaid on grey scale images, providing 2D localization of 

the source of light emission. Regions of interest (ROI) were selected using shape drawing 
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tools and the light emission within the ROI was quantified in photons/s. ROI shapes were 

kept constant between subjects within each experiment. 

2.6. Subcutaneous implantation and bioluminescent imaging in vivo  

Decellularized esophageal scaffolds with and without seeded Luc-ZsGreen+ hMABs were 

prepared as described above for in vitro experiments 24 hours prior to implantation and 

submerged in medium at 37oC and 5% CO2. Adult NOD-SCID gamma (NSG) mice were used 

for subcutaneous implantation of scaffolds. Live animal work was ethically approved and 

carried out under Home Office Project Licence PPL 70/7504. Briefly, NSG mice were 

anaesthetized with a 2-5% isoflorane:oxygen gas mix for induction and maintenance. 

Under aseptic conditions, the dorsum of the mouse was shaved and chlorhexidine was 

applied to the skin. A 3 mm transverse incision over each dorsal flank was made and a 

subcutaneous pocket created. One scaffold was inserted into each pocket such that there 

was an unseeded (control) scaffold on the left flank and a seeded scaffold on the right 

flank. Wounds were closed with 4/0 Vicryl interrupted, buried sutures.  

Scaffolds were implanted for 7 days. Prior to imaging, 150 µL of 150 µg/mL D-Luciferin was 

injected into each scaffold directly. Images were acquired between 15-20 minutes after 

the addition of D-Luciferin as an initial time-course experiment identified that this time 

was required for readings to stabilize. Mice were inducted and maintained with 

isoflurane:oxygen mix for imaging. Imaging was performed as for in vitro experiments but 

with the stage set to D and binning set to small. At the final time-point, scaffolds were 

retrieved en bloc, washed in PBS and fixed in 4% PFA at 4 oC overnight for histopathological 

analysis. 

2.7. Immunohistochemistry  

Fixed samples underwent standard processing for paraffin fixation. Serial paraffin sections 

were cut at 5 µm thickness. Tissue samples from in vivo implantation experiments were 

cut longitudinally along the whole length of the scaffold. Haematoxylin and eosin (H&E) 

staining was performed using an automated staining system (Tissue-Tek). hMABs were 

identified in murine xenograft experiments using an anti-human cell antibody, STEM121 

(Clontech, Y40410; 1:1000), that identifies a cytoplasmic antigen present in human but not 
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rodent cells, and an anti-luciferase antibody (Abcam, ab181640, 1:100). Detection was 

using a species-appropriate HRP-conjugated antibody and the counterstain was 

hematoxylin. 

2.8. Epifluorescence 

Samples were fixed in 4% PFA for 1 hour at 4°C and then extensively washed in PBS. 

Dehydration was performed using solutions of progressively more concentrated sucrose. 

All samples were incubated with 10% and 15% sucrose for 30 minutes each and, finally, 

with 30% sucrose overnight at 4°C with slow agitation. Dehydrated tissues were embedded 

in O.C.T. (VWR) and immediately frozen by partial submersion in isopentane cooled in 

liquid N2. Finally, serial sections of 7 µm thickness were cut using a Leica cryostat and 

stored at -20°C. Frozen slides were thawed for 5 minutes at room temperature before 

being rehydrated in PBS. Tissue sections were permeabilized using 0.5% Triton X100 in PBS 

for 10 minutes at room temperature. Following washing with PBS, slides were mounted 

with DAPI (Abcam) and coverslipped. A confocal microscope (Zeiss LSM710) was used to 

image the samples and identify nuclei (DAPI) and Luc-ZsGreen+ hMABs.  

2.8. Statistical analysis 

Experiments were performed using mesangioblasts from one donor. Experiments were 

repeated on three separate occasions unless otherwise stated. Statistical analyses were 

performed using GraphPad Prism 7 (GraphPad Software, U.S.A.) as described in figure 

legends. Statistical significance was assigned when p < 0.05. 

3. Results 

3.1. Cell transduction and monitoring in 2D cultures. 

Primary human mesoangioblasts (hMABs) were transduced with a lentivirus carrying the 

pHIV-Luc-ZsGreen vector to express both ZsGreen fluorescent protein and luciferase. 

Following transduction, Luc-ZsGreen+ cells were morphologically indistinguishable from 

non-transduced cells (Fig. 1A). A multiplicity of infection of 7.2 was selected as it was 

associated with the highest transduction efficiency (84.6%) as determined by fluorescence-

activated cell sorting (FACS) analysis (Fig. 1B). To avoid contamination with non-
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transduced cells, transduced hMABs were FACS sorted based on the expression of ZsGreen 

(Fig. 1C) and further expanded in culture before seeding.  

Purified Luc-ZsGreen+ hMABs and non-transduced Luc-ZsGreen- control hMABs were 

seeded in multi-well plates at multiple densities (2,500-20,000 cells per well of a 96-well 

plate) and proliferation was monitored using invasive (MTT, CyQuant) and non-invasive BLI 

techniques after 24 hours of culture. Transduced cells were detected using the In Vivo 

Imaging System (IVIS) upon exposure to D-Luciferin, while bioluminescence was not 

observed in non-transduced cells (Fig. 2A). To standardize the bioluminescence detection, 

a time course analysis of total flux was performed at the same cell seeding densities. IVIS 

images were obtained at time 0 and every 5 minutes after the initial addition of 150 µg/ml 

D-Luciferin and total flux was measured using the Living Image 3.2 Software and the ROI 

tool. Bioluminescence showed an initial peak immediately after addition of D-Luciferin 

(time 0; Fig. 2B) and this was proportional to the number of cells seeded. Bioluminescence 

decreased rapidly to reach a plateau after 10-15 minutes post-D-Luciferin (Fig. 2B). This 

analysis provided a safe window for bioluminescence detection for subsequent 

experiments, in which bioluminescence readings were obtained 15-20 minutes after the 

addition of D-Luciferin to avoid errors due to the variability of readings between 0 and 10 

minutes.  

Quantification of the total flux emitted by Luc-ZsGreen+ hMABs cultured for 24 hours 

showed a significant difference in bioluminescence between cell densities (2-way ANOVA, 

all comparisons p < 0.001; Fig. 2C) and, as expected, non-transduced cells were negative 

for bioluminescence (Fig. 2C). We compared BLI to both MTT and CyQUANT, which are 

established invasive techniques that are traditionally used to determine cell number and 

viability in tissue culture applications. Both invasive assays showed comparable trends in 

cell viability at different cell densities with bioluminescence measures: absorbance (MTT; 

Fig. 2D) and DNA quantity (CyQUANT; Fig. 2E) increased in proportion to cell density. A 

small but significant difference in cell viability was detected between transduced and non-

transduced hMABs using both the MTT and CyQuant assays. 
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3.2. Bioluminescence imaging to monitor cells in 3D cultures. 

To monitor Luc-ZsGreen+ hMABs in a 3D context, they were injected in the wall of 

decellularized rat esophageal scaffolds obtained after two cycles of decellularization as 

previously described [17]. Scaffold tubular structures were maintained throughout culture 

by introducing a plastic tube into the lumen. Unseeded and scaffolds seeded with 1 x 106 

and 1.5 x 106 cells/scaffold were cultured in static conditions in multi-well plates (Fig. 3A). 

Constructs were cultured for up to four days in static conditions. MTT assays performed on 

these scaffolds after one or four days of culture were used to identify the location of cells 

within the scaffolds (Fig. 3B). From the quantification of formazan metabolized by the cells 

within the scaffold, no statistical difference was detected between the two cell densities 

nor the two time points (Fig. 3C). For this analysis, two separate sets of seeded/unseeded 

scaffolds were prepared since the MTT assay does not allow continuation of the culture. 

Unseeded scaffolds or those seeded with Luc-ZsGreen+ hMABs at cell densities of 1 x 106 

or 1.5 x 106 cells/scaffold were also imaged daily with IVIS after the addition of D-Luciferin 

(Fig. 3D). BLI confirmed the absence of a significant difference between the two cell 

densities or in cell viability during culture (Fig. 3E). The daily detection of bioluminescence 

allowed constant monitoring of the same constructs without stopping individual cultures.   

3.3. Bioluminescence imaging of seeded tubular scaffolds cultured in a bioreactor. 

Static 3D tissue-engineered organ cultures do not incorporate compartmentalization, 

rotation or flow [26] and as such are suboptimal to achieve even cell distribution across 

scaffolds. Therefore, we tracked cells seeded onto scaffolds and cultured in a bioreactor 

which incorporated flow. Tubular scaffolds seeded with 1 x 106 cells/5 mm scaffold were 

cultured in a custom-made glass dual chamber to allow medium perfusion through the 

lumen. The external surface of the scaffold was immersed in medium contained in the 

external chamber (Fig. 4A). Medium flow through the lumen was controlled by a peristaltic 

pump. The bioluminescence of Luc-ZsGreen+ hMABs was measured every 24 hours after 

the addition of D-Luciferin. The use of a glass chamber with no opaque components 

prevented interference problems and cell distribution and viability was determined from 

IVIS images (Fig. 4A/4B). During the experiment, cells progressively moved along the 



Page 13 of 28 
 
 
 

13 

Ti
ss

ue
 E

ng
in

ee
rin

g 
No

n-
in

va
siv

e 
lo

ng
itu

di
na

l b
io

lu
m

in
es

ce
nc

e 
im

ag
in

g 
of

 h
um

an
 m

es
oa

ng
io

bl
as

ts
 in

 b
io

en
gi

ne
er

ed
 e

so
ph

ag
i (

DO
I: 

10
.1

08
9/

te
n.

TE
C.

20
18

.0
35

1)
 

Th
is 

pa
pe

r h
as

 b
ee

n 
pe

er
-re

vi
ew

ed
 a

nd
 a

cc
ep

te
d 

fo
r p

ub
lic

at
io

n,
 b

ut
 h

as
 y

et
 to

 u
nd

er
go

 co
py

ed
iti

ng
 a

nd
 p

ro
of

 co
rr

ec
tio

n.
 T

he
 fi

na
l p

ub
lis

he
d 

ve
rs

io
n 

m
ay

 d
iff

er
 fr

om
 th

is 
pr

oo
f. 

scaffold length from a clustered distribution, corresponding to the injection sites, to reach 

an overall homogeneous distribution. An initial decrease in cell growth two days post-

seeding was followed by a subsequent stabilization of the cultures (Fig. 4B). At the end of 

culture, cell-seeded scaffolds were processed for histology. Serial sections of paraffin 

embedded samples stained with H&E confirmed the presence of hMABs throughout the 

length of the scaffolds and showed that these were distributed among the several layers of 

matrix (Fig. 4C/4D).        

3.4. Bioluminescence imaging of the engineered construct in vivo. 

Having demonstrated the compatibility of BLI with cell culture in a clinically-relevant 

bioreactor setup, we sought to track Luc-ZsGreen+ hMABs on a scaffold implanted in vivo. 

Decellularized esophageal scaffolds were cell-seeded and implanted into the subcutaneous 

space on the back of immunocompromised NOD-SCID gamma (NSG) mice. A matched 

unseeded scaffold was implanted on the contralateral flank of each mouse as a control 

(Fig. 5A). Animals were imaged with IVIS every 24 hours. Bioluminescence from Luc-

ZsGreen+ hMAB-seeded scaffolds peaked two-to-three days post-implantation, then 

decreased to a stable plateau for seven days (Fig. 5B/5C). Unseeded scaffolds never 

showed any signal after injection of D-Luciferin, demonstrating that no cell migration from 

one scaffold to the other occurs in our model (Fig. 5C). H&E staining of paraffin-embedded 

scaffolds harvested after seven days showed mild tissue remodeling and little 

inflammation (Fig. 5D). Cells were present around and inside the scaffold following the 

architecture and orientation of its native ECM (Fig. 5D). Immunohistochemistry using 

STEM121, an antibody that targets a cytoplasmic protein expressed specifically in human 

cells, and an anti-luciferase antibody confirmed the specificity of BLI cell tracking for 

transplanted cells as these were only present within seeded scaffolds (Fig. 5E/5F). ZsGreen 

is brighter and more resistant to fixation than EGFP [27] so the presence of Luc-ZsGreen+ 

hMABs was also confirmed by fluorescence imaging of dewaxed, DAPI counter-stained 

sections (Fig. 5G).  

 

 



Page 14 of 28 
 
 
 

14 

Ti
ss

ue
 E

ng
in

ee
rin

g 
No

n-
in

va
siv

e 
lo

ng
itu

di
na

l b
io

lu
m

in
es

ce
nc

e 
im

ag
in

g 
of

 h
um

an
 m

es
oa

ng
io

bl
as

ts
 in

 b
io

en
gi

ne
er

ed
 e

so
ph

ag
i (

DO
I: 

10
.1

08
9/

te
n.

TE
C.

20
18

.0
35

1)
 

Th
is 

pa
pe

r h
as

 b
ee

n 
pe

er
-re

vi
ew

ed
 a

nd
 a

cc
ep

te
d 

fo
r p

ub
lic

at
io

n,
 b

ut
 h

as
 y

et
 to

 u
nd

er
go

 co
py

ed
iti

ng
 a

nd
 p

ro
of

 co
rr

ec
tio

n.
 T

he
 fi

na
l p

ub
lis

he
d 

ve
rs

io
n 

m
ay

 d
iff

er
 fr

om
 th

is 
pr

oo
f. 

4. Discussion 

Adequate tracking of cells in tissue engineering is essential in determining optimal scaffold 

conditions and cell engraftment strategies. Typically, methods require the termination of 

the experiment, either through histology or through destructive assays to quantitate cell 

engraftment. In other techniques, there is a reliance on the use of tracer agents, which are 

subject to interference from the scaffold itself or will decay over time, preventing reliable 

long-term tracking of cells. As such, numerous different experimental endpoints have to be 

considered in order to determine optimal regenerative conditions. Here, we have used 

bioluminescence imaging (BLI) to track primary human mesangioblasts (hMABs) spatially 

and longitudinally in a decellularized esophageal construct at each stage of the pre-clinical 

tissue engineering process. Importantly, this has been rigorously validated with methods 

considered standard for evaluating cell engraftment in tissue engineered constructs.  

Whilst bioluminescence imaging (BLI) has been used extensively to monitor developmental 

processes [28], infection [29-31], cancer [10, 32], exogenous cell- [8, 33-36] or extracellular 

vesicle-mediated [37] therapies, its uptake in bioengineering has been quite limited [17, 

38-45]. In vitro studies show that BLI can be used to track expansion of luciferase-

transduced human mesenchymal stem cells on biomaterials [39] and to assess the sheer 

force effects of perfusion bioreactors on cell distribution [43]. Moreover, prior in vivo work 

has used BLI to monitor the cellular response to wounding and to foreign materials. 

Primary murine bone marrow-derived mononuclear cells co-expressing luciferase and GFP 

were tracked following tail-vein injection into mice that had subcutaneous wounds or 

transplanted biomaterials [42]. Additionally, BLI allowed monitoring of mouse embryonic 

fibroblasts implanted subcutaneously within synthetic hydrogel or coral scaffolds [39], 

monitoring of mesenchymal stem cells on scaffolds implanted subcutaneously [41] or in 

bone/spinal injury models [38, 44], and of cardiomyocytes transplanted within a pre-

vascularized gelatin scaffold following myocardial infarction [40]. These studies showed 

that BLI can be effective for monitoring the regenerative response. We have expanded 

these findings to hMABs - which have been proved to be an effective source of smooth 

muscle cells - seeded into decellularized tubular scaffolds. Notably, we validated BLI 
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against established but invasive techniques, proving that BLI is a valuable tool for 

monitoring hMABs behavior during the culture period and in vivo.       

Since the bioengineering of complex tissues and organs is likely to involve multiple primary 

human cell types, the BLI method has a further advantage in that multiple luciferases can 

be used to track multiple cell types simultaneously. Reporters can be placed under the 

control of inducible tissue-specific promoters to monitor cell differentiation [43, 45] and 

the use of luciferases that luminesce at different wavelengths can be used in the same cell 

to track cell differentiation in scaffolds as well as survival and proliferation [46]. Such 

techniques allow the study of multiple cell behavior in 3D constructs, a degree of 

complexity beyond the reach of other pre-clinical tissue engineering approaches. 

For bioreactor research, moving beyond very low throughput is a challenge in a research 

laboratory: the chambers are costly, high cell numbers are required and incubator space 

for bioreactors is limited. BLI, however, is relatively inexpensive and provides a convenient 

way to maximize the use of bioreactors by reducing the number of reactors that it is 

necessary to run in parallel. Indeed, a recent report shows that it is possible for BLI to be 

inbuilt into the bioreactor set up to allow continuous monitoring of cells [43]. Additionally, 

homogenous cell distribution after seeding in bioengineered scaffolds is key for graft 

functionality, as empty pockets would likely result in necrotic areas. BLI allows the 

localization of cells within whole scaffolds so appropriate distribution, as well as number, 

can be verified. Importantly, while we used rodent scaffolds in the present study, the IVIS 

setup is compatible with bioreactors for human-sized organs. We foresee that BLI will be a 

useful tool for determining optimal human scaffold seeding protocols and monitoring 

cellular dynamics in bioreactor conditions. 

There remain a number of questions around the fate of transplanted cells in tissue 

engineered organ replacements that might be addressed by the compatibility of BLI with in 

vivo investigations [47, 48], and here we show the application of the technology to track 

primary human cells on biological, tubular tissue-engineered scaffolds. Since BLI can image 

cells at depths greater than those demanded by subcutaneous implantation, we envisage 

its application in experiments involving orthotopic tubular organ transplantation. A 
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challenge remains, however, to develop imaging systems capable of monitoring cells in 

larger animal models, which are needed as orthotopic organ replacement is very 

challenging for some rodent organs. The ability to monitor cells in living animals also offers 

an opportunity to reduce the numbers of animals used in tissue engineering research [49]. 

5. Conclusion 

Our study suggests that stable transduction of human mesangioblasts (hMABs) with a 

luciferase-containing, multimodal reporter virus will be a valuable tool during the 

translation of esophageal bioengineering approaches. Transduced hMABs behaved 

similarly to non-transduced controls but their location, engraftment, proliferation, and 

migration could be longitudinally monitored during experiments that span much of the 

pre-clinical bioengineering pipeline, from simple in vitro studies, through 3D organ-scale 

cultures to small animal models. 
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Figure Legends 

 

Figure 1: Purification of Luc-ZsGreen+ primary human mesoangioblasts (hMABs) after 

effective transduction with ZS-Green-Luciferase lentiviral vectors.  

A. Representative images of hMABs before (ZsGreen-Luc-) and after (ZsGreen-Luc+) 

transduction with lentivirus carrying the pHIV-Luc-ZsGreen vector (brightfield and ZsGreen 

fluorescence). B. Transduction efficiency, determined by FACS analysis as percentage of 

ZsGreen+ cells, using the M.O.I of 7.2, associated to the highest transduction efficiency, 

84.6%. C. ZsGreen-Luc+ cells were then sorted based on the expression of ZsGreen to 

obtain a purified population for seeding experiments.  
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Figure 2: Bioluminescence effectively measures hMAB viability in 2D and discriminates 

between cell densities.  

A. Bioluminescence images of Luc-ZsGreen- and Luc-ZsGreen+ hMABs plated at different 

densities after 24 hours of 2D culture. B. Graph of total flux measured every 5 minutes 

from different cell densities indicating the stabilization of bioluminescence over time. C. 

Graph of bioluminescence total flux analyzed on different cell densities confirms 

bioluminescence signal is proportional to cell number and is negative for Luc-ZsGreen- 

cells. 2-way ANOVA showed p < 0.001 for all possible comparisons of ZSGreen-Luc+ cell 

densities. No significant differences are detected for ZSGreen-Luc- cells due to the absence 

of signal detected. D,E. MTT and CyQuant assays also show that absorbance (D) and 

fluorescence (E) values correlate with cell number with a trend comparable to 

bioluminescence analysis. Data: mean ± SEM; * p <0.05; ** p < 0.01; **** p < 0.0001 (n=3; 

2-way ANOVA). 
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Figure 3: Bioluminescence imaging of 3D hMAB-seeded scaffolds for live cell viability 

detection in static cultures. 

A. 5 mm segments of unseeded and Luc-ZsGreen+ cell-seeded tubular scaffolds were 

cultured in static conditions in multi-well plates, with a plastic tube placed in the lumen to 

maintain the tubular structure throughout culture. B. MTT assays performed on unseeded 

or cell-seeded scaffolds cultured in static conditions for one or four days to visualize the 

cells and to determine cell viability. Two seeding densities (1 x 106 or 1.5 x 106) were 

tested. C. Graph of absorbance from the extraction of formazan in the MTT assay showed 

no difference between the two seeding conditions (n=3; t-test). D. Bioluminescence 

imaging and E. Graphs of bioluminescence total flux performed daily for four days, 

showing comparable results to the MTT assay. Data: mean ± SEM (n=3-4; 2-way ANOVA). 
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Figure 4: Bioluminescence imaging of 3D hMAB-seeded scaffolds in a dynamic cell 

culture bioreactor. 

A. Schematic of the dual glass culture chamber for tubular scaffolds (top) and 

bioluminescence imaging of a representative cell-seeded scaffold placed in the glass 

chamber and cultured for seven days (bottom). B. Graph of bioluminescence total flux 

shows stabilization of cell viability during the culture period. Data: mean ± SEM (n=3). C,D. 

Representative images of haematoxylin & eosin (H&E) staining to confirm the presence of 

cells at the end of the culture. The same area is shown at low (C) and high (D) 

magnification. 
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Figure 5: Bioluminescence imaging of 3D hMAB-seeded scaffolds in vivo. 

A. Unseeded and Luc-ZsGreen+ hMAB-seeded scaffolds were implanted subcutaneously in 

the flank of NSG mice. B. Graph of bioluminescence average radiance shows quantification 

of transplanted cells during the seven day in vivo analysis. Data: mean ± SEM (n=3). C. Daily 

bioluminescence imaging of NSG mice with implanted unseeded and Luc-ZsGreen+ cell-

seeded scaffolds. D-G. (D) H&E, (E) Representative images of immunohistochemistry using 

STEM121, (F) anti-luciferase and (G) ZsGreen epifluorescence to demonstrate the presence 

of Luc-ZsGreen+ hMABs in cell-seeded scaffolds after seven days in vivo, while no signal 

was detected in unseeded control scaffolds.  
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Supplementary Figure 1: The lentiviral transfer vector pHIV-LUC-ZsGreen.  

The lentivirus coding for ZsGreen florescent protein and firefly luciferase separated by an 

internal ribosome entry site (IRES), enables the two proteins to be translated from a single 

mRNA initiated by EF1-alpha promoter. 


